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Abstract

Background: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing
developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities,
and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de
novo mutations potentially disrupting TCF20 function in patients with 1D, ASD, and hypotonia have been reported.
TCF20 encodes a transcriptional co-regulator structurally related to RA/T, the dosage-sensitive gene responsible for
Smith—-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity).

Methods: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified
individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and
clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes.
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Results: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18
frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected
parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances
and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function
variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay,
intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances.

Conclusions: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to
those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-
associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.

Keywords: TCF20, 22q13, Neurodevelopmental disorders, Smith—-Magenis syndrome, Haploinsufficiency, Loss-of-function

variants, Deletions

Background
The human chromosome 22q13 region is involved with
various genetic and genomic disorders, including Phe-
lan-McDermid syndrome (MIM 606232), in which ter-
minal deletion of 22q13.3 encompassing the critical gene
SHANKS is frequently observed [1]. Occasionally, dele-
tions proximal to the classical Phelan—McDermid syn-
drome region have been reported, affecting chromosome
22q13.2 without directly disrupting SHANK3 [2-4]. It
remains unknown whether the abnormal neurodevelop-
mental phenotypes observed in patients with 22q13.2
deletions are caused by dysregulation of SHANK3 or
haploinsufficiency of previously undefined “diseases
genes” within the deletion. Recently, a bioinformatics
analysis of genes within 22q13.2 highlighted that TCF20
and SULT4A1 are the only two genes within this region
that are predicted to be highly intolerant to
loss-of-function (LoF) variants and are involved in hu-
man neurodevelopmental processes [5]. In particular,
TCF20 was predicted to be of higher intolerance to LoF
variants as reflected by its higher pLI (probability of LoF
intolerance) score (pLI = 1), making it the most promis-
ing candidate disease gene underlying neurodevelop-
mental traits associated with 22q13.2 deletion disorders.
TCF20 (encoding a protein previously known as
SPRE-binding protein, SPBP) is composed of six exons,
which encode two open reading frames of 5880 or 5814
nucleotides generated by alternative splicing. The
shorter isoform (referred to as isoform 2, Genbank:
NM_181492.2) lacks exon 5 in the 3" coding region. Iso-
form 1 (Genbank: NM_005650.3) is exclusively
expressed in the brain, heart, and testis and predomi-
nates in the liver and kidney. Isoform 2 is mostly
expressed in the lung ([6, 7]; Fig. 1). TCF20 was origin-
ally found to be involved in transcriptional activation of
the MMP3 (matrix metalloproteinase 3, MIM 185250)
promoter through a specific DNA sequence [8]. More
recently, it has been shown to act as a transcriptional
regulator augmenting or repressing the expression of a

multitude of transcription factors including SPI (specifi-
city protein 1 MIM 189906), PAX6 (paired box protein
6, MIM 607108), ETS1 (E twenty-six 1, MIM 164720),
SNURF (SNRPN upstream reading frame)/RNF4 (MIM
602850), and AR (androgen receptor, MIM 313700)
among others [9-11]. TCF20 is widely expressed and
shows increased expression in the developing mouse
brain particularly in the hippocampus and cerebellum
[12, 13]. Babbs et al. studied a cohort of patients with
autism spectrum disorders (ASDs) and proposed TCF20
as a candidate gene for ASD based on four patients with
de novo heterozygous potentially deleterious changes,
including two siblings with a translocation disrupting
the coding region of TCF20, one frameshift and one
missense change in another two patients [6]. Subse-
quently, Schafgen et al. reported two individuals with de
novo truncating variants in TCF20 who presented with
intellectual disability (ID) and overgrowth [14]. In
addition, pathogenic variants in TCF20 have also been
observed in two large cohort studies with cognitive phe-
notypes of ID and developmental delay (DD) [15, 16].
These isolated studies clearly support a role for TCF20
as a disease gene. However, a systematic study of pa-
tients with TCF20 pathogenic variant alleles from a co-
hort with diverse clinical phenotypes is warranted in
order to establish a syndromic view of the phenotypic
and molecular mutational spectrum associated with a
TCF20 allelic series.

Interestingly, TCF20 shares substantial homology with
a well-established Mendelian disease gene, RAII, which
is located in human chromosome 17p11.2 (MIM
607642). LoF mutations or deletions of RAII are the
cause of Smith—Magenis syndrome (SMS; MIM 182290),
a complex disorder characterized by ID, sleep disturb-
ance, multiple congenital anomalies, obesity, and neuro-
behavioral problems [17-21], whereas duplications of
RAII are associated with a developmental disorder char-
acterized by hypotonia, failure to thrive, ID, ASD, and
congenital anomalies [22, 23], designated Potocki—
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Fig. 1 TCF20 gene, protein domain structure, and location of mutations. a Schematic representation of TCF20, exons are shown to scale with the coding
sequence in gray and untranslated regions in dark blue. There is an in frame stop codon in the alternatively spliced exon 5 generating a shorter isoform

numbers above boxes indicate cDNA numbering at last nucleotides of exon boundaries or last nucleotide of stop codons. Red dashed lines show the
exon boundaries relative to the amino acid position shown in b. b Domain structures of TCF20 with the mutations currently identified. Protein domains
are indicated above or below the structure. Abbreviations as follows: TAD, transactivation domain; NLS, nuclear localization signals; LZ, leucine zipper; DBD,
DNA-binding domain; AT-h, AT-hook domain; PHD/ADD, Plant Homeodomain/ADD. In red and below the protein structure are the mutations identified in
this study. In black and above the protein structure are the mutations previously reported (see text). All the de novo SNVs detected in anonymized
subjects presenting with mild to severe neurodevelopmental disorder from our cohort are represented in green and located below the protein structure.
All the mutations occur before the last exon of TCF20. In parentheses are indicated the number of times the recurring variants are observed. ¢ ClustalW
multi-species alignment obtained with Alamut software of the region containing Lys1710Arg showing the high level of conservation of the mutated
residue. Intensities of shades of blue are proportional to the degree of cross-species conservation
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region. The position of the first coding nucleotide is shown in exon 2,

Lupski syndrome (PTLS; MIM 610883). Recent studies
suggested that TCF20 and RAII might derive from an
ancestral gene duplication event during the early history
of vertebrates [9]. Therefore, it is reasonable to
hypothesize that, as paralogous genes, mutations in
TCF20 may cause human disease by biological perturba-
tions and molecular mechanisms analogous to those op-
erative in RA/I-mediated SMS/PTLS.

In this study, we describe the identification of
TCF20 pathogenic variations by either clinical exome
sequencing (ES) or clinical chromosomal microarray
analysis (CMA) from clinically ascertained subjects
consisting of cohorts of patients presenting with neu-
rodevelopmental disorders as the major phenotype as
well as with various other suspected genetic disorders.
We report the clinical and molecular characterization

of 28 subjects with TCF20 de novo or inherited
pathogenic single nucleotide variants/indels (SNV/
indels) and 4 subjects with interstitial deletions in-
volving TCF20. These subjects present with a core
phenotype of DD/ID, dysmorphic facial features, con-
genital hypotonia, and variable neurological distur-
bances including ataxia, seizures, and movement
disorders; some patients presented features including
sleep issues resembling those observed in SMS. Add-
itionally, we report the molecular findings of 10
anonymized subjects with pathogenic TCF20 SNVs or
deletion/duplication copy-number variants (CNVs).
We demonstrate that ascertainment of patients from
clinical cohorts driven by molecular diagnostic find-
ings (TCF20 LoF variants) delineates the phenotypic
spectrum of a potentially novel syndromic disorder.
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Methods

Subjects

The study cohort consists of 31 unrelated families in-
cluding one family with a set of affected monozygotic
twins; four affected heterozygous parents from these
families are also included. All the affected individuals
were recruited under research protocols approved by the
institutional review boards of their respective institutions
after informed consent was obtained. Subject #17 who
received clinical exome sequencing evaluation at Baylor
Genetics presented with hypotonia, autism spectrum
disorder, and behavioral abnormalities. Six additional pa-
tients carrying SNV/indels (subjects #1, #6, #11, #13,
#17, #20, and #25) were identified retrospectively from
the Baylor Genetics exome cohort of >11,000 individ-
uals after filtering for rare potential LoF variants in pre-
viously unsolved cases with overlapping neurological
phenotypes. Subject #7 was recruited from Children’s
Hospital of San Antonio (TX), and the pathogenic vari-
ant in TCF20 was detected via diagnostic exome sequen-
cing at Ambry Genetics (Aliso Viejo, CA, USA).
Subjects #3 and #4 were recruited from the Hadassah
Medical Center from Israel. Subjects #2, #5, #8, #9, #10,
#12, #14, #15, #16, #18, #19, #21, #22, #23, #24, #26,
#27, and #28 were identified through the DDD (Deci-
phering Developmental Disorders) Study in the UK.

Two patients (subjects #29 and #30) carrying deletion
CNVs in chromosome 22q13 were identified in the Bay-
lor Genetics CMA cohort of > 65,000 subjects. Subject
#31 carrying a deletion of TCF20 was recruited from the
Decipher study. Subject #32 carrying a deletion encom-
passing 11 genes including TCF20 was recruited from
Boston Children’s Hospital through microarray testing
from GeneDX. These cases with positive CNV findings
did not receive exome sequencing evaluation.

All participating families provided informed consent
via the procedures approved under the respective studies
to which they were recruited. The parents or legal
guardians of subjects shown in Fig. 2 provided consent
for publication of photographs.

Molecular analysis

Clinical ES analysis was completed for subjects #1, #6,
#11, #13, #17, #20, and #25 in the exome laboratory at
Baylor Genetics and was conducted as previously de-
scribed [24]. Samples were also analyzed by cSNP array
(Ilumina HumanExome-12 or CoreExome-24 array) for
quality control assessment of exome data, as well as for
detecting large copy-number variants (CNVs) and re-
gions of absence of heterozygosity [25, 26].

The ES-targeted regions cover >23,000 genes for cap-
ture design (VCRome by NimbleGen®), including the cod-
ing and the untranslated region exons. The mean
coverage of target bases was 130X, and >95% of target
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bases were covered at > 20X [24]. PCR amplification and
Sanger sequencing to verify all candidate variants were
done in the proband and the parents when available, ac-
cording to standard procedures, and candidate variants
were annotated using the TCF20 RefSeq transcript
NM_005650.3. Exome sequencing and data analysis for
the DDD study were performed at the Wellcome Sanger
Institute as previously described [16]. Sequencing and data
analysis at the Hadassah Medical Center and Ambry Gen-
etics were conducted as previously described [27, 28].

The two CNV deletions were detected using custom-
ized exon-targeted oligo arrays (OLIGO V8, V9, and
V10) designed at Baylor Genetics [29-31], which cover
more than 4200 known or candidate disease genes with
exon-level resolution. The deletion in subject #32 was
detected by a customized Agilent 180k array, which pro-
vides interrogation of 220 regions of microdeletion/
microduplication syndrome and 35kb backbone. The
deletion in subject #31 from the Decipher study was de-
tected by the Agilent 180k array.

RNA studies to evaluate for potential escape from
nonsense-mediated decay (NMD) associated with the
TCF20 alleles with premature stop codons

Total cellular RNA was extracted from peripheral blood
according to the manufacturer’s protocol. After DNase I
treatment to remove genomic DNA (Ambion), cDNA
was synthesized from oligo dT with SuperScript III Re-
verse Transcriptase (Invitrogen). Primers were designed
to span multiple exons of TCF20 to amplify the target
variant site from cDNA. The amplified fragments were
sized and Sanger sequenced to ensure that cDNA rather
than genomic DNA was amplified. Negative controls
were also set up without reverse transcriptase to confirm
that there was no genomic DNA interference. Sanger se-
quencing results were analyzed for the ratio of mutant
allele versus wild type allele to infer whether there was
an escape from nonsense-medicated decay.

Results

Phenotypic spectrum

Table 1 summarizes the clinical findings in the 32 sub-
jects; further details can be found in Additional file 1:
Clinical information. Twenty individuals are male, 12 are
female, and at the last examination, ages ranged from 1
to 20 years. Additionally, an affected biological parent of
subjects #1, #5, and #7 and twins #27 and #28 were
found to be carriers of the TCF20 pathogenic variants
and their ages ranged from 42 to 47 years (these are not
listed in the tables but briefly described in text
Additional file 1: Clinical information). Five individuals
(#2, #8, #10, #19, and #26) from the DDD cohort
previously reported in a large study with relatively
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Fig. 2 Twelve individuals with TCF20-associated neurodevelopmental disorder (TAND). Facial features are variable from normal or mildly dysmorphic:
subject #8 (b), subject #25 (h), subject #29 (i), and subject #31 (m) to dysmorphic: macrocephaly in subjects #11 (c) and #30 (picture taken at 22 years old)
(I); brachycephaly in subject #19 (f); midface hypoplasia in subject #17 and #32 (e, n); long eyelashes, thick lips, and occipital grove in subject #32 (n); upper
lip abnormality including tented or thin upper lip in subjects #1, #11, #13, and #17 (a, ¢, d, e); coarse facies in subjects #1 and #11 (a, ¢); long face, full
cheeks, deep-set eyes, and prominent lower lip in subject #22 (g). Digital anomalies include contracture of the fifth finger in subject #19 (f) and slender

fingers in subject #22 (g)
J

uncharacterized neurodevelopmental disorder [16] have Overall, the majority of the subjects included in our co-
been included in this study after obtaining more detailed  hort presented with a shared core phenotype of motor
clinical information. delay (94%, n=30/32), language delay (88%, n =28/32),
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moderate-to-severe ID (75%, n=24/32), and hypotonia
(66%, n =21/32). Some of the variable features reported in
the patients include ASD/neurobehavioral abnormalities
(66%, n=21/32), movement disorder (44%, n=14/32),
sleep disturbance (38%, n =12/32), seizures (25%, n =8/
32), structural brain abnormalities (22%, n = 7/32), growth
delay and feeding problems (13%, #n = 4/32), macrocephaly
(25%, n=28/32), digital anomalies (34%, n =11/32), oto-
laryngological anomalies (3/32, 9%), and inverted nipples
(13%, n = 4/32) (Tables 1 and 2 and Additional file 1: Clin-
ical information). Facial dysmorphisms (78%, n =25/32)
were also variable and included anomalies reminiscent of
SMS such as a tented or protruding upper lip in a subset
of the patients (16%, n = 5/32) and the affected mother of
subject #5, brachycephaly (9%, n = 3/32), and midface hy-
poplasia (6%, n =2/32) (Tables 1 and 2, Additional file 1:
Clinical information, and Fig. 2).

To date, deleterious variants in TCF20 have been identi-
fied in cohorts of individuals with diverse neurodevelop-
mental disorders (NDDs) including ID (66%, n=8/12),
language delay (42%, n=5/12), neurobehavioral abnor-
malities (58%, n =7/12), hypotonia (25%, n=3/12), one
patient with seizures (n=1/12, 8%), and macrocephaly/
overgrowth (25%, n = 3/12) [14—16] (Tables 1, 2, and 3). In
Babbs et al., the first study reporting TCF20 as a potential
disease gene, all four patients presented with ASD, three
with ID and one of the patients with midface hypoplasia
[6]. Of note, subject 1 of our cohort presented with mild
delayed motor milestones, generalized hypotonia, and, in
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particular, dysmorphic features including midface hypo-
plasia, tented upper lips, along with sleep issues, ASD,
food-seeking behavior, and aggressive behavior; these clin-
ical features are similar to those reported in SMS [32-34].
In Schafgen et al,, both patients presented with ID, devel-
opmental delay, relative macrocephaly, and postnatal over-
growth [14]. Postnatal overgrowth, overweight, and tall
stature are seen in 4, 3, and 2 patients from our cohort, re-
spectively. Patients that present with these three “growth
acceleration” features account for 28% (9/32) of our co-
hort. Furthermore, we have observed sleep disturbance
(38%, n=12/32) and neurological features absent from
previous published studies including ataxia/balance dis-
order (22%, n = 7/32), dyspraxia (6%, n = 2/32), dyskinesia/
jerky movements (6%, n = 2/32), and peripheral spasticity
(19%, n = 6/32) (Tables 1 and 2).

Genomic analyses

We detected a spectrum of variant types including 25
unique heterozygous SNVs/indels and 4 CNVs involving
TCF20 (Figs. 1 and 3). The 25 variants include missense
(n=1), canonical splice-site change (n=1), frameshift
(n=18), and nonsense changes (n=5) (Table 3), and
they are all located in exons 2 or 3 or the exon2/intron2
boundary of TCF20. All of these variants are absent in
the Exome Aggregation Consortium and gnomAD
(accessed September 2018) (Table 2, Fig. 1) databases.
The variant ¢.5719C>T (p.Argl907*) has been detected
in both subjects #25 and #26 while ¢.3027T>A

Table 2 Comparison of clinical presentation in this study and in the published cohort

Clinical features Number of subjects in  Percentage in

Number of subjects in the published cohorts

Percentage in the

this study* this study (Schafgen et al. [14]; Babbs et al. [6]; Lelieveld et al. published cohort
[15]; McRae et al. [16]*%)

D 24/32 75 8/12 67
Neurobehavioral 21/32 66 7/12 58
abnormalities
Dysmorphic facial 25/32 78 4/12 33
features
Sleep disturbance 12/32 38 NR NR
Macrocephaly 8/32 25 3/12 25
Overgrowth/obesity/  9/32 28 2/12 17
tall stature
Digital anomalies 11/32 34 1/12 8
Seizures 8/32 25 1/12 8
Motor delay 30/32 94 5/12 42
Hypotonia 21/32 66 3/12 25
Movement disorder 14/32 44 NR NR
Language delay 28/32 86 5/12 42
Structural brain 7/32 22 2/12 17

abnormalities

Abbreviations: ID intellectual disability, NR not reported

*Five patients from the original McRae et al. DDD cohort [16] (individual #2, #8, #10, #19, and #26) were included in this study
**Two additional patients from this study were included in the meta-analysis from previous studies
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Table 3 TCF20 (NM_005650.3) variants identified in the present study
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Subject  Type of mutation ~ Coordinates hg19 Nucleotide change Effect Exon Inheritance Additional
number variants
#1 Frameshift 9.42610999_42611002dupGTGG  ¢.310_313dupCCAC p.GIn106Profs*30 2 Maternal NR
#2 Frameshift 9.42610718dupA ¢.594dupT p.Gly199Trpfs*56 2 De novo No
#3 Nonsense 9.42610324G>A c988C>T p.GIn330* 2 Mother No
negative
#4 Frameshift 9.4260792delG ¢.1520delC p.Pro507Leufs*5 2 De novo No
#5 Nonsense 9.42609052G>A €2260C>T p.GIn754* 2 Maternal No
#6 Frameshift 942608984 _42608985delCT €2327_2328delAG  p.GIn776Argfs*5 2 De novo NR
#7 Frameshift 9.42608627delC €.2685delG p.Arg896Glyfs*9 2 Maternal de novo
c.1189C>T,
p.GIN397* in
SLC6AT
#8 Nonsense 9.42608285A>T c3027T>A p.Tyr1009* 2 De novo No
#9 Nonsense g.42608285A>T c3027T>A p.Tyr1009* 2 Not known No
#10 Frameshift g42607933delG €.3379delC p.GIn1127Serfs*10 2 De novo No
#11 Frameshift g42607707dupC €.3605dupG p.Pro1203Serfs*15 2 Mother NR
negative
#12 Frameshift 9.42607678_42607679dupAC €3633_3634dupGT  p.Tyr1212Cysfs*13 2 De novo No
#13 Nonsense g.42607507G>A €.3805C>T p.GIn1269* 2 De novo NR
#14 Frameshift 9.42607081dupC c4231dupG p.Glu1411Glyfs*33 2 De novo No
#15 Frameshift 9.42606763dupC €4549dupG p.Asp1517Glyfs*30 2 De novo No
#16 Frameshift g.42606418delA C4894delT p.Tyr1632Thrfs*6 2 De novo No
#17 Missense 942606183 T>C c5129A>G p.Lys1710Arg 2 De novo de novo
c1307G>T
(p.R436L) in
ZBTB18
#18 Frameshift 9.42605882dupT €.5430dupA p.Ala1811Serfs*4 2 De novo No
#19 Frameshift 9.42605800_42605801dupGC €5511_5512dupCG  p.Leu1838Argfs*45 2 De novo No
#20 Frameshift 9.42605782_42605783dupCA p.5529_5530dupTG p.Glu1844Valfs*39 2 De novo NR
#21 Frameshift 9.42605775delG ¢.5537delC p.Pro1846Leufs*36 2 Not known No
#22 Frameshift g.42605742dupC €.5570dupG p.Cys1858Leufs*58 2 De novo No
#23 Frameshift 9.42605659_42605660del TC €.5652_56553delGA  p.Glu1884Aspfs*31 2 Not known No
#24 Canonical splicing  g.42605656C>T €5655+1G>A N/A Intron 2 Not known No
#25 Nonsense 9.42575645G>A c5719C>T p.Arg1907* 3 De novo NR
#26 Nonsense 9.42575645G>A c5719C>T p.Arg1907* 3 De novo No
#27 Frameshift 9.42575632delG c.5732delC p.Pro1911Argfs*17 3 Paternal No
#28 Frameshift 9.42575632delG c.5732delC p.Pro1911Argfs*17 3 Paternal No
#29 Del 9.42394098-45037128del 2.64 Mb DEL Deletion of 37 Whole Not known No
22g13.2913.3 genes gene (adopted)
#30 Del 9.42607466-42770878del 163 kb DEL Deletion of Exon1 1 De novo No
2291322
#31 Del 9.42488512-42616581del 128 kb DEL Deletion of 3 Whole De novo No
229132 genes gene
#32 Del 9.42373034-42776457del 403 kb DEL Deletion of 11 Whole De novo No
220132 genes gene
Shafgen  Nonsense (n=1) N/A N/A N/A 2 De novo No
et al. [14] Frameshift (n=1)
Babbs et Complex N/A N/A N/A 2/partial  Possibly No
al. [6] chromosomal gene parental
rearrangement (n deletion  mosaicism/de
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Table 3 TCF20 (NM_005650.3) variants identified in the present study (Continued)

Subject  Type of mutation  Coordinates hg19 Nucleotide change  Effect Exon Inheritance Additional
number variants
=2) novo
Missense (n=1)
Frameshift (n=1)
Lelieveld Nonsense (n=2) N/A N/A N/A 2/3 De novo No
et al. [15] Frameshift (n=2)
McRae et Inframe deletion N/A N/A N/A 2 De novo No
al. [16]*  (n=1)
Missense variant
(n=1)

Abbreviations: N/A not applicable, NR not reported

*The original study reported 7 patients, 5 of which (#2, #8, #10, #19, and #26) have been included in this study with more detailed phenotypic characterization

(p.-Tyr1009*) is present in both subjects #8 and #9
(Table 2). Although recurring in unrelated subjects, nei-
ther of these two changes occurs within CpG dinucleo-
tides. The missense mutation in codon 1710
(p.Lys1710Arg) in subject #17, which was confirmed by
Sanger sequencing to have arisen de novo, is located in a
highly conserved amino acid (Fig. 1c) within the PHD/
ADD domain of TCF20 [9], and the substitution is pre-
dicted to be damaging by multiple in silico prediction
tools including SIFT and Polyphen-2. In addition to this
variant, another de novo ¢.1307G>T (p.Arg436Leu) mis-
sense variant in ZBTB18 (MIM 608433; autosomal dom-
inant mental retardation 22, phenotype MIM 612337)
was found in this patient. A nonsense mutation in

ZBTBI8 has been recently reported in a patient with ID,
microcephaly, growth delay, seizures, and agenesis of the
corpus callosum [35]. The c¢.1307G>T (p.Arg436Leu)
variant in ZBTBIS8 is also absent from ExAC and gno-
mAD databases and predicted to be damaging by Poly-
phen2 and SIFT and could possibly contribute to the
phenotype in this patient, representing a potential
blended (overlapping) phenotype due to a dual molecu-
lar diagnosis [36]. Interestingly, in addition to the
¢.2685delG (p.Arg896Glyfs*9) variant in TCF20 inherited
from the affected mother, subject #7 harbors also a de
novo likely pathogenic variant (p.GIn397*) in SLC6AI
that, as described for subject #17, could contribute to a
blended phenotype in this patient. Defects in SLC6AI
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can cause epilepsy and developmental delay (MIM
616421), overlapping with the presentation observed and
reported to date in patients with deleterious variants in
TCF20. For all the other patients, the clinical test refer-
enced in this study, either exome sequencing or micro-
array, did not detect additional pathogenic or likely
pathogenic variants in other known disease genes under-
lying the observed neurodevelopmental disorder.

Sanger sequencing confirmed that subjects # 1 to #28
are heterozygous for the TCF20 variants and showed
that these changes were absent from the biological par-
ents in 17 patients; in 4 families (subjects #1, #5, #7, and
siblings #27 and #28), the variants were inherited from
parents with a similar phenotype, confirming the segre-
gation of the phenotype with the variant within the fam-
ilies (Table 2, Fig. 1, and Additional file 1: Clinical
information). One or two of the parental samples were
unavailable for study in six cases.

In addition to SNVs/indels, we have studied four pa-
tients with heterozygous interstitial deletions (128 kb to
2.64 Mb in size) that include TCF20 (subjects #29 to
#32, Fig. 3, Tables 1, 2, and 3). Subject #29 is a
4-year-old adopted female with global developmental
delay, hypotonia, mixed receptive-expressive language
disorder, ASD, ID, ADHD, and sleep disturbance. She
was found to have a 2.64-Mb deletion at 22q13.2q13.31
involving TCF20 and 36 other annotated genes. Subject
#30 is a 14-year-old male with global psychomotor delay,
ASD, severe language delay, macrocephaly, congenital
hypotonia, scoliosis, and abnormal sleep pattern. A het-
erozygous de novo 163-kb deletion was found in this in-
dividual removing exon 1 of TCF20. Subject #31 is a
5-year-old male with developmental disorder, seizures,
and balance disorder with a 128-kb de novo heterozy-
gous deletion involving TCF20, CYP2D6, and
CYP2D7P1. Subject #32 is a 13-month-old female with
global developmental delay, hypotonia, and emerging
autistic features with a 403-kb deletion encompassing 11
annotated genes including TCF20. The deletions in sub-
jects #30, #31, and #32 do not contain genes other than
TCF20 that are predicted to be intolerant to
loss-of-function variants, making TCF20 the most likely
haploinsufficient disease gene contributing to these pa-
tients’ phenotypes. In patient #29, two genes included in
the deletion, SCUBE1 and SULT4A1, have pLI scores of
0.96 and 0.97, respectively. These two genes may con-
tribute to the phenotypic presentation of this patient to-
gether with TCF20 (pLI = 1) (Fig. 3).

We have also observed additional individuals presenting
with neurodevelopmental disorders of variable severity
from our clinical database, carrying de novo truncating var-
iants (n=6, Fig. 1, in green), deletions (n=1, de novo,
Fig. 3), and duplications (n =3, Fig. 3) involving TCF20.
These individuals are included in this study as anonymized
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subjects (Figs. 1 and 3). Additionally, we observed nine de-
letions (six are de novo) and five duplications (five are de
novo) spanning TCF20 from the DECIPHER database; in
some cases, the deletion CNV incorporates other poten-
tially haploinsufficient genes (Fig. 3 and Additional file 1:
Table S1). Taken together, these data from anonymized sub-
jects combined with the current clinically characterized
subjects in this study corroborate TCF20 being associated
with a specific Mendelian disease condition.

Our results indicate that all variants identified in
subjects #1 to #32 and four affected carrier parents rep-
resent either pathogenic or likely pathogenic (the de
novo missense variant in subject #17) alleles. We per-
formed RNA studies in patients #11, #25, and #7 and in
the affected mother and sister of patient #7, who all
carry premature termination codon (PTC) TCF20 vari-
ants that are expected to be subject to NMD as pre-
dicted by the NMDEscPredictor tool [37], because the
PTCs are upstream of the 50-bp boundary from the pen-
ultimate exon based on both TCF20 transcripts
(NM_181492.2 and NM_005650.3). Our data suggest
that the mutant TCF20 mRNAs did not obey the “50-bp
penultimate exon” rule and they all escaped from NMD
(Additional file 1: Figure S2), which is consistent with a
previous observation [6]. Despite this, we did not ob-
serve a clear genotype-to-phenotype correlation among
the different mutation categories. For instance, patients
with missense mutations or truncating mutations near
the terminal end of the gene did not present with milder
phenotypes when compared with patients carrying
early-truncating mutations in TCF20 or large deletion
encompassing TCF20 and surrounding several genes—
the phenotype appears consistent.

Discussion

We report 32 patients and 4 affected carrier parents with
likely damaging pathogenic variants in TCF20. Phenotypic
analysis of our patients, together with a literature review
of previously reported patients, highlights shared core syn-
dromic features of individuals with TCF20-associated neu-
rodevelopmental disorder (TAND). Previous reports have
collectively associated deleterious variants in TCF20 with
ID, DD, ASD, macrocephaly, and overgrowth [6, 14—16]
(Tables 1 and 2). The majority of the individuals in our co-
hort displayed an overlapping phenotype characterized by
congenital hypotonia, motor delay, ID/ASD with moder-
ate to severe language disorder, and variable dysmorphic
facial features with additional neurological findings (Ta-
bles 1 and 2 and Fig. 2). We observe in our cohort that it
is possible to have TCF20 deleterious variants transmitting
across generations in familial cases (subjects #1, #5, and
#7 and the twin brothers #27 and #28; Table 1, Add-
itional file 1: Clinical information). Our parent carriers
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presented with an apparently milder phenotype; the
mother of subject #1 showed mild dysmorphic facial fea-
tures; the mother of subject #5 had features including ID,
prominent forehead, tented upper lip, and short nose.

It is intriguing that TCF20 contains regions of strong
sequence and structural similarity to RAIl1 (Add-
itional file 1: Figure S1) [22, 38—41]. RAII encodes a nu-
clear chromatin-binding multidomain protein with
conserved domains found in many chromatin-associated
proteins, including a polyglutamine and two polyserine
tracts, a bipartite nuclear localization signal, and a
zinc-finger-like plant homeodomain (PHD) (Add-
itional file 1: Figure S1) [39]. A previous phylogenetic
study of TCF20 and RAII suggested that a gene duplica-
tion event may have taken place early in vertebrate evo-
lution, just after branching from insects, giving rise to
TCF20 from RAII, this latter representing the ancestral
gene [9]. The two proteins share organization of several
domains such as N-terminal transactivation domain, nu-
clear localization signals (NLS), and PHD/ADD at their
C-terminus (Additional file 1: Figure S1) [9]. The PHD/
ADD domain associates with nucleosomes in a histone
tail-dependent manner and has an important role in
chromatin dynamics and transcriptional control [42].
Here, we report that some patients with TCF20 muta-
tions may present phenotypic features reminiscent of
SMS such as craniofacial abnormalities which include
brachycephaly, tented upper lips, midface hypoplasia,
neurological disturbance (seizure, ataxia, abnormal gait),
failure to thrive, food-seeking behaviors, and sleep
disturbance.

To our knowledge, ataxia, hypertonia, food-seeking
behavior, sleep disturbance, and facial gestalt reminiscent
of SMS have not been previously reported in association
with TCF20 pathogenic variants and represent a further
refinement of TAND. Interestingly, subject #17 who pre-
sented features reminiscent of SMS harbors a missense
variant ¢.5129A>G (p.Lys1710Arg) in the F-box/
GATA-1-like finger motif part of the PHD/ADD domain
in TCF20. The PHD/ADD domain that maps between
amino acid positions 1690-1930 of TCF20 is highly con-
served in RAI1 and confers the ability to bind the nu-
cleosome and function as a “histone-reader” (HR) [8, 9].
Interestingly, mutations occurring in the region of
GATA-1-like finger of RAI1 (p.Aspl885Asn and
p.Ser1808Asn), in close proximity to the corresponding
region of TCF20 where p.Lys1710 lies, are also associ-
ated with SMS [38, 39, 43].

Postnatal overgrowth has been previously reported in
two patients with TCF20 defects [14]. We observe over-
growth, obesity, or tall stature in nine of the patients
from our cohort. Interestingly, eight of these nine
patients fall into an older age group (>9.5years old),
representing 73% (8/11) of the patients older than 9.5
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years old from our cohort; in the age group younger
than 9.5 years old, only 6.7% (1/15) of them presented
overgrowth. Further longitudinal clinical studies are war-
ranted to dissect the etiologies of overgrowth, obesity,
and tall stature, and to investigate whether these growth
accelerations are age-dependent.

Of note, a subset of patients reported herein have
sleep disturbance (38%, n = 12/32), hyperactivity (28%, n
=9/32), obsessive—compulsive traits (9%, n = 3/32), anx-
iety (6%, n=2/32), and food-seeking behavior/early
obesity (16%, n =5/32) (Table 2), which could ultimately
be attributed to circadian rhythm alterations as seen in
SMS and PTLS [22, 38, 39]. Receptors for the steroid
hormones estrogen (ER) and androgen (AR) have an
emerging role in circadian rhythms and other metabolic
function regulation in the suprachiasmatic nuclei in ver-
tebrates through alteration of brain-derived neurotropic
factor (BNDF) expression in animal models [44—47].
Interestingly, Bdnf is also downregulated in the hypo-
thalamus of Rail+/- mice, which are hyperphagic, have
impaired satiety, develop obesity, and consume more
food during light phase [48-50]. Since TCF20 has also
been implicated in the regulation of ER- and
AR-mediated transcriptional activity [10, 11, 51], we
speculate that TCF20 might play a role in the regulation
of circadian rhythms through steroid hormone modula-
tion and disruption of its activity could lead to the
phenotype observed in a subset of our patients.

Besides patient #17, all other patients carry either dele-
tion or truncating variants occurring before the last exon
of TCF20 that are predicted to be loss-of-function either
through presumably NMD or by truncating essential do-
mains of the TCF20 protein (Fig. 1). The frameshifting
mutations from patients #27 and #28 are expected to re-
sult in a premature termination codon beyond the
boundary of NMD, therefore rendering the mutant pro-
tein immune to NMD [37]. Future studies are warranted
to delineate the exact correlation between genotype and
phenotype in light of the potential escape from NMD
and the potential pathway overlapping and interaction
between TCF20 and RAIl in the determination of the
phenotype. It has been shown that around 75% of
mRNA transcripts that are predicted to undergo NMD
escape destruction and that the nonsense codon-
harboring mRNA may be expressed at similar levels to
wild type [52]. Therefore, alternative to NMD, we can
speculate that, for instance, the truncating mutations
that occur earlier in the gene before the first NLS
(amino acid position 1254—1268) (Fig. 1, Additional file 1:
Figure S1) in subjects #1 to #12 may determine
loss-of-function of TCF20 due to either decreased level
of protein in the nucleus with consequent cytoplasmic
accumulation and/or to the absence of key functional
C-terminal domains including PHD/ADD domains and/
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or DBD, AT-hook, NLS2, and NLS3, these latter repre-
senting unique motifs not conserved between TCEF20
and RAIl1 (Fig. 1, Additional file 1: Figure S1). It has
been previously shown that the frameshift mutation
c.3518delA (p.Lys1173Argfs*5) in TCF20 in one patient
with ASD produces a stable mRNA that escapes NMD
[6]. Data from our RNA studies corroborates this obser-
vation that TCF20 alleles with premature termination
codon mutations may in general escape NMD. However,
it should also be noted that NMD and mRNA turn over
may be tissue specific and the current tissue tested is
limited to blood. Based on this hypothesis, the position
of amino acid truncation, for example, within the NLS
or DNA-binding domain, may contribute to the predic-
tion of genotype—phenotype correlation. The truncated
TCF20 protein may retain partial function, representing
hypomorphic alleles, or act in a dominant-negative man-
ner sequestering transcription factors and co-factors in
the absence of transcriptional modulation. Another pos-
sibility is that, due to the similarity between RAI1 and
TCF20, mutated products of TCF20 could interfere with
RAI1 pathways through the aforementioned mecha-
nisms. Due to the complexity of the protein regulation
and the variety of functional domains present in TCF20
(Additional file 1: Figure S1) that are not fully character-
ized, further studies are needed to refine the genotype—
phenotype correlation.

Finally, although disorders associated with 22q13.2
deletions (encompassing TCF20) share similar features
with Phelan—McDermid syndrome caused by deletion of
SHANKS3, our study provides evidence for the hypothesis
that the major phenotypes observed in the former dis-
order are likely caused by direct consequence of TCF20
defects. Phenotypes specific for TCF20, such as sleep
disturbances and movement disorders, may help clinic-
ally distinguish the 22q13.2 deletions from the 22q13.3
deletions (SHANK3). It is tempting to hypothesize that
dosage gain of TCF20 may also be disease causing, given
the similar observation at the 17p11.2 locus, where copy
number gain of RAII was found to cause PTLS, poten-
tially presenting mirror trait endophenotypes in
comparison to SMS (e.g., underweight versus over-
weight) [53, 54]. This hypothesis predicts that TCF20
duplications are expected to cause similar neurodevelop-
mental defects as observed in the deletions, which is
supported by the observation of TCF20 duplications
from anonymized individuals with neurodevelopmental
disorders, some of which are de novo (Fig. 2 and Add-
itional file 1: Figure S1); additionally, one may speculate
that specific phenotypes caused by TCF20 duplication
may present mirror trait compared to those associated
with the deletions, such as underweight versus over-
weight and schizophrenia spectrum disorders versus aut-
ism spectrum disorders. Further work is warranted to
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investigate the consequence of dosage gain of TCF20 in
human disease.

Conclusions

Our findings confirm the causative role of TCF20 in syn-
dromic ID, broaden the spectrum of TCF20 mutations
recently reported, begin to establish an allelic series at
this locus, and may help to understand the molecular
basis of this new TAND syndrome. We also observe
some patients with pathogenic variants in TCF20 pre-
senting phenotypes reminiscent of SMS, suggesting po-
tential common downstream targets of both TCF20 and
RAII. We suggest without molecular testing that it is
challenging for a TAND diagnosis to be clinically
reached purely based on the phenotypes observed in
most patients. This underlines the importance of clinical
reverse genetics for patients presenting with develop-
mental delay and minor dysmorphic features, where po-
sitioning genotype-driven analysis (ES, CMA, or a
combination of both) early in the “diagnostic odyssey”
could improve the molecular diagnostic outcome and fa-
cilitate appropriate clinical management including recur-
rence risk counseling [55].
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subjects in this study. Table S1. Phenotypes for de-identified subjects
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with premature termination codon variants escape from nonsense-
mediated decay (NMD). (PDF 393 kb)
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