Presentation for the Symposium on BEER

October 2019

An agent-based model of an endangered Florida Tillandsia utriculata population

Erin N. Bodine^{1,*}, Caroline Bush¹, Alexandra M. Campbell^{1,*}, Alex Capaldi^{2,*}, Samuel Crowell¹, Rainer Jones¹, Anna Kula^{1,*}, Brade Oberle³, and Brian Sidoti⁴

bodinee@rhodes.edu

The large, long-lived epiphytic bromeliad *Tillandsia utriculata* has been classified as endangered in the state of Florida where its population has been significantly diminished due to predation from the invasive Mexican weevil *Metamasius callizona* (colloquially called the "evil weevil"). We have constructed an agent-based model to simulate the population dynamics of a Florida *T. utriculata* population both with and without the impact of weevil predation. We have used the model to determine a range of germination rates which lead to population viability under a variety of conditions both with and without weevil predation.

¹Mathematics & Computer Science, Rhodes College, Memphis, TN 38112

² Mathematics & Statistics, Valparaiso University, Valparaiso, IN 46383

³Biology & Environmental Studies, New College, Sarasota, FL 34243

⁴Fairchild Tropical Botanical Gardens, Coral Gables, FL 33156