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Induction motor speed control using reduced-order model
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ABSTRACT
Induction machines have a highly nonlinear model with only partial state information. The
unavailability of all states and the presence of unknown disturbances make controller design
and proving closed-loop stability challenging tasks. In this paper, we present a control scheme
for inductionmotor speed control using a reduced, second-order model. Themodel greatly sim-
plifies the control structure and its stability analysis. Current and speed measurements are used
while the unknown flux and load torque are estimated using observers. The closed-loop stabil-
ity of the observer-based control structure is established using Lyapunov’s analysis. Simulation
studies carried out on a 50HP induction motor driven by a three-phase inverter show that the
proposed controller achieves good speed control for both the regulation and tracking test cases
under unknown disturbance.
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1. Introduction

Induction motors (IMs) are widely used in both indus-
trial and household applications. They have a number
of desirable features like low cost, ruggedness, spark-
free operation, lowmaintenance requirements and high
torque-producing capabilities. Despite these traits, con-
trol design for an IM remains a challenge primarily
due to two main reasons: (1) nonlinear model and (2)
unavailability of complete state information. Therefore,
they are still a focus of modern research works deal-
ing with novel, effective and efficient control design
methods for the IM.

Field-oriented control (FOC), also referred to as vec-
tor control, introduced by Blaschke [1], is a technique
for controlling an IM whereby the torque-producing
and magnetizing components of the stator currents
are decoupled through mathematical transformations,
leading to a simplification of the control task, in a man-
ner similar to that of a dc motor. FOC also gives good
transient response, making it a suitable method for
high-performance IM control [2,3].

The key steps in IM control design are its synthe-
sis and stability assessment. IM control using FOC
has been addressed frequently in past research. The
reported works include nonlinear control techniques
like an input–output feedback linearization [4,5], slid-
ing mode control and sliding mode observers [6,7],
adaptive control [8], adaptive sliding mode control [9],
backstepping control [10], and also cover methods like
stochastic iterative learning control [11], adaptive dis-
turbance rejection control [12] and auto-disturbance

rejection control [13]. The classical proportional plus
integral (PI) also continues to be featured in recent
works with some variations, like hybrid fuzzy PID [14]
and PI control with integral antiwindup [15].

Most of these works use the full fifth-order model
for designing control since it captures most of the
transient effects and closely approximates the actual
machine. Proving closed-loop stability for this full-
order model, in the presence of unknown information
like flux and load torque, remains a challenge. From this
perspective, previous works have some limitations –
they either require careful parameter selection for con-
vergence [13], are analytically complex [11], or do not
validate the closed-loop stability of the control system
[13,14,16]. Some works exist [17] that have proposed
simplified models to conveniently capture the transient
effects (such as deep-bar and saturation effects) for high
power applications. However, the focus of this work
is on controlling the speed in steady state. With this
in mind, this work aims to simplify the task of con-
troller synthesis and stability analysis by employing
a reduced-order model while achieving high perfor-
mance for steady-state speed control. We show that
by neglecting some dynamics, the full-order model is
closely approximated by the reduced-order model and
the transient effects are averaged out. The presented
approach offers a threefold advantage: (1) the speed and
flux are directly linked to their individual control vari-
ables instead of through intermediate quantities, and
hence, can be controlled directly, (2) a simpler con-
trol structure is realized as a result of order reduction
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and, (3) stability analysis is facilitated by the simpler
control structure despite the presence of unknown vari-
ables like flux and load torque. Moreover, steady-state
performance remains largely unaffected. To establish
closed-loop stability is established via developing a gen-
eralized version of the results presented in [18] and
can now be applied to higher-order systems; another
contribution of this work. The scheme herein measure-
ments of current and speed, and estimates of unknown
flux and load torque through observers, leading to an
observer-based control topology.

2. Modelling

The fifth-order nonlinear IMmodel in the dq reference
frame can be written in the form [19]:

ẋ = f (x) + g(x)u,

y = h(x),
(1)

where the state x, input u and output y are

x = [
isd isq φrd φrq �

]T ,
u = [

vsd vsq Tl
]T ,

y = [
isd isq �

]T ,
(2)

and

f (x) =

⎡
⎢⎢⎢⎢⎢⎣

−γ isd + ωsisq + baφrd + bp�φrq + m1vsd

−ωsisd − γ isq − bp�φrd + baφrq + m1vsq

aMsrisd − aφrd + (ωs − p�)φrq

aMsrisq − (ωs − p�)φrd − aφrq

m(φrdisq − φrqisd) − c� − Tl
J

⎤
⎥⎥⎥⎥⎥⎦ ,

g(x) =

⎡
⎢⎢⎢⎣
m1 0 0
0 m1 0
0 0 0
0 0 0
0 0 − 1

J

⎤
⎥⎥⎥⎦ , h(x) =

⎡
⎣isdisq

�

⎤
⎦ .

(3)

Here the subscripts (s, r) denote stator and rotor
quantities, respectively, subscripts (d, q) denote d-axis
and q-axis quantities, φ represents flux, i repre-
sents current, ωs denotes stator electrical angular
frequency, � denotes the rotor mechanical angular
speed, p denotes pole-pairs, v denotes voltage input,
Tl denotes load torque input and J denotes rotor’s
moment of inertia. The auxiliary quantities are defined
as a = Rr/Lr, b = Msr/σLsLr, c = fv/J, γ = (L2r Rs +
M2

srRr)/(σLsL2r ), σ = 1 − (M2
sr/LsLr), m = pMsr/JLr,

m1 = 1/σLs where R denotes resistance, L denotes
cyclic inductance,M denotes mutual cyclic inductance,
and fv denotes the viscous friction coefficient.

2.1. Simplifiedmodel

The dynamics of current in (1) can be written as

σ
d
dt
isd = −L2r Rs + M2

srRr
LsL2r

isd + σωsisq + aMsr

LsLr
φrd

+ pMsr

LsLr
�φrq + 1

Ls
vsd,

σ
d
dt
isq = −σωsisd − L2r Rs + M2

srRr
LsL2r

isq − pMsr

LsLr
�φrd

+ aMsr

LsLr
φrq + 1

Ls
vsq,

(4)
where the equations are multiplied by σ after substi-
tuting the values of b, γ and m1. The parameter σ is
usually small. Therefore, the derivative terms in (4) are
small and can be ignored. Moreover, since in the rotat-
ing dq frame, the currents become dc quantities in their
steady states, ignoring their dynamics does not affect
the steady-state response. Thus, the differential equa-
tions in (4) reduce to algebraic equations in isd and isq.
Solving (4) for currents, we get

isd = 1
γ

(
ωsisq + baφrd + bp�φrq + m1vsd

)
,

isq = 1
γ

(−ωsisd − bp�φrd + baφrq + m1vsq
)
,

(5)

which can be further solved to obtain the currents
explicitly as

isd =
[
bp�(γφrq − ωsφrd) + ab(ωsφrq + γφrd)

+ m1(γ vsd + ωsvsq)

]
1

γ 2 + ω2
s
,

isq = −
[
bp�(γφrd + ωsφrq) + ab(ωsφrd − γφrq)

+ m1(ωsvsd − γ vsq)

]
1

γ 2 + ω2
s
.

(6)
It follows that the original fifth-ordermodel (1) approx-
imates to a third-order model of the form:

ẋr = fr(x, u),

yr = hr(x)
(7)

with

xr = [
φrd φrq �

]T ,
u = [

vsd vsq Tl
]T ,

yr = �.

(8)

The expression for fr(x, u) can be derived by substi-
tuting (6) into (1). Simulations were run to illustrate
the comparison between models (1) and (7) on an
IM whose parameters are given in Table 1 taken from
[3]. Rated three-phase voltages were applied to the
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Table 1. Parameters of the IM.

Nominal power 50 HP
Nominal angular speed 1780 rpm
No. of pole-pairs 2
Nominal voltage (line–line) 460 V
Rs 0.087�

Rr 0.228�

Ls 0.0355 H
Lr 0.0355 H
Msr 0.0347 H
J 1.662 kgm2

fv 0.1 Nm s−1

IM with rated load of 200Nm applied at t = 1 s in
open-loop configuration. Speed and electromagnetic
torque Te responses are depicted in Figure 1 while
the current responses are shown in Figure 2. Three-
phase quantities were converted to dq reference frame
using the transformation reported in [18] and Te was
calculated as

Te = pMsrφrdisq (9)

for both models. The plots indicate that (7) closely
approximates (1), with the reduced model states act-
ing as average estimates of the original model in the
transient regime.

3. Field-oriented feedback linearizing control

3.1. Controller design

In FOC, the synchronous reference frame is chosen
such that all the flux lies along the d-axis with φrq = 0.
It can be shown from (1) that this can be achieved by

choosing ωs as

ωs = p� + aMsr

φrd
isq, (10)

and achieving “field orientation” with φrq = 0, φ̇rq =
0. Consequently, the third-order model (7) reduces by
another order, and can be written as

d
dt

φrd = aMsrisd − aφrd,

d
dt

� = mφrdisq − c� − Tl

J
,

(11)

where

isd = 1
γ

(
ωsisq + baφrd + m1vsd

)
,

isq = 1
γ

(−ωsisd − bp�φrd + m1vsq
)
,

(12)

follow from putting φrq = 0 in (5). Substitution of (12)
into (11) leads to the final second-order model utilized
for control design:

d
dt

φrd = aMsr

γ

(
ωsisq + baφrd + m1vsd

)− aφrd,

d
dt

� = mφrd

γ

(−ωsisd − bp�φrd + m1vsq
)

− c� − Tl

J
. (13)

Remark 3.1: Notice that flux dynamics φ̇rd in (13) are
completely independent from speed dynamics �̇, and

Figure 1. Open-loop speed and torque comparison.
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Figure 2. Open-loop current comparison.

with current measurements readily available, flux φrd
can be directly controlled from the voltage input vsd.
Similarly, speed� can now be controlled from the volt-
age input vsq. In other words, the model links the vari-
ables to be controlled i.e. φrd and�, directly to the con-
trol variables vsd and vsq, respectively. In contrast, when
using the full-ordermodel of (1), it is often required that
flux and speed must first be controlled through inter-
mediate variables, namely currents, whichmust then be
regulated to certain references as required by flux and
speed control, through the voltages (e.g. backstepping
control, see [10,19]). This multistep approach leads to
a complex control law, whose stability analysis is fur-
ther complicated by unknown quantities like flux and
load torque. Thus, the simplification achieved by the
model (13) makes the task of controller design easier
and also facilitates stability analysis.

Let us define new error quantities as

eφ = φrd − φ∗,

ẽφ = φrd − φ̂,

ēφ = φ̂ − φ∗,

e� = � − �∗,

ẽT = Tl − T̂l,

(14)

where φ∗ is the reference flux for φrd, φ̂ is its estimate
(both in Wb), �∗ is the reference speed in rad/s, and
T̂l is the load torque estimate in Nm. The dynamics of
the flux error eφ and the speed error e� can be written

using (13) and (14) as

ėφ = aMsr

γ

(
ωsisq + baφrd + m1vsd

)− aφrd − φ̇∗,

ė� = mφrd

γ

(−ωsisd − bp�φrd + m1vsq
)

− c� − Tl

J
− �̇∗.

(15)
Selecting vsd and vsq in (15) as

vsd = 1
m1

(
γ

Msr
− ba

)
φ∗ for isd = 0,

vsd = 1
m1

[
−ω̂sisq − baφ̂ + γ

Msr
φ̂

+ γ

aMsr
(φ̇∗ − Kφ ēφ)

]
for isd �= 0,

vsq = 1
m1

[
ω̂sisd + bp�φ̂

+ γ

mφ̂

(
c� + T̂l

J
+ �̇∗ − K�e�

)]
,

(16)

withKφ andK� as positive constants to be selected, and
ω̂s estimated as

ω̂s = aMsrisq
φ̂

+ p�, (17)
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we get

ėφ = −Kφ ēφ + aMsrisq
γ

(ωs − ω̂s)

+
(
ba2Msr

γ
− a

)
ẽφ ,

ė� = −mφrdisd
γ

(ωs − ω̂s) − bpm
γ

�φrdẽφ

+ φrd

φ̂

(
c� + T̂l

J
− K�e� + �̇∗

)

− c� − Tl

J
− �̇∗.

(18)

From the first three equations in (14), we can write

φrd

φ̂
= ẽφ + 1,

ēφ = eφ − ẽφ .
(19)

From (10), (17) and (14), we get

ωs − ω̂s = aMsrisq
(

1
φrd

− 1
φ̂

)
,

= −aMsrisq
φrdφ̂

(φrd − φ̂),

= −aMsrisq
φrdφ̂

ẽφ .

(20)

Substitution of (19) and (20) in (18) leads to

ėφ = −Kφeφ +
(
ba2Msr

γ
− a + Kφ

− a2M2
sr

γ

i2sq
φrdφ̂

)
ẽφ ,

ė� = −K�e� +
(
maMsr

γ

isdisq
φ̂

− bpm
γ

�φrd

+ c� + T̂l

J
− K�e� + �̇∗

)
ẽφ − ẽT

J
.

(21)

3.2. Observer design

Both the rotor flux and load torque are estimated using
first-order exponential observers. Let the dynamics of
the rotor flux estimate φ̂ be

˙̂
φ = aMsrisd − aφ̂. (22)

Subtracting (22) from the first equation of (11), we get

˙̃eφ = −aẽφ , (23)

which indicates that ẽφ will exponentially converge to
zero. For the load torque observer, we define new vari-
ables z and ẑ such that [18]

z = Tl + KT�,

ẑ = T̂l + KT�,
(24)

where KT is a positive constant to be selected. Assume

Ṫl = 0. (25)

Recall the second equation from model (11);

d
dt

� = mφrdisq − c� − Tl

J
. (26)

The dynamical equations of z in (24) can be written
using model (11) as

ż = Ṫl + KT�̇

= mKTφrdisq +
(
K2
T
J

− cKT

)
� − KT

J
z.

(27)

Let ẑ be calculated through

˙̂z = −KT

J
ẑ +

(
K2
T
J

− cKT

)
� + mKT φ̂isq,

ẑ(0) = T̂l(0) + KT�(0).

(28)

T̂L can be estimated from ẑ as

T̂L = ẑ − KT�. (29)

Defining

ẽz = z − ẑ, (30)

we can write

˙̃ez = −KT

J
ẽz + mKTisqẽφ . (31)

It follows from (24) that

ẽT = ẽz. (32)

Block diagram of flux and load torque observers is
shown in Figure 3 while that of the IM drive under
closed-loop control is shown in Figure 4.

3.3. Stability analysis

To assess the stability of the observer-based closed-loop
control, we develop a generalized version of LemmaA.1
in [18] and apply it to the error dynamics.

Lemma 3.1: Given the system

ẋ1 = f1(t, x),

ẋ2 = f2(t, x),

...

ẋn−1 = fn−1(t, x),

ẋn = fn(t, xn),

(33)

with x ∈ R
n, fi(t, 0) = 0, i = 1, 2, . . . , n.
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Figure 3. Block diagram of flux and load torque observers.

Figure 4. Block diagram of closed-loop control.

Assumption 1: for the subsystems in (33) defined
by dynamics ẋ1, ẋ2, . . . , ẋn−1, let there exist functions
V1(t, x1),V2(t, x2), . . . ,Vn−1(t, xn−1) such that

c1,1‖x1‖2 ≤ V1(t, x1) ≤ c2,1‖x1‖2,
c1,2‖x2‖2 ≤ V2(t, x2) ≤ c2,2‖x2‖2,

...

c1,n−1‖xn−1‖2 ≤ Vn−1(t, xn−1) ≤ c2,n−1‖xn−1‖2,
(34)

with ci,j > 0, i, j = 1, 2, . . . , n − 1, and

∂V1

∂t
+ ∂V1

∂x1
f1(t, x) ≤ −k1,1‖x1‖2 − k1,2‖x2‖2

− · · · − k1,n−1‖xn−1‖2 + k1,n‖xn‖2,
∂V2

∂t
+ ∂V2

∂x2
f2(t, x) ≤ −k2,1‖x1‖2 − k2,2‖x2‖2

− · · · − k2,n−1‖xn−1‖2 + k2,n‖xn‖2,
...
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∂Vn−1

∂t
+ ∂Vn−1

∂xn−1
fn−1(t, x) ≤ −kn−1,1‖x1‖2

− kn−1,2‖x2‖2 − · · · − kn−1,n−1‖xn−1‖2

+ kn−1,n‖xn‖2, (35)

with ki,j > 0, i, j = 1, 2, . . . , n − 1, and ki,j ≥ 0, i =
1, 2, . . . , n − 1, j = n.

Assumption 2: the equilibrium point xn = 0 of the
subsystem ẋn is globally exponentially stable.

Then, the equilibrium point x=0 of the whole sys-
tem (33) is globally exponentially stable.

Proof: By assumption 2 on subsystem ẋn, for any initial
condition xn(t0), xn(t) fulfils the inequality

‖xn(t)‖ ≤ c3‖xn(t0)‖e−c4(t−t0), (36)

for some constants c3 > 0 and c4 > 0. Let z(t) ∈ R be
the solution of

ż(t) = −c4z(t), z(t0) = ‖xn(t0)‖. (37)

Since z(t) = z(t0)e−c4(t−t0), we can write

‖xn(t)‖ ≤ c3z(t), ∀t ≥ t0. (38)

Define a function V(t, x1, x2, . . . , xn−1, z) as

V(t, x1, x2, . . . , xn−1, z)

= V1(t, x1) + V2(t, x2)

+ · · · + Vn−1(t, xn−1) + 1
2
(k1,n + 1)

c23
c4
z2

+ 1
2
(k2,n + 1)

c23
c4
z2 + · · · + 1

2
(kn−1,n + 1)

c23
c4
z2

=
n−1∑
j=1

(
Vj(t, xj) + 1

2
(kj,n + 1)

c23
c4
z2
)
. (39)

Owing to (34), we have, for every t ≥ t0

c1,1‖x1‖2 + c1,2‖x2‖2 + · · · + c1,n−1‖xn−1‖2

+
n−1∑
j=1

(
1
2
(kj,n + 1)

c25
c6
z2
)

≤ V ≤ c2,1‖x1‖2

+ c2,2‖x2‖2 + · · · + c2,n−1‖xn−1‖2

+
n−1∑
j=1

(
1
2
(kj,n + 1)

c25
c6
z2
)
,

(40)

which can be written more compactly as

n−1∑
j=1

(
c1,j‖xj‖2 + 1

2
(kj,n + 1)

c23
c4
z2
)

≤ V

≤
n−1∑
j=1

(
c2,j‖xj‖2 + 1

2
(kj,n + 1)

c23
c4
z2
)
.

(41)

Differentiating (39) to get V̇ gives

V̇ =
n−1∑
j=1

(
V̇j(t, xj) − (kj,n + 1)c23z

2)

=
n−1∑
j=1

(
∂Vi

∂t
+ ∂Vi

∂xi
fi(t, x) − (kj,n + 1)c23z

2
)
.

(42)
By virtue of (35), we have, for every t ≥ t0

V̇ ≤
n−1∑
j=1

(−kj,1‖x1‖2 − kj,2‖x2‖2 − · · · − kj,n−1

‖xn−1‖2 + kj,n‖xn‖2 − kj,nc23z
2) − c23z

2,

(43)

or, more precisely as

V̇ ≤ −
n−1∑
j=1

n−1∑
i=1

ki,j‖xj‖2

+
n−1∑
j=1

(
kj,n‖xn‖2 − kj,nc23z

2)− c23z
2.

(44)

By (38), we get

V̇ ≤ −
n−1∑
i=1

n−1∑
j=1

ki,j‖xj‖2 − c23z
2 ≤ 0. (45)

�

The results of Lemma 3.1 can be applied to the
error dynamics to show their exponential convergence
to zero. Rewriting the error dynamics from (21), (23)
and (31) and replacing ẽz with ẽT as per (32) gives

ėφ = −Kφeφ +
(
ba2Msr

γ
− a + Kφ

− a2M2
sr

γ

i2sq
φrdφ̂

)
ẽφ ,

ė� = −K�e� +
(
maMsr

γ

isdisq
φ̂

− bpm
γ

�φrd

+ c� + T̂l

J
− K�e� + �̇∗

)
ẽφ − ẽT

J
,

˙̃eT = −KT

J
ẽT + mKTisqẽφ ,

˙̃eφ = −aẽφ .

(46)

Let

x =

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
eφ
e�
ẽT
ẽφ

⎤
⎥⎥⎦ , (47)
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and

ξ1 = ba2Msr

γ
− a + Kφ − a2M2

sr
γ

i2sq
φrdφ̂

,

ξ2 = maMsr

γ

isdisq
φ̂

− bpm
γ

�φrd + c� + T̂l

J

− K�x2 + �̇∗,

ξ3 = mKTisq.

(48)

We can write system (46) as

ẋ1 = −Kφx1 + ξ1x4,

ẋ2 = −K�x2 − 1
J
x3 + ξ2x4,

ẋ3 = −KT

J
x3 + ξ3x4,

ẋ4 = −ax4.

(49)

Clearly, x4 is globally exponentially stable, satisfying
assumption 2 of Lemma 3.1. Define functions

V1 = 1
2
x21,

V2 = 1
2
x22,

V3 = 1
2
x23,

(50)

and

V = V1 + V2 + V3 = 1
2
(x21 + x22 + x23). (51)

Clearly,

1
4
x21 ≤ V1 ≤ x21,

1
4
x22 ≤ V2 ≤ x22,

1
4
x23 ≤ V3 ≤ x23.

(52)

Thus,Vi, i = 1, 2, 3 fulfil the first condition in assump-
tion 1 in Lemma 3.1. Differentiating (51) gives

V̇ = V̇1 + V̇2 + V̇3

= x1ẋ1 + x2ẋ2 + x2ẋ2

= −Kφx21 − K�x22 − KT

J
x23 + ξ1x1x4

− 1
J
x2x3 + ξ2x2x4 + ξ3x3x4.

(53)

The last four terms in (53) can be bounded using
Cauchy inequality with ε which states that

ab ≤ a2

2ε
+ εb2

2
, ∀a, b ∈ R, ∀ε > 0. (54)

It then follows that

ξ1x1x4 ≤ ξ1b

(
x21
2ε1

+ ε1x24
2

)
,

1
J
x2x3 ≤ 1

J

(
x22
2ε2

+ ε2x23
2

)
,

ξ2x2x4 ≤ ξ2b

(
x22
2ε3

+ ε3x24
2

)
,

ξ3x3x4 ≤ ξ3b

(
x23
2ε4

+ ε4x24
2

)
(55)

holds ∀εi > 0, i = 1, 2, 3, 4, where

ξ1b = ba2Msr

γ
+ a + Kφ

+ a2M2
sr

γ

i2sq,max

| φrd,min | . | φ̂min | ,

ξ2b = maMsr

γ

| isd,max | . | isq,max |
| φ̂min |

+ bpm
γ

| �max | . | φrd,max | +c | �max |

+ | T̂l,max |
J

+ K� | x2,max | + | �̇∗
max |,

ξ3b = mKT | isq,max | .

(56)

Hence, we can write

V̇ ≤ −Kφx21 − K�x22 − KT

J
x23 + ξ1b

(
x21
2ε1

+ ε1x24
2

)

+ 1
J

(
x22
2ε2

+ ε2x23
2

)
+ ξ2b

(
x22
2ε3

+ ε3x24
2

)

+ ξ3b

(
x23
2ε4

+ ε4x24
2

)
.

(57)
Collecting the terms, we get

V̇ ≤
(

−Kφ + ξ1b

2ε1

)
x21 +

(
−K� + 1

2Jε2
+ ξ2b

2ε3

)
x22

+
(

−KT

J
+ ε2

2J
+ ξ3b

2ε4

)
x23

+
(

ξ1bε1

2
+ ξ2bε3

2
+ ξ3bε4

2

)
x24,

(58)
or

V̇ ≤ −
(
Kφ − ξ1b

2ε1

)
‖x1‖2

−
(
K� − 1

2Jε2
− ξ2b

2ε3

)
‖x2‖2

−
(
KT

J
− ε2

2J
− ξ3b

2ε4

)
‖x3‖2

+
(

ξ1bε1

2
+ ξ2bε3

2
+ ξ3bε4

2

)
‖x4‖2,

(59)
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or

V̇ ≤ −α1‖x1‖2 − α2‖x2‖2 − α3‖x3‖2 + α4‖x4‖2,
(60)

where

α1 = Kφ − ξ1b

2ε1
,

α2 = K� − 1
2Jε2

− ξ2b

2ε3
,

α3 = KT

J
− ε2

2J
− ξ3b

2ε4
,

α4 = ξ1bε1

2
+ ξ2bε3

2
+ ξ3bε4

2
.

(61)

It is clear that α4 ≥ 0. Since all the parameters and sig-
nals in ξib, i = 1, 2, 3 are finite and bounded on [0,∞),
the gains Kφ , K� and KT can be conveniently selected
with appropriate positive scalars εi, i = 1, 2, 3, 4 to
guarantee αi > 0, i = 1, 2, 3. Consequently, the second
condition in assumption 1 of Lemma 3.1 is met and the
tracking errors of (49) will exponentially converge to
zero.

4. Simulation results and discussion

The controller was tested on the speed control of a
50HP IM driven by a three-phase inverter, and tak-
ing detailed inverter switching into account. Themotor
parameters are given in Table 1. Two simulations test
cases were run for 1 s each: the first with a con-
stant speed reference of 120 rad/s with a rated load of

200Nm applied at 0.5 s, and the second with a chang-
ing speed reference, stepping up from 120 to 160 rad/s
at 0.25 s, then back down to 120 rad/s at 0.75 s, and
rated load applied at 0.5 s. Flux reference for both test
cases was set to φ∗ = 0.96Wb. The results are shown
in Figures 5–8.

From Figure 5 it can be seen that the controller
exhibits a fast transient response for both speed regu-
lation and tracking test cases. The actual speed attains
its reference within 0.2 s for both tests. As the load
torque disturbance is applied, the speed does not get
affected much as the control effort causes the electro-
magnetic torque Te to increase instantly to counter
the load disturbance effects, as seen in Figure 6. The
corresponding flux and torque estimation plots in Fig-
ures 7 and 8 also show the exponential tracking of
reference flux and actual load torque by their respec-
tive observers, with the estimated quantities converging
to their corresponding references in less than 0.2 s. In
summary, the observer-based controller exhibits good
transient and steady-state characteristics for both the
speed regulation and tracking scenarios.

4.1. Comparisonwith PI control

The results of the proposed reduced-order control
scheme were compared with the conventional PI con-
trol to validate its performance. Two PI controllers were
used; one for flux regulation using vsd and the other for
speed regulation using vsq. Simulations were run using
the first test case described previously to compare speed
regulation performance. Speed and flux responses are

Figure 5. Speed regulation and tracking response, rated load applied at 0.5 s.
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Figure 6. Electromagnetic torque response before and after load application.

Figure 7. Flux reference and its estimate’s response.

plotted in Figure 9. The results indicate that while
the speed regulation performance was comparable for
the two schemes, the PI controller exhibited poorer
flux regulation performance. The flux observer’s per-
formance deteriorated under the PI controller due to
its weaker regulation response. The proposed scheme,
beingmodel-based, performedwell in the transient and

steady-state regimes despite ignoring some dynamics.
On the other hand, the PI controller did not rely on
the model and hence a large overshoot in flux’s tran-
sient trajectory was observed. The flux response also
shows that under PI control, it took longer for the
flux to converge to its reference after applying the load
disturbance.
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Figure 8. Actual load torque and its estimate’s response.

Figure 9. Comparison with PI control.

5. Conclusion

In this paper, we have developed a simple technique for
IM speed control using a reduced-ordermodel. It is first
shown that the lower-order model approximates the
original one with sufficient accuracy. When field orien-
tation is applied to this model, apart from the inherent

decoupling of FOC, it also yields a direct relationship
between the variables to be controlled and the input
quantities. This not only leads to a significant reduc-
tion in complexity of the design but also accommo-
dates stability analysis despite the presence of unknown
quantities that tend to complicate it otherwise. Simu-
lation results on 50HP benchmark system show that
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the proposed controller performs well under both tran-
sient and steady-state conditions using only estimates
of unknown quantities. Furthermore, the simplification
in the design and analysis is obtained without com-
promising the overall dynamic performance. Finally, it
is worth highlighting that the simplification achieved
by employing a reduced-order model can be utilized
in analysing more complex issues in IM speed control
such as parametric uncertainties, sensorless operation,
time-delay issues, fault tolerant control, or effects of
saturation, to name a few. These issues along with an
experimental validation of the results pose as interest-
ing future directions for this work.
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