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Abstract

We show a second order a priori estimate for solutions to the complex k-Hessian equation
on a compact Kihler manifold provided the (k — 1)st root of the right hand side is C-!. This
improves an estimate of Hou—Ma—Wu (Math Res Lett 17:547-561, 2010). An example is
provided to show that the exponent is sharp.

Mathematics Subject Classification Primary 35J60; Secondary 35B45
1 Introduction

Geometrically motivated complex fully nonlinear elliptic partial differential equations have
received a lot of attention recently (see [16—18,20,21] which is by far an incomplete list of
recent important contributions). The solvability of such equations is usually studied through
the continuity method and boils down to establishing a priori estimates just as in the classical
approach of Yau [25].

In general the considered problems are reducible to a scalar equation satisfied by a real
valued function u defined of a compact complex manifold X equipped with a fixed Hermitian
form w. Quite often additional assumptions such as kihlerness of w are imposed and then
the real (1, 1)-form w + iddu is the geometric object with the desired properties. Arguably
the most natural geometric assumption is that w + id9u defines a metric i.e. it is positive
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definite. However, it often happens that the very nature of the nonlinearity imposes more
general admissibility conditions (see for example [9,10,16,20]). This lack of positivity usually
contributes significantly to the technical difficulty of the estimates.

In this note we deal with the complex Hessian equations on a compact Kéhler manifold
(X, w) withdimc X = n. These interpolate between the Laplace equation (in the case k = 1)
and the Monge—Ampere equation in the case k = n. They are defined by

(@+i00u)* A" * = fo, (1.1)

where the given nonnegative function f satisfies the necessary compatibility condition

Jxo" =[x fo.

For smooth u the admissibility condition imposed of the class of solutions u is that
(+iddu) A" >0, j=1,2,... k.

We denote the class of such functions by SH (X, w). Note also that adding a constant to
a solution u doesn’t change the Eq. (1.1), thus we normalize the solutions by imposing
the condition f y u " = 0. The solvability of Eq. (1.1) was established for smooth strictly
positive right hand side data f satisfying the compatibility condition through the works of
Hou-Ma—Wu [10] who proved the uniform and second order a priori estimates and the first
named author and Kotodziej [6] who obtained the missing gradient estimate by an indirect
blow-up argument.

Having the existence of smooth solutions for smooth strictly positive data it is natural to
address the regularity theory in the degenerate cases. A situation of special interest is when
the right hand side function is allowed to vanish. Such a scenario, reminiscent of failure of
strict ellipticity in linear PDEs, as a rule implies the occurrence of singular solutions. In view
of the classical theory in the Monge—Ampere case (see [3,7]) the maximum one can expect
in this setting is C!! regularity.

A natural question appears then about optimal conditions implying that u € C!-!. Note that
in [10] the authors have proven that the complex Hessian is controlled by the gradient of u
provided the C? norm of £1/¥ is under control. This may hold even if f vanishes somewhere,
that is, we deal with the degenerate equation. The estimate in [10] left the problem whether
the exponent 1/k is the optimal one. We will show that one can further improve itto 1/(k —1)
if k > 2 as one expects for the real case (for k = 1 we have the Poisson equation whose
regularity theory is classical). Our main result is the following:

Theorem 1.1 Let f > 0 be a function on compact Kdihler manifold (X, ®) satisfying
[y fo" = [y " Assume that f'/*=D e CV1. Then the solution u to Eq. (1.1) admits
an a priori estimate

sup [[iddu] < C(1 + || Dull*) (1.2)
X

for some uniform constant C dependents only on n,k, X, || f1/*=VD| 11, the oscillation
oscxu of u and the lower bound on the bisectional curvature of w.

Coupling this estimate with the main result from [6] one can prove that the solution u
has bounded Laplacian and thus belongs to the weak C'*! space. The proof of the above
estimate relies heavily on the argument of Hou—Ma—Wau [10]. The main importance of our
improvement is that the obtained exponent is optimal as an example constructed in the note
shows.

The complex Hessian equations were first considered in the case of domains in C", where
the equation takes the form
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(i00u)* A g1k = fp" (1.3)

with 8 = dd€|z|? denoting the standard Hermitian (1, 1) form in C”. The corresponding
Dirichlet problem was studied by Li [14] and Btocki [2]. In particular, the nondegenerate
Dirichlet problem in a strictly k-pseudoconvex domain admits a unique smooth solution pro-
vided f and the boundary data are smooth and f is uniformly positive. Again it is interesting
to study C!! regularity in the case when f vanishes or decreases to zero at the boundary. It
has to be emphasized that the occurrence of a boundary makes things substantially harder
and the regularity theory is far from complete. When k& = n, that is for the complex Monge—
Ampere case, some regularity results were obtained by Krylov [12,13] under the assumption
that f > Oand f1/% e ¢V 1.
The complex Hessian equation is itself modelled on its real counterpart

Sk(D*u) = f

with Sx(A) denoting the sum of all main k x k-minors of the matrix A. The real Hessian
equation is much better understood and we refer to [24] for an excellent survey regarding
the corresponding regularity theory. In particular in the real setting the following analogue
of the Hou—Ma—Wau [10] estimate was established by Ivochkina—Trudinger—Wang in [11].

Theorem 1.2 [11] Ler U C R”" be a strictly k-convex domain with C* boundary. Suppose
that the admissible function v satisfies the problem

{Sk(Dzv) —f iU

1.4
V=g inoU, (1.4)

where we assume that ¢ € c*(dU) and fl/k € C2(U). Then v € CHY(U) with C? norm
bounded by an estimable constant dependent on f, ¢, k,n and U.

Again it is unknown whether the exponent 1/k is optimal here. It has attracted much
attention to establish the above theorem with the exponent 1/k being replaced by 1/(k — 1).
More recently, the above theorem was proved under a weaker condition on f in [22], but the
optimal one seems still missing. On the bright side the optimality problem has been settled in
the extremal case k = n, i.e. when we deal with the real Monge—Ampere equation. By a result
of Guan-Trudinger—Wang [8] the optimal exponent yielding C'! solutions is 1/(n — 1) for
domains in R”. Sharpness of this bound follows from an example of Wang [23]. This example
has been generalized for the complex Monge—Ampere equation by the second named author
in [19].

In the case of general Hessian equations the current state of affairs is as follows: it was
stated in [11] that an example analogous to the one in [23] suggests that the exponent 1 /(k—1)
is optimal for the real k-Hessian equation. As no proof of this was provided we take the
opportunity to present the relevant example (as well as its complex and compact manifold
counterparts) in detail, since in our opinion the arguments used in the proof have to be slightly
different than the approach of Wang [23]. In particular, we have

Proposition 1.3 Forevery ¢ > 0, there exists a non-negative function f in the unit ball in R"
(respectively, P"~! x P! or the unit ball in C") such that f'/*=D+e ¢ cL.1 byt the solution
to the k-Hessian equation with f as a right hand side is not C'!.

The examples living on P*~! x P! equipped with the Fubini—Study product metric yield
in particular a regularity threshold 1/(k — 1) for the exponent of f. This shows that our main
result (Theorem 1.1) is optimal. We also take the opportunity to investigate the regularity of
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the example given in Proposition 1.3 under various weaker assumptions on the right hand
side (see Example 4.6 in Sect. 4.2). More precisely, we provide some examples to indicate
what might be the best possible regularity of the admissible solutions for equation

(@+id00u)* A" * = f(2) o,

on a compact Kihler manifold (X, w) withO < f € L? (or 0% satisfying fX fo = fX .
We believe that at least in some cases the obtained examples are sharp.

2 Preliminaries

Below we gather the definitions and facts that will be used in the proofs later on. We refer to
the survey article [24] for the basics of the theory of Hessian equations. We start with some
relevant notions from linear algebra. Consider the set M, (R) (respectively: M, (C)) of all
symmetric (respectively Hermitian symmetric) n x n matrices. Let A\(M) = (A1, X2, ..., Ap)
be the eigenvalues of a matrix M arranged in decreasing order and let

SKM) = S M) = Y Ajhjy.ah,

O<ji<-<jk<n

be the kth elementary symmetric polynomial applied to the vector A(M). Analogously we
define oy (M) if M is Hermitian. Then one can define the positive cones I';, as follows

Cp={ReR"S(A) >0, ..., Sur) > 0}. (2.1)

Note that the definition of I';,, is nonlinear if m > 1.

Letnow V = (v j) be a fixed positive definite Hermitian matrix and A; (T) be the eigenval-
ues of a Hermitian matrix 77 = (r,;j) with respect to V. We can define analogously oy v (T).
In the language of differential forms if t = i T,;jdzj AdZF v =i v,;jdzj Adz* then or,v(T)
is (up to a multiplicative universal constant) equal to the coefficient of the top-degree form
8 A v We can also analogously define the sets 'y (V). Below we list the properties of

these cones that will be used later on:

7 1
1. (Maclaurin’s inequality I) If A € '), then ((S,,—’)) ! > ((5,—'))[ forl < j <i <m.The
J i

same inequality holds for the operators oy;
2. (Maclaurin’s inequality II) There is a universal constant c(n, m), dependent only on n

m=2 1
and m, such that o,_1 () > ¢(n, m)oy (W) m—T oy (L) T forany A € Tys
1
3. I'), is a convex cone for any m and the function o,;; as well as log (o, ) are concave when

restricted to I',;
4. (Garding’s inequality) Let oy (A]i) := a‘%ﬁ‘(k). Then for any A, u € Iy,

n
. 1 m=1
> wiom 1 (Ai) = moy () oy ()

i=l1

5. op_1(Aij) = W forall i # j.

We refer to [24] for further properties of these cones.
Recall that a smooth function v living on a domain U C R” is called k-convex for some
natural 1 <k <nif

Si(D*v(x) >0, j=1,...,k
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with D?v(x) denoting the Hessian matrix of v at x and S;(A) is the sum of all main j x j
minors of the n x n matrix A. Analogously a function u living on a domain  C C" is called
k-subharmonic for some natural 1 < k < n if

0j(id0u(z)) >0, j=1,...,k

with o;(B) denoting again the sum of the main j x j minors of a Hermitian symmetric
matrix B. In the complex setting one can alternatively use the language of differential forms
to define the o} operator as

- n -
o1 (i09u)p" = <k>(i88u)k A Bk

with g := dd€|z|? denoting the standard Hermitian (1, 1)-form in C".

These are the local real and complex versions of the functions belonging to SHj (X, @)
defined in the introduction. In each of these settings one can define singular k-convex (respec-
tively k-subharmonic) functions locally as decreasing limits of smooth ones. The basic fact
from the associated nonlinear potential theories (see [24] for the real case and [2,5] for
the complex one) is that the operators Sy (respectively o) can still be properly defined as
nonnegative measures for singular bounded k-convex (k-subharmonic) functions.

The following theorems, known as comparison principles are basic in the potential theory
of k-subharmonic and k-convex functions (see [5,24]).

Theorem 2.1 [24] If u, w are two bounded k-convex functions in a domain U C R", such
that liminf,_, 50 (u — w)(x) > 0. If moreover

Se(D*w) = Si(D*u)
as measures thenu > w in U.

Theorem 2.2 [5] If u, w are two bounded k-subharmonic functions in a domain Q c C",
such that liminf,_, 5o (u — w)(z) > 0. If moreover

ok (i30w) > 0% (i3du)
as measures then u > w in Q.

As a corollary one immediately obtains the uniqueness of bounded solutions for the
corresponding Dirichlet problems. The uniqueness of normalized bounded solutions from
SHix (X, w) is also true (see [4]). The corresponding comparison principle (see [6]) reads as
follows:

Theorem 2.3 Let ¢, v € SHy (X, w) be bounded. Then
/ (w+ i) A" F < / (0 +i00¢9)k A 0" 7K.
{o<yr} {p<y}

Finally we shall need an elementary calculus lemma whose proof can be found in [1]:

Lemma2.4 Ify € CV1(Q) is a nonnegative function. Then /v is locally Lipschitz in .
For almost every x € Q we have

DY (x)] 1+ supg Amax[D>¥]
ID‘/E(X)‘ = max { 2dist(x, 0% 2 } :

where Amax[ DY denotes the maximum eigenvalue of the real Hessian of .
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Working in charts on a compact Kihler manifold one easily gets the following corollary of
the lemma above:

Corollary 2.5 Let f > 0 be a function on a compact Kdhler manifold (X, w) such that
fYE=D g eLI(X). Then

[esenaf* <e|s-viol

for some constant C dependent on X , @ and the C*' norm of f1/*=V_ In particular for any
unitary vector n one has

anar_]fl/(kfl) |a;7fl/(k71)|2 é
O dj log f = (k — D( FUED  pen | = T FED

for some constant o) dependent on X, w and the C"' norm of f1/*=1.

Proof Pick a point z € X and a chart centered around z containing a ball of some fixed radius
r (dependent only on X and ). Then we apply the lemma for ¢y = f1/ *=1) in the coordinate
ball centered at z with radius r to get the statement. O

Remark 2.6 In the corollary itis crucial that the manifold has no boundary. As observed in [1]
the function ¥ (1) = ¢ on (0, 1) shows that it is in general impossible to control | Dy |2 by ¥
globally in the presence of boundary.

Notation Throughout the paper, (X, w) will denote a compact Kéhler manifold, 2 will be a
domain in C" and U will be a domain in R” for some n > 2. The constant Cy denotes the
lower bound for the bisectional curvature associated to w i.e.

2.2)

Cp := sup |iI.le Rm’z{i'

xeM M

with ¢, n varying among the unit vectors in 7, X. Other constants dependent only on the
pertinent quantities will be denoted by C, C; or ¢;. We shall refer to these as constants under
control.

3 The main estimate

This section is devoted to the proof of the following a priori estimate:

Theorem 3.1 Ler u € SHy(X, w) be a C*(X) function solving the problem

ca9.\k n—k __ n
!(a)—l—laau) AW = fo G.1)

Jyuaw =0

where the nonnegative function f satisfies the compatibility assumption f yfo' = f u "
Suppose that || fllco < B, | f//* Vet < Band || f/* V|c2 < B. Then

sup [|iddull, < C <sup Vul? + 1) (3.2)
M M

for some constant C dependent on Cy, B, w,n and k.
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Using the above C2 estimate, one can repeat the blow-up argument from [6] to deduce an
indirect gradient bound for u. Coupling this information with (3.2), we get the following
result:

Theorem 3.2 Ifu € SHy(X, w) solves the problem (3.1) with the assumption f'/*=1 ¢
CY1, then u belongs to the weak C'' space, i.e. the Laplacian of u is bounded.

Proof of Theorem 3.2 The argument can be found in [1]. We provide the details for the sake
of completeness.

Given any f as in the statement there is a family f, € € (0, 1) of smooth strictly positive
functions uniformly convergent as € N\, 0 to f such that additionally fel/ =1 tends to
F1&=D in ¢! norm (one way to produce such a family is to use a convolution in local

charts coupled with a partition of unity, see [1] for the details). Let also C¢ be a positive

constant such that
/ Cefea :/ fa" :/ "
M M M

It follows that lim¢_,y Cc = 1. Furthermore we can assume that
1(Ce f)V/ Pl < 211 4Dl

Hence the solutions u. € SHi(X, w) to the problem

(3.3)

(@ +i0du)* A" * = C, fea"
fx ue 0" =0,

(which are smooth by the Calabi—Yau type theorem from [6]) converge in LY(X, w) tou (see
Corollary 4.2 in [15]).

On the other hand we have as an application of Theorem 3.1 the bound A,u. < C for
a constant C dependent only on || f 1/G=1) lc2, n, k and the lower bound of the bisectional
curvature. In particular the bound does not depend on € and hence passing to the limit we
obtain A,u < C which implies the claimed result. O

Now we proceed to the proof of the main a priori estimate:

Proof of Theorem 3.1 We will work, just as in [1] under the assumption that f > 0 (for
example using the approximate problems (3.3)) and we will obtain an estimate independent
of infx f. This is done in order to avoid confusion as we shall divide by f in the argument.
Then, if needed, one can repeat the final part of the argument in the proof of Theorem 3.2 to
drop the assumption f > 0. Our proof will follow closely the argument in [10].

Givenapointx € M we consider a fixed local coordinate system (zy, .. ., z,) centered at x.
By re-choosing the coordinates if necessary, one can assume that the formw = i g ;d 7/ Ad7F
is diagonal at x. We follow the notation in [10] and use the covariant derivatives with respect
to the background Kéihler metric @ to do the calculation. In particular for any function A
defined near x let hy =V j.ih, b5 = V521V 5.ih, etc.

As in [10], we consider the quantity

G(z, &) :=log(l +u;78'E)) + 9(IVul®) + ¥ (u) (3.4)

defined for any z € X and any unit vector £ € TZI’OX . The relevant quantities are defined as
follows:

1 t
@) == log (1 - ﬁ) with K := sup |Vu|* + 1 (3.5)
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and

t
Y(t) == —Alog (1 + i) with L :=suplu|l+1, A=3LQ2Co+1). (3.6)
M

The properties of ¢ and ¢ that we shall use are listed below:

1 1 1
~log2 > ¢(IVu>) >0, — >¢'(IVul®>) > — >0, 3.7
5 log = e(IVul?) = 2K_</>(I ul?) K> (3.7
¢"(IVu?) = 2[¢'((Vu)P > 0 (3.8)
and
Al 1>¢r>A1 2 A> v (u) > A 2Cy) + 1
og = og—-, —>-— > — = ,
gy =V=aey W=zp T
Vw) > 2 )P foralle < — (3.9)
T 1l—e€ ’ 2441 '
Suppose G attains maximum a point xo € X and a tangent direction &) € Ty, X.In astandard
way we construct normal coordinate system at xo and assume that &y = g ) 11/ 20 We may
also assume that u, ; is diagonal at xo, i.e.,
u;5(x0) = &iju;7(xo).
Then A; := 1+ u;7(xo) are the eigenvalues of w + dd“u with respect to  at xg. Therefore,
near xg, the function
G(z) =log(l + g5 ") + (V) + () (3.10)

is well defined and has a maximum at xq. At this moment we mention that u(xo) is of the
same size as A, u(xo) (meaning that for a numerical constant C,, one has C,; 1u”(xo) <
Apu(xp) < Cyu,i(xp)), since A; € I'y with k > 2 and hence Z?:z i > 0. Note that in
order to get the claimed global bound for the Laplacian in terms of the supremum of the
gradient it is thus sufficient to bound u,7(xo) by an expression which is of linear growth in
K. To this end let us take the nonlinear operator

S(w +i00u) = log oy (w + i9du)
which is different from F = akl rk
compute that

used in [10]. Using the diagonality of @ and u; ; at xo we

Y EE] _1 (i
S .— (w+l_ u) _ (Siij 1( |l) G.11)
du; 5 or (V)

o i7pa 52 . .
At x¢ the second derivatives §'/P7 1= — A 3Su — are zero except in the following cases:
ijoUpg

ot2(Mip)  orm1 (Alidor—1 (AIp)
ok () o2 (0)

SiipP — =(1-46ip)

and fori # p

Siﬁ'p; — _ ok—2(Alip)
ok (M)
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Observe also that at xq

n n

ST 4w =3 ST = k. (3.12)
Z ii Z

i=1 i=1
Differentiating the equation S(w 4+ dd“u) = log f and commuting the covariant derivatives
we obtain the formulas (compare [10]) that at xq

n n
> SPPujp=og f)i+ > ugS"Rjgpp (3.13)
p=1 p.q=1

and

n
ZSppulipﬁ:(logf)li— Z 2 ”’uljlurql—i-ZS P(uyi = upp)Ryipp-
p=1 i,j,r,q=1

(3.14)
Returning to G from the extremal property at xo we have the following formula
ulip
0=Gp= - +¢'upu ,,p+<p2u,pp+¢up (3.15)
1
j=1
Also by diagonality, ellipticity, the equation itself and (3.14) we get
n —
0= 8P7G,;
p=1
n SpﬁulI _ nSPP Iy |2 n
_ rp Uip
_Z T —Z T +u)? +2<pRe[(logf) ujl+¢ Z uritg S? Rp,,rq
p=1 p=1 p.g.r=1

n n n n n

/ p 2 / D 2 7 p 2

+ Zw SPPuppl +Z<ﬂ SppZ|”jp| +¢ ZSW|Z”J'17“]+”MP5|
p=1 p=1 Jj=1 p=1 Jj=1

n n
Y Sl P+ k=g Y SPP (3.16)
p=1 p=
The first term can be estimated by exploiting (3.14), analogously to [10] we have
n o SPRu (log /)7
PP _ l[ rq pp Ve J 11
Zil—i—u” > ! Z Sy, OZS = Cok + ==

p=1 i,j,r.g=1 p=1

(3.17)

Denote S := ZZ:] SPP_ Then the fourth term in (3.16) can be estimated from below by
“ ; C
¢ Y urugSPPRypg = —K¢'SCo = —703, (3.18)

p.q.r=1

where we used the property (3.7) of ¢’. The fifth term can be rewritten as

n n n
> QISP uppP =Y @/ SPP N, — 1P =) @'SPP2 — 20’k + 'S, (3.19)

@ Springer



138 Page 10 of 21 S.Dinew et al.

The sixth term is obviously nonnegative. So coupling (3.16) with (3.17), (3.18) and (3.19)

we obtain

0> — Z ST ity Pl I

= _ 32
ijrg=1 T u p=1 (4w

n n n n
R ICLEND SCLD SRR SELY

p=1 p=1 =1 =
1 -
% +2¢/Rel(log f)ju;] = ¢ + ¢ = Colk.
(3.20)

+ (=Y + ¢ —2C)S +

Up to now we have followed [10]. The big difference is that the last three terms, contained
in the constant C, in [10], are not controllable from below in our setting. Define the constant
8= 517 +l Let us divide the analysis into two separate cases:

Case 1 Suppose that A, < —§A . Using the critical Eq. (3.15), we can exchange the term
second term in (3.20) by

n

|“11p
_Z (+up? =2 ST upupy to Z“qup+1/fup|

p=1 j=l1
By Schwarz inequality this is further estimated from below by

n

—| Ui |2
Zm = 2 Y 5 gy + ¢ 3 wspusl’ — 20 SIVul
p=1 j=1

Note that, by the choice of ¢ (3.8), the first term above annihilates the fourth term in (3.20).
The second one is bounded, using (3.9), by —2(6Cp + 3)2K S. Furthermore the first term in
(3.20) is nonnegative by the concavity of the S = log o} operator, and the sixth term is also
nonnegative by (3.7) and (3.9). Coupling the above inequalities we obtain

0>¢ i S”ﬁ)\i —18(2Co + 1)*KS + % +2¢'Re[(log f);u;]
p=1
= Q2¢' + Y = Co)k. (3.21)
As ¢’ > W’ the first of these new terms is estimable by
2 nit 5 2 1 2 I 22
@ Z SPPAZ, xSz Sk = 88

Here we used the case assumption and the fact that the coefficients S/ J increase in J- Next,
using Corollary 2.5 and the fact that || fl/(k‘l) ey |l fl/(k‘l) lc1.1 are bounded, the last three
terms in (3.21) can be estimated from below as

(log 3 / o ’ / C c
PR 2g/Rellog )] = (O + '~ Cok 2~y — e
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for some constant C dependent on Cy, k, B and n. Finally by MacLaurin inequality

n

S = Zsﬂﬁ :ZM :(n_k+1)0k—1()»)
p=1

Pl ok (1)
k=2)/(k—1) _1/G—1) /Gy
> c(n, k) 2k % > c(n, k) 2L (3.22)
= cln, o = el B2 :

Therefore, multiplying both sides of the inequality (3.21) by f1/*=D we get

_ 82

0> c(n, kr/* " (—A% — 18(2Cy + 1)2K> —-Cc-C (1 + sup f‘/<k—‘>> .
4Kn M

It follows that

CK

M <CK>4 ———
- 1/(k—1)"
825

for some C under control.
Case 2 Assume A, > —4&X . Exactly as in [10], we consider

I={iefl,....n}|op1(Ali) > § oy  (AID)}

As 87! =24 41 > 7,i = 1 does not belong to I. Returning to our setting we get that
p € I if and only if

§PP > 5isI
Then exploiting (3.15) and the Schwarz inequality we have

p 2
SPPuyy |

- Z 2
AN (1+’411)

2

n
> =2 Y. SPPlupupp+ Y wjpup| =20 Y SPPlu,)
pell,...n]\I j=l1 pe{l,...n}\I
2
n _
> =2 Y SPPlupupp+ Y ujpup| —18(2Co+ 1)’K S
pe{l,...n]\I j=1

Using the same strategy as in case 1, the first term annihilates the following term in (3.20):

2

n
" pp _ .
o' D ST lupups Y ujpu;
pefl,...n]\1 j=1
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What remains from (3.20) can be written as

noooSrdy sy SPPluy,|*
0> _ ijl rql_ 11p + (= /+ /_2CS
- Z I+ uyy 2 (1+u;p)? Ve "
i,j,r,q=1
2
+€0NZSPP MI’MPP+ZMJP“P +¢NZSW|” i + Zsppkz
pel Jj=1 p=l1
lo 7 i
+ 0980T Lo Ref(log £) juil— ¢/ + 9 — Colk — 18(2Co + 1)*K S

Al

If )L% > [12(2Co + 1)K 1? (which we can safely assume a priori for otherwise we are through)
the last term can be absorbed by the sixth one. Also —y' + ¢’ — 2Cy > 1, therefore the
previous estimate is reduced to

n Sif,rljMiilurqI pp_'”llp , n
OZ_HZ 1+u; _Z(l—i-u )2 ZS pupﬁ-l-Zuijp
i,j,r,q=1 pel =1
n
5 1 5 (og Mii
" PPy 12— Pp)y2 11 ! U
+Y Y SPP P + T Zs A+ S+ " +2¢'Re[(log f)ju ]
p=1 p=1
- Q¢ + ¢~ Cok.
As as case 1, the last three terms can be estimated by — % for some constant C dependent
on B, n, Cy and k. So if the first four terms add up to something nonnegative then we end up
with

Cs 1 <&
2 o ppq2
w7 25T gx le 22
p:
This together with (3.22) imply A1 < C.

What remains is to prove the non-negativity of

n ijrdy -y - PP
-y w_z'”‘iﬂpz "3 SPPluu pp+zum upl?
1+ u 1
ijrg=t LM (4 pel
n
" p 2
+ D SPP .
p=l1

Exploiting (3.15) and Proposition 2.3 from [10] the last two terms can be estimated from
below by

2 _
n
. 26 SPPluyg, |2
/N2 _ . _ 2 P
N SPP 20 upups + Y ujpity + 5l 22527(“”{”)2.

pel j=l1 pel

On the other hand, the concavity of the S = logoy operator yields that the first term is
controlled from below by

n S SPL P 2

rgl
D

i,j,r,g=1 pel
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Therefore, the inequality to-be-proven will be satisfied if

— Spp

—sPLIP = (1 - 28)—,
Al

for each p € I. Exploiting the formulas for S” L.15 and SPP this is in turn equivalent to

ok—2(A1p) _— _25)0k—1(?»lp).
O - A10%

But the inequality above is exactly the inequality proven in [10] (page 559). Indeed, the
inequality can be rewritten as

(2811 + (1 = 28)Ap)ok—1(A|p) = Aior—1(A[1)

and the latter one holds due to the case assumptions A, > A, > —8A; and o;—1(A|p) >
8~ lo3_1 (X p). Thus the claimed inequality is proven. O

4 Examples

In this section we shall investigate the examples from Proposition 1.3 in the real and complex
domains. We will also deal with the complex compact manifold case.

As mentioned in the Introduction, it was stated in [11] that a modification of the argument
from the Monge—Ampere case (see [23]) shows that the exponent 1/(k — 1) on the right hand
side cannot be improved any further. An important feature of these examples is that they are
separately radial in all but one of the coordinates and radial in the distinguished coordinate.
In the convex setting this means that

u(x', x0) = u(y', yu), whenever |x'| =1[y'| and |xu| = |yl

Here, we use the notation x = (x/, x,) = (x1, ..., X,).

Note that, for convex u, this implies that u is increasing in the both radial directions. The
same observation holds for a pluri-subharmonic function v(z’, z,) radial in both directions
and this was heavily used in [19]. What makes the k-Hessian case different is that a priori
such a k-convex function will be increasing in the directions x’ only as the 2-convex example

u(x', x3) = u(xy, x2, x3) = 3(x7 +x3) — x3

shows. We will nevertheless prove an additional lemma showing that our examples are indeed
increasing in the radial x,, (respectively z,) directions. Given this lemma, the proof is indeed
analogous to the one in [23] in the k-convex case and to [19] in the k-subharmonic case.
Our lemma can also be generalized to work on P"~! x P! equipped with the Fubini-Study
product metric and thus provides examples in the case of compact Kihler manifolds. Below
we provide the full details.

4.1 Examples in the real setting

In this subsection we fix 1 < k < n. We will work in the unit ball B = B(0, 1) in R". The
following lemma is crucial for our construction.
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Lemma 4.1 Let u be a continuous k-convex function on B which is constant on 9B and it
depends only on |x,| and |x'|. Assume that F = S (D?u) is (weakly) decreasing with respect
to xy. Then u is weakly increasing with respect to |x,|. In particular,

i?;fu = u(0). 4.1

Proof Observe that for k = n this follows simply from the convexity of u, but for k < n we
have to work harder.

Note that u is radially invariant in the x,, direction, it suffices to prove that for each

x" € R"™!, |x'| < 1 the function r — u(x’, 1) is increasing on the interval (0, /1 — |x’|2).
For any ¢ > 0, § > 0, we define

UE(X/, xn) = u(x/, xn) + 8|X|2
and
ws,(S(x/: Xn) = u(x’, xp + 8) + 2e.

Then, our goal is to show that vy (x', x,) < wes(x’, x,) for any (x’, x,) € B such that
(x', x; +8) € B and x,, > 0. If this holds, taking ¢ — 0, we obtain

u(x', xp) < u(x’, x, +6)

forany § > 0and 0 < x, < x, +8 < /1 — |x/|2.
To obtain the desired inequality, we first observe that, using the assumption that S (D?u)
is (weakly) decreasing with respect to |x, |, we have

S(D?vp) = Sk(D*u(x’, xy) + 2e1,) > Se(D*u(x', %)) > Sp(D*wes)  (4.2)

on Ss = {(x', x,) : x4, > —=8/2, (x', x, +8) € B} C B.
For (x', x,) € 385 N {x,, > —%} we know that (x’, x,, + 8) € dB. Therefore,

we s(x', xn) = ux’', x, +8) +2¢ = max u + 2e.

Here we used that fact that u is k-convex and equals to constant on d B and hence u attains
its maximum on d B. Recalling the definition of v,, we have

wg, 5(x) > ve(x), forx € 9855 N {x, > 0}.

On the other hand, for any pointg = (¢’, ¢,) € BN{x, = —%}:855\ (085 N {xy > —%}),
we compute

We,5(q) = e 0(q's =qn) > ve(q', —qn) = ve(q).
Therefore, we have
W 5(x) > ve(x), ondSs.
By (4.2) and the comparison principle (Theorem 2.1) we obtain
We 5 > Vg ON Ss.
Letting ¢ — 0, we get that u is weakly increasing in |x,|. Finally (4.1) follows from the

sub-harmonicity of u with respect to x’. O
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Given Lemma 4.1, the construction of the example and its justification follow closely the
argument in [23]. We provide the details for the sake of completeness. Let

exp(—=1/(1 —1%) <1
1) == p(=1/=1%) (43)
0 t>1
Fora,b € R,a > 1 define
[ X 71b f ! 0
F(x) _ n (\x’\“) |x | I x # 5 (44)
0 if x’ =0.

Example4.2 1f 0 < b < 2(k — 1)(a — 1), then the k-convex solution u of the Dirichlet
problem

(4.5)

Sp(D*u) = F(x) inB
u=20 on 0B

isnot C!-! in any neighbourhood of 0. Furthermore if b = 2(k — 1)(a—2), then F” € C"1(B)
fory > lel + Wlfw In particular, taking @ — oo we obtain that no exponent larger

than 1/(k — 1) could yield C"! solutions in general.

Proof The comparison principle implies that the solution is unique. Because of the rotational
invariance of the data the solution has to depend only on |x’| and |x,], i.e. it has to be radial
both in the x’ and the x,, direction. By Lemma 4.1 it is increasing separately in |x’| and in
[xp].

Let ¢ > 0 be such that ¢2 + £2/¢ < 1. Define the domain

P={(xx): x| < &% x| < &)

and the function

xy — Lel/a 2 nl Xk ? X ?
_ 2 n _
v(x)—< To1/a ) +§ (151/0) +< : 8) 1.
4 k=2 2 4a+l

By computation we have

E={xeB:v<0}CP.
On the other hand
inf F > n(1/4)4bgbla,
Observe also that for some positive constant ¢; (independent on ¢) the following inequality
holds
S (Dzv) < ¢1e~2720=D/a,

Then it is possible to choose another constant ¢, (also independent on ¢) such that

2a+2(k—=1)+b

Sk(D*(cre™ ki v+supu)) < inf F.
P

By the comparison principle
2a+2(k=D)+b
cr e ka v+supu > u, onP
P
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and we obtain

2a+2(k—1)+b

1 1/a
u@0) <u(=-e/,0,...,0) <supu—cr¢ ka
2 P

IA

2a+2(k—1)+b
=u(e",0,...,0,8) —cre” i .

For the last equality, we used the fact that u obtains its maximum on d P since u is radial and

increasing in both x’ and x,, directions. Denote

s@t) =u(0, 1), and £(t) =u(',0,...,0,1)

fort € [0, 1]. We clearly have s < ¢ since u is increasing in the |x’| direction.

Assume that s < £ on some interval (c, d). Then, for any €1, &2 € (¢, d) withey —g1 > 0
small enough, we can find an affine function w dependent only on x,,, such that w(x’, ) < £(t)
for any ¢ € (e, &) and

w0, e) =u, 1) =s(e1), w0, ) =u(0, &) =s(er).
Then, by the monotonicity of u in the |x’| direction again, we have
w(x', x,) <u(x’,x,) ond({F =0} N {x, € (e1,2)}).

On the other hand, by the definition of F, we have S(D*u) = 0 = S (D*w) on {F =
0} N {x, € (e1, &2)}. Then, the comparison principle implies

w(x’, xp) < u(x’', x,)Iin{F =0} N {x, € (¢1,€2)}

for any small interval (g1, &2) € (c,d). In particular, w(0', 1) < u(0’,t) = s(¢) for any
t € (g1, &). Thus s(¢) is weakly concave on (c, d).

Now assume that « is ¢! in a neighbourhood of 0. Then s’(0) = 0. We claim that s
cannot be concave in any interval of the type (0, r). Indeed, if s(¢) is weakly concave on
some interval (0, ), then it follows that s’(f) < O for ¢ € (0, r). On the other hand, by
Lemma 4.1, we have s'(r) > 0. Therefore, s’() = 0 and hence s(¢) is constant on (0, 7).
Taking largest such r (which is strictly less than one for otherwise the function would be
globally constant), we have s(r) < £(r) as u is not constant in a neighbourhood of zero. But
then applying the above argument around the point r, we would obtain that s is concave at
r. This contradicts with the fact that s is constant to the left of r and strictly increases to the
right of r. This proves the claim.

Then, it follows that the strict inequality s(#) < £(¢) can not hold in any interval of the
type (0, r). Thus there is a sequence &, decreasing to 0 such that

2a+2(k—1)+b
u(0, &y) = s(em) =1l(em) = u0) + 26y ka
and we can conclude
w0, em) —u(0) = ey, ',

where 0 = 2(k — 1)(a — 1) — b. This contradicts the assumption that u € C L1 around 0. O

4.2 Compact Kahler manifold case

Now we deal with the compact Kihler manifold case. The construction is similar to the real
case and the main technical difficulty is that we have to replace the translation operators
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with suitable automorphisms of the Kihler manifold. These automorphisms will furthermore
preserve the Kéhler form.

Wefix 1 < k < ninwhat follows. The examples will be constructed on P"~! x P! equipped
with the product metric ® = a)’F ¢ + wrs with wpgs denoting the Fubini-Study metrics on
each factor. For z € C" we split the coordinates and write z = (7', z,,) € C"! x C which
we identify in the usual way as a subset (the affine chart) of P! x P!. On this affine chart
we have w)pg = 130 (3 log(1 + |2/|*)) and wps = 130 (5 1og(l + |z4]?)). The following
complex analogue of Lemma 4.1 is crucial for the construction.

Lemma4.3 Let ¢ € SHi(P" ! x P!, w) be a continuous function such that
(w+i009)f A" K = fol.
Moreover, assume that

1. foranyr > Othe set {(z',z,) € C"" ' x C: |z4| <7, f(Z, zn) = O} is bounded;
2. ¢|cn (and hence f) depends only on |7'| and |z,,| on the affine chart;
3. f(Z, za) is strictly decreasing in |z, | for all fixed 7’ such that f(Z', z») > 0.

Then the function ¢ is increasing with respect to |z, |.

Proof Denote by f, and T, the automorphisms of P! and P"~! x P! respectively given by
ty ([wo : wi]) = [cos(x)wo — sin(a)w; : sin(a)wy + cos(a)wy |;
Ty ([zo : -+ zn—1] X [wo : wil) = [zo : -+t Zu—1] Xt ([wo : w1l) .

We would like to point out that 7, preserves wrs while T, preserves the product metric w.
Moreover, on the affine chart of P!, 7, reads

Z +tan o

17 = —
«(2) 1 —ztanw

Choose now ¢ > 0 and fix an angle @ € (0, %]. Let W = {z € C: Rez > 0} U {0} C P!
and E = T, '(P"~! x W). For (Z, z,) € int(E) we have
2

to(zn) = 00 Or |z,| < |ta(zn)]. (4.6)
Let y : P"~! x P! — R be a continuous function given by

V(@ z0) = (9o Ty) (@, zn) + &

For z € E, we have |z,| = |t4(z,)| and hence ¢(z) = ¢ (Ty(z)) < ¥ (z). Thus, for any
8 > 0 small enough, the set

D ={p—8>yY}NE
is relatively compact in int(£). The monotonicity properties of f imply that

f() > f(Ty(z)) forz € E.

The comparison principle (2.3) results in

/fw”z/ foTaa)"=/(a)+i85w)k/\a)”_kz/(a)—i-iaf_)(p)kAw”_k:/ fo.
D D D D D

Together with assumption (3) and (4.6), this gives us f = 0 on D. We wish to point out
that, contrary to the local setting, we cannot deduct the emptiness of D at this stage since
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we do not know whether D is contained in some affine chart. To this end we use assumption
(1). Note that the projection of E onto the P! factor is a bounded subset of the affine chart.
By assumption (1) we get that D is bounded. Then the comparison principle for bounded
domains implies that D is empty. O

Let n be as in the real case. Fora > 1,b € R and z € C", define

|2n]
f@) =Aexp(=lz)n <|Z,’ia 21 4.7
and extend f by zero on the divisors of infinity so that f is a function on P"~! x P!. Here,
n(t) is given in (4.3) and the constant A > 0 is chosen such that

/ fo' = / o". (4.8)
Pr—1xPl Pr—1xPpl

Lemma4.4 If o € SHy(P"~! x P!, w) is the unique continuous solution to the equation
(0+i00p)f A" K = fo 4.9)

on P~V x P! satisfying ¢(0) = 0. Then there exist a constant ¢ > 0 and a sequence &, > 0
which decreases to 0, such that

(0, &) > cel, (4.10)

where 0 = W and u = ¢|cn + %log(l + 12/ + %log(l + |zal?).
Proof We remark that the solution is unique (uniqueness for normalized solutions to complex
Hessian equations holds in much greater generality that we need here, see for example [4]).
Just as in the real case this implies that it depends only on |7’| and |z, | and thus by definition u
depends only on |7’| and |z, | too. By sub-harmonicity u is increasing with respect to |z’| and
by Lemma 4.3 it is strictly increasing in |z, | as the function f satisfies all the assumptions
in that lemma.

From now on, we restrict our attention to the affine chart. Lete > 0 be such that e2+¢
1. Let

2/a ~

P={E\ )t |2 <" |zal <}
and
Rez; — 5&!/¢ Imz : ! z ? b4 ’
o (B ) {5
Then
={xeB:v<l1}CP.
We have

i%f f = exp(=2) n(1/4) 47" gb/a

and we can choose an absolute constant ¢; such that

—2—-2(k— 1)/a n

G990)% A" F < cqe on P.
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Then it is possible to choose a constant ¢, independent on & such that

L= 2a20-Db K Nk n
(188(8 ka v)) AW <cfo" onE.
By the comparison principle we obtain
2a+2(k=D)+b 2a+2(k—=1)+b

u@'/,0,....0.e) =supu = supu = infere™ 0 v=cpes . (41D
j2 E OE

Fort € R, we define
s(t) =u,e), and £L(t) = u(e’/“, 0,...,0,¢").

We have s < {. Follow the same argument as in the real case, we can obtain that if s < ¢
on some interval (c, d) then s is weakly concave on (c, d). However, we also know that s is
strictly increasing and

lim s(t) =0,
——00

and this imply s can not be weakly concave in any interval (—oo, r). Therefore, there is a
sequence t,, N\, —oo such that s(t,,) = £(t,,). Taking &,, = ¢ and using (4.11) we obtain
the Lemma. O

Observe that in the argument above the parameter b can be negative and then the right hand

side is merely L? integrable. In such a case a result from [5] shows that local solutions are
n

bounded for L? integrable right hand side provided p > 7. It is natural to ask the following
question:

Question 4.5 Consider the k-Hessian equation on a compact Kdhler manifold (X, w)
(0 +i00u)* A 0" * = F(D)a"

with 0 < f € LP(X) satisfying the normalization condition fX fo" = fX o". What is the
best possible regularity one can expect for the solution u?

We can also ask similar question with the condition on f being replaced by f € C%9 for
some 0 < § < 1. Indeed, by varying the parameters a and b in the example provided in
Lemma 4.4, we have some assertions about what kind of regularity one can expect under
different conditions of the right hand side function.

Example 4.6 (1) Let b = —27“ + 2 with p > 1. Then f € L?. (In fact, any b > 2a/p —
2(n — 1)/ p yields L? right hand side). But in (4.10)

2 1 1 2 1 1
0=—-(1——)+2-=—-(1——=)+0[|—-) asa — +oo.
k P a k p a

This shows that we cannot get better than Holder regularity for ¢. Moreover, the Holder
exponent can be at most % (1 — l).

P

(2) Similarly, for b = 2, we have f € %3 for some small § > 0 and
9 < 2 n 2
“k a
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(3) Fork > 3andb = (k—2)(a —2) — 3, we have ¥ € %! fory =
as a — +oo. We can compute

a 1
G—Da-D=3 — =2

1
f=1——.
ak
(4) Forb =2(k — 1)(a — 2), we have f¥ € C'! fory = % — ﬁ as a — +oo.
In this case
2(k — 1)
- <
ka
To summarize, by varying the parameter a and b, the examples imply

0=2 2.

e Forp>1,y > %(1—%):feLp#gaeCo’V.

e Fory > Othereis § = 8(n, ) such that f € C*% = ¢ e C17.

Fork >3,y > £ there is § = 8(n, y) such that f € %% = ¢ € C07.
e Fork>3,s > ﬁ thereis y < 1: f* e co! + @ e O,

e Fors > k%l thereisy < 1: f* ecll » g eCl?.

4.3 The case of complex Hessian equations in domains

Finally we mention that in the case of the complex Hessian equation on domains the following
examples can be constructed:

Example 4.7 Let a, b € R be two numbers satisfying 0 < b < 2(k — 1)(a — 1). Consider
the Dirichlet problem in the unit ball in C"

(0 A" ¥ =F inB

4.12
u=20 on 0B, ( )

where the solution u is assumed to be k-subharmonic and F is given in (4.4). Then u is
not C! in any neighbourhood of 0. But, F” € C11(B) forany y > 15 + m In

particular, no exponent larger than 1/(k — 1) could yield C"! solutions in general.

Proof The proof repeats the previous cases once one establishes an analogue of Lemma 4.1.
We leave the details to the Reader. O
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