Electronic Journal of Differential Equations, Vol. 2019 (2019), No. 57, pp. 1-13.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONLINEAR DIRICHLET PROBLEMS WITH THE COMBINED EFFECTS OF SINGULAR AND CONVECTION TERMS

YUNRU BAI, LESZEK GASIŃSKI, NIKOLAOS S. PAPAGEORGIOU

Abstract

We consider a nonlinear Dirichlet elliptic problem driven by the p-Laplacian. In the reaction term of the equation we have the combined effects of a singular term and a convection term. Using a topological approach based on the fixed point theory (the Leray-Schauder alternative principle), we prove the existence of a positive smooth solution.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this article we study the nonlinear Dirichlet problem

$$
\begin{gather*}
-\Delta_{p} u(z)=u(z)^{-\gamma}+f(z, u(z), D u(z)) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0, \quad u>0 \tag{1.1}
\end{gather*}
$$

where $1<p<+\infty$ and $0<\gamma<1$. In this problem Δ_{p} denotes the p-Laplace differential operator defined by

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right) \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

In the right-hand side of (the reaction of the problem), we have the combined effects of a singular term $u^{-\gamma}(0<\gamma<1)$ and of a convection term $f(z, u, D u)$. The convection term f is a Carathéodory function, that is, for all $(x, y) \in \mathbb{R} \times \mathbb{R}^{N}$, $z \mapsto f(z, x, y)$ is measurable and for a.a. $z \in \Omega,(x, y) \mapsto f(z, x, y)$ is continuous. We assume that $f(z, \cdot, y)$ exhibits $(p-1)$-linear growth near $+\infty$ and we have nonuniform non-resonance with respect to the principal eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. We look for positive solutions. The dependence of the gradient $D u$ of the perturbation f, removes from consideration a variational approach directly on the equation. Instead our method of proof is topological based on fixed point theory. More precisely, we employ the Leray-Schauder alternative principle. This leads to the existence of a positive smooth solution for problem (1.1).

In the past, singular problems and problems with convection, were investigated mostly separately. For singular problems, we mention the following works: Bai-Gasiński-Papageorgiou [2, Gasiński-Papageorgiou [9], Giacomoni-Schindler-Takáč [13], Hirano-Saccon-Shioji [17], Papageorgiou-Rădulescu [24, Papageorgiou-Rădu-lescu-Repovš [25], Papageorgiou-Smyrlis [27, 28], Perera-Zhang [29], Sun-WuLong

[^0][32. For problems with convection, we mention the following works Bai-GasińskiPapageorgiou [1], Faraci-Motreanu-Puglisi [3], de Figueiredo-Girardi-Matzeu 4], Gasiński-Papageorgiou [12, Girardi-Matzeu [14, Huy-Quan-Khanh [19], Papageor-giou-Rădulescu-Repovš [26], Ruiz [30].

2. Preliminaries and hypotheses

If V and W are two Banach spaces, a map $h: V \rightarrow W$ is said to be "compact" if it is continuous and maps bounded sets in V onto relatively compact sets in W. As we already mentioned in the Introduction, we will use the Leray-Schauder alternative principle which we recall below (see e.g., Gasiński-Papageorgiou [7] p. 827]).

Theorem 2.1. If X is a Banach space and $h: X \rightarrow X$ is compact, then exactly one of the following holds:
(a) h has a fixed point;
(b) the set $K=\{x \in X: x=\operatorname{th}(x), 0<t<1\}$ is unbounded.

In the analysis of problem (1.1) we will use the Sobolev space $W_{0}^{1, p}(\Omega)$ and the Banach space

$$
C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\} .
$$

By $\|\cdot\|$ we denote the norm of the Sobolev space $W_{0}^{1, p}(\Omega)$. On account of Poincaré's inequality, we can have

$$
\|u\|=\|D u\|_{p} \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

The Banach space $C_{0}^{1}(\bar{\Omega})$ is an ordered Banach space with positive (order) cone

$$
C_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(z) \geqslant 0 \text { for all } z \in \bar{\Omega}\right\}
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \forall z \in \Omega,\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}<0\right\}
$$

Here $\frac{\partial u}{\partial n}$ denotes the normal derivative of u, that is $\frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}}$ with $n(\cdot)$ being the outward unit normal on $\partial \Omega$.

We know that $W_{0}^{1, p}(\Omega)^{*}=W^{-1, p^{\prime}}(\Omega)$ (where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$). Let $A: W_{0}^{1, p}(\Omega) \rightarrow$ $W^{-1, p^{\prime}}(\Omega)$ be the nonlinear operator defined by

$$
\langle A(u), h\rangle=\int_{\Omega}|D u|^{p-2}(D u, D h)_{\mathbb{R}^{N}} d z \quad \forall u, h \in W_{0}^{1, p}(\Omega) .
$$

This operator has the following properties (see Gasiński-Papageorgiou [11, Problem 2.192, p.279] or [8, Lemma 3.2]).

Proposition 2.2. The map $A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone too) and of type $(S)_{+}$; that is,
"if $u_{n} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega)$ and $\lim \sup _{n \rightarrow+\infty}\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle \leqslant$ 0 , then $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$."

Consider the nonlinear eigenvalue problem

$$
\begin{gather*}
-\Delta_{p} u(z)=\widehat{\lambda}|u(z)|^{p-2} u(z) \quad \text { in } \Omega \tag{2.1}\\
\left.u\right|_{\partial \Omega}=0
\end{gather*}
$$

This problem has a smallest eigenvalue $\hat{\lambda}_{1}$, which has the following properties:

- $\hat{\lambda}_{1}>0$ and is isolated (that is, if $\widehat{\sigma}(p)$ is the spectrum of 2.1), we can find $\varepsilon>0$ such that $\left.\left(\widehat{\lambda}_{1}, \widehat{\lambda}_{1}+\varepsilon\right) \cap \widehat{\sigma}(p)=\emptyset\right)$.
- $\widehat{\lambda}_{1}$ is simple (that is, if $\widehat{u}, \widehat{v} \in W_{0}^{1, p}(\Omega)$ are eigenfunctions corresponding to $\widehat{\lambda}_{1}$, then $\widehat{u}=\xi \widehat{v}$ for some $\left.\xi \in \mathbb{R} \backslash\{0\}\right)$.
- We have

$$
\begin{equation*}
\widehat{\lambda}_{1}=\inf \left\{\frac{\|D u\|_{p}^{p}}{\|u\|_{p}^{p}}: u \in W_{0}^{1, p}(\Omega), u \neq 0\right\} \tag{2.2}
\end{equation*}
$$

The infimum in 2.2 is realized on the corresponding one-dimensional eigenspace.
The nonlinear regularity theory of Lieberman [21], implies that if \widehat{u} is an eigenvalue of (2.1), then $\widehat{u} \in C_{0}^{1}(\bar{\Omega})$. The above properties of $\widehat{\lambda}_{1}$ imply that the eigenfunctions corresponding to $\widehat{\lambda}_{1}$ do not change sign.

By \widehat{u}_{1} we denote the positive, L^{p}-normalized (that is, $\left\|\widehat{u}_{1}\right\|_{p}=1$) eigenfunction corresponding to $\widehat{\lambda}_{1}>0$. From the nonlinear maximum principle (see e.g., GasińskiPapageorgiou [7, p. 738]), we have that $\widehat{u}_{1} \in \operatorname{int} C_{+}$. Using these properties, we can easily prove the following result (see Filippakis-Gasiński-Papageorgiou [5, Lemma 3.2] or Motreanu-Motreanu-Papageorgiou [23, p. 305]).

Lemma 2.3. Let $\vartheta \in L^{\infty}(\Omega), \vartheta(z) \leqslant \widehat{\lambda}_{1}$ for a.a. $z \in \Omega$ and the inequality is strict on a set of positive measure, then there exists $c_{0}>0$ such that

$$
\|D u\|_{p}^{p}-\int_{\Omega} \vartheta(z)|u|^{p} d z \geqslant c_{0}\|u\|^{p} \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

For $x \in \mathbb{R}$, we set $x^{ \pm}=\max \{ \pm x, 0\}$. Then given $u \in W_{0}^{1, p}(\Omega)$, we set $u^{ \pm}(\cdot)=$ $u(\cdot)^{ \pm}$. We know that

$$
u^{ \pm} \in W_{0}^{1, p}(\Omega), \quad u=u^{+}-u^{-}, \quad|u|=u^{+}+u^{-} .
$$

The hypotheses on the perturbation term f are the following:
(H1) $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0, y)=0$ for a.a. $z \in \Omega$, all $y \in \mathbb{R}^{N}, f(z, x, y)=f_{0}(z, y)$ for a.a. $z \in \Omega$, all $x \leqslant 0$, all $y \in \mathbb{R}^{N}$ with f_{0} being a Carathéodory function such that $f_{0} \geqslant 0$ and
(i) we have

$$
f(z, x, y) \leqslant a(z)+\vartheta(z) x^{p-1}+c|y|^{p-1} \quad \text { for a.a. } z \in \Omega, \text { all } x \geqslant 0, y \in \mathbb{R}^{N}
$$

with $a, \vartheta \in L^{\infty}(\Omega), 0<c<\widehat{\lambda}_{1}^{1 / p}, \vartheta(z) \leqslant\left(1-\frac{c}{\widehat{\lambda}_{1}^{1 / p}}\right) \widehat{\lambda}_{1}$ a.e. on Ω and the last inequality is strict on a set of positive measure;
(ii) there exists $\delta_{0}>0$ such that for all $\delta \in\left(0, \delta_{0}\right)$ there exists $c_{\delta}>0$ such that

$$
0<c_{\delta} \leqslant f(z, x, y) \quad \text { for a.a. } z \in \Omega, \text { all } 0<\delta \leqslant x \leqslant \delta_{0}, y \in \mathbb{R}^{N}
$$

(iii) for every $\varrho>0$, there exists $\widehat{\xi}_{\varrho}>0$ such that for a.a. $z \in \Omega$, all $|y| \leqslant \varrho$, the map $x \mapsto f(z, x, y)+\widehat{\xi}_{p} x^{p-1}$ is nondecreasing on $[0, \varrho]$;
(iv) for a.a. $z \in \Omega$, all $x \geqslant 0, y \in \mathbb{R}^{N}$ and $t \in(0,1)$, we have

$$
f\left(z, \frac{1}{t} x, y\right) \leqslant \frac{1}{t^{p-1}} f(z, x, y)
$$

Remark 2.4. Hypothesis (H1)(i) implies that asymptotically at $+\infty$ we may have nonuniform non-resonance with respect to the principal eigenvalue $\hat{\lambda}_{1}>0$. Hypothesis $H(f)(i v)$ is satisfied if for a.a. $z \in \Omega$, all $y \in \mathbb{R}^{N}$, the function

$$
x \mapsto \frac{f(z, x, y)}{x^{p-1}}
$$

is non-increasing on $(0,+\infty)$.
Example 2.5. The following function satisfies hypotheses (H1). For the sake of simplicity we drop the z-dependence.

$$
f(x, y)= \begin{cases}0 & \text { if } x<0 \\ \widehat{\vartheta}\left(x^{p-1}-x^{\tau-1}\right)+\eta|y|^{p-1} & \text { if } 0 \leqslant x \leqslant 1, \quad \forall y \in \mathbb{R}^{N}, \\ \vartheta\left[x^{p-1}-x^{q-1}\right]+\eta|y|^{p-1} & \text { if } 1<x\end{cases}
$$

with $0<\eta<\widehat{\lambda}_{1}^{1 / p}, 0<\vartheta<\left(1-\frac{\eta}{\widehat{\lambda}_{1}^{1 / p}}\right) \widehat{\lambda}_{1}, \widehat{\vartheta}>0,1<q<p<\tau<+\infty$.

3. Positive solutions

We start by considering the purely singular problem

$$
\begin{gather*}
-\Delta_{p} u(z)=u(z)^{-\gamma} \quad \text { in } \Omega, \tag{3.1}\\
\left.u\right|_{\partial \Omega}=0, \quad u>0 .
\end{gather*}
$$

From Papageorgiou-Smyrlis [28, Proposition 5], we have the following result.
Proposition 3.1. Problem (3.1) admits a unique positive solution $\bar{u} \in \operatorname{int} C_{+}$.
Let $\delta_{0}>0$ be as postulated by hypothesis (H1)(ii). We choose $t \in(0,1)$ small such that

$$
\begin{equation*}
\widetilde{u}=t \bar{u} \leqslant \delta_{0} . \tag{3.2}
\end{equation*}
$$

For every $y \in W_{0}^{1, p}(\Omega)$, we have

$$
\begin{align*}
-\Delta_{p} \widetilde{u}(z) & =t^{p-1}\left[-\Delta_{p} \bar{u}(z)\right]=t^{p-1} \bar{u}(z)^{-\gamma}=t^{p-1+\gamma} \widetilde{u}(z)^{-\gamma} \\
& <\widetilde{u}(z)^{-\gamma}+f(z, \widetilde{u}(z), D y(z)) \quad \text { for a.a. } z \in \Omega, \tag{3.3}
\end{align*}
$$

(see 3.2) and hypothesis (H1)(ii)).
Given $v \in C_{0}^{1}(\bar{\Omega})$, we consider the nonlinear Dirichlet problem

$$
\begin{gather*}
-\Delta_{p} u(z)=u(z)^{-\gamma}+f(z, u(z), D v(z)) \quad \text { in } \Omega \tag{3.4}\\
\left.u\right|_{\partial \Omega}=0, u>0
\end{gather*}
$$

Proposition 3.2. If hypotheses $(\mathrm{H} 1)$ hold and $v \in C_{0}^{1}(\bar{\Omega})$, then problem (3.4) admits a positive solution $u_{v} \in \operatorname{int} C_{+}$and $\widetilde{u} \leqslant u_{v}$.

Proof. We consider the following truncation of the reaction in problem 1.1,

$$
\widehat{f}_{v}(z, x)= \begin{cases}\widetilde{u}(z)^{-\gamma}+f(z, \widetilde{u}(z), D v(z)) & \text { if } x \leqslant \widetilde{u}(z) \tag{3.5}\\ x^{-\gamma}+f(z, x, D v(z)) & \text { if } \widetilde{u}(z)<x\end{cases}
$$

Evidently this is a Carathéodory function.

Since $\widetilde{u}, \widehat{u}_{1} \in \operatorname{int} C_{+}$, on account of [22, Proposition 2.1], we can find $c_{1}>0$ such that $\widehat{u}_{1} \leqslant c_{1} \widetilde{u}^{p^{\prime}}$, so

$$
\widehat{u}_{1}^{1 / p^{\prime}} \leqslant c_{1}^{1 / p^{\prime}} \widetilde{u}
$$

thus

$$
\widetilde{u}^{-\gamma} \leqslant c_{2} \widehat{u}_{1}^{-\gamma / p^{\prime}}
$$

for some $c_{2}>0$.
Using a Lemma in Lazer-McKenna [20], we have that $\widehat{u}_{1}^{-\gamma / p^{\prime}} \in L^{p^{\prime}}(\Omega)$. Therefore

$$
\begin{equation*}
\widetilde{u}^{-\gamma} \in L^{p^{\prime}}(\Omega) . \tag{3.6}
\end{equation*}
$$

We set

$$
\widehat{F}_{v}(z, x)=\int_{0}^{x} \widehat{f}_{v}(z, s) d s
$$

and consider the functional $\widehat{\varphi}_{v}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widehat{\varphi}_{v}(u)=\frac{1}{p}\|D u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{v}(z, u) d z \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

From hypothesis (H1)(i) and 3.6), we infer that $\widehat{\varphi}_{v} \in C^{1}\left(W_{0}^{1, p}(\Omega)\right)$ (see also Papageorgiou-Smyrlis [28, Proposition 3]).
Claim. $\widehat{\varphi}_{v}$ is coercive
Clearly it suffices to check when $u(z) \geqslant \widetilde{u}(z)$. We have

$$
\begin{aligned}
\widehat{F}_{v}(z, u(z))= & \int_{0}^{u(z)} \widehat{f}_{v}(z, x) d x \\
= & \int_{0}^{\widetilde{u}(z)} \widehat{f}_{v}(z, x) d z+\int_{\widetilde{u}(z)}^{u(z)} \widehat{f}_{v}(z, x) d x \\
\leqslant & \left(\widetilde{u}(z)^{-\gamma}+f(z, \widetilde{u}(z), D v(z)) \widetilde{u}(z)\right. \\
& +\int_{\widetilde{u}(z)}^{u(z)}\left(\widetilde{u}(z)^{-\gamma}+\widehat{a}(z)+\vartheta(z) x^{p-1}\right) d x \\
\leqslant & \widehat{a}_{0}(z)+\frac{1}{p} \vartheta(z)|u(x)|^{p}
\end{aligned}
$$

with $\widehat{a} \in L^{\infty}(\Omega), \widehat{a}_{0} \in L^{p^{\prime}}(\Omega)$. Therefore

$$
\begin{aligned}
\widehat{\varphi}_{v}(u) & =\frac{1}{p}\|D u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{v}(z, u(z)) d z \\
& \geqslant \frac{1}{p}\left(\|D u\|_{p}^{p}-\int_{\Omega} \vartheta(z)|u|^{p} d z\right)-\widehat{c}_{1} \\
& \geqslant \widehat{c}_{2}\|D u\|_{p}^{p}-\widehat{c}_{1}
\end{aligned}
$$

for some $\widehat{c}_{1}, \widehat{c}_{2}>0$ (see Lemma 2.3). Thus $\widehat{\varphi}_{v}$ is coercive and so the Claim is proved.

From (3.6) and the Sobolev embedding theorem, we see that $\widehat{\varphi}_{v}$ is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $u_{v} \in W_{0}^{1, p}(\Omega)$ such that

$$
\widehat{\varphi}_{v}\left(u_{v}\right)=\inf _{u \in W_{0}^{1, p}(\Omega)} \widehat{\varphi}_{v}(u),
$$

so $\widehat{\varphi}_{v}^{\prime}\left(u_{v}\right)=0$ and thus

$$
\begin{equation*}
\left\langle A\left(u_{v}\right), h\right\rangle=\int_{\Omega} \widehat{f}_{v}\left(z, u_{v}\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega) \tag{3.7}
\end{equation*}
$$

In (3.7) we choose $h=\left(\widetilde{u}-u_{v}\right)^{+} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{aligned}
\left\langle A\left(u_{v}\right),\left(\widetilde{u}-u_{v}\right)^{+}\right\rangle & =\int_{\Omega}\left(\widetilde{u}^{-\gamma}+f(z, \widetilde{u}, D v)\right)\left(\widetilde{u}-u_{v}\right)^{+} d z \\
& \geqslant\left\langle A(\widetilde{u}),\left(\widetilde{u}-u_{v}\right)^{+}\right\rangle
\end{aligned}
$$

(see 3.5) and (3.3) with $y=v$), so

$$
\left\langle A(\widetilde{u})-A\left(u_{v}\right),\left(\widetilde{u}-u_{v}\right)^{+}\right\rangle \leqslant 0
$$

and

$$
\begin{equation*}
\widetilde{u} \leqslant u_{v} . \tag{3.8}
\end{equation*}
$$

From (3.8, 3.5 and (3.7), we infer that

$$
\begin{gather*}
-\Delta_{p} u_{v}(z)=u_{v}(z)^{-\gamma}+f\left(z, u_{v}(z), D v(z)\right) \quad \text { in } \Omega, \tag{3.9}\\
\left.u_{v}\right|_{\partial \Omega}=0 .
\end{gather*}
$$

Then from (3.7) and Giacomoni-Schindler-Takáč [13, Theorem B.1] we get that $u_{v} \in \operatorname{int} C_{+}($see 3.8$)$.

Given $v \in C_{0}^{1}(\bar{\Omega})$, let

$$
S_{v}=\left\{u \in W_{0}^{1, p}(\Omega): u \text { is a solution of }(3.4,, \widetilde{u} \leqslant u\}\right.
$$

From Proposition 3.2 we know that

$$
\emptyset \neq S_{v} \subseteq \operatorname{int} C_{+} .
$$

In the next proposition we prove a useful property of the elements of S_{v}.
Proposition 3.3. If hypotheses (H1) hold, $v \in C_{0}^{1}(\bar{\Omega})$ and $u \in S_{v}$, then $u-\widetilde{u} \in$ $\operatorname{int} C_{+}$.
Proof. We know that $u \in \operatorname{int} C_{+}$. Let $\varrho=\|u\|_{C_{0}^{1}(\bar{\Omega})}$ and let $\widetilde{\xi}_{\varrho}>0$ be as postulated by hypothesis (H1)(iii). We have

$$
\begin{align*}
-\Delta_{p} \widetilde{u}(z)+\widehat{\xi}_{p} \widetilde{u}(z)^{p-1}-\widetilde{u}(z)^{-\gamma} & \\
& <f(z, \widetilde{u}(z), D v(z))+\widehat{\xi}_{p} \widetilde{u}(z)^{p-1} \\
& \leqslant f(z, u(z), D v(z))+\widehat{\xi}_{p} u(z)^{p-1} \\
& =-\Delta_{p} u(z)+\widehat{\xi}_{p} u(z)^{p-1}-u(z)^{-\gamma} \quad \text { for a.a. } z \in \Omega \tag{3.10}
\end{align*}
$$

(see (3.3) with $y=v$, hypothesis (H1)(iii), recall that $\widetilde{u} \leqslant u$ and see (3.9).
We know that

$$
\begin{aligned}
-\Delta_{p} \widetilde{u}(z)+\widehat{\xi}_{p} \widetilde{u}(z)^{p-1} & =t^{p-1}\left(-\Delta_{p} \bar{u}(z)+\widehat{\xi}_{p} \bar{u}(z)^{p-1}\right) \\
& =t^{p-1}\left(\bar{u}(z)^{-\gamma}+\widehat{\xi}_{p} \bar{u}(z)^{p-1}\right) \\
& =t^{p-1+\gamma}(t \bar{u}(z))^{-\gamma}\left(1+\widehat{\xi}_{p} \bar{u}(z)^{p-1+\gamma}\right) \\
& <\widetilde{u}(z)^{-\gamma} \quad \text { for a.a. } z \in \Omega
\end{aligned}
$$

for $t \in(0,1)$ sufficiently small (as $\bar{u} \in L^{\infty}(\Omega)$ and see Proposition 3.1), so

$$
\begin{equation*}
-\Delta_{p} \widetilde{u}(z)+\widehat{\xi}_{p} \widetilde{u}(z)^{p-1}-\widetilde{u}(z)^{-\gamma}<0 \quad \text { for a.a. } z \in \Omega \tag{3.11}
\end{equation*}
$$

Since $\widetilde{u} \in \operatorname{int} C_{+}$, for $K \subseteq \Omega$ compact, we have

$$
0<\delta_{K} \leqslant \widetilde{u}(z) \quad \forall z \in K
$$

Then hypothesis (H1)(ii) implies that there exists $c_{K}=c_{\delta_{K}}>0$ such that

$$
\begin{equation*}
0<c_{K} \leqslant f(z, \widetilde{u}(z), D v(z)) \quad \text { for a.a. } z \in K \tag{3.12}
\end{equation*}
$$

From (3.10), (3.11), (3.12) and Papageorgiou-Smyrlis [28, Proposition 4] (the strong comparison principle), we have that $u-\widetilde{u} \in \operatorname{int} C_{+}$.

Next we show that the set S_{v} has a smallest element, that is there exists $\widehat{u}_{v} \in S_{v}$ such that $\widehat{u}_{v} \leqslant u$ for all $u \in S_{v}$.

Proposition 3.4. If hypotheses $(\mathrm{H} 1)$ hold and $v \in C_{0}^{1}(\bar{\Omega})$, then there exists $\widehat{u}_{v} \in S_{v}$ such that $\widehat{u}_{v} \leqslant u$ for all $u \in S_{v}$.

Proof. From Filippakis-Papageorgiou [6] we know that S_{v} is downward directed (that is, if $u, \widehat{u} \in S_{v}$, then there exists $y \in S_{v}$ such that $y \leqslant u, y \leqslant \widehat{u}$). Invoking Hu-Papageorgiou [18, Lemma 3.10, p. 178], we can find a decreasing sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq S_{v}$ such that

$$
\inf S_{v}=\inf _{n \geqslant 1} u_{n}
$$

We have

$$
\begin{equation*}
\left\langle A\left(u_{n}\right), h\right\rangle=\int_{\Omega}\left(u_{n}^{-\gamma}+f\left(z, u_{n}, D v\right)\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega), n \geqslant 1 \tag{3.13}
\end{equation*}
$$

Let $h=u_{n} \in W_{0}^{1, p}(\Omega)$ in (3.13. Then

$$
\left\|D u_{n}\right\|_{p}^{p}=\int_{\Omega}\left(u_{n}^{1-\gamma}+f\left(z, u_{n}, D v\right) u_{n}\right) d z
$$

so

$$
\left\|D u_{n}\right\|_{p}^{p} \leqslant c_{3} \quad \forall n \geqslant 1,
$$

for some $c_{3}>0$. Here we used that $0 \leqslant u_{n} \leqslant u_{1} \in \operatorname{int} C_{+}$for all $n \geqslant 1$ and Hewitt-Stromberg [16, Theorem 13.17, p. 196] and hypothesis (H1)(i). It follows that the sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. So, passing to a subsequence if necessary, we may assume that

$$
\begin{equation*}
u_{n} \rightarrow \widehat{u}_{v} \text { weakly in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{n} \rightarrow \widehat{u}_{v} \text { in } L^{p}(\Omega) \tag{3.14}
\end{equation*}
$$

In (3.13) we choose $h=u_{n}-\widehat{u}_{v} \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow+\infty$ and use (3.14) and (3.6). Then

$$
\lim _{n \rightarrow+\infty}\left\langle A\left(u_{n}\right), u_{n}-\widehat{u}_{v}\right\rangle=0
$$

so

$$
\begin{equation*}
u_{n} \rightarrow \widehat{u}_{v} \quad \text { in } W_{0}^{1, p}(\Omega) \tag{3.15}
\end{equation*}
$$

(see Proposition 2.2).
If in (3.13) we pass to the limit as $n \rightarrow+\infty$ and use 3.15 , then we obtain

$$
\left\langle A\left(\widehat{u}_{v}\right), h\right\rangle=\int_{\Omega}\left(\widehat{u}_{v}^{-\gamma}+f\left(z, \widehat{u}_{v}, D v\right)\right) h d z \quad \forall h \in W_{0}^{1, p}(\Omega)
$$

so $\widehat{u}_{v} \in S_{v} \subseteq \operatorname{int} C_{+}$and $\widehat{u}_{v}=\inf S_{v}$.

We define a map $g: C_{0}^{1}(\bar{\Omega}) \rightarrow C_{0}^{1}(\bar{\Omega})$ by setting

$$
g(v)=\widehat{u}_{v}
$$

This map is well-defined and clearly a fixed point of g is a solution of 1.1). To produce a fixed point of g, we will use the Leray-Schauder alternative principle (see Theorem 2.1. To this end, we need to show that the minimal solution map g is compact (that is, g is continuous and maps bounded sets to relatively compact sets). The next lemma will be useful in this respect.
Lemma 3.5. If hypotheses (H1) hold, $\left\{v_{n}\right\}_{n \geqslant 1} \subseteq C_{0}^{1}(\bar{\Omega})$, $v_{n} \rightarrow v$ in $C_{0}^{1}(\bar{\Omega})$ and $u \in S_{v}$, then we can find $u_{n} \in S_{v_{n}}$ for $n \geqslant 1$ such that $u_{n} \rightarrow u$ in $C_{0}^{1}(\bar{\Omega})$.
Proof. We start by considering the nonlinear Dirichlet problem

$$
\begin{gather*}
-\Delta_{p} y(z)=u(z)^{-\gamma}+f\left(z, u(z), D v_{n}(z)\right) \quad \text { in } \Omega \\
\left.y\right|_{\partial \Omega}=0 \tag{3.16}
\end{gather*}
$$

for $n \geqslant 1$. As in the proof of Proposition 3.2, using Marano-Papageorgiou [22, Proposition 2.1] and a Lemma by Lazer-McKenna [20, we have that $u^{-\gamma} \in L^{q}(\Omega)$ with $q>N$. We set

$$
k_{n}(z)=u(z)^{-\gamma}+f\left(z, u(z), D v_{n}(z)\right) .
$$

Then hypothesis (H1)(i) implies that

$$
k_{n} \in L^{q}(\Omega), \quad k_{n} \geqslant 0, \quad k_{n} \not \equiv 0, \quad\left\|k_{n}\right\|_{q} \leqslant c_{4} \quad \forall n \geqslant 1
$$

for some $c_{4}>0$. Hence problem (3.16) has a unique solution $y_{n}^{0} \in W_{0}^{1, p}(\Omega), y_{n}^{0} \geqslant 0$, $y_{n}^{0} \not \equiv 0$ and using Guedda-Véron [15, Proposition 1.3], we have

$$
\begin{equation*}
y_{n}^{0} \in L^{\infty}(\Omega), \quad\left\|y_{n}^{0}\right\|_{\infty} \leqslant c_{5} \quad \forall n \geqslant 1 \tag{3.17}
\end{equation*}
$$

for some $c_{5}>0$. Consider the linear Dirichlet problem

$$
\begin{gathered}
-\Delta w(z)=k_{n}(z) \quad \text { in } \Omega \\
\left.w\right|_{\partial \Omega}=0
\end{gathered}
$$

for all $n \geqslant 1$. Standard regularity theory (see e.g., Struwe [31, p. 218]), implies that this problem has a unique solution w_{n} such that

$$
w_{n} \in W_{0}^{2, q}(\Omega) \subseteq C_{0}^{1, \alpha}(\bar{\Omega})=C^{1, \alpha}(\bar{\Omega}) \cap C_{0}^{1}(\bar{\Omega}), \quad\left\|w_{n}\right\|_{C_{0}^{1, \alpha}(\bar{\Omega})} \leqslant c_{6} \quad \forall n \geqslant 1
$$

with $\alpha=q-\frac{N}{q}>0$ and for some $c_{6}>0$. We put $\sigma_{n}(z)=\nabla w_{n}(z)$ for all $z \in \bar{\Omega}$ and all $n \geqslant 1$. Evidently $\sigma_{n} \in C^{\alpha}(\bar{\Omega})$ for all $n \geqslant 1$. Then from 3.16 we see that y_{n}^{0} satisfies

$$
\begin{gathered}
-\operatorname{div}\left(\left|\nabla y_{n}^{0}(z)\right|^{p-2} \nabla y_{n}^{0}(z)-\sigma_{n}(z)\right)=0 \quad \text { in } \Omega \\
\left.y_{n}^{0}\right|_{\partial \Omega}=0
\end{gathered}
$$

for $n \geqslant 1$. Invoking Lieberman [21, Theorem 1] (see also Guedda-Véron [15, Corollary 1.1]) and using (3.17), we infer that there exists $\beta \in(0,1)$ and $c_{7}>0$ such that

$$
\begin{equation*}
y_{n}^{0} \in C_{0}^{1, \beta}(\bar{\Omega}) \cap \operatorname{int} C_{+}, \quad\left\|y_{n}^{0}\right\|_{C_{0}^{1, \beta}(\bar{\Omega})} \leqslant c_{7} \quad \forall n \geqslant 1 \tag{3.18}
\end{equation*}
$$

Recall that $C_{0}^{1, \beta}(\bar{\Omega})$ is embedded compactly in $C_{0}^{1}(\bar{\Omega})$. So, from 3.18 it follows that there exists a subsequence $\left\{y_{n_{k}}^{0}\right\}_{k \geqslant 1}$ of $\left\{y_{n}^{0}\right\}_{n \geqslant 1}$ such that

$$
\begin{equation*}
y_{n_{k}}^{0} \rightarrow y^{0} \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } k \rightarrow+\infty \tag{3.19}
\end{equation*}
$$

with $y^{0} \geqslant 0$. Note that

$$
\begin{equation*}
k_{n} \rightarrow k \quad \text { in } L^{q}(\Omega) \tag{3.20}
\end{equation*}
$$

with $k(z)=u(z)^{-\gamma}+f(z, u(z), D v(z))$. From 3.16, 3.19, 3.20), in the limit as $n \rightarrow+\infty$, we have

$$
\begin{gather*}
-\Delta_{p} y^{0}(z)=k(z) \quad \text { in } \Omega \\
\left.y^{0}\right|_{\partial \Omega}=0 \tag{3.21}
\end{gather*}
$$

This problem has a unique solution $y^{0} \in C_{0}^{1}(\bar{\Omega})$. On the other hand, since $u \in S_{v}$, from (3.20) it follows that u also solves (3.21). Hence $y^{0}=u$. It follows that for the original sequence we have

$$
\begin{equation*}
y_{n}^{0} \rightarrow u \quad \text { in } C_{0}^{1}(\bar{\Omega}) \tag{3.22}
\end{equation*}
$$

Next we consider the nonlinear Dirichlet problem

$$
\begin{gathered}
-\Delta_{p} y(z)=y_{n}^{0}(z)^{-\gamma}+f\left(z, y_{n}^{0}(z), D v_{n}(z)\right) \quad \text { in } \Omega, \\
\left.y_{n}^{0}\right|_{\partial \Omega}=0
\end{gathered}
$$

for $n \geqslant 1$. Again this problem has a unique solution $y_{n}^{1} \in \operatorname{int} C_{+}$for $n \geqslant 1$ and as above (see (3.22)), we have

$$
y_{n}^{1} \rightarrow u \quad \text { in } C_{0}^{1}(\bar{\Omega})
$$

Continuing this way, we generate a sequence $\left\{y_{n}^{k}\right\}_{n \geqslant 1} \subseteq \operatorname{int} C_{+}$for all $k \geqslant 1$ such that

$$
\begin{gather*}
-\Delta_{p} y_{n}^{k}(z)=y_{n}^{k-1}(z)^{-\gamma}+f\left(z, y_{n}^{k-1}(z), D v_{n}(z)\right) \quad \text { in } \Omega, \\
\left.y_{n}^{k}\right|_{\partial \Omega}=0, \tag{3.23}
\end{gather*}
$$

for $k, n \geqslant 1$ and

$$
\begin{equation*}
y_{n}^{k} \rightarrow u \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } n \rightarrow+\infty \quad \forall k \geqslant 1 \tag{3.24}
\end{equation*}
$$

As before from (3.23) and Lieberman [21, Theorem 1], we know that $\left\{y_{n}^{k}\right\}_{k \geqslant 1} \subseteq$ $C_{0}^{1}(\bar{\Omega})$ is relatively compact.

So, we can find a subsequence $\left\{y_{n}^{k_{m}}\right\}_{m \geqslant 1}$ of $\left\{y_{n}^{k}\right\}_{k \geqslant 1}$ such that

$$
y_{n}^{k_{m}} \rightarrow \widehat{y}_{n} \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } m \rightarrow+\infty \forall n \geqslant 1
$$

From 3.23 in the limit as $m \rightarrow+\infty$, we obtain

$$
\begin{gather*}
-\Delta_{p} \widehat{y}_{n}(z)=\widehat{y}_{n}(z)^{-\gamma}+f\left(z, \widehat{y}_{n}(z), D v_{n}(z)\right) \quad \text { in } \Omega \tag{3.25}\\
\left.\widehat{y}_{n}\right|_{\partial \Omega}=0
\end{gather*}
$$

for $n \geqslant 1$.
From (3.25 we have

$$
\left\|D \widehat{y}_{n}\right\|_{p}^{p}=\int_{\Omega} \widehat{y}_{n}^{1-\gamma} d z+\int_{\Omega} f\left(z, \widehat{y}_{n}, D v_{n}\right) \widehat{y}_{n} d z \leqslant \widehat{c}_{3}+\int_{\Omega} \vartheta(z) \widehat{y}_{n}^{p} d z
$$

for some $\widehat{c}_{3}>0$, so

$$
\left\|D \widehat{y}_{n}\right\|_{p}^{p}-\int_{\Omega} \vartheta(z) \widehat{y}_{n}^{p} d z \leqslant \widehat{c}_{3}
$$

and hence the sequence $\left\{\widehat{y}_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded (by Lemma 2.3).
From this and Lieberman [21, Theorem 1], it follows that the sequence $\left\{\widehat{y}_{n}\right\}_{n \geqslant 1} \subseteq$ $C_{0}^{1}(\bar{\Omega})$ is relatively compact. Passing to a subsequence if necessary, we may assume that

$$
\widehat{y}_{n} \rightarrow \widehat{u} \quad \text { in } C_{0}^{1}(\bar{\Omega}) .
$$

By the double limit lemma (see e.g., Gasiński-Papageorgiou [10, Problem 1.175, p. 61]), we have

$$
y_{n}^{k_{m}(n)} \rightarrow \widehat{u} \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } n \rightarrow+\infty
$$

If $\widehat{u} \neq u$, then $0<\varepsilon_{0} \leqslant\|u-\widehat{u}\|_{C_{0}^{1}(\bar{\Omega})}$, so

$$
0<\frac{\varepsilon_{0}}{2} \leqslant\left\|u-y_{n}^{k_{m}(n)}\right\|_{C_{0}^{1}(\bar{\Omega})} \quad \forall n \geqslant n_{0}
$$

a contradiction (see 3.24). So, we have

$$
\widehat{y}_{n} \rightarrow u \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } n \rightarrow+\infty .
$$

Recall that $u-\widetilde{u} \in \operatorname{int} C_{+}$(see Proposition 3.3). So, it follows that

$$
\widehat{y}_{n}-\widetilde{u} \in \operatorname{int} C_{+} \quad \forall n \geqslant n_{0}
$$

and $\widehat{y}_{n} \in S_{v_{n}} \quad \forall n \geqslant n_{0}($ see 3.25$)$.
Using this lemma, we can show that the minimal solution map is compact.
Proposition 3.6. If hypotheses (H1) hold, then the minimal solution map $g: C_{0}^{1}(\bar{\Omega}) \rightarrow C_{0}^{1}(\bar{\Omega})$ defined by $g(v)=\widehat{u}_{v}$ is compact.
Proof. First we show that g is continuous. To this end let $v_{n} \rightarrow v$ in $C_{0}^{1}(\bar{\Omega})$. We set $\widehat{u}_{n}=\widehat{u}_{v_{n}}=g\left(v_{n}\right)$ for all $n \geqslant 1$. We have

$$
\begin{gather*}
-\Delta_{p} \widehat{u}_{n}(z)=\widehat{u}_{n}(z)^{-\gamma}+f\left(z, \widehat{u}_{n}(z), D v_{n}(z)\right) \quad \text { in } \Omega \tag{3.26}\\
\left.\widehat{u}_{n}\right|_{\partial \Omega}=0
\end{gather*}
$$

for $n \geqslant 1$.
As in the proof of Lemma 3.5, using Guedda-Véron [15, Proposition 1.3] and Lieberman [21, Theorem 1], we have that the sequence $\left\{\widehat{u}_{n}\right\}_{n \geqslant 1} \subseteq C_{0}^{1}(\bar{\Omega})$ is relatively compact (see also Giacomoni-Schindler-Takáč [13, Theorem B.1]). So, we may assume that

$$
\begin{equation*}
\widehat{u}_{n} \rightarrow \widehat{u}_{0} \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } n \rightarrow+\infty \tag{3.27}
\end{equation*}
$$

Passing to the limit as $n \rightarrow+\infty$ in 3.26 and using (3.27), we obtain that

$$
\begin{equation*}
\widehat{u}_{0} \in S_{v} \tag{3.28}
\end{equation*}
$$

From Lemma 3.5, we know that we can find $u_{n} \in S_{v_{n}}$ for $n \geqslant 1$ such that

$$
\begin{equation*}
u_{n} \rightarrow \widehat{u}=\widehat{u}_{v}=g(v) \quad \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } n \rightarrow+\infty \tag{3.29}
\end{equation*}
$$

We have $\widehat{u}_{n} \leqslant u_{n} \quad \forall n \geqslant 1$, so

$$
\widehat{u}_{0} \leqslant \widehat{u}=g(v)
$$

(see (3.27) and (3.29). Since $\widehat{u}_{0} \in S_{v}($ see 3.28$)$), we conclude that

$$
\widehat{u}_{0}=g(v)=\widehat{u}
$$

Therefore for the original sequence we have $\widehat{u}_{n} \rightarrow \widehat{u}$ in $C_{0}^{1}(\bar{\Omega})$; thus g is continuous.
Also, if $B \subseteq C_{0}^{1}(\bar{\Omega})$ is bounded, then as before via the results by Guedda-Véron [15] and Lieberman [21], we obtain that $g(B) \subseteq C_{0}^{1}(\bar{\Omega})$ is relatively compact and thus g is compact.

Now we can employ the Leray-Schauder alternative principle (see Theorem 2.1) to produce a positive solution to problem (1.1).
Theorem 3.7. If hypotheses (H 1) hold, then problem (1.1) admits a positive solution $\widehat{u}_{0} \in \operatorname{int} C_{+}$.

Proof. From Proposition 3.6 we know that the minimal solution map $g: C_{0}^{1}(\bar{\Omega}) \rightarrow$ $C_{0}^{1}(\bar{\Omega})$ is compact. Let $K \subseteq C_{0}^{1}(\bar{\Omega})$ be the set

$$
K=\left\{u \in C_{0}^{1}(\bar{\Omega}): u=\operatorname{tg}(u), 0<t<1\right\}
$$

If $u \in K$, then $\frac{1}{t} u=g(u)$, so

$$
\begin{equation*}
-\Delta_{p} u(z)=t^{p-1}\left(\frac{t^{\gamma}}{u(z)^{\gamma}}+f\left(z, \frac{1}{t} u(z), D u(z)\right)\right) \quad \text { a.e. in } \Omega \tag{3.30}
\end{equation*}
$$

Hypothesis (H1)(iv) implies that

$$
\begin{equation*}
f\left(z, \frac{1}{t} u(z), D u(z)\right) \leqslant \frac{1}{t^{p-1}} f(z, u(z), D u(z)) \quad \text { for a.a. } z \in \Omega \tag{3.31}
\end{equation*}
$$

Returning to (3.30) and using (3.31) and hypothesis (H1)(i), we have

$$
\begin{align*}
-\Delta_{p} u(z) & \leqslant \frac{t^{p+\gamma-1}}{u(z)^{\gamma}}+f(z, u(z), D u(z)) \tag{3.32}\\
& \leqslant \frac{1}{\widetilde{u}(z)^{\gamma}}+a(z)+\vartheta(z) u(z)^{p-1}+c|D u(z)|^{p-1}
\end{align*}
$$

for a.a. $z \in \Omega$, so

$$
\begin{aligned}
\|D u\|_{p}^{p} & \leqslant \widehat{c}_{4}+\int_{\Omega} \vartheta(z) u^{p} d z+c \int_{\Omega}|D u|^{p-1} u d z \\
& \leqslant \widehat{c}_{4}+\int_{\Omega} \vartheta(z) u^{p} d z+c\|D u\|_{p}^{p-1}\|u\|_{p} \\
& \leqslant \widehat{c}_{4}+\int_{\Omega} \vartheta(z) u^{p} d z+\frac{c}{\widehat{\lambda}_{1}^{1 / p}}\|D u\|_{p}^{p}
\end{aligned}
$$

for some $\widehat{c}_{4}>0$ (by Hölder's inequality and using (2.2), thus

$$
\left(1-\frac{c}{\widehat{\lambda}_{1}^{1 / p}}\right)\|D u\|_{p}^{p}-\int_{\Omega} \vartheta(z) u^{p} d z \leq \widehat{c}_{4}
$$

hence, by Lemma 2.3, we have

$$
\widehat{c}_{5}\|D u\|_{p}^{p} \leqslant \widehat{c}_{4},
$$

for some $\widehat{c}_{5}>0$. This proves the boundedness of $K \subseteq W_{0}^{1, p}(\Omega)$.
Invoking Theorem 2.1 (the Leray-Schauder alternative principle), we can find $\widehat{u}_{0} \in C_{0}^{1}(\bar{\Omega})$ such that

$$
\widehat{u}_{0}=g\left(\widehat{u}_{0}\right) \in S_{\widehat{u}_{0}} \subseteq \operatorname{int} C_{+} .
$$

This is a positive solution of 1.1 .
Remark 3.8. It will be interesting to know if we can have multiplicity of positive solutions (for example a pair of positive solutions). For purely singular elliptic problem such a result was proved by Papageorgiou-Rădulescu-Repovš [25]. Also another interesting open problem is whether we can treat resonant equations.

Acknowledgments. L. Gasiński was supported by the National Science Center of Poland under Project No. 2015/19/B/ST1/01169, and the H2020-MSCA-RISE2018 Research and Innovation Staff Exchange Scheme Fellowship within the Project no. 823731CONMECH.

References

[1] Bai Y.; Gasiński, L.; Papageorgiou, N. S.; Nonlinear nonhomogeneous Robin problems with dependence on the gradient, Bound. Value Probl., 2018, Paper No. 17, 24.
[2] Bai Y.; Gasiński, L.; Papageorgiou, N. S.; Positive solutions for nonlinear singular superlinear elliptic equations, Positivity, published online, doi: 10.1007/s11117-018-0636-8.
[3] Faraci, F.; Motreanu, D.; Puglisi, D.; Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations, 54:1 (2015), 525-538.
[4] de Figueiredo, D.; Girardi, M.; Matzeu, M.; Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 17:1-2 (2004), 119-126.
[5] Filippakis, M. E.; Gasiński L.; Papageorgiou, N. S.; On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian, J. Global Optim., 31:1 (2005), 173-189.
[6] Filippakis, M. E.; Papageorgiou, N. S.; Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245:7 (2008), 1883-1922.
[7] Gasiński, L.; Papageorgiou, N. S.; Nonlinear Analysis. Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[8] Gasiński, L.; Papageorgiou, N. S.; Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential, Nonlinear Anal., 71:11 (2009), 5747-5772.
[9] Gasiński, L.; Papageorgiou, N. S.; Nonlinear elliptic equations with singular terms and combined nonlinearities, Ann. Henri Poincaré, 13:3 (2012), 481-512.
[10] Gasiński, L.; Papageorgiou, N. S.; Exercises in Analysis. Part 1, Problem Books in Mathematics, Springer, Cham, 2014.
[11] Gasiński L.; Papageorgiou N. S.; Exercises in Analysis. Part 2. Nonlinear Analysis, Springer, Cham (2016).
[12] Gasiński, L.; Papageorgiou, N. S.; Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263:2 (2017), 1451-1476.
[13] Giacomoni, J.; Schindler, I.; Takáč, P.; Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6:1 (2007), 117-158.
[14] Girardi, M.; Matzeu, M.; Positive and negative solutions of a quasi-linear elliptic equation by a mountain pass method and truncature techniques, Nonlinear Anal., 59:1-2 (2004), 199-210.
[15] Guedda, M.; Véron, L.; Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13:8 (1989), 879-902.
[16] Hewitt, E.; Stromberg, K.; Real and Abstract Analysis, Springer-Verlag, New YorkHeidelberg, 1975.
[17] Hirano, N.; Saccon, C.; Shioji, N.; Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, $245: 8$ (2008), 1997-2037.
[18] Hu, S.; Papageorgiou, N. S.; Handbook of Multivalued Analysis. Vol. I. Theory. Mathematics and its Applications, 419. Kluwer Academic Publishers, Dordrecht, 1997.
[19] Huy, N. B.; Quan, B. T.; Khanh, N. H.; Existence and multiplicity results for generalized logistic equations, Nonlinear Anal., 144 (2016), 77-92.
[20] Lazer, A. C.; McKenna, P. J.; On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111:3 (1991), 721-730.
[21] Lieberman, G. M.; Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12:11 (1988), 1203-1219.
[22] Marano, S. A.; Papageorgiou, N. S.; Positive solutions to a Dirichlet problem with pLaplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal., 12:2 (2013), 815-829.
[23] Motreanu, D.; Motreanu, V. V.; Papageorgiou, N. S.; Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
[24] Papageorgiou, N. S.; Rădulescu, V. D.; Combined effects of singular and sublinear nonlinearities in some elliptic problems, Nonlinear Anal., 109 (2014), 236-244.
[25] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D.; Pairs of positive solutions for resonant singular equations with the p-Laplacian, Electron. J. Differential Equations, 2017, Paper No. 249, 1-13.
[26] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D.; Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., 79 (2018), 1-23.
[27] Papageorgiou, N. S.; Smyrlis, G.; Nonlinear elliptic equations with singular reaction, Osaka J. Math., 53:2 (2016), 489-514.
[28] Papageorgiou, N. S.; Smyrlis, G.; A bifurcation-type theorem for singular nonlinear elliptic equations, Methods Appl. Anal., 22:2 (2015), 147-170.
[29] Perera, K.; Zhang, Z.; Multiple positive solutions of singular p-Laplacian problems by variational methods, Bound. Value Probl., 2005:3 (2005) 377-382.
[30] Ruiz, D.; A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differential Equations, 199:1 (2004), 96-114.
[31] Struwe, M.; Variational Methods, Springer-Verlag, Berlin, 2008.
[32] Sun, Y.; Wu, S.; Long, Y.; Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations, 176:2, (2001), 511-531.

Yunru Bai
Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Email address: yunrubai@163.com
Leszek Gasiński
Department of Mathematics, Pedagogical University of Cracow, Podchorazych 2, 30084 Cracow, Poland

Email address: leszek.gasinski@up.krakow.pl
Nikolaos S. Papageorgiou
National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

Email address: npapg@math.ntua.gr

[^0]: 2010 Mathematics Subject Classification. 35J92, 35P30.
 Key words and phrases. Singular term; convection term; strong comparison;
 Leray-Schauder alternative principle.
 (C) 2019 Texas State University.

 Submitted November 12, 2018. Published May 3, 2019.

