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	 Background:	 Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare pay-
ers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolu-
tion, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression 
used in our institute provided a model to characterize metabolomic profiles in human ALR.

	 Material/Methods:	 Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppres-
sion were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass 
spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no 
histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection 
(n=5), and 3) biopsies with histological evidence of mild rejection (n=8).

	 Results:	 There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable impor-
tance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection us-
ing partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as pro-
gressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, g-linolenic 
acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality.

	 Conclusions:	 Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur con-
temporaneous with ALR. Additional studies are required to better characterize the role of these metabolic path-
ways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR.

	 MeSH Keywords:	 Graft Rejection • Liver Transplantation • Metabolomics • Nitric Oxide Synthase • 
Prostaglandin-Endoperoxide Synthases

	 Full-text PDF:	 https://www.annalsoftransplantation.com/abstract/index/idArt/913800

Authors’ Contribution: 
Study Design  A

 Data Collection  B
 Statistical Analysis  C
Data Interpretation  D

 Manuscript Preparation  E
 Literature Search  F
Funds Collection  G

1 Department of Surgery, Indiana University Medical School, Indianapolis, IN, U.S.A.
2 Department of Pathology, Indiana University Medical School, Indianapolis, IN, 

U.S.A.
3 Department of Anesthesiology and Pain Medicine, Northwest Metabolomics 

Research Center, University of Washington, Seattle, WA, U.S.A.

  3394      1      4      64

e-ISSN 2329-0358
© Ann Transplant, 2019; 24: 341-349  

DOI: 10.12659/AOT.913800

341
Indexed in:  [Science Citation Index Expanded]  [Index Medicus/MEDLINE] 
[Chemical Abstracts]  [Scopus]

ORIGINAL PAPER

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/228066272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Background

Acute liver rejection (ALR) following liver transplantation oc-
curs in approximately 4–20% of patients [1,2]. According to the 
United Network for Organ Sharing (UNOS), in 2017 the num-
ber of liver transplants performed in the USA was 8082, repre-
senting an increase of 24.5% since 2016. Currently, the num-
ber of patients waiting for liver transplant is approximately 
13 914 and the average waiting time for liver transplant is 
511 days. Therefore, although the incidence of acute liver re-
jection is low, the high volume of transplants coupled with in-
creased frequency and limited donors encourages the max-
imization of graft survival by addressing ALR, a major cause 
of graft damage.

This study aimed to characterize metabolomic aberrancies in a 
human model of liver rejection to guide future studies aimed 
at addressing graft damage congruent with ALR. Between 2008 
and 2012, the standard immunosuppression protocol for pa-
tients receiving liver transplants at Indiana University Hospital 
was begun 2 days following transplant and prior to collection 
of liver biopsy at the time of fascial closure. The hypothesis 
was that a delay in immunosuppression would induce toler-
ance [3]. This immunosuppression delay protocol coupled with 
the collection of a fascial closure biopsy provides an oppor-
tunity to characterize ALR consequences in a human model 
of early liver rejection, specifically to utilize a targeted liquid 
chromatography/mass spectrometry (LC/MS) platform for me-
tabolomics to profile and quantify hepatic metabolites in order 
to identify metabolic signatures associated with ALR.

Metabolomics is the study of a large number of small mole-
cule metabolites in biofluids and tissue to identify biomarkers 
associated with altered metabolic pathways. As metabolites 
are modulated by protein and enzymatic function, they reflect 
many of the alterations caused by disease or other biological 
stresses. Metabolites are exquisitely sensitive to different bio-
logical states and therefore represent a promising approach to 
identify biopathology contemporaneous with rejection [4–6]. 
Several analytical techniques such as nuclear magnetic reso-
nance (NMR), LC-MS, and gas chromatography-mass spectrom-
etry (GC-MS) have been used to detect metabolic changes [7]. 
Several studies have used a variety of analytical techniques to 
elucidate aberrant pathways associated with cancer [8]. While 
a few of these studies have used animal models [9–11], the ma-
jority have focused on humans [4,10,12–22] using NMR [4,16], 
LC-MS [12,13,15,17,21,22], and GC-MS [13–15,18,19], or HPLC 
methods [20]. These studies have reported alterations in nu-
merous metabolic pathways, including glycolysis, amino acid, 
fatty acid, and bile acid metabolism. While there are few re-
ports that have focused exclusively on altered metabolic path-
ways associated with liver rejection, there have been studies 
relating to rejection-associated events. Previous reports have 

documented metabolic pathways and individual metabolites 
that modulate immune cell function and immune responses [23]. 
For example, modulation of T cells has been well documented 
in conjunction with rejection, as has the role of metabolism and 
nutrient availability upon T cell activation and function [5,24]. 
Moreover, activation of T cells requires metabolic reprogram-
ming in order to increase glycolytic flux, lactate, lipids, pro-
teins, nucleic acid, and carbohydrates [25]. These changes in 
metabolic profiles also direct signaling. For example, increased 
intracellular leucine metabolism controls mammalian target of 
rapamycin (mTOR) signaling required to induce Th1, Th2, and 
Th17 CD4(+) T effector cell differentiation [26]. Therefore, there 
is a need to better understand changes in hepatic biochemical 
pathways associated with rejection, and metabolomics is an 
established analytical modality available to identify key com-
pounds. Focusing on hepatic tissue prior to immunosuppres-
sion in patients provides a unique opportunity to improve our 
understanding of graft damage and loss.

Material and Methods

All patients were reviewed and approved by the Indiana 
University Institutional Review Board protocol # 1011004278 
“Acquisition and storage of liver tissue and blood for research”. 
Sixty patients were recruited at the time of listing for liver trans-
plant and received a liver transplant. Underlying liver etiology 
and clinical correlates were collected from medical records. Liver 
biopsies were collected 2 days following liver transplant at the 
time of fascial closure, frozen in liquid nitrogen, and stored at 
–86oC. Patients did not receive immunosuppression prior to fas-
cial closure. Biopsies were evaluated for histological evidence 
of rejection or other pathological aberrances as per clinical 
standard of care. Indiana University Department of Pathology 
notes were collated for evidence of rejection and reperfusion 
injury. Matched biopsies were chosen from 21 patients, based 
on the standard of care routine pathology report of 2-day bi-
opsy. Biopsies were reviewed again by a pathologist (RS) per 
international working party on the terminology of hepatic al-
lograft rejection [27]. The pathologist was not able to classify 
reperfusion injury or rejection for 1 biopsy and this biopsy was 
excluded from LC/MS metabolomic analysis. Remaining biopsies 
were stratified into 3 groups based on pathologist (RS) rating. 
Group 1: no histological evidence of rejection (N=7), Group 2: 
evidence of mild rejection (N=8), and Group 3: patients with 
evidence of moderate or severe rejection (N=5).

Patients and procedures

In all liver transplants, the muscle layer was left open and skin 
was closed immediately after transplantation to prevent com-
partment syndrome. All patients were taken back to the operat-
ing room for delayed fascial closure on the 2nd post-transplant 
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day [28]. During fascial closure, a second allograft biopsy was 
performed. A part of the second liver allograft biopsy was fro-
zen for future use. Patients did not receive any immunosup-
pression prior to fascial closure [3]. For the purpose of this 
study, the day 2 biopsies were divided in to 3 groups (n=5–8 
per group): Group 1 (control), patients with no evidence of 
rejection; Group 2, patients with histological evidence of 
mild rejection; and Group 3, patients with evidence of mod-
erate or severe rejection. To evaluate the metabolic changes 
associated with liver rejection, we performed LC-MS analysis, 
targeting 216 metabolites in liver biopsies taken 2 days after 
liver transplantation.

Immunosuppression protocol

The induction immunosuppression consisted of 3 doses of 2 mg/kg 
rabbit anti-thymocyte globulin (rATG) every 48 hours starting on 
post-transplant day 2 along with a single dose of 1.5 mg/m2 BSA 
of rituximab on post-transplant day 3. Premedication for rATG 
was given immediately before its administration in the form of 
solumedrol [500 (first dose), 250 (second dose), and 120 mg 
(third dose)], acetaminophen (650 mg), and diphenhydramine 
(25 mg). Maintenance immunosuppression was also initiated 
on post-transplant day 2 in the form of tacrolimus monotherapy, 
although some recipients received additional mycophenolate 
mofetil. The goal trough levels for tacrolimus were 7 to 10 ng/mL 
in the first 3 months and 6 to 8 ng/mL thereafter [3]. 

LC/MS

Day 2 liver allograft biopsies were frozen in liquid nitrogen 
and stored at –86°C. Tissue was transported on dry ice to the 
Northwest Metabolomics Research Center (NW-MRC) at the 
University of Washington for analysis. Briefly, targeted LC/MS/
MS was performed according to methods developed at the 
University of Washington Metabolomic Research Center as per 
Zhu et al. [29] Targeted aqueous metabolite profiling analysis 
was performed using an Agilent 1260/AB-Sciex 5500 Qtrap 
Liquid Chromatography-Mass spectroscopy/mass spectroscopy 

(LC-MS/MS) instrument and standard operating procedures we 
developed previously [29]. The LC-MS/MS analysis is based 
on hydrophilic interaction chromatography (HILIC), and tar-
gets 216 metabolites located in more than 35 different met-
abolic pathways. This system provides detailed information 
on metabolites involved in glycolysis, tricarboxylic acid cycle 
(TCA), and pentose phosphate shunt, as well as amino acid, 
fatty acid, and nucleic acid metabolism, and other pathways. 
Twenty-six isotope-labeled internal standards were included 
to monitor sample preparation steps and system performance, 
as well as to provide absolute quantitation of a number of 
amino and organic acids.

Data analysis for metabolomics

The intensity of tissue peaks in each data set were normal-
ized to tissue weight. Statistical analysis was performed us-
ing XLSTAT software. Each data set was mean-centered before 
the analysis. Univariate analysis of the individual metabolites 
was performed using the t test to identify metabolites for mul-
tivariate analysis. The statistical differences are expressed 
as p-values. Multivariate partial least squares - discriminant 
analysis (PLS-DA) was performed using XLSTAT software us-
ing metabolites identified by variable importance to projec-
tion (VIP) analysis.

Results

There were 3 deaths within the 3 cohort groups (Table 1). 
None of the deaths were related to rejection and occurred 
9–51months after transplant. One patient died 4 years 3 months 
after transplantation, with no evidence of rejection in the en-
tire post-transplant course. One patient had an HCV recur-
rence and died 3 years 1 month after transplantation, with 
no evidence of rejection in the entire post-transplant course. 
The third patient died from a viral infection 9 months after 
transplantation, and was not linked to an isolated episode of 
moderate/severe rejection diagnosed 2 days post-transplant.

Control reperfusion injury Mild rejection Moderate or severe rejection

Number 7 8 5

Age (years) 	 64±6.4 	 62±2.9 	 63±7.9

Gender (M/F) 5/2 6/2 4/1

MELD score 	 23±4.4 	 21±8.9 	 20±4.5

AST 	 23±2.1 	 25±3.8 	 19±4.0

Warm ischemia time (min) 	 17±2.8 	 18±3.16 	 20±3.3

Cold ischemia time (min) 	 320±58.6 	 312±77.2 	 383±61.9

Table 1. Patient demographics.

Data represents mean ±SD.
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Histological evidence of rejection

Of the 60 patients recruited and transplanted, routine pathol-
ogy reports described histological evidence of rejection in 14 
patients (23%). Biopsies were stratified based on these reports 
into 3 groups: 1) no histological evidence of rejection, 2) evi-
dence of mild rejection, and 3) patients with evidence of mod-
erate or severe rejection. Seven samples from each group were 
selected for pathology review and metabolomic analysis. A pa-
thologist (RS) reviewed all 21 fascial closure liver biopsies taken 
2 days post-transplant. Her analysis found 5 biopsies had un-
equivocal evidence of moderate or severe rejection (endothe-
lialitis, cell infiltration, or bile duct injury). Seven biopsies had 
no evidence of rejection but had reperfusion damage. One sam-
ple was indeterminable, did not reach criteria for rejection, and 
had no reperfusion injury. The remaining 8 biopsies had his-
tological evidence of mild rejection. The 1 biopsy that was in-
determinable was not included in either rejection or control 
groups and data were not included in the metabolomic analysis.

The biopsies in the rejection group were characterized by the 
presence of a mixed inflammatory infiltrate in portal tracts 
that comprised variable combinations of lymphocytes, eo-
sinophils, and neutrophils. Endothelialitis and bile duct dam-
age were present in varying degrees of severity. Control bi-
opsies showed features of reperfusion damage that included 
variable combinations and severity of portal edema, peribili-
ary neutrophils, perivenular hepatocellular necrosis, and pres-
ence of lobular neutrophils. One biopsy showed mild macro-
vesicular steatosis with necrosis and neutrophils. The biopsies 

were characterized into 3 groups for the purpose of metab-
olomic analysis: Group 1 was reperfusion injury only (N=7), 
Group 2 was categorical histological evidence of moderate or 
severe rejection (N=5), and Group 3 was histological evidence 
of mild rejection (N=8).

LC/MS-based metabolomics

The LC-MS/MS method was optimized to target a total of 216 
metabolites in the liver biopsy samples. However, after delet-
ing metabolites that were not detected, metabolites below the 
signal to noise cutoff, and metabolites inconsistently detected 
in the samples, 133 metabolites were quantified. We assessed 
and compared differences in metabolites between 1) biopsies 
with mild rejection or with moderate or severe rejection when 
compared to tissues with reperfusion injury and 2) biopsies with 
mild rejection when compared to biopsies with moderate or se-
vere rejection. Each metabolite was ranked by its variable im-
portance in the projection (VIP) score via partial least squares- 
discriminative analysis (PLS-DA) using XLSTAT Biomed software 
(Figure 1). Twenty-one metabolites with VIP scores above 1.5 
were included in a secondary PLS-DA analysis comparing no re-
jection (reperfusion injury) to both moderate to severe rejec-
tion (Figure 2A) and mild rejection (Figure 2B). Of these metab-
olites, linoleic acid, g-linolenic acid, and citrulline emerged as 
providing the strongest predictive model of rejection (Figure 2). 
The differences between these metabolites in rejection (mild, 
moderate, and severe) and control biopsies were examined in-
dividually (Figure 3). They were then used to construct a final 
sample model by PLS-DA. Cross-validation of this model was 
then used to estimate how closely the 3 metabolites, taken as 
a group, correlate with the biopsy histology report from the pa-
thologist (RS) (Figure 4). The resulting aggregate indicates that, 
taken together, the 3 metabolites can accurately identify the 
rejection status of each patient in our sample group, and that 
this is likely to be the case for independent samples.

Discussion

This study represents a unique model of human liver rejection 
due to the unique immunosuppression and surgical protocol 
that was followed. There are no previously published data on 
human liver rejection in this setting. In the absence of immu-
nosuppression, changes occurring in the liver biopsies in the 
setting of cellular rejection are novel and intriguing. Using 
2-day protocol liver biopsies, targeted LC/MS-based metabo-
lomics analysis, and PLS-DA, we identified 3 aberrant metab-
olites (linolenic acid, g-linolenic acid, and citrulline) contem-
poraneous with liver rejection.

LC/MS/MS-based metabolomics provides broad-based cover-
age of the important small molecule metabolites in biofluids 
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and tissue to allow the identification of altered metabolic path-
ways. As metabolites are modulated by protein function, they 
reflect many of the alterations caused by disease or other bi-
ological stresses [4–6]. Analysis using PLS-DA is appropriate 
when large numbers of potentially correlated variables must 
be analyzed. It is especially well suited to cases where the 
number of variables exceeds the number of samples, which 

would otherwise produce overfitting using conventional re-
gression models. We used VIP scores, which represent the ef-
fect of a particular variable on the PLS-DA model, to eliminate 
non-predictive variables from our dataset, and to identify the 
variables with the highest degree of predictive power at the 
level of individual patients. This analysis revealed 3 metabo-
lites: linoleic acid, g linolenic acid, and citrulline. Linoleic acid 
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Figure 2. �(A, B) Secondary models of potentially significant metabolic markers. Variable Importance in the Projection (VIP): 
Are estimates of the relative predictive power of each variable in a partial least squares model. Citrulline, linolenic acid, 
and linoleic acid (highlighted in violet) were selected for use in a final regression model based on their high VIP in the initial 
model, and relatively high VIP in discriminating between both control data and rejection, and full rejection vs. mild rejection. 
Data from comparison between mild rejection and control are omitted, as the 2 could not be easily distinguished.

345

Skill N. et al.: 
Metabolomic characterization of human model of liver rejection…
© Ann Transplant, 2019; 24: 341-349

ORIGINAL PAPER

Indexed in:  [Science Citation Index Expanded]  [Index Medicus/MEDLINE] 
[Chemical Abstracts]  [Scopus]

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



and g-linolenic acid are associated with cyclooxygenase (COX) 
pathways, while citrulline is associated with nitric oxide syn-
thase (NOS) pathways.

Linoleic acid is an octadecadeinoic fatty acid and a precur-
sor for arachidonic acid, which is a substrate for COX en-
zymes and subsequent biosynthesis of vasoactive molecules. 
Changes in arachidonic acid are linked to numerous pathol-
ogies of the liver, including portal hypertension and liver cir-
rhosis [30,31]. Linoleic acid regulates the COX-2/VEGF/MAP ki-
nase pathway [32] and endothelial vasodilatory function [33]. 
Studies have shown that COX-2 was significantly increased in 
a rodent model of liver rejection [34]. However, whether in-
creased COX is beneficial or not is controversial. Some stud-
ies have shown that increased COX-2 is protective [35], while 
others have found that inhibition of COX-2 increases graft sur-
vival in animal models [34,36]. Moreover, linoleic acid is also 
associated with pathologies independent of COX, as it is syn-
thesized from phosphatidylcholine via phospholipase A2 or 
phospholipase A1. Aberrancies of phospholipase A2 are as-
sociated with Parkinson disease, peroxisomal beta-oxidation 

enzyme deficiency, neurodegeneration with brain iron accu-
mulation, and peroxisomal acyl-CoA oxidase deficiency [37,39]. 

The second metabolite identified by PLS-DA was g-linolenic acid, 
which is an all-cis-6,9,12-octadecatrienoic acid designated as 
18: 3 and is synthesized from linoleic acid by introduction of 
a (third) double bond at the delta 6 position under the catalytic 
influence of delta-6-desaturase enzyme. This step is believed 
to be the rate-limiting stage in the metabolic pathway. Aging, 
obesity, diabetes, high alcohol intake, stress-related hormones, 
and viral infections are known to reduce conversion of linoleic 
acid to g-linolenic acid [40–43]. g-linolenic acid is known to in-
hibit angiogenesis, partly via the decrease in the expression of 
VE-cadherin and beta-catenin [44], potentially due to the elim-
ination of the precursor, -linoleic acid. Hepatocyte expression 
of insulin growth factor-I, insulin growth factor-II, growth hor-
mone receptor, insulin receptor, Insulin growth factor binding 
protein-3, and Insulin growth factor binding protein-4 mRNAs 
are all upregulated by linoleic acid [45]. Conversion of linoleic 
acid to g-linolenic acid is known to be beneficial for human 
health [46]. Linolenic acid attenuates endothelial apoptosis in 
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with the whiskers showing the 5th through 95th percentile.
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vitro via the PI3K/Akt/eNOS pathway [47]. In terms of target-
ing linoleic acid/g-linolenic acid, there are a number of com-
pounds aimed at modulating the activity of PLA2, including va-
respladib [48], giripladib [49], and efipladib [50], which would 
limit the biosynthesis of both linoleic acid and g-linolenic acid.

The third metabolite identified by PLS-DA was citrulline, a key 
intermediate in the urea cycle produced via the metabolism 
of ornithine and carbamoyl phosphate. Moreover, citrulline is 
a by-product of the enzymatic production of nitric oxide from 
the amino acid arginine. As citrulline is a part of the urea cycle 
and urea is a marker of liver failure, it is not unexpected that 
rejection is associated with increased citrulline. However, urea 
levels were not significantly higher in patients with rejection. 
Because citrulline is involved in many biological pathways, it is 
impossible to accurately hypothesize the pathobiology, physio-
logical, and biochemical milieu associated with changes to he-
patic linoleic acid, g-linoleic acid and citrulline based on biopsies. 
However, the fact that they are connected to important hepatic 
perfusion regulators suggests that changes impart/reflect a re-
sponse to tissue stress, damage, and/or acute graft rejection. 
Arginine is the predominate substrate for the production of ni-
tric oxide (NO), a well-documented vasodilator associated with 
liver perfusion and portal hypertension [51,52]. The role of NO 
in liver perfusion is well documented and focuses on sinusoidal 
stellate cell control of sinusoidal dilation and thus an increase in 
resistance to portal venous blood flow. A reduction in citrulline 
might be indicative of a modulation of NO biosynthesis. Reduced 
citrulline could be reflective of a reduction of NOS activity, as 
citrulline is the biproduct of the conversion of arginine to NO. 
In contrast, as citrulline is also the substrate, a reduction could 
be indicative of an increase in NOS activity. What we do know 
is that a change in NO within the liver will modulate perfusion 
and affect ischemia and hypoxia and impart an additional stress 
to the liver. Moreover, endothelial NOS (eNOS) is also known 
to “uncouple” when co-factors are absent, leading to the for-
mation of oxygen free radicals [53]. The conversion of arginine 
to NO and citrulline is a 2-step process involving N-hydroxy-l-
arginine as an intermediate; therefore, uncoupling of endothe-
lial NOS could result in a reduction in citrulline.

The data do not suggest that either linolenic acid or citrulline 
should replace current markers of acute liver rejection. LC-MS/
MS is unlikely to be quicker or cheaper than histology and liver 
functional tests. Nevertheless, there is utility in investigating 
linolenic acid and citrulline, as both have been shown to be 
markers of interest in other pathologies. For example, the ratio 
of linolenic acid to deoxycholic acid species is a potential bio-
marker for metabolic abnormalities in obesity [54] and hepatic 
steatosis [55]. Moreover, the circulating citrulline concentration 
is a biomarker of intestinal functionality [56,57]. What the data 
may reveal is hepatic response to acute liver rejection by the 
modulation of vasodilators to maintain liver perfusion. However, 

we are cognizant that differences in metabolomics signatures be-
tween control livers and livers with rejection could be indepen-
dent of rejection. It is possible that these differences are linked 
to other aspects of liver disease. For example, sarcopenia, which 
is associated with modulated metabolism, poorer outcomes, and 
changes in the levels of citrulline and linoleic acid, occurs in pa-
tients with liver disease [58–61]. A preliminary analysis of sarco-
penia in the patients within this study, based on measurement 
of the psoas muscle at the C3, as previously described [62,63], 
was performed and identified 3 patients with sarcopenia. Two 
patients within the early rejection group had sarcopenia. One 
patient with no evidence of rejection was identified with sarco-
penia. Because the frequency of overlapping sarcopenia within 
the 3 cohorts is sporadic, it is difficult to determine if sarcope-
nia is an independent variable in hepatic metabolites associated 
with hepatic response to rejection.

Additional research is required to further elucidate our find-
ings and to better understand any connection among metabolic 
changes, acute liver rejection, and graft survival. Further research 
is likely to focus on metabolomic quantification post-transplant 
in rodent models of liver rejection [64]. This is because rejection 
rates observed in clinical programs are very low; therefore, to ex-
pand this project using patient samples only would be prohibi-
tive. Moreover, the delayed immunosuppression protocol is con-
troversial and delayed immunosuppression and 2-day protocol 
biopsies are not the standard of care at our institute at present.

Finally, the immunosuppression protocol deserves further ex-
planation. The premise behind delayed introduction of immu-
nosuppression was to allow immune activation of recipient 
lymphocytes in the allograft. It was thought that the potent 
rATG would then lead to apoptosis and death of recipient lym-
phocytes within the graft, allowing operational tolerance in the 
long term. Although this approach permits a degree of rejec-
tion in the allograft, this is a desired effect and has no adverse 
effects in the long term, which was demonstrated in our larger 
study involving 1000 patients [3]. Based on this large-sample 
experience, we do not believe that deaths that occurred in this 
study cohort were due to the delayed immunosuppression.

Conclusions

Contemporaneous with acute liver rejection, increases in lin-
oleic acid and g-linolenic acid are observed alongside a de-
crease in citrulline. These metabolites are connected to path-
ways that regulate liver perfusion.
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