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ABSTRACT
Particle filters have beenwidely used in nonlinear/non-Gaussian Bayesian state estimation prob-
lems. However, the particle filter (PF) is inconsistent over time. The inconsistency of PF mainly
results from the particle depletion in resampling step and an incorrect priori knowledge of
process andmeasurement noise. To cope with this problem and enhance the accuracy and con-
sistency of the state estimation, an adaptive particle filter(APF) is proposed in this paper. In APF,
an adaptive fuzzy square-root unscented Kalman filter (AFSRUKF) is used to generate the pro-
posal distribution. This causes that beside themerit of reducing the computational cost, APF has
someother advantages such as increasing consistency that leads tomore numerical stability and
better performance. Moreover,APF can work in unknown statistical noise behaviour and is more
robust. This is why the fuzzy inference system (FIS) supervises the performance of square-root
unscented particle filter (SRUPF) using tuning statistical noises. In APF, to increase the diversity
of particles, the resamplingprocess is donebasedon theparticle swarmoptimization (PSO).With
this resampling strategy, the small-weight particles are modified to the large-weight ones with-
out duplication and elimination of particles. The effectiveness of APF is demonstrated by using
two experiment examples throughMonte Carlo simulations. The simulation results demonstrate
the effectiveness of the proposed method.
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Introduction

Nonlinear filtering problems arise in many fields such
as target tracking [1,2], robot navigation [3,4], etc. It
is a process of finding a state estimate of a nonlinear
system based on a set of noisy measurements [5,6].
The Kalman filter (KF) is a commonly used state esti-
mation technique for the linear systems with Gaussian
noise [6].

To extend KF to the nonlinear system with Gaussian
noise, modified KFs such as extended KF (EKF) and
unscented KF (UKF), have been proposed [7–9]. How-
ever, for the system with high nonlinearity, the poor
state estimation results will be obtained [5,6].

Particles filter is as an effective estimator for the
nonlinear filtering problem and can be easily applied
to nonlinear/non-Gaussian dynamic models that may
be difficult for other filtering techniques [5,6]. The PF
is a Monte Carlo method for implementing recursive
Bayesian estimation that constructs probability density
function (PDF) using a set of random particles with
associated weights [5,6]. In addition, in PF, the particles
are evolved over time via a combination of importance
sampling and resampling step. In comparisonwith KFs,
PF can provide more accurate state estimation results,
especially for the highly nonlinear systems [5].

However, there are some serious problems encoun-
tered in the general PF [8,9]. One of them is parti-
cle impoverishment. Most of the particles share a few
distinct values and the posterior distribution is insuf-
ficiently approximated [9,10]. This problem can lead
to the misleading state estimation results. A common
way to overcome the particle impoverishment problem
is selecting a good proposal distribution and resam-
pling scheme. In general PF, the state transition is
often chosen as the proposal distribution [10,11]. As
this proposal distribution does not include informa-
tion of the new observations, the most particles get
negligible weights and it leads to particle degeneracy
[12–14]. By selecting a good the proposal distribution,
which contains the current measurement informa-
tion, the particle impoverishment problem can also be
alleviated.

Following this idea, the extended Kalman particle
filter (EPF) is proposed in [15,16], which uses EKF to
generate proposal distribution. In [17], the EKF pro-
posal is replaced by a UKF proposal and the unscented
particle filter (UPF) is proposed.

However, a serious limitation of UPF is that it
requires the complete a priori knowledge of the
noise statistics that in most practical applications are
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unknown [18,19]. Evidences have shown how a poor
estimation of the input noise statistics may seriously
degrade the performance of UKF and even induce
the divergence of it [20–22]. In addition, in UPF, an
inherent rounding error in the numerical calculation
may cause negative definiteness of the state covariance,
which will lead to filter divergence and influence the
estimation precision [23–25]. Finally, the resampling
step in UPF leads to a great loss of diversity in particles
[26,27].

In this paper, APF is proposed to overcome these
problems. The proposed method uses AFSRUKF
instead of UKF to generate the proposal distribution.
Beside the merit of reducing the computational cost,
APF has some other advantages such as increasing
consistency that leads to more numerical stability and
better performance. This is mainly because of the fact
that all resulting covariance matrices are guaranteed
to remain positive semi-definite. In addition, APF can
work in unknown statistical noise behaviour and thus it
is more robust. The fuzzy inference system (FIS) super-
vises the performance of SRUPF with tuning statistical
noises (Rt andQt) to close theoretical covariance to
actual covariance. This adaptive tuning provides more
robustness and consistency for the filter, which leads to
results that are more accurate.

In order to reduce the impact of resampling on the
accuracy and consistency, the particle swarm optimiza-
tion (PSO)-based resampling scheme is used in APF.
In the PSO resampling scheme, the particles recombine
by using an iterative process and selection and unlike
the traditional resampling schemes; there is no duplica-
tion and elimination of particles. The new resampling
algorithm can maintain the diversity of particles, and
ensure the resampled particles symptotically approxi-
mate the samples PDF of the true state.

The rest of the paper is organized as follows. In
Section 2, the required background is reviewed. The
adaptive particle filter is presented in Section 3. In
Section 4, the results are compared and analysed with
simulation results.

Background

Particle filter

Consider the following nonlinear state space model:

xt = f (xt−1) + wt−1,
yt = h(xt) + vt ,

(1)

where f (.),h(.)are known nonlinear functions with
appropriate dimensions,xt ∈ Rn is the state vector, yt ∈
Rm is the measurement vector, wt−1, vt are indepen-
dent white-noise variables. The objective of filtering is
to estimate the posterior density of the states given the
past measurements p(xt|y1:t) [5,6]. In PF, the posterior
density can be calculated by a set of weighted particles

drawn as follows:

p(xt|y1:t) =
N∑
i=1

ω
(i)
t δ(xt − x(i)

t ), (2)

where δ(xt − x(i)
t ) is Dirac’s delta function, and N is

the number of particles. Unfortunately, the p(xt|y1:t)
is often unknown, so actually, it is impossible to
sample directly from the p(xt|y1:t). Aiming to the
problem, PF circumvents the difficulty by sampling
from known, easy-to-sample, the proposal distribu-
tion q(xt|y1:t) which should be as far as possible close
to p(xt|y1:t). The associated importance weight of the
particle is defined as follows [5]:

ω
(i)
t = p(x(i)

t |y1:t)
q(x(i)

t |y1:t)
. (3)

The resampling step is performed to avoid degeneracy
in the particle filter.

Particle swarm optimization

The particle swarm algorithm is a population-based
metaheuristic optimization method that is based on
the simulation of the social behaviour of birds within
a flock [30,31]. In PSO, the potential solutions of the
optimization problem that are called particles, move in
the search space with a velocity, which is adjusted as a
function of the position of other particles. All the par-
ticles follow the best particle during the iterations and
converge together to the global optimum of the consid-
ered objective function. Suppose that the search space
dimension is D, and the number of particles is NP,
the position and velocity of the i- th particle are repre-
sented by x(i) = [xi1 ., . . . , xiD] and v(i) = [v1, . . . , viD],
respectively.

Let Pbi = [pi1 , . . . piD] denotes the best position
that particle i is achieved so far, and Pg denote the
best position of Pbi for any i = 1, . . . ,NP. The PSO
algorithm may be performed by the following formu-
lations [30,31]:

x(i)
k = x(i)

k−1 + v
(i)
k , (4)

v
(i)
k = wv

(i)
k−1 + c1r1(Pbi − x(i)

k−1) + c2r2(Pg − x(i)
k−1),

(5)
where k represents the iteration number and c1, c2 are
positive coefficients. Usually c1 = c2 = 2, and r1, r2 are
random numbers in the interval (0, 1), w is the inertial
weight.

Adaptive particle filter

In this section, the adaptive particle filter is presented to
overcome the drawbacks of PF. The proposed algorithm
consists of sampling, importance weighting and PSO
resampling. In the following subsections, details of
these steps are given.
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Sampling

The choice of proposal distribution is one of the most
critical issues in the design of a particle filter [5,6]. In
APF, the proposal distribution is as follows:

x(i)
t ∼ q(x(i)

t |x(i)
t−1, yt) = N(xt ; x

(i)
t|t ,P

(i)
t|t ), (6)

whereN(xt ; x
(i)
t|t ,P

(i)
t|t ) is the Gaussian distribution (with

mean x(i)
t|t and covariance P(i)

t|t ) obtained by using
SRUKF. The SRUKF is based on the idea that the square
root of amatrix has a better condition number than that
of the original number and its use reduces numerical
errors [24,25]. In the proposed method, the square-
root matrix St|t of Pt|t is updated, wherePt|t = St|tS

T
t|t .

In addition, the state update and Kalman gain equation
use St|t instead ofPt|t . This is particularly useful since
the unscented transform (UT) uses the square root
St|t of Pt|tand propagating St|t eliminates the Cholesky
factorization. Let xt−1|t−1 be the estimated state and
St−1|t−1 be the square root of Pt−1|t−1 based on the
available measurements up to current time instant t −
1. To draw samples from above proposal distribution, a
set of 2n + 1 points is generated by

χ
(0)(i)
t−1|t−1 = x(i)

t−1|t−1,

χ
(j)(i)
t−1|t−1 = x(i)

t−1|t−1 + γ (S(i)
t−1|t−1)j j = 1, . . . , nx,

χ
(j)(i)
t−1|t−1 = x(i)

t−1|t−1 − γ (S(i)
t−1|t−1)j j = n + 1, . . . , 2nx,

S(i)
t−1|t−1 = chol(P(i)

t−1|t−1),
(7)

where (S(i)
t−1|t−1)i means the i-th column of the square

root of the covariance matrix. The sigma propagated
through the nonlinear system and measurement mod-
els as

x−(j)(i)
t|t−1 = f (χ(j)(i)

t−1|t−1),

�(j)(i)
t = h(x−(j)(i)

t|t−1 ),
(8)

where x̄(j)(i)
t|t−1 is its transformed sigma point. The predic-

tion of the measurement vector ȳ(i)
t , prediction of mean

x(i)
t|t−1 and square-root covariance matrix S[m]

t|t−1 of the
state are as follows:

ȳ(i)
t =

2n∑
j=0

w(j)
m �(j)(i)

t , (9)

x(i)
t|t−1 =

2n∑
j=0

ω
(j)
m x̄(j)(i)

t|t−1, (10)

S(i)
t|t−1 = qr

{[√
ω
[1]
c (x̄(1:2n)(i)

t − x(i)
t|t−1)

√
Qt−1

]}
,

S(i)
t|t−1 = cholupdate{S(i)

t|t−1, (x̄
(0)(i)
t − x(i)

t|t−1),ω
(0)
c },

(11)

where the weights ωm and ωcare as

ω(0)
m = λ

(n + λ)
, ω(0)

c = λ

(n + λ)
+ (1 − α2 + β),

ω
(j)
m = ω

(j)
c = λ

2(n + λ)
(j= 1, . . . ,2n).

(12)

Finally, the state mean x(i)
t|t and square root of the

covariance matrix S(i)
t|t are updated as

x(i)
t|t = x(i)

t|t−1 + K(i)
t (yt − ȳ(i)

t ), (13)

U = K(i)
t Syt ,

S(i)
t|t = cholupdate{S(i)

t|t−1,U,−1},
(14)

where Syt is square and triangular, h(.) is the observa-
tion model and K(i)

t is the gain matrix:

K(i)
t = (P(i)

�υ/STyt )/Syt , (15)

and cross covariance P(i)
δυ is as follows:

P(i)
δυ =

2n∑
j=0

ω
(j)
c (x̄(j)(i)

t|t−1 − x(i)
t|t−1)(�

(j])i)
t − ȳ(i)

t )T , (16)

Syt = qr
{[

w(1)
c (�(1:2n)(i)

t − ȳ(i)
t ),

√
Rt

]}
,

Syt = cholupdate{Syt , (�(0)(i)
t − ȳ(i)

t ),w(0)
c }.

(17)

From the Gaussian distribution generated by the esti-
mated mean and covariance of the vehicle, the state of
each particle is sampled as

x(i)
t ∼ N(xt ; x

(i)
t|t ,P

(i)
t|t ), (18)

where the covariance matrix of the robot pose is as
follows:

P(i)
t|t = (S(i)

t|t )
TS(i)

t|t . (19)

From the above equations, it can be seen that the
covariance matricesRtand Qt will affect the precision
of the SRUPF directly. In practical systems, the priori
knowledge of the process noise andmeasurement noise
is unknown. This is why it is hard to determine process
noise and measurement noise covariances. The use of
wrong priori statistics in SRUPF may lead to large esti-
mation errors or even to the divergence. So the accuracy
of Rt andQt has become the key problem which affects
the precision and stability of the filter and needs to be
tuned online. In this paper, an online adaptive scheme
of SRUPF is presented. The adaptation is in the sense
of adaptively adjusting the process noise and measure-
ment noise covariances using the covariance-matching
technique.
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The basic idea behind the covariance-matching tech-
nique is to make the actual value of the covariance
of the innovation sequence match its theoretical value
[20–22]. If the theoretical covariance and its actual
covariance are discrepant, FIS will adjust Rt andQt
online in order to reduce the discrepancy. The adjusting
factor is generated by FIS based on the degree of the dis-
crepancy. Assuming the noise covariance matrix Qt is
known, the adaptive adjustment of thematrixRtis done.
For this purpose, the innovation sequence denotes as
follows:

υt = yt − ŷt .

From the measurement equation of UKF, the theoreti-
cal covariance of υtis computed by

St = E(vtv
T
t )

=
2n∑
j=0

w(j)
c (�(j)(i)

t − ȳ(i)
t )(�(j)(i)

t − ȳ(i)
t )T + Rt .

(20)

The actual covariance of υt can be approximated as

Ct = 1
m

m−1∑
k=0

υkυ
T
k ,

wherem is the width of the moving window and is cho-
sen empirically to give some statistical smoothing, υ is
the residual vector. If the window size is too small, the
measurement estimation covariance can be noisy.

In general, the window size is chosen empirically for
statistical smoothing [21–22]. It should be pointed out
that too large a window width suffers from the severe
computational inefficiency and too small a window
widthmight lead to large variance. Thus, it is important
to choose a reasonable window width. If a discrepancy
is found between the actual value and the theoretical
value, then Rt is tuned based on the knowledge of the
degree of the discrepancy using FIS. The tuning process
is shown in Figure 1. Define the discrepancy between
the actual covariance Ct and the theoretical covariance
St as DOMt(Degree of Matching) as follows:

DOMt = St − Ct .

If the actual covariance is less than its theoretical then
the value of Rt should be increased. If the actual value

Figure 1. Tuning SRUKF in APF using FIS.

of covariance Ct is greater than its theoretical value
St , then the value of Rt should be decreased. Thus,
the DOMt can be used to reduce the discrepancy
between St andCt . To implement the above covariance-
matching technique using FIS, the general rules of
adaptation are as follows:

IfDOMt(k, k) ∼= 0 thenmaintain Rt(k, k)unchanged
If DOMt(k, k) > 0 then decrease Rt(k, k)
If DOMt(k, k) < 0 then increase Rt(k, k)
Adjustment of Rtis performed using FIS is as the

following relation:

Rt(k, k) = Rt−1(k, k) + 
Rt(k, k).

Figure 1 shows tuning SRUPF using FIS where 
Rt is
the FIS output, DOMt is the FIS input. The member-
ship function for DOMt and 
Rt are shown in Figures
2 and 3.

Importance weighting

The importance weight of each particle is computed
through Equation (21) when the observation at time t
is obtained:

w(i)
t = w(i)

t−1
p(yt|x(i)

t )p(x(i)
t |x(i)

t−1)

N(xt ; x
(i)
t|t ,P

(i)
t|t )

, (21)

Figure 2. Membership function DOMt .

Figure 3. Membership function
Rt .
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then, the particle weight is normalized as follows:

w(i)
t = w(i)

t
N∑
k=1

w(k)
t

.

PSO resampling

It is known that the objective of resampling steps is
to eliminate particle degeneracy problem [26–28]. The
idea of resampling is that particles with large weights
are duplicated while those with small weights are aban-
doned. The common resampling techniques are resid-
ual, multinomial, systematic and stratified [27–29].
These algorithms use weight strata to decide howmany
copies of each particle should be made. Although these
techniques have good performance, they inevitably lead
to the loss of diversity among the particles. In this paper,
in order to restrain losing diversity, an effective resam-
pling scheme based on the PSO (PSO resampling) is
introduced. The PSO resampling is performed when
the effective number of samples reduces below a thresh-
old Neff , which is calculated as

Neff = 1
N∑

k= 1
(ω

(k)
t )

2
. (22)

In the PSO resampling scheme, the particles {x(i)
t i =

1, . . . , N} are regarded as the target vectors of the
current population, and the corresponding weights
{ω(i)

t ; i = 1, . . . , N} are as the objective functions of
the target vectors, respectively. Unlike the traditional
resampling schemes, there is no elimination and repli-
cation of particles. In fact, the PSO resampling recom-
bines the particles by using an iterative process. Let
Ct,k = {x(1)

t,k , . . . , x
(N)

t,k }denote the current population of
PSO, which consists of N D-dimensional target vec-
tors. where xkt,i represents each candidate solution i to
the optimization problem at iteration k for a given time
step t.

The PSO algorithmupdates the velocity and position
of each particle as follows [30]:

x(i)
t,k = x(i)

t,k−1 + v
(i)
t,k , (23)

v
(i)
t,k = wv

(i)
t,k−1 + c1r1(Pbi − x(i)

t,k−1)

+ c2r2(Pg − x(i)
t,k−1). (24)

The fitness function of x(i)
t,k is calculated as

f (x(i)
t,k) =

p(y(i)
t|xt,k)p(x

′
t,k(i)|x(i)

t,k−1)

N(xt ; x
(i)
t ,P(i)

t )
. (25)

PSO moves all particles towards the particle with
the best fitness function. When the best fitness value

Figure 4. Adaptive particle filter.

reaches a certain threshold, the iteration is stopped. At
the end of iterations, Pgbest and Ppbest are calculated and
the particles are distributed according to the values of
Pgbest and Ppbest . With this set of particles, the sampling
process will be conducted on the basis of proposal dis-
tribution. In summary, a single iteration of theAdaptive
particle filter is given in Figure 4.

Results

In order to verify the performance of APF, the perfor-
mance of it is evaluated and compared with UPF, PF,
MCMC-based particle filtering and EPF on simulated
data under different condition. Two examples are inves-
tigated in this section. The first example is a univariate
growth model, which is popular in econometrics and
has been used previously in [11]. The second exam-
ple is robot localization, which is of interest in robot
applications.

Univariate growthmodel

This model is a benchmark model that is commonly
used in PF testing. This system has been used before in
many papers [5–6]. The state spacemodel of this system
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Figure 5. The state estimation results.

Figure 6. RMSE of algorithms with respect to time.

is as follows:

xt = 1
2xt−1 + 25 xt−1

1+x2t−1
+ 8 cos(1.2t) + ωt−1,

yt = x2t
20 + νt ,

(27)

where the initial state is x0 = 0.1, the covariance of the
measurement noise is Rt = 1, and the covariance of the
process noise is Qt−1 = 1. Fifty particles (i.e. N = 50)
are used in all algorithms.

At first, the performance of the proposed method is
compared with UPF, EPF, PF and MCMC-based parti-
cle filtering when the statistical properties of noises are
known a priori. In Figure 5, the tracking performance
of the algorithms is depicted. It can be observed that
the best state estimation results belong to the proposed
method.

To evaluate the estimations accuracy, the root mean
square error (RMSE) is used to evaluate each algorithm.
The RMSE is obtained over 100 runs. The RMSE of esti-
mations over time is shown in Figure 6. It can be seen
that APF provides a more accurate estimation than the
EPF and UPF. The reason is that PSO resampling can
obviously increase the number of meaningful particles
and enhance the performance of estimation. As result, it
can enrich the particle species and capture the distribu-
tionmore comprehensively and accurately. The number
of distinct particles is shown in Figure 7. As can be seen,

Figure 7. The number of distinct particles.

Table 1. The performance of algorithms with the number of
particles.

RMSE Processing time(sec)
Number of
particles APF UPF EPF APF UPF EPF

100 2.9 3.4 5.2 5.4 4.23 2.8
70 3.1 3.5 6.2 4.3 3.2 2
50 3 3.7 7.8 3.5 2.73 1.54
30 3.3 6 10 2.8 1.69 0.96
10 3.6 10 12 0.95 0.65 0.36

the number of distinct particles of the proposedmethod
is more than that of other algorithms. As a result, the
consistency of APF is increased.

To examine the sensitivity of the performance of
algorithms with the number of particles, three differ-
ent particle numbers of 100, 70, 50, 30, and 10, are used
for simulation tests. Table 1 shows the performance of
algorithmswith the number of particles. As can be seen,
in general, when the more particles are used, the esti-
mation accuracy of the algorithms is higher. However,
the APF gives the least averaged variance with different
particles. The Table 1 shows also the computational cost
of algorithms. As can be observed, the smallest compu-
tation time belongs to EPF. However, the APF requires
less number of particles to obtain the same estimation
accuracy compare to EPF and UPF.

Second, the performance of algorithms is evaluated
when the statistical properties of noises are unknown.
In all algorithms, the number of particles is 50. The
results are shown in Figures 8 and 9. Comparedwith the
proposed method, the state estimate of UPF, MCMC,
EPF and PF deviated from the true state. From a com-
parison of Figures 6 and 9, it is easy to conclude that
the performance of APF, in this case, is almost close to
the previous case, while the performance of othermeth-
ods is worse than that of them in the previous case. The
reason is that the APF can estimate the unknown mea-
surement noises online whereas other method depends
on the fixed prior knowledge about the measurement
noises.
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Figure 8. The state estimation results.

Figure 9. RMSE of algorithms with respect to time.

Robot localization

In this example, the performance of the proposed
algorithm in robot localization is studied. The robot
localization is one of many issues inmobile robot study.
Localization is an essential ability for a mobile robot
to determine its pose (location and orientation angle)
from sensor data so that it can plan a movement and go
to the desired location. Suppose the kinematic model of
the mobile robot is as follows:

⎡
⎣xt
yt
φt

⎤
⎦ =

⎡
⎢⎣
xt−1 + 
t(V + νv)cos(ϕ + γ + νγ )

yt−1 + 
t(V+νv)sin(ϕ + γ + νγ )

ϕt−1 + 
t (V + νv)
B sin(γ + vγ )

⎤
⎥⎦ ,

(28)
where (x, y) are the location robot, φ is the orienta-
tion robot respectively to the global environment, 
t
is the time interval,Bis the base line of the robot, u =[
V γ

]T is the control input at time tconsisting of a
velocity input Vand a steer inputγ ,v = [

vv vγ

]T is
the process noise. The robot is assumed to be equipped
with a range-bearing sensor that provides a measure-
ment of range riand bearing θi to an observed feature ρi
relative to the robot. The observation z of feature ρi in
the map can be expressed as [32]

z =
[
ri
θi

]
=

[√
(x − xi)2 + (y − yi)2 + ωr

tan−1 y−yi
x−xi − φ + ωθ

]
, (29)

Figure 10. (a) Experiment environment of robot (b) wheel
mobile robot schematic.

where (xi, yi) is the landmark position in the map, and
ω = [ ωr ωθ ]T is measurement noise. The robot local-
ization based on the proposed algorithm is tested for
experiment environment as shown in Figure 10. The
star points (*) depicts the location of the landmarks that
are known and stationary in the environment and the
blue line is the path of the robot.

The initial position of the robot is assumed to be
(0, 0, 0) and the robot moves at a speed of 3m/s and
with a maximum steering angle of 30o. The robot has
4m wheel base and is equipped with a range-bearing
sensor with a maximum range of 30m and 180o frontal
field-of-view. The control noise is σv = 0.3m/s, σγ =
3o and the measurement noise is 0.1m in range and
0.1o in bearing. A control frequency is 40Hz and obser-
vation scans are obtained at 5Hz. Figures 11–14 show
the comparison of the RMSE of the localization based
on proposed algorithm and UPF when the noise statis-
tics are known and unknown to both algorithms. The
results are obtained over 100 Monte Carlo runs with 20
particles.

As can be seen, the localization based on APF out-
performs all the other counterparts in both the robot
position and heading errors. This is because the local-
ization based on APF not only improves the numerical
stability but also reduce the negative effects caused by
the resampling step. In addition, APF can estimate the
unknown measurement noises online.
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Figure 11. RMSE of robot position when the statistics of the
noises are assumed to be known.

Figure 12. RMSE of heading of robot when the statistics of the
noises are assumed to be known.

Figure 13. RMSE of robot position when the statistics of the
noises are assumed to be unknown.

Figure 14. RMSE of heading of robot when the statistics of the
noises are assumed to be unknown.

Experimental

The robot localization on the proposed algorithm is
compared with localization based on EPF using the car
park data set. The environment of this test is the top
level of the car park building of the university campus.
The full data set and the documentation is available
at [33]. A standard utility vehicle is a four-wheeled
vehicle equipped with Sick laser range and bearing sen-
sor, linear variable differential transformer sensor for
the steering, back wheel velocity encoder and GPS as
shown in Figure 15.

In this experiment, artificial landmarks are used that
consisted of 60mm steel poles covered with reflective
tape. The true position of the landmarks is also obtained
with GPS and is known. In addition, GPS is used to
provide accuracy ground truth that is used to evaluate
the estimated path of the robot. When the vehicle was
driven around the park, the velocity and steering angle
ismeasured using encoders, but uneven terrain induced
additional non-systematic errors because of wheel slip-
page and vehicle attitude. Hence, the trajectory of dead
reckoning deviated from the ground truth provided by
GPS as shown in Figure 16.

The trajectory is estimated by EPF and the pro-
posed method is shown in Figure 17. As can be seen,
the path errors of localization based on proposed
method is lower than that of localization based on EPF,

Figure 15. Utility car used for the experiment.

Figure 16. Odometry of the vehicle.
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Figure 17. (a) EPF (b) Proposed Method.

Figure 18. RMSE of position.

because the result of the localization based on pro-
posed algorithm better matches with the GPS ground
truth. Figure 18 shows the RMSE of the robot position.
The results show that the performance of the proposed
algorithm is better than that of EPF. The proposed
algorithm starts with a wrongly known statistics noise
and then adapts them through FIS and attempts tomin-
imize the mismatch between the theoretical and actual
values of the innovation sequence. Figures 14 and 15
show the comparison between the proposed algorithm
and the EPF. This is because that the proposed method
tunes Qt andRt adaptively and diversity particles are
more than that of EPF. This improves data association,
estimation accuracy and consistency.

Conclusion

The PF is a novel technique that has sufficiently good
estimation results for the nonlinear/non-Gaussian sys-
tems. However, the general PF is inconsistent, what is
caused mainly by unknown a priori knowledge of the
noise statistics and loss of particle diversity in resam-
pling step. The soft computing (PSO and FIS) may
be used in order to overcome particle filtering weak-
nesses. In this paper, APF that takes advantage of soft
computing in order to overcome the problems of PF is
presented. TheAPFusesAFSRUKF to generate the pro-
posal distribution, in which the covariance of the mea-
surement and process of the state are adjusted online
by predicted residual as an adaptive factor based on a
covariance-matching technique using FIS. As a result,
the proposed method can work in unknown statistical
noise and does not require a priori knowledge about
the system. In addition, to increase diversity, the resam-
pling process is done based on PSO. The validity of
the proposed method is evaluated against two distinct
examples: the univariate growthmodel and robot local-
ization. By simulation analysis and evaluation, it is ver-
ified that applying APF would contribute to significant
estimation performance improvements.
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