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Abstract 11 

     Protein translocation and membrane integration are fundamental, conserved processes. After or during 12 

ribosomal protein synthesis, precursor proteins containing an N-terminal signal sequence are directed to a 13 

conserved membrane protein complex called the Sec translocon (also known as the Sec translocase) in the 14 

endoplasmic reticulum membrane in eukaryotic cells, or the cytoplasmic membrane in bacteria. The Sec 15 

translocon comprises the Sec61 complex in eukaryotic cells, or the SecY complex in bacteria, and mediates 16 

translocation of substrate proteins across/into the membrane. Several membrane proteins are associated with 17 

the Sec translocon. In Escherichia coli, the membrane protein YidC functions not only as a chaperone for 18 

membrane protein biogenesis along with the Sec translocon, but also as an independent membrane protein 19 

insertase. To understand the molecular mechanism underlying these dynamic processes at the membrane, 20 

high-resolution structural models of these proteins are needed. This review focuses on X-ray crystallographic 21 

analyses of the Sec translocon and YidC and discusses the structural basis for protein translocation and 22 

integration. 23 
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Introduction 32 

    Membrane or secretory proteins are synthesized by cytoplasmic ribosomes, and their nascent 33 

polypeptides possess a specific membrane-targeted signal sequence for transport across or integration into the 34 

membrane. The transported polypeptides then fold into mature proteins and function at the appropriate 35 

locations. The membrane restricts the passive diffusion of small molecules and ions across the membrane. To 36 

overcome the membrane permeability barrier and environmental factors such as the pH or salt concentration, 37 

sophisticated machineries present in the membrane enable protein translocation across and integration into 38 

the membrane. The Sec translocon is an evolutionarily conserved protein-conducting channel at the 39 

endoplasmic reticulum (ER) membrane of eukaryotic cells, or the cytoplasmic membrane of bacteria and 40 

archaea (Fig. 1A)1,2. The Sec translocon is an essential hetero-ternary protein complex, comprising membrane 41 

proteins Sec61α/γ/β in eukaryotic cells or SecY/E/G in bacteria (Fig. 1B), and is involved in translocation and 42 

integration of nascent ribosomally synthesized, unfolded proteins, in a signal sequence-dependent manner. In 43 

the case of soluble proteins, the N-terminal membrane-targeting signal sequences of precursor proteins are 44 

cleaved during translocation, thus decreasing the size of the mature proteins3. In many membrane proteins, 45 

the first transmembrane region contains the targeting signal and is not cleaved. As shown in Figure 1, protein 46 

translocation via the Sec translocon is classified into co-translational and post-translational translocations. 47 

The basic mechanism of co-translational translocation in bacteria and eukaryotic cells is the same. During 48 

co-translational translocation, the highly hydrophobic signal sequence emerging from the ribosomal exit 49 

tunnel is recognized by the signal-recognition particle (SRP) and is targeted to the membrane 50 

co-translationally, along with the ribosome, owing to interactions between the SRP and the SRP receptor 51 

present in the membrane4. Thereafter, the ribosome directly interacts with the protein-conducting channel (i.e., 52 

the Sec translocon), which is present in the membrane. Subsequently, protein translocation occurs 53 

simultaneously with protein translation. During post-translational translocation, unfolded proteins are targeted 54 

to the membranes. The Sec62/63 complex and BiP protein are involved in this translocation in eukaryotic 55 

cells. BiP proteins drive protein translocation via a ratchet mechanism, which can move in only one direction 56 

owing to substrate interactions and conformational transitions of BiP by ATP hydrolysis5. In Escherichia coli, 57 
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precursor proteins, maintained in an unfolded state by chaperones such as SecB, are directed to the membrane 58 

where the SecA ATPase drives protein translocation6,7, although many chaperones including SecB are not 59 

essential for the viability of E. coli. SecA repeatedly undergoes conformational changes to move the precursor 60 

protein into the Sec translocon, using energy from ATP hydrolysis8. Because the Sec translocon itself is a 61 

passive protein channel, other factors, including Sec62/63, SecA, and BiP, play indispensable roles in protein 62 

translocation, as described above. Data from an electron microscopy study demonstrated that the eukaryotic 63 

Sec translocon is associated with translocon-associated proteins (TRAPs) and the oligosaccharyl-transferase 64 

(OST)9,10. The cryo-electron microscopic density map of a TRAP showed it protruding into the ER space, 65 

probably interacting with the substrate protein during protein translocation. In bacteria and archaea, the 66 

SecD–SecF complex (SecDF), which interacts with Sec YEG, promotes protein translocation11,12. SecDF 67 

repeatedly undergoes drastic conformational changes with the substrate at the trans side of the plasma 68 

membrane using proton motive force, which promotes substrate release into the trans-side space13-15. SecDF 69 

can drive protein translocation at the trans side of the plasma membrane independently of SecA13. Hence, 70 

SecDF is considered a second protein-translocation motor. The bacterial Sec translocon is involved in 71 

membrane protein sorting during co-translational translocation in collaboration with YidC, a membrane 72 

protein16,17. YidC functions as a chaperone, facilitating co-translational membrane protein folding. Moreover, 73 

YidC directly binds to the ribosome and is responsible for membrane insertion of certain single- and 74 

double-spanning membrane proteins. Additionally, MPIase (membrane protein integrase), a glycolipozyme, 75 

also plays an essential role in membrane protein insertion, before YidC inserts proteins into the membrane18,19. 76 

YidC corresponds to plant Alb3 in the thylakoid membrane and eukaryote Oxa1 in the inner mitochondrial 77 

membrane (Fig. 1C). The YidC/Oxa1/Alb3 family proteins, containing five conserved transmembrane 78 

α-helices, are involved in membrane protein insertion and assembly of the respiratory chain-related complex20. 79 

YidC of gram-negative bacteria possesses additional transmembrane and periplasmic regions (P1) at its 80 

N-terminus. This review is focused on studies of the crystal structures of the Sec translocon and YidC, aimed 81 

at elucidating the mechanisms underlying protein transport across/into the membrane at the atomic level, and 82 

provides a detailed and comprehensive description of these membrane proteins. 83 
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 84 

Architecture of Sec translocon 85 

Molecular modeling based on the first reported crystal structure of the Sec translocon in 2004 (Fig. 86 

2A left, B)21 provided many insights into the mechanisms of protein translocation across and integration into 87 

the membrane, via the Sec translocon. Subsequently, different types of functional analyses were performed to 88 

elucidate the molecular mechanism underlying the action of Sec translocon1,2,22. The available crystal 89 

structure models of Sec translocons in the Protein Data Bank (PDB)21,23-28 are summarized in Table 1. The 90 

first reported structure of the Sec translocon is from an archaeon, Methanocaldococcus jannaschii21, and is 91 

designated as SecYEβ in this review. As of March 20, 2019, the highest-resolution structure of the Sec 92 

translocon was reported in 2014 for Thermus thermophilus SecYEG (2.7-Å resolution; Fig. 2A, right)27. 93 

Some reports do not include SecG/β, a non-essential subunit29-32, because it easily dissociates from the 94 

essential SecYE complex and does not influence its stability. Purified T. thermophilus SecYEG, generated by 95 

overexpressing SecG with an additional plasmid in SecYEG-overexpressing cells, was crystallized in the 96 

lipidic cubic phase, facilitating determination of a high-resolution structure of the Sec translocon27. Both the 97 

M. jannaschii SecYEβ and T. thermophilus SecYEG crystal structures represent the resting states of the Sec 98 

translocon (Fig. 2A, B). Ten transmembrane α-helices of SecY compose the core of the Sec translocon, which 99 

is stabilized by the cytoplasmic α-helix parallel to the membrane and the tilted transmembrane α-helix of 100 

single-membrane-spanning SecE (triple membrane-spanning, in the case of E. coli). SecG, containing two 101 

transmembrane α-helices, is peripherally located adjacent to transmembrane region 1 (TM1) and TM4 of 102 

SecY. The single-membrane-spanning protein, Secβ, an alternative component of SecG, is located in a 103 

position similar to that of SecG. The N-terminal and C-terminal halves, TM1–5 and TM6–10, respectively, 104 

are arranged in a pseudosymmetrical manner and linked by a cytoplasmic loop, called a hinge. The protruding 105 

cytoplasmic region 4 (C4) between the TM6–7 regions and C5 between the TM8–9 regions provide major 106 

interaction sites for cytosolic factors, including SecA and ribosomes. The interior channel of SecY is 107 

hourglass-shaped, its center containing a constricted region called the pore ring (Fig. 2C). The narrow point is 108 

formed by six hydrophobic amino acid residues, primarily including Ile, at the middle regions of TM2, 5, 7, 109 
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and 10, and does not permit secretion of substrate proteins via the Sec channel, based on the crystal structures. 110 

Furthermore, the trans-side funnel of the hourglass-shaped space is occupied at the exterior side by a short 111 

α-helix, called a plug, between TM1 and TM2, resulting in a completely sealed SecY channel. Although 112 

previous structural studies on the Sec translocon revealed that the cytoplasmic funnel of SecY is not occupied, 113 

Tanaka et al. reported a high-resolution structure of SecYEG wherein the cytoplasmic loop of SecG covers 114 

the cytoplasmic side of the channel27, thus restricting membrane permeability in a manner similar to that of 115 

the plug domain (Fig. 2D). Therefore, the SecG loop can function as a cytoplasmic cap for the SecY channel. 116 

The cytoplasmic N-terminal region of Secβ is disordered in structural models; however, it could be located 117 

near the cytoplasmic funnel in the resting state, similar to the SecG loop. The mechanism underlying this 118 

covering process from each side of the pore ring may be universally conserved. The boundary area between 119 

TM1–5 and TM6–10 of SecY on the opposite side of the tilted SecE transmembrane α-helix is called a lateral 120 

gate, comprising TM2, 3, 7, and 8, which are binding sites for the signal sequences33. The Sec translocon in 121 

the resting states is not wide enough for protein transport. Therefore, the pore ring, plug, cap, and lateral gate 122 

regions have been predicted to undergo conformational changes and/or are dislocated, thereby enabling 123 

protein translocation across and integration into the membrane via the Sec translocon. The variable models of 124 

the Sec translocon have been experimentally verified27,34-37. Recent structural X-ray crystallographic21,23-28, 125 

electron microscopic38-44, and functional45,46 analyses strongly suggested that the oligomeric state of the Sec 126 

translocon is one heterotrimeric unit, although an efficient functional state comprising two or more units 127 

cannot be excluded47,48. Several crystal structures of the SecY complex imply that interactions between SecA, 128 

Fab, or a peptide mimicking a part of the signal peptide and the protruded cytoplasmic regions of SecY 129 

(which are intrinsically flexible) induce conformational changes in the lateral gate (Fig. 2E). Similar to these 130 

crystal structures, binding of cytosolic factors to the Sec translocon would trigger structural changes to easily 131 

interact with precursor proteins initially during protein translocation. In the SecA-bound conformation of 132 

SecY, the plug domain is dislocated outwards, thereby expanding the inner space of SecY. This structural 133 

change may lower the energy barrier to protein translocation via SecY. 134 

 135 
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Sec translocon in the protein translocation state 136 

An outstanding report shows the crystal structure of SecYE and precursor segment-inserted SecA at 137 

3.7-Å resolution (Fig. 3A, B)26. For the structural analysis, the polypeptide was artificially introduced into a 138 

loop of SecA as a fusion protein, accompanied by the generation of an intermolecular disulfide bond between 139 

the peptide and SecY at the trans side of the plasma membrane to stabilize the protein-translocation 140 

intermediate. The lateral gate is the most widely open in the available crystal structures. The signal peptide of 141 

the substrate is located at the expanded lateral gate, surrounded by TM2, 3, and 7, presumably oriented 142 

toward the hydrophobic regions of the lipid bilayer. During insertion, the signal peptide can be laterally 143 

released from the expanded gate to the membrane via hydrophobic interactions. The part of the substrate 144 

being transported is located along the center of the Sec translocon, and the pore ring is larger than that in 145 

other crystal structures. Four of six residues of the pore were found to tightly interact with the transported 146 

peptide, simultaneously blocking membrane permeability like a gasket. Hence, even during protein 147 

translocation, SecY can maintain the membrane barrier simultaneously. 148 

 149 

Recent structural studies of Sec translocon 150 

Recent structural studies on the ribosome–Sec translocon complex by electron microscopy at medium 151 

resolution revealed densities corresponding to the α-helices and conformational changes in transmembrane 152 

regions and the localization of precursor proteins, providing insights into protein translocation across and 153 

integration into the membrane38-44. Furthermore, samples can be directly observed by electron microscopy 154 

without crystallization steps, which are needed for X-ray crystallography. Electron microscopic images of the 155 

ribosome–nascent chain complex (RNC) probably include various intermediate states of SecY complexes, 156 

thus providing several snapshots of co-translational translocation. The cryo-electron microscopic structure of 157 

Sec61 and RNC, including a signal peptide, elucidated that the signal peptide is observed in a manner similar 158 

to that of the SecYE–SecA–signal peptide complex (Fig. 3C, left)42. A different cryo-electron microscopic 159 

imaging analysis of SecY and RNC, including two newly synthesized transmembrane α-helices, revealed that 160 

two transmembrane regions are peripherally located near the lateral gate of SecY (Fig. 3C, right)38. This 161 
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structure is considered to represent the intermediate state after the substrate is sorted into the membrane via 162 

the Sec translocon. Although the electron density of the translocating peptide was unclear upon electron 163 

microscopic analyses, probably owing to its unfolded conformation, polypeptides are thought to traverse the 164 

central pore of the Sec translocon. Cryo-electron microscopic analysis has revealed several snapshots of the 165 

active Sec translocon during protein translocation. Because the Sec translocon contains highly motile regions, 166 

including the plug, cap, and cytoplasmic regions, we cannot accurately refine the structural models of the Sec 167 

translocon at atomic resolution using the current electron density data at limited resolution, thus preventing 168 

an accurate understanding of the transition states of the Sec translocon. Future structural analyses are required 169 

at a higher resolution. Highly flexible regions may not be visible even in high-resolution structures 170 

determined by X-ray crystallography, but cryo-electron microscopic analysis may elucidate several forms of 171 

such flexible regions because recently developed programs can analyze several states separately. Structural 172 

studies of the Sec translocon have indicated that the passive Sec translocon has a flexible structure, which 173 

appropriately changes to direct the transportation of proteins to the trans side of the plasma membrane or into 174 

the membrane, in response to interactions with cytosolic factors and precursor proteins. The fundamental 175 

concepts underlying transitions of the Sec translocon (including changes in pore size, opening and closing the 176 

lateral gate, and plug dislocation) were reported with the first crystal structure of the Sec translocon21 and 177 

have been supported by structure-based functional studies for more than a decade1. 178 

 179 

Overall structures of YidC 180 

 The YidC core comprises five conserved transmembrane α-helices (cTM1–5) (Fig. 1C). The 181 

arrangements of the transmembrane α-helices of YidC were predicted based on an evolutionary co-variation 182 

analysis49; however, the detailed interactions, arrangements, and tilting angles of the transmembrane regions 183 

remain unknown. Crystal structures of YidC derived from three species were published (Table 1) in the past 184 

five years50-53. All reported crystal structures for YidC displayed monomeric states (Fig. 4A–C), concurrent 185 

with recent functional and structural reports that YidC functions as a monomer54-56, although functional 186 

dimeric states of YidC have been previously proposed57,58. The first transmembrane α-helix (1st TM) of E. 187 
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coli YidC, which functions as a signal sequence, was disordered even in the recent higher-resolution crystal 188 

structure (Fig. 4A)50. Furthermore, the 1st TM was reported to interact with SecY and SecG59 and to be 189 

involved in substrate binding60,61; however, the significance of this interaction is not yet clear. The first 190 

periplasmic regions (P1) of E. coli and T. maritima (Fig. 1C) do not share the same architecture, suggesting 191 

that the P1 region is not essential in E. coli62. However, a part of the P1 region of E. coli interacts with Sec 192 

components and YidC63,64, potentially contributing to the formation of the Sec holo-translocon complex65. The 193 

N-terminal extension of cTM1, called EH1, is a conserved amphiphilic helix parallel to the membrane surface. 194 

The hydrophobic half of EH1 is embedded in the membrane. EH1 may function as a float to stabilize YidC 195 

localization in the membrane. The five conserved transmembrane α-helices create a hydrophilic cavity (Fig. 196 

4B). A comparison of the transmembrane regions of the reported crystal structures of YidC revealed that 197 

hydrophilic cavities of the same size are evolutionarily conserved among YidC family proteins (Fig. 4D).  198 

 199 

Detailed structures and functions of YidC 200 

 The cavity is positively charged and exposed to the cytoplasm and the membrane, whereas the 201 

trans side of the plasma membrane is entirely closed by tightly packed hydrophobic residues (Fig. 4B). At the 202 

center of the cavity, a conserved positively charged residue, Arg, in B. halodurans, T. maritima, and E. coli, 203 

primarily contributes to the characterized positive charge of the cavity (Fig. 4C). The positive charge in B. 204 

halodurans was shown to be essential for cell growth and insertion of MifM, a substrate of YidC51. In 205 

contrast, the positive charge in E. coli is important, but replaceable52,66. The difference in positive charge 206 

requirements may be related to the importance of the functions of substrate proteins of YidC in each species. 207 

Systematic mutational analysis revealed that the hydrophilicity of this region is also an important factor 208 

influencing YidC activity67. Short, rigid loops of the trans side, showing lower B-factors upon 209 

crystallographic analysis, structurally support the closed extracellular side of the transmembrane region. On 210 

the opposite side, the C1 loop forms a hairpin loop comprising two hydrophilic α-helices, which protrude 211 

from the transmembrane region to the cytoplasm. It has been suggested that the C1 region contains sites for 212 

interaction with substrates59. The arrangements of the C1 regions in the crystal structures are not the same, i.e., 213 
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they are flexible, concurrent with higher B-factors in the C1 region compared to other core regions (Fig. 4E). 214 

In the case of T. maritima YidC, the cytoplasmic loops, including the C1 loop, were disordered. Although the 215 

C2 loop was disordered in reported crystal structure models (except for the structure reported most recently), 216 

the 2.8-Å resolution data from E. coli YidC helped characterize the C2 loop (Fig. 4C, E). The C2 loop is 217 

located near the entrance of the hydrophilic cavity. The B-factors of the C2 loop are even higher than those of 218 

the C1 loop, implying that the C2 region is most flexible in the core of YidC. The C2 loop at the cavity 219 

entrance may function as a cover to prevent excessive exposure of hydrophilic regions in the membrane. The 220 

fundamental role of C2 may be similar to that of the SecG loop27. The crystal structure of B. halodurans YidC 221 

(Form II) (Fig. 4C, right) only shows the C-terminal region, which interacts with the C1 region. Because the 222 

C-terminal, C1, and C2 regions were reported to interact with the ribosome54,68,69, the cytoplasmic regions 223 

may bind the ribosome cooperatively. Functional analysis using deletion mutations supported the importance 224 

of the loops of the core region51. Because YidC contains a hydrophilic cavity facing the membrane interior, 225 

YidC may preferably not exist stably in the hydrophobic membrane. Three molecular dynamics simulations 226 

of YidC revealed that YidC can stably exist in the membrane with some cytoplasmic fluctuations50,51,70. 227 

During the simulations, the cavity of YidC was filled with approximately 20 water molecules. One of the 228 

important functions of the transmembrane region of YidC is to generate a pool of water molecules at the 229 

membrane. Together, the structure derived from all conserved regions from EH1 to cTM5 seem crucial for 230 

YidC activity. The conserved, positively charged cavity of YidC could reflect the importance of electrostatic 231 

interactions. A certain type of YidC substrate is negatively charged. In the case of the 232 

single-membrane-spanning substrate MifM, three positively charged residues are positioned at the N-terminal 233 

region. When the negatively charged residues were mutated, the MifM-insertion activity of YidC decreased, 234 

thus increasing the possibility that the interaction between the positive charge in the hydrophilic cavity and 235 

the negative charges of substrates is important for YidC-dependent membrane protein insertion51. 236 

Subsequently, a site-specific photo-crosslinking analysis elucidated direct interactions between the cavity and 237 

MifM51. Hence, a membrane-insertion model of a simple membrane protein such as a once-spanning or 238 

twice-spanning transmembrane protein resulting from YidC activity has been proposed (Fig. 5A). Initially 239 
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during protein insertion by YidC, the flexible C1 and C2 regions may recognize and interact with the 240 

substrate, and then the substrate is temporally captured by the YidC cavity, which is mediated by electrostatic 241 

and hydrophilic interactions between the substrate and YidC. Thereafter, the captured substrate protein is 242 

sorted from the cavity into the membrane via hydrophobic interactions with membrane lipids. The 243 

non-uniform distribution of electrostatic charges resulting from the membrane potential derived from the 244 

proton motive force further influences protein sorting. 245 

 246 

Conserved mechanism of membrane protein insertion 247 

 Cryo-electron microscopic analysis of the RNC and YidC complex showed the transmembrane 248 

segments of a substrate in the front of the entrance of the cavity exposed to the membrane49. This state is 249 

assumed to be adopted immediately after the substrate is released from the YidC cavity. A 250 

molecular-dynamics simulation suggested that the thickness of the membrane surrounding YidC was reduced 251 

by the existence of YidC, thus decreasing the local energy barrier of protein translation across the 252 

membrane70. A similar reduction in thickness was previously reported based on a molecular-dynamics 253 

simulation of the outer-membrane protein BamA71, which functions as a membrane protein insertase for the 254 

outer membrane. Owing to the lack of energy sources such as ATP at the outer membrane, protein insertion is 255 

achieved via a delicate balance involving molecular interactions, collision frequency, and concentration. 256 

YidC-like proteins identified in Archaea and in the ER membrane of eukaryotes contain three transmembrane 257 

α-helices, corresponding to cTM1, 2, and 5 in YidC, which are proposed to form a hydrophilic surface similar 258 

to that of YidC72,73. The functional roles of YidC family proteins and the YidC-like proteins may be conserved 259 

in each membrane as primitive machinery. 260 

 261 

Collaborative functional model of SecYEG and YidC for membrane protein insertion 262 

 YidC functions not only as an insertase, but also as a membrane chaperone for integrating certain 263 

types of multi-membrane-spanning proteins into the membrane in collaboration with SecYEG74,75. 264 

Cross-linking experiments revealed that cTM3 and cTM5 mainly interact with substrates60,76, and the lateral 265 
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gate of SecY interacts with YidC64. Therefore, the entrance for the lipid bilayer of YidC should face the lateral 266 

gate of SecYEG. To elucidate the molecular mechanism underlying collaborative protein integration, the 267 

detailed three-dimensional structure of the complex of YidC and SecYEG warrants elucidation. Based on the 268 

cryo-electron microscopic structure of the Sec holo-translocon complex at ~10-Å resolution77, it is difficult to 269 

discuss the detailed interactions and conformational transitions of the components. Further high-resolution 270 

structural analysis studies are required. The cryo-electron microscopic structures of RNC in complex with 271 

SecYEG or YidC have been reported previously, as described above. Therefore, future studies may 272 

potentially reveal the structure of the RNC–YidC–SecYEG complex at improved resolution. As the 273 

hydrophilic cavity of YidC faces the membrane, YidC can shelter the hydrophilic region of the newly 274 

synthesized membrane protein being sorted from the lateral gate of the Sec translocon. The number of YidC 275 

molecules in the cell would be greater than that of SecYEG78, presumably enabling several YidCs to function 276 

simultaneously as chaperones for Sec-dependent membrane integration/maturation, which is important for 277 

membrane protein biogenesis. The mechanism underlying substrate recognition by YidC as a chaperone 278 

during membrane protein folding is in complete contrast with that of soluble chaperones, which typically 279 

provide hydrophobic surfaces to prevent misfolding of soluble proteins (Fig. 4B). The positively charged 280 

YidC cavity preferentially interacts with and transports negatively charged regions of substrates to the 281 

opposite side, such that YidC is more likely to be involved in the positive inside rule of membrane proteins79. 282 

Several YidC substrates have been identified17; however, identification of other YidC substrates is necessary 283 

to further clarify the details regarding YidC-mediated capture and release of substrates into the membrane. 284 

Unidentified substrates with high stability even in an aqueous buffer are preferable for functional analysis, 285 

especially for in vitro experiments with purified proteins. 286 

 287 

Concluding remarks 288 

Considering recent developments in electron microscopy, crystallization procedures, and data-collection 289 

systems, determination of high-resolution structures as snapshots during protein translocation is promising. In 290 

high-resolution cryo-electron microscopic structural analyses of the Sec translocon and YidC in 291 
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co-translational translocation studies, the samples contained ribosomes, the size of which allowed the 292 

construction of molecular models. In contrast, X-ray crystallography is considered desirable for structural 293 

analysis in post-translational translocation studies, because the Sec translocon complex lacks a ribosome. 294 

However, the latest structural studies of the post-translational Saccharomyces cerevisiae Sec61 complex 295 

(consisting of Sec61α/γ/β, Sec62/63, and Sec71/72) by cryo-electron microscopy and single-particle analysis 296 

was reported at a maximum resolution of 3.4 Å80 and 4.1 Å81. It is noteworthy that the authors built molecular 297 

models of Sec translocon without a ribosome structure. Similar to that of SecY in Fig. 2E, the lateral gate of 298 

Sec61 is opened by cytosolic interactions. In addition, a Sec61β–Sec63 fusion protein was used for the 299 

former80 study to stabilize the post-translational Sec translocon complex. A bacterial SecY–SecA fusion 300 

protein, possessing protein-translocation activity, can be embedded into nanodisc particles82. Therefore, 301 

further structural analysis of the Sec translocon in the post-translational pathway, without a ribosome, can be 302 

performed by electron microscopy in combination with some fusion proteins to uncover several detailed 303 

intermediate architectures. In the near future, electron microscopy will be considered one of the more 304 

powerful tools for structural analysis at atomic resolution, even for post-translational protein translocation 305 

studies. Moreover, time-dependent structural analyses are also required to further the current understanding of 306 

protein transport. Single-molecule analysis helps resolve the underlying mechanism83,84, and high-speed 307 

atomic force microscopic observations of one unit may provide an overall view of structural changes 308 

occurring during protein translocation in real time85. Numerous interesting questions regarding a 309 

comprehensive understanding of protein transport remain to be answered. 310 

  311 
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Table 1 | Crystal structures of the Sec translocon and YidC 316 

Species Resolution States Notes PDB 
ID Reference 

Sec translocon     �
Methanocaldococcus jannaschii 
SecYEβ 3.2 Å Resting state Stable mutant 1RH5 21 

 3.5 Å Resting state  1RHZ 21 
 3.5 Å  Plug mutant 2YXQ 28 
 3.6 Å  Plug mutant 2YXR 28 
Thermus thermophilus SecYE + 
Fab 3.2 Å Fab-bound  2ZJS 23 

Thermotoga maritima SecYEG + 
SecA 4.5 Å SecA-bound  3DIN 25 

Pyrococcus furiosus SecYE 2.9 Å C-terminal 
interacting 

 3MP7 24 

Thermus thermophilus SecYEG 2.7 Å Resting state Best resolution 5AWW 27 
 3.6 Å Peptide-bound  5CH4 27 
Geobacillus thermodenitrificans 
SecYE + SecA + nanobody 3.7 Å Precursor-bound SecA-precursor 

fusion 5EUL 26 

YidC     �

Bacillus halodurans YidC 2.4 Å Form I  3WO6 51 
 3.2 Å Form II  3WO7 51 

Escherichia coli YidC 3.2 Å   3WVF 52 

 2.8 Å  All YidC cores 
modeled  6AL2 50 

Thermotoga maritima YidC 3.8 Å   5Y83 53 
 317 

  318 



Crystal structures of Sec translocon and YidC                                               Tsukazaki 

 16 

Figure legends 319 

Figure 1 | Bacterial protein translocation and integration via the Sec translocon and YidC. 320 

A, Protein translocation across and integration into the membrane. During post-translational translocation, 321 

precursor proteins with an N-terminal signal sequence are targeted to and translocated across the membrane, 322 

which is driven by Sec62/63 complex and BiP in eukaryotes and SecA ATPase and SecDF in bacteria. During 323 

co-translational translocation, the ribosome–nascent chain complex (RNC) is directed to the membrane by the 324 

interaction between signal recognition particle (SRP) and its receptor, and interacts with SecYEG or YidC. 325 

Subsequent membrane protein integration via the interior of the Sec translocon and/or YidC occurs 326 

co-translationally. B, Schematic representation of Sec translocon components. C, Schematic representation of 327 

the YidC/Oxa1/Alb3 protein family. 328 

 329 

Figure 2 | Crystal structures of the Sec translocon. 330 

A, The Sec translocon in the resting state. Crystal structures of SecYEβ from Methanocaldococcus jannaschii 331 

(PDB ID 1RH5) (left) and SecYEG from Thermus thermophilus (PDB ID 5AWW) (right). B, Schematic 332 

representation of the Sec translocon. C, Magnified views of the pore ring of the structures in A from the 333 

cytoplasm. D, Cut-away models of the surface representation of T. thermophilus SecYEG without the plug 334 

and cap regions. The plug and cap regions are represented by the ribbon model with a stick model for the side 335 

chains. E, Crystal structures of the Sec translocons in which the cytoplasmic region interacts with other 336 

molecules in the crystals (PDB ID 3MP7, 5CH4, 2ZJS, and 3DIN). 337 

 338 

Figure 3 | Structures of the Sec translocon in the intermediate stages of protein transport. 339 

A, Crystal structures of the SecYEG–SecA complex with part of the precursor protein expressed as a fusion 340 

protein (PDB ID 5EUL). B, Magnified views of the pore ring of the structure in A from the cytoplasmic side . 341 

C, Electron microscopic structures of the Sec translocon of the RNC complex during protein transport (PDB 342 

ID 3JC2 and 5ABB). 343 

 344 
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Figure 4 | Crystal structures of YidC. 345 

A, Crystal structure of E. coli YidC at 2.8-Å resolution, elucidating all YidC core regions (PDB ID 6AL2). 346 

The cTM numbers are shown. B, Cut-away model of the E. coli YidC structure. C, Gallery of crystal 347 

structures of YidC (PDB ID 6AL2, 5Y83, 3WO6, and 3WO7). D, Superimposition of the core region of B. 348 

halodurans, T. maritima, and E. coli YidCs. E, Magnified view of the C1 loop region. 349 

 350 

Figure 5 | Functional model of YidC. 351 

A, Membrane-insertion model of a single-membrane-spanning protein via YidC, independently of SecYEG. 352 

YidC temporally captures the precursor protein at the positively charged cavity. Thereafter, the substrate 353 

protein is sorted primarily via hydrophobic interactions. B, Chaperone activity model of YidC. YidC protects 354 

a hydrophilic region sorted from the lateral gate of the Sec translocon until its interacting region emerges 355 

from the gate, promoting correct folding of substrate proteins. 356 

  357 
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