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A CERTAIN SUBCLASS OF UNIVALENT MEROMORPHIC
FUNCTIONS DEFINED BY A LINEAR OPERATOR
ASSOCIATED WITH THE HURWITZ-LERCH ZETA

FUNCTION

FIrAS GHANIM AND HiBA F. AL-JANABY

ABSTRACT. In this paper, we study a linear operator related to
Hurwitz-Lerch zeta function and hypergeometric function in the punctured
unit disk. A certain subclass of meromorphically univalent functions asso-
ciated with the above operator defined by the concept of subordination is
also introduced, and its characteristic properties are studied.

1. INTRODUCTION AND DEFINITIONS

Here, X denotes the class of normalized meromorphic functions
1 o0
1.1 Hz) = - w2
(1) @)=+ L
and they are regular in a punctured unit disk

D*={z:2€eC and 0<|z|]<1}=D\{0}.

The subclasses of ¥ are denoted as s+ ({) and Xk (¢) (¢ > 0) and they consist
of all the meromorphic functions that are starlike of order { and convex of
order ¢ in D*, respectively (see the recent works [21] and [19]).

If 9, (= 1,2) are given by

- .
(12) e =+ D
the Hadamard (convolution) product of ¢; and ¥s is defined as

j R— .
(1.3) (V1 x02)(2) = p + ;ﬂn,mmzz .
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Some recent papers, see for example [5], [8], [9], [10], [12] and [16], utilized the
Hadamard product for introducing the linear operator J,,, : ¥ — ¥, defined
on X as follows:

(1.4) ngﬁ(z):'f(g,u;z)*ﬁ(z)
where
(1.5) T(g,u;z)zw, (zeD*5 v eC\Zy)

and the function H (z,0,v) is the well-known Hurwitz-Lerch zeta function
defined by (see, for example [17, p. 121], [15] and [18, p. 194])

oo

(1.6) H(z,0,v) = Z ( :

= (st v)e

K

(veC\Zy; o€ C when |z| <1; R(p) >1 when |z]=1),
where * refers to the Hadamard product of the regular functions. Further-
more, the function J;, 9 (2) is described as:

* 1 = v e "
) Tt @ =1+ 3 (i) e

(zeD*; 9eB;veC\Zy; 0€C).
REMARK 1.1. Note that
(1) T50(2) =9 (2),
(@) Tru ,0(2) = 12 [ 20 (ydt (0<e<d),

1 1_
a2 cze 10
z

(3) «71*,#9 (2) = zvv+1 ft”ﬁ () dt,

0
(4) To9 (2) = rsme [ #(1og )"y (1) dt (a,b > 0),
oo 0

(5) Jp9(z) =1+ X_:O (#2) N2,
(6) 400 () = = (=),
(7) jjl,—219 (2) = 719(2)72219 (Z)7
(8) Trn 19 (2) = 1+ 2 (K)" 12" (m e N),

k=0
(9) TZna9 () = 14 i (k +2)" 92" (m € N),

k=0

The linear operator J;"1 _,¥ (2) was introduced by Cho et al. [5], 7,9 (2)
operators were studied previously by Lashin [12]. Moreover, the operator
»19 (2) was introduced by Alhindi and Darus [1], the operator J*,, ;9 ()
was defined by Uralegaddi and Somanatha [23] and J7*,,9 () was derived from
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(in specific cases) the generalized Bernardi operator [3], when R(b) > 0; the
operator J;' ¥ (2) was introduced by Bajpai [2].

Let us consider the incomplete beta function @(u,v;z) defined by

~ 1 - (/L)rHrl K
(1.8) Glp,viz) = - + ; s
(VG(C\ZE; ,LLE(C),
where
Zy ={0,—-1,-2,---} = 2~ U{0}.
Henceforth, throughout (¢),, stands for the Pochhammer symbol which can
be defined via the Gamma function

(1.9)

(e) _Tle+r) _Jele+1)-(e+m—1) (k=meN; eeC)
T (h=0; £ €C\ {0}),

Conventionally, it is assumed that (0)g := 1. For further details refer to [22, p.
21 et seq.].

In addition, the relation between the functions of H(u, v; z) and the Gauss-
ian hypergeometric function holds [14]:

_ 1
(1.10) plp,viz) = — 2 F1(1, w3 2),
where

o]
(€) (1), 2"
2F1 (Evluﬂy;z) = ZM_|
k=0 (V)/-c K:
is the well-known Gaussian hypergeometric function.
Let

«7;“ w(z)* Ao (2) =

1—2"
Then we have

(1.11) Ao (2) = 2+ i <L“+1)gm 2

z v
k=0

Using the operator A, , (), we define a linear operator Q7 , (u,v) : ¥ — X
in terms of the Hadamard product by:

(1.12)

QL (1) (9) (2) = (1, v; 2) * Mg (2) = 1. 3 (1) 41 <n+z+ 1) e 2

Z k=0 (I/) rk+1

(zeD*; Ve ; v,reC\Zg; 0€C; peC\{0}).
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It can be shown from the definition of the operator 2 , (u,v) (¥) (2), that

(0 (1v) (9) (2)'

(1.13)

(s (4 10) (9) () = (4 1) (@ (1) (9) (2))
and
try @ B @)

=0 (5 (1.0) (9) (2) = (1) (. (v +1) (9) (2)).

Now, with the help of the linear operator Q; ,, (u1,v) (9) (2), we introduce the

subclass EZ:?} (u,v,T,S) of meromorphic functions as follows:

DEFINITION 1.2. For fixed parameters T,S (-1 < S < T < 1) and
0 < X\ < 1, the function of ¢ € X belongs to the class ZZH)J\ (v, T, S) if it
satisfies the following subordination condition:

1 2(Q, () (9) (2)) 14T
(1.15) <— 2 -2 =< (z e DY)
1=A Q. (v) (9) (2) 1+ 52
or,
(1.16)
#, A
EQ,U (/1’7 V? T7 S)
(95,0 (1) (@)(2))’
@ E - T L
=<K ¥:9€Y and ﬂg,v(% ) (w)(2) <1

g 2(25, (1) (9)(2))

o noE - O T =8) (A=A

2. A SET OF LEMMATA

For establishing the main results in this study we need the following
results.

LEMMA 2.1. (see [13]) Let -1 < S < T < 1, a # 0 and the complex
number § € C satisfies the inequality

Then the differential subordination
29/ (2) 1+Tz

< eD
W)+ o < g (2€D)
has a univalent solution in D,
Za+/3(1+sz)o¢(T—S)/S 8
o [T tetBo1 (145 T/ dt o« (5#0)
(2.1) ¢ (2) =
2218 exp(aTz) B (S _ 0)

_ _
ozfo tatB—1exp(aTt) dt
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If the function ¥

P (2) =14biz+bez+ -
is holomorphic in D and satisfies the subordination
2z (2) 1+ 7Tz

(2.2) w(z)_kaw(z)—i—ﬂ{l—i—Sz (z €D),
then LT
V(<6 < g (2€D)

and ¢ 1is the best dominant in (2.2).

LEMMA 2.2. (see [24]) Suppose that vy is the positive measure in [0,1] and
p s a complez-valued function, defined in D x [0,1] so that p(.,t) ia analytic
in D for every t € [0,1], while p(z,.) is y-integrable in [0,1] for all z € D.
Furthermore, assume that R{p (z,t)} > 0, p(—r,t) is real, and

1 1
%{p( }zp( (2| <r<1; te0,1]).

z,t) —r,t)

I
M@—Apmwmm,

1 1
R > zl<r<1l).
el BICERS
LEMMA 2.3. (see [25]) For real numbers o, < and § (6 #0,—1, —=2,--+),

it holds:
1 — 0
(2.3) /0 T (A=) T T (L= at) S dt = %&‘5))

(R{6} >R{o} >0; ze D).

then

2F1 (¢, 0305 2)

Moreover,

(2.4) 2F1 (6,0:0;2) = 2F1 (0,663 2)

and

(2.5) 2F1(5,0:052) = (L= 2)"" oFy (g,5—0;5;2i1>

(6#0,-1,-2,---; |arg(l — 2)| < ).

Several methods were used to study the inclusion properties of the differ-
ent classes of the holomorphic and meromorphic functions (see, [4], [6], [7],
[11] and [20]). Here the authors have determined four inclusion theorems for
studying the class 2213 (1, v, T, S) of meromorphic functions. Particularly, the
authors have stated that increasing the parameter y 4+ 1 +— p by one, p + 1,
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the class EZ:f)‘ (u,v,T,S) narrows, while increasing v to v + 1 expands the
class EZ;% (v +1,T,5) of meromorphic functions.

3. RESULTS AND DISCUSSION

Throughout this study, the authors have assumed (unless mentioned oth-
erwise) that:

-1<S5<T<1,0<A<1, pv>0, veC\Z;, o€C and zeD.

Initially, the inclusion relationships have been considered for the parameter p
for the class EZ”\ (v, T,5).

,U

THEOREM 3.1. If ¥(z) € £33 (u+ 1,1, T, S) and

v

1-XN@1-17)

then

z(Q* V) (9) (2))
1i/\<_ ( Q)U('u, ) ) )) —)\>< L((M—)\—Fl)_ L )

(3-2) =1(2) <

where

~(1-\)(T-5)/B
) dy (S #0)

fl u—1(1+8zy
0¥ 1152

fol yh—le=(1-NTy=1)z gy (S=0)

(1)1 (Z) =

and ¢y is the best dominant of (3.2). Furthermore,
(3.3) Sed(u+ Ly, T,8) C S8 (v, T, S) .

,U v

PROOF. Assume 9(z) € £33 (1 +1,,T,5) and set

. 29, (1) ) (2)
(3.4) v(z) = 1—/\<_ 2, (1) (0) (2) _A>'

It can be seen that 1 (z) is holomorphic in D and v (0) = 1. Applying the
identity (1.13) to (3.4) we conclude:

Q. (1 +1.0) (9) (2)

(35 —0=NE+ A+ ) = =g
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After using a logarithmic differentiation on both the sides in (3.5) with respect
to z it follows

29 (2) L (@, (et ) ()
R iy v vy gy vy R w1 Oz () 9) (2) )
<1i§z (z€D).

Hence, after applying the Lemma 2.1 with
a=—(1-)) and B=p—A+1,

we have

1+Tz2
1+52

¥ (2) < 91 (2) < (zeD),

wherein the best dominant of ¢; was defined using (3.2). This proves Theorem
3.1. o

THEOREM 3.2. Let ¥(z) € X35 (u+ 1,v,T,S). If the added constraints
0<S<1and

(3.6) /L‘Flzw

are satisfied, then

an L 1 ( _%{z(ﬂz,v (1 +1,0) (9) () }_A> o

L=[S] " 1-A Q0 (1,v) (9) (2)

where

1 1%
38)  p=—sq—A+1)—
I=A 2 Fy (1, UT=S) 1 —Sfl)

The bound p1 is the best possible solution.

Proor. For establishing (3.7) in Theorem 3.2, we apply the subordina-
tion principle in (1.15) to get

AN ( _%{z(ﬂzm (n+1,0) (9) <z>)’} _A>7

L—[S] " 1=A Q0 (1,v) (9) (2)
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which is similar to the LHS inequality in (3.7). Furthermore, after making
use the subordination principle in (3.2) there follows

1 2w+ L) () ()|
TfX(‘%{ U, (00 (0) (=) } A)
< sup R {¢1 (2)}

zeD*

s - {ag))]
_ ﬁ (M—A+1_§2§D§R{¢11(Z)}>'

In the remaining part of the proof we determine

Inf % { @11(z) }

Based on the hypothesis S # 0. Hence, using (3.2)

1
®y(2) =(1+ Sz)g/ (1= w)? TP (14 Szu) 0 du,
0

where

g:—(l_/\)s(,T_S) and 0=pu+1.

Also, as § > p > 0, the use of (2.3) to (2.5) of Lemma 2.3 infers

(310) (1)1 (Z) = % 2F1 (1,(;5; SZS——T—l) .

Moreover, the condition

1-XNT-25)
S

indicates that 6 > ¢ > 0. When (2.5) of Lemma 2.3 is applied to (3.10), which
gives

p+1> 0<S<1)

Py (2) = /O p (2, u) dy(u),

where g
1+ 52
= <u<l1
Pl = o (0=u<)
and
dy(u) = _ I w1 - u)‘s*q*l du,

rr@—s)
which is positive for u € [0,1]. It could be quoted that

R{p(z,u)} >0 and p(—r,u)
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are real for 0 < r < 1 and u € [0,1]. Hence, the application of Lemma 2.2

results in:
1 1
R > z2|<r<l),
{fbl (z)}_ Dy (—7) (I < )
so that
1 1
inf = su
z€D {‘1>1 (2) } 0§r1<)1 ®y (—1)
= sup ! = ! = :
0<r<1 folp(—r, u) dry folp(—l,u) dy ®1 (=1
(3.11) = a

2F1 (17 (1—>\)§T—S), /1'+ 17 %)

Therefore, based on (3.9), the RHS inequality in (3.7) follows from (3.11).
This is the best possible result since the function ¢;(z) is the best domi-
nant of (3.2). This proves Theorem 3.2. O

The following theorem describes the results concerning the parameter v.

THEOREM 3.3. If ¥ (2) € ¥% (u, v, T, S) and

v

1-XN@1-17)
. - >3 2
(3.12) e IR
then
([0 )]
1=A Qo (v +1) (9) (2)
(3.13) L b
< 1T (v—XA+1) 32 (2)
1+Tz
= ¢2(2) 155, (z € D),
where
—(1-M)(T-9)/8
ot Syt () du (S #0)
2(%) =
fol wr—1 67(17)\)T(u71)zdu (S _ O)
and ¢2(2) is the best dominant of (8.138). Moreover,
(3.14) E(p, v, A) S E (v +1,)).

PROOF. Assume 9 (z) € ¥ (u, v, ) and set

1 2 (v + 1) (9) (2)
(3.15) v(z) =1 ( QL (1)) () A) '
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Applying (1.7) along with the logarithmic differentiation for (3.15) with re-
spect to z we have

2 () 1 A, ) ) ()
LG VY S W NSy Rl B ( ., (1) (9) (2) A)
< igj (zeD).

Hence, applying Lemma 2.1 wherein

a=—(1-2X) and B=v—-A+1,

results in
1+Tz
D
1/)(z)<¢2(z)<1+sz (z €Dy,
which shows that the best dominant of go(z) is defined using (3.13). This
proves Theorem 3.3. O

THEOREM 3.4. Let 9 (2) € X3 (u, v, T, S). Furthermore, if we constrain
0<S<1and

(3.16) vt+1> w

then

1—|T| 1 2, (v +1) (9) ()
(3.17) 1_|S|<m<—%{ Q;U(u,u—l—l)(ﬁ)(z) }_/\><p27

where

14
2F1 (1, 7(1_>\)§T_S) 4 + 1, %)

The bound pa is the best possible solution.

1

PROOF. For establishing (3.17) in Theorem 3.4, we apply the subordina-
tion principle of (1.15). A similar technique as in Theorem 3.1 yields:

1
Dy (2) = (1 + Sz)g/o (1 —w) T TN+ Sau) 0 du

I'(v) Sz
(319) = F(() 2F1 (1,(,6,@)
where ¢ = wa and ¢ =v + 1.
Moreover, the condition
1-N{T -5
v+1> A=HT=5 0<S<1)

S
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implies that ¢ > ¢ > 0. Also, (2.5) applied to (3.19) in Lemma 2.3 results in:

By (2) = / p (2,u) dy(u),

where Lo s
+ 5z
= <u<
p(zu) 14+ (1 —u)Sz’ (Osus1)
and
I (v)

The use of Lemma 2.2 indicates:

1 v
(3.20) inf 3%{ } = .
z€D [0 (Z) v (17 (l—A)éT—S) v+ 1 %)

Wherein, the RHS inequality in (3.17) results in (3.20).
The subordination principle sharpens the bound ps, which proves the
Theorem 3.4. O

4. CONCLUSIONS

In this study, the authors have investigated properties of a novel linear
operator described in that was related to the Hurwitz-Lerch zeta function:

0 (1.7) (9) () = B vi2) * Ago (2) = 243 E“i““ ( tut 1) _—

z =0 V}'i-‘rl v

Different results and properties described in this study were seen to be asso-
ciated to a particular subclass belonging to the class consisting of the (nor-
malised) meromorphic univalent functions in a punctured unit disk D*. This
has been described in this study using the Hadamard product (or convolu-
tions). This study was able to derive several results which have been explained
in Theorems 3.1, 3.2, 3.3 and 3.4.
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Jedna potklasa univalentnih meromorfnih funkcija definiranih
pomocdu linearnog operatora definiranog preko Hurwitz-Lerchove
zeta funkcije

Firas Ghanim ¢ Hiba F. Al-Janaby

SAZETAK. Promatra se linearni operator povezan s Hurwitz-
Lerchovom zeta funkcijom i Gaussovom hipergeometrijskom
funkcijom u punktiranom jedini¢nom disku. Uvedena je nova
potklasa meromorfnih univalentnih funkcija pridruzenih tom ope-
ratoru pomocu koncepta subordinacije te su proucavana njezina
karakteristicna svojstva.
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