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Abstract

Purpose—Lipopolysaccharide (LPS), a bacterial endotoxin, is known to stimulate leuokotriene 

B4 (LTB4) secretion by human corneal (HCECs), conjunctival (HConjECs) and meibomian gland 

(HMGECs) epithelial cells. We hypothesize that this LTB4 effect represents an overall induction 

of proinflammatory gene expression in these cells. Our objective was to test this hypothesis.

Methods—Immortalized HCECs, HConjECs and HMGECs were cultured in the presence or 

absence of LPS (15 μg/ml) and ligand binding protein (LBP; 150 ng/ml). Cells were then 

processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, 

background subtraction, cubic spline normalization and GeneSifter software.

Results—Our findings show that LPS induces a striking increase in proinflammatory gene 

expression in HCECs and HConjECs. These cellular reactions are associated with a significant up-

regulation of genes associated with inflammatory and immune responses (e.g. IL-1β, IL-8, and 

tumor necrosis factor), including those related to chemokine and Toll-like receptor signaling 

pathways, cytokine-cytokine receptor interactions, and chemotaxis. In contrast, with the exception 

of Toll-like signaling and associated innate immunity pathways, almost no proinflammatory 

ontologies were upregulated by LPS in HMGECs.
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Conclusions—Our results support our hypothesis that LPS stimulates proinflammatory gene 

expression in HCECs and HConjECs. However, our findings also show that LPS does not elicit 

such proinflammatory responses in HMGECs.
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Introduction

The human ocular surface is inhabited with diversified commensal microorganisms, many of 

which are bacteria. These organisms account for more than 90% of the eye's surface 

microbiota, and possess both potent immunoregulatory functions and pathogenic capabilities 

[1–3]. Indeed, bacteria and their toxins can cause significant, and sometimes irreversible, 

damage to the ocular surface [4, 5]. For example, bacterial keratitis accounts for 41.8% to 

91.8% of all corneal infections, and is one of the most frequent causes of corneal blindness 

[6–8]. Further, bacterial conjunctivitis is the major cause of red eye worldwide, [9] and 

bacterial toxins may contribute to the development of obstructed terminal ducts in 

meibomian gland dysfunction (MGD) [10]. However, the mechanism(s) that underlie the 

diverse array of these bacterial actions on ocular surface and adnexal epithelial cells have yet 

to be elucidated.

We hypothesize that one such bacterial mechanism involves a lipopolysaccharide (LPS)-

induced proinflammatory gene expression in these epithelial cells. LPS, also known as 

endotoxin, is a glycolipid of Gram-negative bacteria cell walls that elicits strong 

inflammatory responses in mammalian cells[11]. LPS is composed of a hydrophilic 

polysaccharide and a hydrophobic lipid A, which is the toxic component of LPS and 

activates the host's innate immune system via the Toll-like recepter4/myeloid differentiation 

factor 2 (TLR4/MD2) receptor complex[12–14]. The lipid transferase LPS-binding protein 

(LBP) and CD14 catalyze LPS transfer to the TLR4/MD2 complex[14].

In support of our hypothesis, we have previously shown that LPS stimulates leukotriene B4 

(LTB4) secretion by human corneal (HCEC), conjunctival (HConjEC) and HMG (HMGEC) 

epithelial cells, and that this effect is enhanced by co-exposure to LBP[15]. To extend these 

findings, we examined whether LPS and LBP upregulate the expression of numerous 

inflammatory pathways in these cells.

Methods

Cell cultures

Immortalized HCEC (from Dr. James Jester, Irvine, CA) [16], HConjEC (from Dr. Ilene 

Gipson, Boston, MA) [17], and HMGEC [18]were cultured, as previously described.[15] In 

brief, HCEC and HConjEC were cultured in keratinocyte serum free medium (KSFM) 

supplemented with bovine pituitary extract (BPE, 25 μg/ml), epidermal growth factor (EGF, 

50 ng/ml), penicillin and streptomycin. HMGEC were cultured in KSFM supplemented with 

50 μg/ml BPE, 50 ng/ml EGF, penicillin, and streptomycin. Cells were maintained in 75 cm2 
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flasks and then plated for experiments in 6-well culture dishes (Corning, Lowell, MA). At 

confluence the cell numbers ranged from 3.8 to 4.9 x 105 cells/well, and varied depending 

upon the cell type. All cell culture reagents were purchased from Invitrogen Corp. (Carlsbad, 

CA), except for DMEM/F12, which was obtained from Mediatech, Inc. (Manassas, VA).

After reaching confluence, cells were rinsed with PBS and then cultured in a medium 

containing DMEM/F12 with 10% FBS, 10 ng/ml EGF, penicillin and streptomycin for 2 

days. After this time period, cells (n = 3 wells/cell type/treatment) were incubated in serum-

free DMEM/F12 and exposed to vehicle (1% bovine serum albumin [BSA]; Sigma-Aldrich), 

or LPS (15 μg/ml; E. Coli, strain 0127:B8, lot #050M4094; Sigma-Aldrich, St. Louis, MO) 

and LBP (150 ng/ml; R&D Systems, Inc. Minneapolis, MN), for six hours. The LPS and 

LBP were dissolved in DMEM and the BSA in PBS (Mediatech, Inc., Manassas, VA). The 

LPS+LBP concentrations used in these studies, as we previously reported [15], were very 

effective for the stimulation of LTB4 production by ocular surface and adnexal cells.

RNA extraction and gene microarray analysis

Cellular RNA samples were processed for microarray analyses, as previously reported. 

[19]Briefly, total RNA was extracted using RNeasy Mini Kit (Qiagen, Inc., Valencia, CA), 

according to the manufacturer’s instructions. The RNA concentrations and 260/280 nm 

ratios were determined by using a NanoDrop 1000 spectrophotometer (Thermo Scientific, 

Waltham, MA). RNA integrity was evaluated by using a RNA Nano 6000 Series II Chip 

with a Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA). The RNA samples were 

further processed by Asuragen (Austin, TX) for quantitation of mRNA levels using 

microarray expression analysis (HumanHT-12 v.4 Expression BeadChips; Illumina, San 

Diego, CA), as previously described. [20]

Non-log-transformed, background subtracted and cubic spline normalized data were 

analyzed with commercial software (GeneSifter.net; Geospiza, Seattle, WA). This 

comprehensive program also generated gene KEGG pathway, ontology and z-score reports. 

Standardized hybridization intensity values were adjusted by adding a constant, such that the 

lowest intensity value for a sample equaled 16.[21, 22] BeadChip data were analyzed with 

Student's t-test (two-tailed, unpaired). All data are accessible for download through the 

National Center for Biotechnology Information's Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo) via series accession number GSE111496.

Results

LPS+LBP influence on overall gene expression in human ocular surface and adnexal 
epithelial cells

To determine endotoxin's influence on gene expression in HCECs, HConjECs and 

HMGECs, we exposed differentiated cells (n = 3 wells/cell type/treatment) to vehicle or LPS

+LBP for six hours and then processed samples for Illumina BeadChip and Geospiza 

software analyses.

Our results demonstrate that LPS+LBP exert a significant effect on the expression of more 

than 1,000 genes in HCECs, HConjECs and HMGECs (Table 1). The relative direction of 
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this endotoxin impact was similar in all three cell types, with LPS+LBP increasing and 

decreasing almost the same percentages of genes (i.e. cornea: 52.5% ↑; conjunctiva: 42.4% 

↑; meibomian: 44.3% ↑). Some of the most highly up- and down-regulated genes in HCECs, 

HConjECs and HMGECs following LPS+LBP exposure are shown in Table 2.

There were 9 genes that were upregulated, and 12 genes that were downregulated, in all 

three cell lines. Examples (with accession numbers) of genes significantly (p < 0.05) 

stimulated by LPS+LBP in all three cell types included those encoding β2-adrenergic 

receptor (NM_000024), angiopoietin-4 (NM_139314), interleukin-1 (IL-1) receptor-

associated kinase 2 (IRAK2; NM_001570), IL-1 receptor antagonist (RA; NM_173843), 

IL-1α (NM_000575), IL-1β (NM_000576) superoxide dismutase 2 (NM_00102446) and 

thioredoxin reductase 1 (NM_001093771). Genes significantly (p < 0.05) downregulated by 

LPS+LBP in HCECs, HConjECs and HMGECs included EGF-containing fibulin-like 

extracellular matrix protein 1 (NM_001039348), G protein-coupled estrogen receptor 1 

(NM_001039966), Rab7B (NM_177403), serine protease 23 (NM_007173) and signal 

transducer and activator of transcription 1 (NM_007315).

Impact of LPS+LBP exposure on pro-inflammatory gene expression in HCECs

Exposure of HCECs to LPS+LBP induced a significant increase in the expression of 

proinflammatory genes. In fact, of the 20 genes with known functions that were most highly 

upregulated by LPS+LBP in HCECs, 17 were linked to inflammation (Table 3). This effect 

was associated with a marked rise in the activity of KEGG pathways mediating a diverse 

array of inflammatory and immune responses, including cytokine-cytokine receptor 

interactions and the signaling of Toll-like (TLR), B cell and T cell receptors (Table 4).

Most striking was the influence of LPS+LBP on inflammatory response gene ontologies in 

HCECs. The endotoxin significantly increased the expression of 52 inflammatory response 

ontologies with a z-score ≥ 4.0, and another 66 inflammatory response ontologies with z-

scores between 2.0 to 4.0. Indeed, 17.7% of the 665 biological process ontologies up-

regulated by LPS+LBP were immune-related. Examples of the inflammatory response 

ontologies stimulated by LPS+LBP in HCECs are shown in Table 5, and include those 

associated with immune system processes, lymphocyte activation and chemokine 

production.

Effect of LPS+LBP treatment on pro-inflammatory gene expression in HConjECs

Treatment of HConjECs with LPS+LBP stimulated a significant increase in the activity of 

numerous pro-inflammatory genes. Of the 25 genes with known functions that were most 

highly upregulated by LPS+LBP in HConjECs, 15 were linked inflammation (Table 6). This 

immune response of HConjECs to LPS+LBP was associated with a significantly enhanced 

expression of inflammatory KEGG pathways, such as those mediating cytokine-, 

chemokine- and TLR signaling (Table 7).

As we also observed in HCECs, the most impressive effect of LPS+LBP on HConjECs was 

the up-regulation of inflammatory response gene ontologies. The endotoxin significantly 

increased the expression of 54 inflammatory response ontologies with a z-score ≥ 4.0, and 

another 85 inflammatory response ontologies with z-scores between 2.0 to 4.0. Of the 587 
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biological process ontologies significantly stimulated by LPS+LBP in HConjECs, 23.7% 

were immune-associated. Examples of the inflammatory response ontologies up-regulated 

by LPS+LBP in HConjECs are listed in Table 8, and include those linked to immune system 

processes, and the chemotaxis, migration and adhesion of leukocytes.

Influence of LPS+LBP exposure on pro-inflammatory gene expression in HMGECs

In contrast to the responses of HCECs and HConjECs, exposure of HMGECs to LPS+LBP 

did not induce a dramatic increase in the activity of pro-inflammatory genes. Of the 25 genes 

with known function that were most highly upregulated by LPS+LBP in HMGECs, only 2 

were immune-related (Table 10). In addition, the extent to which endotoxin stimulated any 

immune-linked gene expression in HMGECs was typically less than 1.3-fold, as compared 

to vehicle (Table 11).

LPS+LBP elicited very few significant differences in KEGG pathways associated with the 

immune system in HMGECs (Table 12). There were also no inflammatory response gene 

ontologies upregulated by LPS+LBP in HMGECs. Rather, almost all of the immune-related 

ontologies that were significantly increased were those related to endotoxin-induced TLR 

signaling and the associated innate immune and type 1 interferon (IFN) gene activities 

(Table 13). The significance of these ontological responses was also far less than found in 

HCECs and HConjECs. There were no LPS+LBP-induced immune ontologies in HMGECs 

with z-scores greater that 5.0, only 7 such ontologies with a z-score higher than 4.0, and 

only 21 immune ontologies with a z-score between 2.0 to 4.0. Overall, LPS+LBP 

significantly increased only 268 biological process ontologies in HMGECs, and of these, 

10.4% were linked to the immune system.

Discussion

Our results support our hypothesis that LPS+LBP stimulates proinflammatory gene activity 

in HCECs and HConjECs. This endotoxin significantly increased the expression of 118 

inflammatory response gene ontologies in HCECs, and 139 such ontologies in HConjECs. 

In contrast, and not in support of our hypothesis, LPS+LBP exposure did not induce a 

marked increase in the activity of pro-inflammatory genes in HMGECs. Indeed, there were 

also no inflammatory response gene ontologies upregulated by LPS+LBP in HMGECs. 

These findings suggest that, unlike HCECs and HConjECs, HMGECs are resistant to the 

endotoxin-induced stimulation of proinflammatory pathways.

We discovered that LPS+LBP significantly increased the expression of more than 1,000 

genes in each of the ocular cell lines. However, many of these genes were cell-specific, and 

only 21 genes were regulated in the same way in HCECs, HConjECs and HMGECs. The 

nature of many of these changes was analogous to that found in other cells and tissues. For 

example, LPS has also been shown to increase the expression of angiopoietin-4, IRAK2, 

superoxide dismutase 2, thioredoxin reductase 1, IL-1RA, IL-1α and IL-1β in heart, muscle 

and adipose tissue[23], macrophages [24–26], monocytes [27], microglia [28] and the 

brain[29]. Similarly, LPS is known to downregulate the expression serine proteases and 

Rab7B in macrophages [30] and monocytes[31].
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Most impressive was the striking LPS+LBP-induced in increase in proinflammatory gene 

expression in HCECs and HConjECs. These cellular reactions were associated with a 

significant upregulation of genes linked to inflammatory and immune responses, including 

those related to chemokine and Toll-like receptor signaling pathways and cytokine-cytokine 

receptor interactions. Some of the most highly upregulated genes by LPS+LBP in HCECs 

and HConjECs included chemokine (C-C motif) ligand 20, which attracts dendritic cells and 

effector/memory T- and B-cells; IL-1 family, member 9, which activates NF-kappa-B and 

MAPK signaling pathways in target cells; chemokine (C-X-C motif) ligand 10, which 

recruits monocytes and T-lymphocytes; lymphotoxin β, which induces the inflammatory 

response system; TNFα, which plays a major role in inflammation; nuclear factor of kappa 

light polypeptide gene enhancer in B-cells 2, which encodes a subunit of the transcription 

factor complex nuclear factor-kappa-B. The NFkappaB complex functions as a central 

activator of genes involved in inflammation and immune function; IL-8, which is a 

chemotactic factor that attracts neutrophils, basophils, and T-cells, and is involved in 

neutrophil activation; prostaglandin-endoperoxide synthase 2, which is responsible for 

production of inflammatory prostaglandins; and IRAK2, which is reported to participate in 

the IL1-induced upregulation of NF-kappaB[32, 33].

Even more impressive was that exposure of HMGECs to LPS+LBP did not induce a 

dramatic increase in the activity of proinflammatory genes. Rather, the immune response of 

HMGECs to this endotoxin appeared muted, and involved the upregulation of almost no 

inflammatory response gene ontologies. Instead, those immune-related ontologies that were 

significantly increased were related primarily to endotoxin-induced TLR signaling and the 

associated innate immune and type I IFN gene activities. This response might be expected, 

given that LPS binds to TLRs to stimulate innate immunity, and induce type I IFN 

production to help protect against bacterial infection[34, 35].

There are several possible explanations for this lack of an HMGEC inflammatory response 

to LPS+LBP. First, we discovered that the most highly expressed gene in the HMG encodes 

for leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) [20]. LAIR-1 is an 

inhibitory receptor that suppresses immune cell activation and attenuates proinflammatory 

cytokine production [36, 37]. Second, we have found that expression of the LAIR-1 gene is 

upregulated during HMGEC differentiation. [38] Third, we have discovered that HMGEC 

differentiation also increases the gene expression for secretoglobin, family 1A, member 1 

(i.e. uteroglobin), which suppresses inflammation.[39]

In addition to these anti-inflammatory activities, the MG also features anti-infective 

properties. We found that HMGEC differentiation is associated with an upregulation of the 

genes for phospholipase A2, which kills gram-positive bacteria [40], and CCL28, which has 

broad-spectrum antimicrobial activity [41]. [38] We also learned that human MGD is 

accompanied by a significant increase in intraglandular transcripts for S100 calcium binding 

proteins A8 and A9 (S100A8/9, also called calprotectin) [20]. In high concentrations this 

heterodimer has anti-inflammatory and anti-microbial functions and makes epithelial cells 

more resistant to bacterial invasion [42–45]. Transcripts for peptidase inhibitor 3, skin-

derived (also called elafin) [46]), a bacterial infection inhibitor[33], and S100A7 (also called 

psoriasin), an antimicrobial peptide[33], are also increased in MGD[20]. Furthermore, we 
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have discovered that HMGEC lysates inhibit the growth rate of the gram-negative bacteria, 

Pseudomonas aeruginosa [47], and others have shown that HMGEC lipids prevent the 

growth of both gram-positive and gram-negative bacteria[48].

Overall, this apparent resistance of the HMG to inflammation and infection may help to 

explain why there is no evidence of inflammation or infection in this tissue in obstructive 

MGD [49–53]. These findings do not mean that HMGs cannot become inflamed or infected. 

A single MG, for example, may develop a chalazion (i.e. inflammation of a blocked gland), 

that may become secondarily infected. In addition, we have discovered that that isotretinoin 

can induce the expression of inflammatory mediators in HMGECs[19]. However, neither 

inflammation nor infection is a characteristic of MGD, which affects multiple glands[54].

Our study has some limitations. First, our data originate from the use of Illumina BeadChips, 

and as we have previously reported, significant differences may exist between microarray 

platforms in their ability to detect differential gene expression[55, 56]. This low 

concordance in gene identification seems to be due to innate differences in platform design, 

including variations in probe length and content, deposition technology, labeling approaches, 

hybridizing protocols, image segmentation, signal detection, background correction, data 

standardization and data mining[21, 57–59]. However, most gene expression changes 

revealed by a given platform are believed to be biologically correct, and these differences 

cannot be attributed to technological variations[57, 58]. Nevertheless, it is possible that 

additional differentially-expressed genes might be identified by using another type of 

microarray platform. Second, microarray gene expression analysis only reflects the 

transcript level of genes. We have yet to determine whether these gene transcripts are 

translated into functional proteins. Third, only immortalized cells were treated and analyzed 

in our study. There may be more complex interactions in vivo and appropriate animal 

models may be needed to conform our observations.

In summary, our results support our hypothesis that LPS+LBP stimulates proinflammatory 

gene expression in HCECs and HConjECs. However, our findings also show that LPS+LBP 

does not elicit such proinflammatory responses in HMGECs.
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Table 1

Influence of LPS+LBP exposure on gene expression in HCECs, HConjECs and HMGECs

Immortalized Human Epithelial LPS+LBP Vehicle > Total

Cell Type > Vehicle LPS+LBP genes

Cornea 563 510 1,073

Conjunctiva 786 1,068 1,854

Meibomian gland 613 771 1,384

Data were evaluated without log transformation. The expression of listed genes was significantly (p < 0.05) up regulated in cells exposed to LPS
+LBP or vehicle treatment.
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Table 2

Impact of LPS+LBP treatment on the expression of selected genes in HCECs, HConjECs and HMGECs

Gene accession # Gene Cell Ratio, p value Protein function

NM_004591 Chemokine (C- C motif) 
ligand 20 HCEC 25.2 ↑, < 0.0005

Acts as a ligand for C-C chemokine receptor CCR6. 
Signals through binding and activation of CCR6 and is 

responsible for the chemotaxis of dendritic cells, 
effector/memory T-cells and B-cells

NM_020717 Shroom family member 4 HCEC 6.55 ↓, p < 0.05 May regulate cellular and cytoskeletal architecture

NM_054031 MAS related GPR family 
member X3 HConjEC 2.54 ↑, p < 0.01

Serves as a member of the mas-related/sensory neuron 
specific subfamily of G protein coupled receptors, and 

may be involved in sensory neuron regulation and 
modulation of pain

NM_176095 CDK5 regulatory subunit 
associated protein 3 HConjEC 2.20 ↓, p < 0.01 Acts in signaling pathways governing transcriptional 

regulation and cell cycle progression

NM_139314 Angiopoietin-like 4 HMGEC 2.43 ↑, p < 0.05 Regulates glucose homeostasis, lipid metabolism, and 
insulin sensitivity

NM_002655 PLAG1 zinc finger HMGEC 3.11 ↓, p < 0.005
Transcription factor activation results in up-regulation 
of target genes, such as insulin-like growth factor 2, 

leading to uncontrolled cell proliferation

Some of the genes that were highly up- or down-regulated by LPS+LBP are shown. Relative ratios were calculated by comparing the degree of 
gene expression in cells exposed to vehicle or LPS+LBP. The mean gene intensity level in at least one group exceeded 70 BeadChip units. The 
source of the protein functions of genes, if transcribed, is: - http://www.genecards.org
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Table 3

LPS+LBP upregulation of inflammatory gene expression in HCECs

Accession number Gene Ratio P value

NM_004591 Chemokine (C-C motif) ligand 20 25.19 0.0003

NM_019618 Interleukin (IL)-1 family, member 9 19.11 0.0000

NM_001165 Baculoviral IAP repeat-containing 3 16.9 0.0044

NM_002341 Lymphotoxin β 11.63 0.0007

NM_001565 Chemokine (C-X-C motif) ligand 10 10.61 0.0000

NM_000594 Tumor necrosis factor α (TNF α) 7.9 0.0033

NM_006509 Transcription factor RelB 7.88 0.0204

NM_006290 TNF α-induced protein 3 7.1 0.0007

NM_006291 TNF α-induced protein 2 6.89 0.0010

NM_025079 Zinc finger CCCH-type containing 12A 5.09 0.0066

NM_001077493 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) 4.69 0.0015

NM_000584 IL-8 4.24 0.0099

NM_176823 S100 calcium binding protein A7A 4.23 0.0106

NM_000963 Prostaglandin-endoperoxide synthase 2 4.09 0.0002

NM_001570 IL-1 receptor-associated kinase 2 4.06 0.0001

NM_000710 Bradykinin receptor B1 3.71 0.0194

NM_001511 Chemokine (C-X-C motif) ligand 1 3.25 0.0105

These genes are 17 of the 20 most highly upregulated genes with known functions by LPS+LBP, and all 17 genes are associated with inflammation. 
Relative ratios were calculated by comparing the degree of gene expression in HCECs treated with LPS+LBP, relative to vehicle.
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Table 4

LPS+LBP impact on KEGG pathways in HCECs

KEGG Pathway LPS+LBP Genes ↑ Vehicle Genes ↑ LPS+LBP z- score Vehicle z- score

Apoptosis 13 4 6.57 1.38

NOD-like receptor signaling pathway 9 0 5.38 −1.23

Cytokine-cytokine receptor interaction 17 6 3.25 −0.16

Graft-versus-host disease 4 0 2.96 −0.92

Toll-like receptor signaling pathway 8 3 2.92 0.4

B cell receptor signaling pathway 6 2 2.58 0.19

T cell receptor signaling pathway 7 2 2.17 −0.34

JAK-STAT signaling pathway 9 4 2.13 0.21

Fc gamma R-mediated phagocytosis 6 2 2.08 −0.08

Epithelial cell signaling in Helicobacter pylori infection 5 0 2.14 −1.28

Allograft rejection 3 0 2.08 −0.89

KEGG pathways were selected after the analysis of non-log-transformed Illumina BeadChip data. The criterion for inclusion was a pathway linked 
to inflammation and a z-score > 2.0. A z-score is a statistical rating of the relative expression of genes, and demonstrates how much the genes are 
over- or under-represented in a given list. [22] Positive z scores reflect a greater number of genes meeting the criterion than is expected by chance, 
whereas negative z scores reflect fewer genes meeting the

criterion than expected by chance. [22] Z-scores with values > 2.0 and < −2.0 are quite significant. Terms: LPS+LBP Genes ↑- number of genes up-
regulated in LPS+LBP -treated cells; Vehicle Genes ↑- number of genes up-regulated vehicle-treated cells; z-score - specific score for the 
upregulated genes in the LPS+LBP - and vehicle-treated HCECs.

Ocul Surf. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 15

Table 5

Influence of LPS+LBP on the expression of inflammatory response gene ontologies in HCECs

Biological process ontology LPS+LBP Genes ↑ Vehicle Genes ↑ LPS+LBP z-score Vehicle z- score

Inflammatory response 32 8 7.22 −0.02

Lipopolysaccharide-mediated signaling pathway 6 1 7.19 0.77

Hemopoietic or lymphoid organ development 31 8 7 0.03

Myeloid leukocyte differentiation 13 3 6.92 0.75

Immune system development 32 9 6.8 0.15

Immune system process 75 24 6.77 −1.12

Leukocyte differentiation 21 4 6.52 −0.31

Leukocyte activation 31 8 6.22 −0.32

Cell activation involved in immune response 11 2 5.93 0.13

Leukocyte activation involved in immune response 11 2 5.93 0.13

α- β T cell differentiation 7 0 5.77 −0.95

Regulation of chemokine production 6 2 5.74 1.63

Defense response 50 13 5.54 −1.55

Regulation of adaptive immune response 9 0 5.5 −1.22

Chemokine production 6 2 5.5 1.52

Immune response 49 16 5.4 −0.8

Lymphocyte activation 25 5 5.21 −0.98

T cell activation involved in immune response 5 0 5.11 −0.78

Designated inflammatory response ontologies from the biological process category were selected after the analyses of non-log-transformed data. 
Criteria for inclusion were an ontology containing ≥ 5 genes and having a z-score > 5.0.
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Table 6

LPS+LBP stimulation inflammatory gene expression in HConjECs

Accession number Gene Ratio P value

NM_000759 Colony stimulating factor 3 (granulocyte) 2.36 0.0004

NM_002438 Mannose receptor, C type 1 2.23 0.0322

NM_007115 TNF α-induced protein 6 2.05 0.0015

NM_013278 IL-17C 1.94 0.0109

NM_000758 Colony stimulating factor 2 (granulocyte- macrophage) 1.93 0.0021

NM_019618 IL-1 family, member 9 1.88 0.0003

NM_016584 IL-23, α subunit p19 1.81 0.0142

NM_001001437 Chemokine (C-C motif) ligand 3-like 3 1.79 0.0010

NM_000201 Intercellular adhesion molecule 1 1.72 0.0003

NM_005098 Musculin 1.72 0.0235

NM_198845 Sialic acid binding Ig-like lectin 6 1.69 0.0027

NM_002341 Lymphotoxin α 1.67 0.0019

NM_000634 IL-8 receptor, α 1.65 0.0333

NM_012323 Transcription factor MafF 1.64 0.0147

NM_006850 IL-24 1.63 0.0048

These genes are 15 of the 25 most highly upregulated genes with known functions by LPS+LBP, and all 15 genes are linked to inflammation. 
Relative ratios were calculated by comparing the degree of gene expression in HConjECs treated with LPS+LBP, relative to vehicle.
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Table 7

LPS+LBP effect on KEGG pathways in HConjECs

KEGG Pathway LPS+LBP Genes ↑ Vehicle Genes ↑ LPS+LBP z-score Vehicle z- score

NOD-like receptor signaling pathway 10 2 5.04 −0.69

Chemokine signaling pathway 18 7 4.16 −0.89

Cytokine-cytokine receptor interaction 21 10 3.36 −1.14

Toll-like receptor signaling pathway 10 6 3.14 0.33

Hematopoietic cell lineage 8 3 2.75 −0.64

Neurotrophin signaling pathway 11 11 2.84 1.81

Epithelial cell signaling in Helicobacter pylori infection 6 3 2.14 −0.28

Graft-versus-host disease 4 2 2.33 0.15

Apoptosis 7 6 2.01 0.71

KEGG pathways were chosen after the analysis of non-log-transformed Illumina BeadChip data in HConjECs. The criterion for inclusion was a 
pathway associated with inflammation and a z-score > 2.0.
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Table 8

Effect of LPS+LBP on the expression of inflammatory response gene ontologies in HConjECs

Biological process ontology LPS+LBP Genes ↑ Vehicle Genes ↑ LPS+LBP z-score Vehicle z- score

Cellular response to interleukin-1 5 1 6.83 0.31

Inflammatory response 34 22 6.75 0.74

Positive regulation of defense response 20 7 6.53 -0.56

Regulation of JAK-STAT cascade 9 1 6.52 -0.87

Leukocyte chemotaxis 12 1 6.47 -1.47

Defense response 61 55 6.45 1.42

Regulation of acute inflammatory response 7 1 6.18 -0.48

Immune response 59 54 6.14 1.34

Positive regulation of interleukin-6 production 6 0 5.99 -1.16

Immune system process 79 85 5.85 1.96

Response to cytokine stimulus 28 21 5.8 1.2

Cell chemotaxis 12 1 5.74 −1.67

Response to interleukin-1 7 1 5.68 −0.62

Cellular response to lipopolysaccharide 8 2 5.57 −0.23

Neutrophil chemotaxis 6 0 5.41 −1.25

Acute inflammatory response 11 6 5.39 0.94

Regulation of interleukin-6 production 8 2 5.39 −0.29

Leukocyte migration 19 10 5.3 0.01

Positive regulation of cytokine production 15 4 5.29 −1.16

Lipopolysaccharide-mediated signaling pathway 5 1 5.29 −0.11

Leukocyte cell-cell adhesion 6 2 5.28 0.38

Innate immune response 31 28 5.22 1.63

Interleukin-6 production 8 2 5.22 −0.35

Positive regulation of inflammatory response 8 1 5.22 −1

Regulation of inflammatory response 13 6 5.14 0.12

Cellular response to cytokine stimulus 21 15 5.08 0.86

Positive regulation of innate immune response 14 6 5.04 −0.23

Designated inflammatory response ontologies from the biological process category were chosen after the analyses of non-log-transformed data. 
Criteria for inclusion were an ontology containing ≥ 5 genes and having a z-score > 5.0.

Ocul Surf. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 19

Table 9

Comparative percentage increase in gene expression following LPS+LBP treatment of HCECs, HConjECs and 

HMGECs

Gene HCEC HConjEC HMGEC

Chemokine (C-C motif) ligand 20 2,519 151 -

IL-1 family, member 9 1,911 188 -

Lymphotoxin β 1,163 167 -

Chemokine (C-X-C motif) ligand 10 1,061 148 (157)

TNF α 790 129 -

TNF α-induced protein 3 710 141 -

Zinc finger CCCH-type containing 12A 509 123 121

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 469 145 122

IL-8 424 127 -

S100 calcium binding protein A7A 423 147 -

Prostaglandin-endoperoxide synthase 2 409 137 -

IL-1 receptor-associated kinase 2 406 118 126

IL-1α 268 125 121

IL-1β 224 117 127

Pecentages were calcualted by comparing the degree of gene expression in cells exposed to LPS+LBP, relative to vehicle. The value in parenthesis 
represents downregulation.
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Table 10

LPS+LBP upregulation of HMGEC genes

Accession number Gene Ratio P value

NM_139314 Angiopoietin-like 4 2.43 0.0131

NM_201564 Synaptonemal complex central element protein 1 2.11 0.0108

NM_032250 Ankyrin repeat domain 20 family, member A1 2.01 0.0437

NM_178493 Notum pectinacetylesterase homolog 2 0.0226

XM_166227 Macrophage expressed 1 1.96 0.0250

NM_052923 SCAN domain containing 3 1.77 0.0073

NR_002174 Cytidine monophosphate-N-acetylneuraminic acid hydroxylase pseudogene 1.76 0.0008

NM_000132 Coagulation factor VIII, procoagulant component 1.74 0.0293

NM_006798 UDP glucuronosyltransferase 2 family, polypeptide A1 1.66 0.0406

NM_003278 C-type lectin domain family 3, member B 1.64 0.0058

NM_138764 BCL2-associated X protein 1.64 0.0257

NM_005912 Melanocortin 4 receptor 1.63 0.0102

NM_025069 Zinc finger protein 703 1.62 0.0105

NM_001077516 Solute carrier family 39 (zinc transporter), member 7 1.62 0.0146

NM_001384 DPH2 homolog 1.61 0.0181

NM_001005282 Olfactory receptor, family 5, subfamily M, member 8 1.56 0.0326

NM_000433 Neutrophil cytosolic factor 2 1.56 0.0087

NM_001849 Collagen, type VI, alpha 2 1.54 0.0395

NM_017726 Protein phosphatase 1, regulatory (inhibitor) subunit 14D 1.53 0.0179

NM_173611 Family with sequence similarity 98, member B 1.51 0.0256

NM_012401 Plexin B2 1.5 0.0040

NM_014598 Suppressor of cytokine signaling 7 1.49 0.0393

NM_207357 Hypothetical LOC339524 1.48 0.0139

NM_001100912 BEN domain containing 7 1.47 0.0388

XM_497642 T cell-interacting, activating receptor on myeloid cells 1 1.47 0.0043

These genes are the 25 most highly upregulated genes with known functions by LPS+LBP in HMGECs. Only 2 genes, in bold type, are associated 
with inflammation. Relative ratios were calculated by comparing the degree of gene expression in HMGECs treated with LPS+LBP, relative to 
vehicle.
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Table 11

LPS+LBP up-regulation of immune-related gene expression in HMGECs

Accession number Gene Ratio P value

NM_002502 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 1.40 0.0176

NM_002994 Chemokine (C-X-C motif) ligand 5 1.37 0.0101

NM_001570 IL-1 receptor-associated kinase 2 1.26 0.0044

NM_007283 Monoglyceride lipase 1.25 0.0220

NM_000633 B-cell CLL/lymphoma 2 1.22 0.0089

NM_020529 Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 1.18 0.0347

NM_022789 IL-25 1.14 0.0361

NM_032036 Interferon, alpha-inducible protein 27-like 2 1.13 0.0440

NM_002089 Chemokine (C-X-C motif) ligand 2 1.12 0.0395

NM_173843 IL-1 receptor antagonist 1.11 0.0205

Toll-IL-1 receptor domain containing adaptor

NM_052887 protein 1.10 0.0470

NM_002965 S100 calcium binding protein A9 1.08 0.0094

NM_001992 Coagulation factor II (thrombin) receptor 1.06 0.0250

Examples of up-regulated genes were selected from the innate immunity biological response ontology, as well as the list of all genes significantly 
influenced by LPS+LBP. Relative ratios were determining by comparing the degree of gene expression in HMGECs exposed to LPS+LBP, as 
compared to vehicle. Ratios for additional genes upregulated by LPS+LBP are listed in Table 10.
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Table 12

LPS+LBP influence on KEGG pathways in HMGECs

KEGG Pathway LPS+LBP Genes ↑ Vehicle Genes ↑ LPS+LBP z-score Vehicle z- score

Apoptosis 10 3 5.09 −0.05

Pathogenic Escherichia coli infection 6 0 3.8 −1.42

Neurotrophin signaling pathway 9 4 3.12 −0.23

B cell receptor signaling pathway 5 3 2.16 0.23

KEGG pathways were selected after the evaluation of non-log-transformed Illumina BeadChip data. The criterion for inclusion was a pathway 
linked to inflammation and a z-score > 2.0.
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Table 13

Influence of LPS+LBP on the expression of immune-related gene ontologies in HMGECs

Biological process ontology LPS+LBP Genes ↑ Vehicle Genes ↑ LPS+LBP z-score Vehicle z- score

Toll-like receptor 4 signaling pathway 8 3 4.6 0.12

Immune response-activating signal transduction 13 6 4.36 −0.17

Toll-like receptor 1 signaling pathway 7 2 4.35 −0.28

Toll-like receptor 2 signaling pathway 7 2 4.3 −0.3

Immune response-regulating signaling pathway 13 6 4.27 −0.23

Myd88-dependent toll-like receptor signaling pathway 7 2 4.12 −0.38

Negative regulation of type I interferon production 4 3 4.03 1.93

Toll signaling pathway 7 2 3.98 −0.44

Innate immune response- activating signal transduction 8 3 3.95 −0.21

Activation of innate immune response 8 3 3.88 −0.24

Antigen receptor-mediated signaling pathway 8 3 3.74 −0.31

T cell receptor signaling pathway 7 2 3.74 −0.55

Toll-like receptor 3 signaling pathway 6 2 3.69 −0.21

Activation of immune response 13 6 3.49 −0.71

Type I interferon production 5 4 3.47 1.6

Regulation of innate immune response 10 5 3.11 −0.42

Designated immune-related ontologies from the biological process category were selected after the analyses of non-log-transformed data. Criteria 
for inclusion were an ontology containing ≥ 5 genes and having a z-score > 3.0.
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