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Abstract

A phylogenetic tree is a binary tree where each node represents a sequence of the states and
all the input sequences are represented at the leaf nodes. Given sequences of the states of the
same length, the big parsimony problem constructs the most parsimonious phylogenetic tree
along with labeling the internal nodes at the maximum parsimony. The big parsimony problem
is known to be NP-hard. We describe randomized rounding methods that allow us to obtain
good solutions.

Our first randomized rounding method starts with a fractional optimal solution to the LP-
relaxation of an integer linear programming formulation of the big parsimony problem, and
repeats randomized rounding based on this fractional solution, which we refer to as fixed ran-
domized rounding without changing the fractional solution. Solutions obtained using the fixed
randomized rounding approach are superior to the best solutions obtained using branch-and-
bound with GUROBI and can be obtained quicker.

We then describe an adaptive randomized rounding approach where the underlying fractional
solution changes based on the best integer solution observed so far and produces solutions that
are superior to the fixed randomized rounding approach.

1 Introduction

The maximum parsimony method is the most widely used sequence-based tree reconstruction
method. In science, the principle of maximum parsimony is to use the simplest and the most parsi-
monious explanation of an observation. In phylogenetic analysis, the maximum parsimony problem
is to find a phylogenetic tree that explains a given set of aligned sequences using a minimum number
of “evolutionary events”. The maximum parsimony problem is called the big parsimony problem,
which is distinguished from the small parsimony problem to just find the most parsimonious se-
quences at the internal nodes of a given phylogenetic tree on the given set of aligned sequences.
The big parsimony problem is NP-hard gaining notoriety in complexity for several decades, while
the small parsimony problem can be solved by Fitch’s algorithm in polynomial time.

A phylogenetic tree is a tree interpreting an input set of sequences from the genomes of evolu-
tionarily related organisms, where each node represents a sequence of the states and all the input
sequences are represented at the leaf nodes. It has been defined as a binary tree because evolu-
tionary events such as mutation or speciation are understood to split a lineage into two parts, not
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three or more [2, 5, 6, 8, 10, 13, 19]. We thus consider only binary phylogenetic trees throughout
this paper.

In order to formulate the big parsimony problem, we precisely define a rooted binary tree and
a few terms which are frequently used in phylogeny. Let L ⊆ V be the set of the leaf nodes
or leaves. The leaf nodes represent existing genes, populations or species. A rooted binary tree
D = (V ∪{0}, A) is a tree with the root node 0 of degree 2, all the other non-leaf nodes of degree 3
and the leaf nodes of degree 1. The root node 0 is the ancestral node in a phylogenetic tree. The
non-leaf nodes of degree 3 are called the internal nodes representing hypothetical ancestors. There
is only one path from the root 0 to a node in the tree D and we can give each edge in A the direction
outward from the root. The directed edge is called an arc. We can create an unrooted binary tree
by contracting the edge between the root node and one of its two neighbors. An unrooted binary
tree G = (V,E) is a tree with all internal nodes v ∈ V \ L of degree 3. The number of internal
nodes is |V \ L| = |L| − 2 because the degree sum across the nodes implies

3|V \ L|+ |L| = 2|E| = 2(|V | − 1) = 2(|V \ L|+ |L| − 1) = 2|V \ L|+ 2|L| − 2.

We see that |A| = |E|+ 1 = |V |. Let l = |L| denote the number of leaf nodes. We can number the
nodes in V \ L = {1, ..., l − 2} and L = {l − 1, ..., 2l − 2} so that each arc (u, v) ∈ A may satisfy
u < v. Then, the arc (0, 1) ∈ A. In order to formulate parsimony problems, it is more convenient
to consider a rooted binary tree than an unrooted binary tree. Throughout this paper, we consider
only rooted binary trees T = (V ∪ {0}, A) with identifying the root node 0 as the copy of internal
node 1.

Definition 1 (Character, extension, parsimony value).

• Let K be a finite set of character states (or simply states). In a deoxyribonucleic acid (DNA),
the states are 4 nucleobases K = {A, T,G,C}. When morphological data is analyzed, binary
characters are also often relevant [5, 7, 12, 13, 18, 19] and we assume that there are only two
states K = {0, 1} throughout this paper.

• A character on leaves L over states K is any function s from L into K.

• A function x : V ∪ {0} → K such that x(u) = s(u) for u ∈ L is said to be an extension of
s. We identify the states of the root node 0 and node 1 in an extension x; i.e., x(0) = x(1).
The restriction of x on L is denoted by x|L : L→ K; i.e. x|L(u) = x(u) for u ∈ L.

• Let pv(T, x) = |{(u, v) ∈ A : x(u) = x(v)}|. The parsimony value of s on T is the maximum
number of arcs (u, v) ∈ A where both end nodes are of the same state; i.e.,

pv(T, s) = max
x
{pv(T, x) : x|L = s, x(0) = x(1)}.

The Hamming distance of (u, v) is the number of sites where u and v are labeled by different
states. Let s = (s1, ..., sm) be a sequence of characters sj for sites j ∈ [m] = {1, ...,m} on L. We
need only examine one character at a time (i.e., we determine the solution for site 1, then we work
on site 2, etc.) Thus, the parsimony value on the multiple characters (sj) subtracts the sum of
the Hamming distances on the tree arcs from m|V | which is the number of sites times the number
of tree edges. We simply denote pv(T, s) by pv(T ) when the sequence of characters s = (sj) is
clear. The parsimony principle finds the binary tree that requires the fewest evolutionary changes
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which is measured by the Hamming distance, the number of character changes (mutations) along
the evolutionary tree. Throughout this paper, we use the parsimony value as a measure of the
maximum parsimony.

The big parsimony problem (BPP) aims to find the rooted binary tree topology at the maximum
parsimony. It is known in [1, 7] to be NP-hard:

Problem 1 (Big Parsimony Problem (BPP)). Given a sequence s = (s1, ..., sm) of characters,
determine the binary tree topology T at the maximum parsimony

pv(s) = max
T

max
x
{pv(T, x) : x|L = s, x(0) = x(1)}.

Since the BPP is NP-hard, it might not be tractable to obtain the exact optimal solution. We
develop a randomized rounding method with a fixed probability distribution and then an adaptive
randomized rounding method that is shown to work better than the previous method.

Our first randomized rounding method starts with a feasible fractional solution to the LP-
relaxation of the ILP formulation of the BPP. We show that any randomized rounding of the
fractional solution can be used to construct a solution to the BPP. Repeated randomized round-
ing based on this fractional solution thus helps us identify a good quality solution to BPP. We
refer to this approach as fixed randomized rounding because the underlying fractional solution does
not change. Our computational experiments show that solutions obtained using fixed random-
ized rounding are superior to the best solutions obtained using branch-and-bound with GUROBI
(limited to 7200 seconds) and can be obtained quicker.

We observe, however, that fixed randomized rounding produces solutions to BPP whose objec-
tive function values are concentrated. We are able to show that as the size of the problem instances
grows, the coefficient of variation (the ratio of the standard deviation to the mean) of the objective
function values obtained through fixed randomized rounding converges to 0. This finding indicates
that rounding using a fixed fractional solution has some limitations.

To improve the outcome of randomized rounding, we develop an adaptive randomized rounding
method where the underlying fractional solution changes based on the best integer solution observed
so far. Our computational experiments show that adaptive randomized rounding produces solutions
that are superior to fixed randomized rounding.

In Section 2, we develop an integer linear programming formulation of the big parsimony prob-
lem, and show that flipping a fair coin is an optimal solution to the LP-relaxation. In Section 3, fixed
randomized rounding is shown to provide good solutions that are much better than the incumbent
solutions produced by a branch-and-bound procedure of a professional integer linear programming
software (GUROBI) within 7,200 seconds. In Section 4, we describe an adaptive randomized round-
ing method and provide computational results that show that adaptive randomized rounding gives
much better solutions to BPP than fixed randomized rounding. Our computational experiments
on several real biological data which are large mtDNA and Y-chromosome instances confirm this
finding.

2 ILP formulation of the big parsimony problem

Consider a rooted binary tree T = (V ∪ {0}, A) with leaf nodes L. We can number the nodes in
V \L = {1, ..., |L|−2} and L = {|L|−1, ..., 2|L|−2} so that each arc (u, v) ∈ A satisfies u < v. We
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then construct the directed graph D̄ = (V̄ , Ā) by adding all arcs (u, v) where u, v ∈ V and u < v
and not both u and v are leaf nodes. D̄ is defined by

V̄ = {0} ∪ V = {0} ∪ (V \ L) ∪ L = {0} ∪ {1, ..., |L| − 2} ∪ {|L| − 1, ..., 2|L| − 2},
Ā = {(u, v) : u < v, u ∈ {0} ∪ (V \ L), and v ∈ V } .

That is, D̄ is defined by constructing directed arcs from each node u that is not a leaf to each larger
numbered node v. We refer to D̄ as binary tree search space because it contains all possible rooted
binary tree topologies.

Now we develop an ILP formulation of the BPP over the binary tree search space D̄ employing
tree variables z(u, v), node variables xj(v, t) and edge variables yj(u, v) at each site j = 1, ...,m.
For the set of tree arcs A ⊂ Ā of a binary tree T = (V̄ , A), we use T and A interchangeably. For a
binary tree T ⊂ Ā over the binary tree search space D̄, z(u, v) = 1 if (u, v) ∈ T and z(u, v) = 0 if
(u, v) ∈ Ā \ T . (If a binary tree T needs to be distinguished from other binary trees, we may use
zT for z.)

Before formulating the binary trees z, we need some more definitions. For B ⊂ Ā, let z(B) =∑
(u,v)∈B z(u, v). For U ⊂ V̄ , let δ−(U) denote the set of arcs of Ā incoming to U (i.e. arcs

(u, v) ∈ Ā with u 6∈ U, v ∈ U). For simplicity, we write δ−(v) instead of δ−({v}). On the other
hand, let δ+(U) denote the set of arcs of Ā outgoing from U (i.e. arcs (u, v) with u ∈ U, v 6∈ U).
For simplicity, we write δ+(u) instead of δ+({u}).

To formalize the parsimony value, our ILP formulation of the BPP includes that of the graph
partition problem introduced by Chopra and Rao [3]. The node variables xj(v, t) ∈ {0, 1} ⊂ [0, 1]
indicate a sequence of extensions x = (x1, ..., xm); i.e.,

xj(v, t) = 1[xj(v) = t] for v ∈ V ∪ {0}, t ∈ K and j = 1, ...,m

where 1[event] = 1 if [event] is true, and it is zero otherwise. Vector x denotes both the vector of
node variables and the sequence of extensions. Likewise we can use vector s = (sj(u, t)) to indicate
a sequence of characters s = (sj). An edge variable yj(u, v) ∈ {0, 1} ⊂ [0, 1] indicates that both
end nodes u, v of edge uv ∈ E are of the same state; i.e.,

yj(u, v) = 1[xj(u) = xj(v)] for (u, v) ∈ A and j = 1, ...,m.

We will call the edge variables as the parsimony value variables interchangeably.
Given a sequence of characters s = (sj), the boundary conditions first fix the states of the

leaves:

xj(v, t) = sj(v, t) for v ∈ L, t ∈ K and j = 1, ...,m. (1)

We add the following additional boundary conditions to identify node 1 with the root node 0:

xj(0, t) = xj(1, t) for t ∈ K and j = 1, ...,m, (2)

yj(0, 1) = 1 for j = 1, ...,m. (3)

With the boundary conditions (1)-(3), an ILP formulation of the BPP over the binary tree
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search space D̄ is

max

m∑
j=1

∑
(u,v)∈Ā

yzj (u, v) (4)

s.t. yzj (u, v) ≤ z(u, v) for (u, v) ∈ Ā and j = 1, ...,m, (5)

yzj (u, v) ≤ yj(u, v) for (u, v) ∈ Ā and j = 1, ...,m, (6)

z(δ+(v)) = 2 for v ∈ V̄ \ L, (7)

z(δ−(v)) = 1 for v ∈ V = V̄ \ {0}, (8)∑
t∈K

xj(v, t) = 1 for v ∈ V̄ and j = 1, ...,m, (9)

xj(u, t)− xj(v, t) + yj(u, v) ≤ 1
−xj(u, t) + xj(v, t) + yj(u, v) ≤ 1

}
for (u, v) ∈ Ā, t ∈ K and j = 1, ...,m, (10)

xj(u, t) + xj(v, t)− yj(u, v) ≤ 1 for (u, v) ∈ Ā, t ∈ K and j = 1, ...,m. (11)

The out-degree constraints (7) and the in-degree constraints (8) define a binary tree z. Con-
straints (10) imply that both end nodes u, v of an arc (u, v) will have a same state if yj(u, v) = 1.
Constraints (11) imply the other way around. Note that the linking variables yzj (u, v) = 1 only if
(u, v) is a tree arc (i.e., z(u, v) = 1) and the j-th states of u, v are same (i.e., yj(u, v) = 1).

In case of binary characters (i.e., K = {0, 1}), we have an immediate fractional solution to the
LP-relaxation. The uniformly fractional sequence of extensions ẋ given by

ẋj(u, t) = 1/2 for u 6∈ L, t ∈ K and j = 1, ...,m,

is extended to an optimal solution (ẋ, ẏ, ż, ẏz) to the LP-relaxation (4)-(11) as follows: For (u, v) ∈
Ā,

ẏj(u, v) = 1 if v 6∈ L,
= 1/2 if v ∈ L.

If l is even, set ż(0, 1) = ż(0, 2) = 1 and for i = 1, ..., (l − 2)/2,

ż(2i− 1, 4i− 1) = ż(2i− 1, 4i) = ż(2i− 1, 4i+ 1) = ż(2i− 1, 4i+ 2) = 1/2,

ż(2i, 4i− 1) = ż(2i, 4i) = ż(2i, 4i+ 1) = ż(2i, 4i+ 2) = 1/2.

If l is odd, set ż(0, 1) = ż(1, 2) = 1 and ż(0, 3) = ż(0, 4) = ż(1, 3) = ż(1, 4) = 1/2, and for
i = 1, ..., (l − 3)/2,

ż(2i, 4i+ 1) = ż(2i, 4i+ 2) = ż(2i, 4i+ 3) = ż(2i, 4i+ 4) = 1/2,

ż(2i+ 1, 4i+ 1) = ż(2i+ 1, 4i+ 2) = ż(2i+ 1, 4i+ 3) = ż(2i+ 1, 4i+ 4) = 1/2.

The other ż-variables are set to be zero. Then, yzj = ż, j = 1, ...,m, leads to the optimal value m|V |
of the LP-relaxation (4)-(11). We refer to (ẋ, ẏ, ż, ẏz) as the uniformly fractional solution. Table 1
describes ż for l = 6. Note that the sum of entries in a row is 2 and the sum of entries in a column
is 1. In the next section we use randomized rounding on the uniformly fractional solution of the
LP-relaxation to obtain good solutions to BPP.

Given a tree T and a sequence of characters s = (sj), the uniformly fractional sequence of
extensions ẋ yields the lower bound of the parsimony value of T which was first identified by
Steel [19].
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u \ v 1 2 3 4 5 6 7 8 9 10

0 1 1 0 0 0 0 0 0 0 0

1 x 0 1/2 1/2 1/2 1/2 0 0 0 0
2 x x 1/2 1/2 1/2 1/2 0 0 0 0

3 x x x 0 0 0 1/2 1/2 1/2 1/2
4 x x x x 0 0 1/2 1/2 1/2 1/2

Table 1: For l = 6, yzj (u, v) = ż(u, v) = ż(row, column). (x = no entry)

Proposition 1. Given a tree T of l leaves and a sequence of m characters s = (sj), the parsimony
value of T is lower bounded by

(
3l
2 − 2

)
m; i.e.,

pv(T ) ≥ m(|V | − l/2) = m(2l − 2− l/2) = m

(
3l

2
− 2

)
. (12)

Assign a common state to all the internal nodes in uniform distribution. More precisely, Xj(u, t) =
Xj(v, t) for u, v ∈ V̄ \ L, t ∈ K, j ∈ 1, ...,m, and

P (Xj(v, 0) = 1) = P (Xj(v, 1) = 1) = ẋj(v, 0) = ẋj(v, 1) = 1/2.

(An uppercase letter is used to denote a random variable.) The expected value of the parsimony
value is ẏj(u, v) on each arc (u, v) at each position j. They induce the lower bound m(l/2 + (l−2))
in (12) which converges to 3/4 of the total number m|V | = m(2l − 2) of tree arcs; i.e.,

pv(T ) ≥ 3

4
m|V | (13)

for every binary tree T .

3 Fixed randomized rounding approach

In this section we develop a randomized rounding procedure to obtain a good quality solution
to BPP that uses the uniformly fractional solution to the LP-relaxation obtained in the previous
section. Before we describe the procedure, we define the maximum binary tree problem:

Problem 2 (Maximum Binary Tree Problem (MBTP)). Given a weight function w : Ā → R on
the arcs of the binary tree search space D̄ = (V̄ , Ā), identify the binary tree T = (V̄ , A) of the
maximum weight ∑

(u,v)∈A

w(u, v).

Our randomized rounding procedure repeats the following four steps:

1. The first step is to randomly round the x-variables in the uniformly fractional solution. Given
that |K| = 2, randomized rounding assigns each of the x-variables to one of the two elements
in K = {0, 1}. We refer to this assignment as the pre-assignment xPre.
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2. For this assignment of x-variables we construct the implied parsimony value variables yPre(u, v)
for each arc (u, v). These values are then used to obtain weights w

(
xPre

)
, where

w
(
xPre

)
(u, v) =

m∑
j=1

yPre
j (u, v) for (u, v) ∈ Ā. (14)

3. These weights are then used to obtain the maximum weight binary tree. Solve the MBTP with
objective w

(
xPre

)
. The optimal solution is the binary tree TPre at the maximum parsimony

value
pv
(
TPre, xPre

)
= max

T
pv
(
T, xPre

)
which we call the pre-value.

4. Over the fixed binary tree TFinal = TPre, Fitch’s algorithm then produces the sequence of
extensions xFinal at the maximum parsimony value

pv
(
TFinal, xFinal

)
= max

x|L=s
pv
(
TFinal, x

)
,

which we call the final value.

We refer to the procedure as fixed randomized rounding because it uses the same uniformly frac-
tional solution for each repetition of randomized rounding. Observe that MBTP can be formulated
as follows:

max
∑

(u,v)∈Ā

w(u, v)z(u, v)

s.t. z(δ+(v)) = 2 for v ∈ V̄ \ L (15)

z(δ−(v)) = 1 for v ∈ V = V̄ \ {0}
z ≥ 0.

In fact, the formulation is totally unimodular; i.e., all the square sub-matrices have determinant 0,
1 or −1. The optimal solution to its LP-relaxation is an integer solution, and the MBTP can be
solved in polynomial time. For more details of total unimodularity, the readers may refer to Cook
et al. [4].

Theorem 2. The ILP formulation (15) of the MBTP is totally unimodular.

Proof. Let the system of linear equations in (15) be simply written as Bz = b, and let B′ denote a
square sub-matrix of B. By mathematical induction on the size of B′, we show that every square
sub-matrix B′ of B has determinant 0, 1 or −1. A 1×1 square sub-matrix trivially has determinant
0, 1 or −1. We now assume that any square sub-matrix of size ≤ q− 1 has determinant 0, 1 or −1
for q ≥ 2. We only need to show that a square sub-matrix B′ of size q has determinant 0, 1 or −1.

A column of B corresponds to an arc (u, v) ∈ Ā having two 1’s, one at a row corresponding
to δ+(u) and the other corresponding to δ−(v). If B′ has a column of at most one non-zero
entry (=1), the (q − 1) × (q − 1) square sub-matrix B′′ of B′ given by deleting the column and
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B&B (= 7200 sec.) Fixed Random. Round. (10000 trials no.)

nTax nChar ObjVal sec. Break sec. no. Max sec. no. total sec.

10 100 1517 976 1519 13 84 1520 218 1404 1550
10 200 3001 4562 3002 34 111 3008 1314 4286 3066
10 300 4490 5721 4491 110 240 4499 3306 7230 4572
10 400 5988 4195 5988 29 48 6015 5373 8839 6078
10 500 7477 5931 7478 2 2 7499 1323 1742 7596
10 600 8953 6080 8968 15 16 8984 2326 2552 9116
10 700 10341 7200 10421 1 1 10481 4995 4509 11078
10 800 11454 6435 11942 1 1 12004 4060 3305 12283
10 900 12471 6979 13390 1 1 13452 11598 8476 13683
10 1000 13810 6592 14884 2 1 14963 4958 3255 15232

20 100 3154 6991 3163 1 1 3193 2219 4311 5147
20 200 5701 6400 6318 1 1 6361 6737 6580 10239
20 300 7025 7200 9478 2 1 9553 11291 7407 15243
20 400 9366 7200 12618 2 1 12700 1658 814 20364
20 500 11663 7200 15775 3 1 15863 14995 5916 25347
20 600 16898 7200 18991 3 1 19051 28385 9341 30388
20 700 16363 7200 22063 4 1 22171 6485 1825 35533
20 800 18963 7200 25249 4 1 25377 13896 3411 40738
20 900 25376 7200 28343 5 1 28493 23376 5107 45772
20 1000 28092 7200 31604 5 1 31695 30773 6009 51212

Table 2: Comparison of branch-and-bound and 10,000 trials of fixed randomized rounding

the row of the non-zero entry has determinant 0, 1 or −1 by induction hypothesis and therefore
det(B′) ∈ {0,det(B′′),−det(B′′)} is 0, 1 or −1.

We assume that every column of B′ has two 1’s. Then, the determinant of B′ is shown to be
zero, because adding the rows of δ+(u) to the first row and subtracting the rows of δ−(v) from the
first row make the first row vanish, completing the proof.

Since the MBTP can be solved very quickly, our randomized rounding method can be solved
relatively fast.

3.1 The Power of Fixed Randomized Rounding

In this section we present computational results comparing our fixed randomized rounding approach
with branch-and-bound using GUROBI. The computational experiment verifies that fixed random-
ized rounding outperforms the incumbent solutions produced by the branch-and-bound (B&B)
procedure of GUROBI. Table 2 compares results of 10,000 trials of fixed randomized rounding with
the incumbent solution (the best integer solution) to the ILP formulation (4)-(11) on the generated
instances within 2 hours of the branch-and-bound (B&B) procedure by GUROBI. We use Python
3.6 as the programming language and Gurobi 8.0 as the ILP solver. We also use them to solve an
MBTP in the computational experiments throughout this paper. Our computational experiments
are carried out on a machine with 64GB of RAM running on a 3.6GHz processor.
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pv
(
TPre, xPre

)
pv
(
TFinal, xFinal

)
nTax nChar STD Mean STD Mean c.v. Max dev./Mean

10 100 13.4 1039.0 6.4 1499.4 0.004268 1520 0.013739
10 200 18.9 2026.5 7.9 2981.8 0.002649 3008 0.008787
10 300 23.1 3004.9 11.7 4460.8 0.002623 4499 0.008563
10 400 26.7 3978.4 13.5 5964.5 0.002263 6015 0.008467
10 500 30.1 4950.0 15.2 7449.2 0.002040 7499 0.006685
10 600 32.8 5919.0 17.7 8929.6 0.001982 8984 0.006092
10 700 36.1 6886.9 17.1 10423.7 0.001640 10481 0.005497
10 800 38.6 7852.4 15.3 11948.1 0.001281 12004 0.004679
10 900 40.6 8818.5 18.7 13385.2 0.001397 13452 0.004991
10 1000 42.8 9783.2 21.8 14886.8 0.001464 14963 0.005119

20 100 16.8 2213.9 10.6 3155.8 0.003359 3193 0.011788
20 200 24.2 4273.4 14.5 6301.5 0.002301 6361 0.009442
20 300 30.2 6305.9 17.5 9485.0 0.001845 9553 0.007169
20 400 34.9 8327.5 18.4 12630.4 0.001457 12700 0.005511
20 500 39.1 10338.9 20.5 15788.3 0.001298 15863 0.004731
20 600 42.5 12345.0 25.7 18954.2 0.001356 19051 0.005107
20 700 45.9 14347.6 25.1 22084.5 0.001137 22171 0.003917
20 800 49.3 16344.6 28.2 25257.5 0.001117 25377 0.004731
20 900 52.5 18340.5 28.4 28385.7 0.001001 28493 0.003780
20 1000 55.4 20332.6 29.8 31582.4 0.000944 31695 0.003565

Table 3: Statistics of fixed randomized rounding in Table 2

In Table 2, nTax is the number of leaf nodes |L| and nChar is the number of characters in
our problem. ObjVal is the best incumbent objective function value obtained using branch-and-
bound within 7,200 seconds. Break is the first value from fixed randomized rounding that is better
than the best branch-and-bound value under ObjVal. From Table 2 observe that fixed randomized
rounding very quickly obtains a better solution than branch-and-bound is able to obtain in 7,200
seconds. Max represents the best solution obtained after 10,000 trials of randomized rounding. It
is interesting to observe that while our randomized rounding approach quickly does better than
branch-and-bound, many replications of fixed randomized rounding do not significantly improve
the solution value.

The reason for the failure of fixed randomized rounding to significantly improve the solution is
evident in our computational results in Table 3. For each problem instance, Mean represents the
average solution value and STD the standard deviation of solution values from 10,000 trials using
randomized rounding (for both the pre as well as the final values). Observe the very low coefficient
of variation c.v., which seems to get smaller as problem size grows.

Max represents the maximum value obtained after 10,000 randomized rounding trials and
dev./Mean is given by

dev./Mean =
Max−Mean

Mean
.

The low values of dev./Mean indicate that running 10,000 randomized rounding trials does not
significantly improve the solution obtained. This is to be expected given the low c.v. obtained
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from our trials. In the next section we identify a potential reason for the concentration of solutions
obtained as a result of fixed randomized rounding. Then in Section 4 we come up with an adaptive
randomized rounding procedure that improves on the results observed in Table 2.

3.2 Concentration analysis on the pre-value from fixed randomized rounding

In this section we show that the pre-values resulting from randomized rounding of the uniformly
fractional solution have a small standard deviation O(

√
|V |m). Since the same final value may

result from multiple pre-values, it is intuitive that

STD
[
pv
(
TFinal, xFinal

)]
< STD

[
pv
(
TPre, xPre

)]
∈ O(

√
|V |m).

The intuition is verified by the experiment in Table 3. Recall Proposition 1 that a lower bound of
the final value pv

(
TFinal, xFinal

)
is

≈ 3

4
|V |m.

The coefficient of variation of pv
(
TFinal, xFinal

)
is

STD

Mean
∈
O(
√
|V |m)

Ω(|V |m)
= O

(
1√
|V |m

)
,

and converges to zero as the size of problem instance grows.
The random variable XPre and the observation xPre are simply denoted by X and x without

superscripts. (The superscripts of XFinal or xFinal will not be omitted.) Let f and F denote the
number and the set of the pairs of node u and position j where x-values are fractional; i.e.,

f = |F | =
∣∣{(j, u) : 0 < xLPj (u, t) < 1 for some t ∈ K

}∣∣ . (16)

We simply denote the random variables Xj(u) with a fractional probability by Xi, i = 1, ..., f , in a
linear order, and those with 0/1-probability by Xi+1, ..., XN , where N = m|V \ L| = m(l − 2). If
xLP = ẋ, then f = N = m(l − 2).

Let pv (X) be the maximum value of the MBTP with the parsimony value function w = w (X);
i.e.,

pv (X) = max
T

pv (T,X) .

In this section, we prove large deviation bounds of the form

P
(
pv(X)− E[pv(X)] ≥ 3λ

√
f
)
≤ e−2λ2 .

We also induce a bound for the standard deviation of the pre-value which provides a range of the
pre-value (and so the final value) in this randomized rounding.

Lemma 3 (McDiarmid [15]). Let X = (X1, ..., Xf ) be a family of independent random variables
with Xi taking values in a set Ai for each i. Suppose that the real-valued function g defined on∏f
i=1Ai satisfies the following Lipschitz condition,∣∣g(x)− g(x′)

∣∣ ≤ ci (17)
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whenever the vectors x and x′ differ only in the i-th co-ordinate. Then for any t ≥ 0,

P (g(X)− E[g(X)] ≥ t) ≤ e−2t2/
∑f

i=1 c
2
i , (18)

P (g(X)− E[g(X)] ≤ −t) ≤ e−2t2/
∑f

i=1 c
2
i . (19)

We induce large deviation bounds from (18) with g = pv, Aj = K, t = 3λ
√
f and ci = 3 for all

i = 1, ..., f generalizing those introduced by Steel, Goldstein and Waterman [20].

Theorem 4 (Tail Inequality). Let f denote the number of tuples of nodes and positions where
x-variables are fractional in the optimal solution to the LP-relaxation. Then,

P
(
pv(X)− E[pv(X)] ≥ 3λ

√
f
)
≤ e−2λ2 , (20)

P
(
pv(X)− E[pv(X)] ≤ −3λ

√
f
)
≤ e−2λ2 , (21)

and for each p > 0

E

[∣∣∣∣pv(X)− E[pv(X)]

3
√
f

∣∣∣∣p] ≤ 2p

∫ ∞
0

λp−1e−2λ2dλ. (22)

It implies that

V [pv(X)]

9f
≤ 1. (23)

Proof. First we verify that the parsimony value pv satisfies the Lipschitz condition

|pv(X1, ..., Xi−1, Xi, Xi+1, ..., Xf )− pv(X1, ..., Xi−1, X
′
i, Xi+1, ..., Xf )| ≤ 3

for all X ′i ∈ K. Suppose that pv(X1, ..., Xi−1, Xi, Xi+1, ..., Xf ) ≥ pv(X1, ..., Xi−1, X
′
i, Xi+1, ..., Xf )

over tree topologies T and T ′, respectively. Over T , changing Xi to X ′i can decrease the anti-score
by at most 3 over the edges for the parent and two children. By symmetry, the other way around
is also true.

Using the independence of fractional variables X1, ..., Xf , (20) and (21) follow by applying the
tail inequalities (18) and (19) introduced by McDiarmid [15]. Since (20) and (21)imply

P
(
|pv(X)− E[pv(X)]| ≥ 3λ

√
f
)
≤ 2e−2λ2 ,

(22) now follows from

E [W p] = p

∫ ∞
0

λp−1P (W > λ)dλ

for any W ≥ 0.

Behaving nice like the sum of independent random variables, the variance of the pre-value is upper
bounded by O(f) (not O(f2)). Since the standard deviation of pv

(
TFinal, xFinal

)
is intuitively

smaller than that of pv
(
TPre, xPre

)
, it is most likely that

STD
[
pv
(
TFinal, xFinal

)]
∈ O

(√
|V |m

)
and the coefficient of variation of pv

(
TFinal, xFinal

)
converges to 0. Theorem 4 provides a theoretical

justification for why fixed randomized rounding may find a good solution early but is unable to
significantly improve the integer solution obtained over many randomized trials.

11



Figure 1: 2-step procedure of adaptive randomized rounding

4 Adaptive randomized rounding method changing the distribu-
tion

In this section, we present an adaptive randomized rounding procedure that addresses the con-
centration of values when randomized rounding is performed on the uniformly fractional solution.
Our adaptive procedure changes the underlying fractional solution used for randomized rounding
whenever a better integer solution is identified.

4.1 2-step procedure for adaptive randomized rounding

At each trial i ≥ 1, an adaptive randomized rounding procedure first moves the underlying fractional
solution from the current fractional solution xLP (i−1) toward x∗ of the best known integer solution
(z∗, x∗) by exponential smoothing,

xLP (i) = (1− α(i))xLP (i−1) + α(i)x∗, (24)

assuming that a better integer solution xFinal can be observed near the line segment
[
xLP (i−1), x∗

]
.

Since the LP-relaxation of the ILP formulation of the big parsimony problem is convex, the line
segment is contained in the LP-relaxation. Then, the adaptive randomized rounding procedure
observes the pre-value pv

(
TPre(i), xPre(i)

)
followed by the final value pv

(
TFinal(i), xFinal(i)

)
based

on xLP (i). Converging to x∗, the pre-value and the final value together approach to pv (T ∗, x∗) and
the MBTP pushes up the final value as well as the pre-value. We now describe the procedure in
detail.

Using exponential smoothing, we develop a 2-step procedure to change the underlying fractional
solution used for randomized rounding:

Step 0: Initialization. The initial fractional solution is the uniformly fractional solution xLP (0) =
ẋ and the initial smoothing constant is α(1) = 1/2. At the initial trial i = 0, an integer solution
x∗ = xFinal(0) is obtained after the randomized rounding based on xLP (0) = ẋ. Set i = 1 and go to
Step 1.

Step 1: Adjusting the smoothing constant. The first step moves the current fractional
solution xLP (i−1) to xLP (i) by exponential smoothing (24) on the line segment [ẋ, x∗] adjusting

12



the smoothing constant α. Observe the pre-value pv
(
TPre(i), xPre(i)

)
followed by the final value

pv
(
TFinal(i), xFinal(i)

)
based on xLP (i).

• Stopping criterion of the whole procedure: If α(i) < tolerance, the whole procedure stops. For
example, we may use the default (tolerance = 10−5) for the integrality tolerance of GUROBI.

• Criterion to go to Step 2: If the observed parsimony value pv
(
TFinal(i), xFinal(i)

)
is better than

the currently best known parsimony value pv (T ∗, x∗), the procedure updates the best integer
solution x∗ = xFinal(i) and the best parsimony value pv (T ∗, x∗) = pv

(
TFinal(i), xFinal(i)

)
.

Assuming that the speed of the move is appropriate, fix the current smoothing constant
α = α(i), set i ← i + 1 and go to Step 2 as illustrated in Figure 1 where the solid dot
represents ẋ, the hollow dot represents the current best known integer solution, and the
dotted hollow dot represents the new best integer solution.

• Major decrease of α: If pv
(
TFinal(i), xFinal(i)

)
is equal to pv (T ∗, x∗), assume that xLP (i) arrives

close to x∗ too fast and slow down the speed of the move by major decrease of the smoothing
constant α(i + 1) = α(i)/2. Reset the current fractional solution back to the uniformly
fractional solution xLP (i) = ẋ, set i← i+ 1 and repeat Step 1.

• Minor increase of α: If pv
(
TFinal(i), xFinal(i)

)
is strictly worse than pv (T ∗, x∗), assume that

xLP (i) is moving slow and speed up the move a little bit faster by a minor increase of the
smoothing constant α(i+ 1) = 2blog2 α(i)c + α(i)/2 such as 1/2 + 1/4 to 1/2 + 1/4 + 1/8. Set
i← i+ 1 and repeat Step 1 (without coming back to xLP (i−1) = ẋ).

Step 2: Fixed smoothing constant. The second step moves the fractional solution from
the current fractional solution xLP (i−1) toward x∗ of the best known integer solution (z∗, x∗) by
exponential smoothing (24) on the line segment

[
xLP (i−1), x∗

]
without changing the smoothing

constant α that is adjusted in Step 1. Observe the pre-value pv
(
TPre(i), xPre(i)

)
followed by the

final value pv
(
TFinal(i), xFinal(i)

)
based on xLP (i).

• Criterion to go back to Step 1: If pv
(
TFinal(i), xFinal(i)

)
hit pv (T ∗, x∗) for a run of say 10 times

of trials i, assume that the current probability distribution is too close to pv (T ∗, x∗) and
reset the fractional solution back to the uniformly fractional solution xLP (i) = ẋ initializing
α(i+ 1) = 1/2. Set i← i+ 1 and go back to Step 1.

• If a better integer solution is observed, the procedure updates pv (T ∗, x∗) with the new best
one. Set i← i+ 1 and repeat Step 2 from the current fractional solution xLP (i−1) toward the
new best known integer solution x∗.

• If the observed solution is strictly worse than the best known integer solution, set i ← i + 1
and repeat Step 2 going on from the current fractional solution xLP (i−1) toward the current
best known integer solution x∗.

In Table 4, we compare the 10,000 trials of fixed randomized rounding of Table 2 with 10,000
trials of the adaptive randomized rounding. Under Random. Round., Max represents the maximum
value obtained using fixed randomized rounding. Under Adaptive Random. Round., Break repre-
sents the first value obtained that is larger than the best solution obtained using fixed randomized
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Fixed Random. Round. Adaptive Random. Round.

nTax nChar Max no. total sec. Break no. Max no. total sec.

10 100 1520 1404 1550 1524 765 1524 765 1505
10 200 3008 4286 3066 3010 200 3010 200 3182
10 300 4499 7230 4572 4502 179 4517 9677 4736
10 400 6015 8839 6078 6019 2475 6019 2475 6320
10 500 7499 1742 7596 7501 85 7510 93 7789
10 600 8984 2552 9116 8989 1057 8993 1263 9469
10 700 10481 4509 11078 10487 112 10489 1960 10976
10 800 12004 3305 12283 12007 1032 12007 1032 12681
10 900 13452 8476 13683 13455 198 13457 200 14010
10 1000 14963 3255 15232 14965 259 14974 1514 15635

20 100 3193 4311 5147 3197 86 3219 3833 5338
20 200 6361 6580 10239 6365 470 6375 2115 10430
20 300 9553 7407 15243 9558 387 9612 9182 16101
20 400 12700 814 20364 12702 125 12742 2550 20807
20 500 15863 5916 25347 15866 134 15896 636 26246
20 600 19051 9341 30388 19052 482 19135 9237 31548
20 700 22171 1825 35533 22195 208 22229 3512 36867
20 800 25377 3411 40738 25379 4054 25443 6662 42180
20 900 28493 5107 45772 28495 260 28502 8621 47294
20 1000 31695 6009 51212 31699 497 31747 7137 53241

Table 4: Comparison of Fixed Randomized Rounding (the 10,000 trials in Table 2) and Adaptive
Randomized Rounding (10,000 trials)
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rounding. Observe that for each problem in Table 4, adaptive randomized rounding was able to
obtain a better solution in relatively few iterations. Max represents the best solution obtained
using adaptive randomized rounding.

Table 5 contains results that demonstrate that adaptive randomized rounding produces results
that are unlikely to have been produced from fixed randomized rounding using the uniformly
fractional solution. Norm. gives the R-square for the distribution of final values with a normal
distribution. The high R-square indicates that the distribution of final values is normal when
randomly rounding the uniformly fractional solution.

dev./σ represents the number of standard deviations between the best value from 10,000 ran-
domized rounding trials and the mean (the Z-value). Under fixed randomized rounding from the
uniformly fractional solution, observe that this value is generally less than 3.8. At a z-value of 3.8,
we would expect 1 trial in 10,000 at this value or higher. In other words, fixed randomized rounding
using the uniformly fractional solution behaves as expected using the normal distribution.

In contrast, all but two values of dev./σ when using adaptive randomized rounding are larger
than 3.8 with most being larger than 4 and many larger than 5. At a z-value of 5, it is extremely
unlikely that the solution using adaptive randomized rounding could have been obtained by chance.
The results in Table 5 clearly indicate that adaptive randomized rounding is superior and provides
solutions that are unlikely to be obtained by randomized rounding using the uniformly fractional
solution.

In the next section we confirm these findings on real biological data.

4.2 Computational experiments on biological data

Tables 6 and 7 show the results on real biological data from computational experiments of 10,000
trials of fixed randomized rounding based on the uniformly fractional solution ẋ and 10,000 trials
of adaptive randomized rounding in the 2 step procedure. The real biological data were used by
Sridhar, Lam, Blelloch, Ravi and Schwartz [18] to construct non-binary phylogenetic trees. We
failed to solve the instance of the largest number (nTax = 395) of the leaf nodes because of out of
memory (OOM). In Table 6, observe that adaptive randomized rounding obtains a better solution
very quickly in all instances but one.

The results in Table 7 confirm the finding in Table 5 that adaptive randomized rounding is
superior to fixed randomized rounding using the uniformly fractional solution.

5 Conclusion

We show that randomized rounding can be an effective method to solve the big parsimony problem.
A fixed randomized rounding procedure using the uniformly fractional solution is shown to provide
much better solutions than using the integer linear programming software GUROBI. We then
develop an adaptive randomized rounding procedure that is seen to be superior (in a statistically
significant manner) when compared to fixed randomized rounding using the uniformly fractional
solution. Our method can be a reasonable approach when looking for good solutions to the big
parsimony problem.

Acknowledgement. The authors would like to thank R. Ravi and Russell Schwartz for providing
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Fixed Random. Adaptive Random.

nTax nChar Norm. Max dev./σ Max dev./σ

10 100 0.95 1520 3.21 1524 3.84
10 200 0.96 3008 3.30 3010 3.56
10 300 0.96 4499 3.28 4517 4.80
10 400 0.96 6015 3.74 6019 4.03
10 500 0.96 7499 3.29 7510 4.00
10 600 0.96 8984 3.07 8993 3.58
10 700 0.96 10481 3.34 10489 3.81
10 800 0.96 12004 3.65 12007 3.84
10 900 0.95 13452 3.57 13457 3.83
10 1000 0.95 14963 3.49 14974 4.00

20 100 0.96 3193 3.52 3219 5.96
20 200 0.95 6361 4.11 6375 5.06
20 300 0.96 9553 3.88 9612 7.25
20 400 0.96 12700 3.79 12742 6.08
20 500 0.96 15863 3.65 15896 5.25
20 600 0.95 19051 3.77 19135 7.03
20 700 0.96 22171 3.44 22229 5.75
20 800 0.96 25377 4.24 25443 6.57
20 900 0.96 28493 3.78 28502 4.09
20 1000 0.96 31695 3.77 31747 5.52

Table 5: Statistics for the experiments in Table 4

Fixed Random. Adaptive Random.

Data Set nTax nChar Max no. Break no.

human mtDNA [17] 13 390 9310 1106 9311 1844
chimp chrY [21] 15 98 2642 1059 2643 40
bacterial [16] 17 1510 48193 1406 48199 8
chimp mtDNA [21] 24 1041 47806 2444 47807 16
human mtDNA [14] 33 405 25853 3847 25855 7
human mtDNA [22] 40 52 3953 8154 3956 6
human chrY [11] 150 49 14433 6136 14503 4
human mtDNA [9] 395 830 OOM OOM OOM OOM

Table 6: Fixed Randomized Rounding (10,000 trials) vs. Break of Adaptive Randomized Rounding
(10,000 trials) on a Selection of Nonrecombining Data Sets [18]
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Fixed Random. Adaptive Random. ratioP

Data Set nTax nChar Max dev./σ Max no. dev./σ RR/AR

human mtDNA [17] 13 390 9310 3.37 9311 1844 3.77 4.69
chimp chrY [21] 15 98 2642 3.73 2645 48 4.11 4.95
bacterial [16] 17 1510 48193 3.48 48224 91 4.28 27.27
chimp mtDNA [21] 24 1041 47806 2.87 47822 614 4.34 291.78
human mtDNA [14] 33 405 25853 3.66 25877 9727 7.34 1.18× 109

human mtDNA [22] 40 52 3953 3.50 3982 567 8.41 ∞
human chrY [11] 150 49 14433 3.96 14585 1488 13.68 ∞
human mtDNA [9] 395 830 OOM OOM OOM OOM OOM OOM

Table 7: Ratio (ratioP) of P-values of Max in Fixed Randomized Rounding (10,000 trials) vs.
Adaptive Randomized Rounding (10,000 trials) on a Selection of Nonrecombining Data Sets [18]

biological data [18].
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