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Abstract

Background: Magnetic resonance imaging studies of cigarette smoking-related effects on 

human brain structure have primarily employed voxel-based morphometry, and the most 

consistently reported finding was smaller volumes or lower density in anterior frontal regions and 

the insula. Much less is known about the effects of smoking on subcortical regions. We compared 

smokers and non-smokers on regional subcortical volumes, and predicted that smokers 

demonstrate greater age-related volume loss across subcortical regions than non-smokers.

Methods: Non-smokers (n = 43) and smokers (n = 40), 22–70 years of age, completed a 4 T MRI 

study. Bilateral total subcortical lobar white matter (WM) and subcortical nuclei volumes were 

quantitated via FreeSurfer. In smokers, associations between smoking severity measures and 

subcortical volumes were examined.

Results: Smokers demonstrated greater age-related volume loss than non-smokers in the bilateral 

subcortical lobar WM, thalamus, and cerebellar cortex, as well as in the corpus callosum and 

subdivisions. In smokers, higher pack-years were associated with smaller volumes of the bilateral 

amygdala, nucleus accumbens, total corpus callosum and subcortical WM.
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Conclusions: Results provide novel evidence that chronic smoking in adults is associated with 

accelerated age-related volume loss in subcortical WM and GM nuclei. Greater cigarette quantity/

exposure was related to smaller volumes in regions that also showed greater age-related volume 

loss in smokers. Findings suggest smoking adversely affected the structural integrity of subcortical 

brain regions with increasing age and exposure. The greater age-related volume loss in smokers 

may have implications for cortical-subcortical structural and/or functional connectivity, and 

response to available smoking cessation interventions.

Keywords

Cigarette smoking; Magnetic resonance imaging; Brain volume; Subcortical; White matter; 
FreeSurfer

1. Introduction

The relationship between cigarette smoking and risk for cardiac, pulmonary and vascular 

disease as well as for multiple forms of cancer in humans is essentially incontrovertible 

(CDC, 2004). Moreover, considerable recent evidence now links smoking, in otherwise 

healthy individuals, to significant neurobiological and neurocognitive abnormalities that are 

not specifically attributable to the above diseases (Azizian et al., 2009; Durazzo et al., 

2014a; Durazzo et al., 2010; Sharma and Brody, 2009). Macrostructural morphological 

abnormalities are the most consistently reported neurobiological consequence associated 

with chronic cigarette smoking (Durazzo et al., 2010; Pan et al., 2013; Sutherland et al., 

2016). Most magnetic resonance (MR) imaging studies investigating smoking-related 

changes in brain morphology focused on cortical gray matter (GM) volumes, and smaller 

volumes or lower density in anterior frontal regions and the insula were most consistently 

reported finding [see (Durazzo et al., 2010; Pan et al., 2013; Sutherland et al., 2016) for 

review]. Fewer studies described smoking-related effects on subcortical nuclei/region 

volumes. Older adult smokers (≥64 years of age) had decreased thalamic volume relative to 

non-smokers (Almeida et al., 2008). Young-to-middle aged otherwise healthy smokers, 

compared to non-smokers, demonstrated smaller volumes or lower density in the thalamus 

(Franklin et al., 2014; Liao et al., 2012), globus pallidus (Hanlon et al., 2016), and 

cerebellum (Brody et al., 2004; Franklin et al., 2014; Gallinat et al., 2006; Kuhn et al., 2012; 

Wetherill et al., 2015; Yu et al., 2011). Conversely, some studies indicated that young-to-

middle-aged adult smokers had larger volumes than non-smokers in the putamen (Franklin 

et al., 2014; Wetherill et al., 2015; Yu et al., 2011). Subcortical neurobiological 

abnormalities may underlie compulsive consumption in substance use disorders, including 

nicotine dependence (see Franklin et al., 2014 and references cited therein). In the above 

studies, voxel-based morphometry compared GM density or volume between smokers and 

non-smokers. While this approach allowed testing for the effect of smoking status (i.e., 

smoker vs. non-smoker) collapsed across the age range of the participants, only one study 

(Franklin et al., 2014) specifically tested for, but did not observe, a smoking status by age 

interaction.

The risk for smoking-related diseases increases with years of smoking (CDC, 2004), which 

is inextricably related to age. In healthy adults, increasing age is associated with declines in 
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multiple MR-based measures, including regional brain volumes (Crivello et al., 2014; 

Walhovd et al., 2011), brain metabolite levels (Chang et al., 2009), as well as neurocognition 

(Salthouse, 2000). In healthy participants 25–70 years of age, our previous MR imaging 

studies showed that smokers had both lower mean values and greater age-related declines in 

total hippocampal and hippocampal subregion volumes (Durazzo et al., 2013); we also 

observed similar age-related declines in anterior frontal brain metabolite (N-acetylaspartate 

and glutamate) concentrations (Durazzo et al., 2016c). In these studies, greater cigarette 

pack-years were related to smaller hippocampal volumes and lower metabolite levels. The 

greater age-related declines apparent in smokers suggest that chronic smoking amplified the 

effects of normal aging on hippocampal macrostructure and anterior frontal brain metabolite 

levels in our adult participants. Given that previous subcortical morphological studies did not 

specifically test for, or report, a smoking status by age interaction, it remains unclear if 

cigarette smoking is associated with more widespread subcortical volume loss with 

increasing age in adults. Such structural alterations may be clinically important because they 

could influence reward processing and response to smoking cessation interventions via 

alterations of structural and/or functional connectivity in frontolimbic and/or frontostriatal 

circuitry (Froeliger et al., 2015; Sutherland et al., 2016; Sweitzer et al., 2016). Based on our 

previous neuroimaging findings, we predicted that adult smokers demonstrate smaller mean 

volumes and greater age-related volume loss than non-smokers in the thalamus, cerebellum, 

brainstem, total subcortical lobar white matter, and basal ganglia nuclei. We predicted higher 

pack-years are related to smaller regional subcortical volumes in smokers.

2. Methods

2.1. Participants

Eighty-three healthy, community-dwelling participants [43 non-smokers (eight females) and 

40 smokers (five females)] were recruited via electronic billboards and word-of-mouth. 

Participants were between the ages of 22 and 70 (see Table 1 for demographics). Participants 

provided written informed consent according to the Declaration of Helsinki, and all 

procedures were approved by the University of California San Francisco and the San 

Francisco VA Medical Center.

Detailed inclusion/exclusion criteria are fully described elsewhere (Durazzo et al., 2011a). In 

summary, participants were screened for history of neurologic (e.g., seizure disorder, 

neurodegenerative disorder, demyelinating disorder, closed head trauma with loss of 

consciousness), general medical (e.g., hypertension, myocardial infarction, Type-1 or 2 

diabetes, cerebrovascular accident, any form of cancer), and psychiatric (i.e., mood, thought, 

anxiety, substance/alcohol use disorders) conditions known or suspected to influence 

neurocognition and/or brain neurobiology. All females were pre-menopausal, by self-report. 

All non-smoking participants never smoked, or smoked less than 40 cigarettes during their 

lifetime and used no cigarette/tobacco products for 10 years prior to study. All smoking 

participants were actively smoking at the time of assessment, smoked at least 10 cigarettes 

per day for 5 years or more, and had no periods of smoking cessation greater than 1 month 

in the 5 years prior to study, with no concurrent use of other tobacco products. No smoker 

was engaged in any pharmacological/behavioral smoking cessation program.
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2.2. Medical, psychiatric, substance, alcohol consumption assessment

Participants completed the screening section of the Structured Clinical Interview for DSM-

IV Axis I disorders, Patient Edition, Version2.0 [SCID-I/P; (First et al., 1998)], as well as an 

in-house questionnaire designed to screen for medical, psychiatric, neurological and 

developmental conditions that may affect neurocognition or neurobiology [see (Durazzo et 

al., 2004)]. Participants completed standardized questionnaires assessing lifetime alcohol 

consumption [Lifetime Drinking History, LDH; (Skinner and Sheu, 1982; Sobell et al., 

1988)] and substance use [in-house questionnaire assessing substance type, quantity and 

frequency of use (Abe et al., 2013)]. From the LDH, we derived average number of drinks 

per month over lifetime (one drink defined as containing 13.6 g of pure ethanol). 

Participants also completed self-report measures of depressive [Beck Depression Inventory, 

BDI; (Beck, 1978)] and anxiety symptomatology [State-Trait Anxiety Inventory, form Y-2, 

STAI; (Spielberger et al., 1977)]. Smokers completed a measure of nicotine dependence 

level [Fagerström Test for Nicotine Dependence (FTND; Heatherton et al., 1991)], self-

reported the number of cigarettes currently smoked per day, and the number of years of 

smoking over lifetime. Pack-years [(number of cigarettes per day/20) × total number of 

years of smoking] were calculated for smokers. Comparable frequencies of smokers and 

non-smokers (30%) reported intermittent “recreational” use (i.e., ≤3 episodes/month) of 

cannabis or cocaine during late adolescence or early adulthood. Prior to assessment, 

participants’ urine was tested for five common illicit substances (i.e., THC, opiates, PCP, 

cocaine, amphetamines), and participants were breathalyzed for recent ethanol consumption. 

No participant was positive for the above common illicit substances or ethanol at the time of 

assessment.

2.3. Magnetic resonance imaging (MRI) acquisition and processing

MRI data were acquired on a 4.0 T Bruker MedSpec system using an 8-channel transmit-

receive head coil (Siemens, Erlangen, Germany). A Magnetization Prepared Rapid Gradient 

(TR/TE/TI = 2300/3/950 ms, 7° flip angle, 1.0 × 1.0 × 1.0 mm3 resolution) sequence was 

used to acquire 3D sagittal T1-weighted images for morphological analyses. The publicly 

available FreeSurfer (v5.1) segmentation and cortical surface reconstruction methods were 

used to obtain regional, bilateral cortical, subcortical GM and total subcortical lobar white 

matter (WM) volume, and total intracranial volume (ICV) (all in mm3) (Dale et al., 1999; 

Fischl and Dale, 2000; Fischl et al., 2004, 1999). All segmented subcortical and parcellated 

cortical T1-weighted images were visually inspected by one of the authors (TCD) for 

accuracy; any errors in segmentation/parcellation were manually edited, reprocessed and 

again inspected as previously described (Durazzo et al., 2014c). The final segmented 

subcortical and parcellated cortical volumes passed all quality requirements (Durazzo et al., 

2011b). The subcortical regions of interest (ROIs) interrogated were the total bilateral 

subcortical lobar WM, bilateral thalamus, caudate, putamen, pallidum, amygdala, nucleus 

accumbens, cerebellar cortex and cerebellar WM. Midline ROIs included the brain stem as 

well as the total corpus callosum volume and corpus callosum subregions (anterior, mid-

anterior, central, mid-posterior, and posterior). Individual ROI volumes were scaled to their 

corresponding ICV and reported as the percentage of ICV.
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2.4. Statistical analyses

2.4.1. Demographic and clinical variables—Demographic and clinical variables 

were compared between smokers and non-smokers with t-tests and Fisher’s Exact Test, 

where indicated

2.4.2. Primary analyses—To test our hypothesis of greater age-related subcortical 

volume loss in smokers versus non-smokers, we employed generalized linear modeling 

(GENLIN), and specifically tested for a smoking status (smoker vs. non-smoker) by age 

interaction. In preliminary analyses comparing smokers and non-smokers, similar magnitude 

group differences were observed for the left and right hemisphere of bilateral regions/nuclei; 

therefore, results for the summed volumes of bilateral ROIs are presented. Additionally, 

group differences across corpus callosum sub-regions were highly consistent; thus results for 

the total corpus callosum volume are only reported. Dependent measures were ROI volumes 

(percent of ICV), and covariates included BDI and average lifetime drinks/month (smokers 

and non-smokers were different on these measures; see Table 1 and 3.1 below). Significant 

univariate effects for smoking status were followed-up with t-tests (two-tailed). Although we 

predicted a priori that smokers exhibit smaller subcortical volumes, we adopted a 

conservative approach and corrected the t-test alpha level (p = 0.05) for multiplicity of tests 

with a modified Bonferroni method (Sankoh et al., 1997), based on 11 ROIs and the inter-

correlations among ROIs for all participants (r = 0.63). This produced an adjusted two-tailed 

alpha level of p < 0.022 for post-hoc t-tests for each ROI. Interactions between smoking 

status and age were considered significant at p < 0.05. Effect sizes for statistically significant 

differences in mean volume between smokers and non-smokers were calculated with 

Cohen’s d (Cohen, 1988).

2.4.3. Exploratory analyses—Statistically significant smoking status × age 

interactions were further explored via a median split on age, which divided the sample into 

four groups: younger non-smokers and smokers (22–45 years of age; mean age of 35 years), 

and older non-smokers and smokers (46–70 years of age; mean age of 55 years). Younger 

non-smokers (n = 24) and younger smokers (n = 17) were not different on any clinical or 

demographic variable. Older non-smokers (n = 19) and older smokers (n = 23) were 

equivalent on clinical and demographic variables, except that older smokers had fewer years 

of education.

Two exploratory analyses were conducted on the basis of the age median split for ROIs 

showing a significant smoking status × age interaction in the Primary Analyses: 1) Slopes of 

volume across age were statistically compared among the four groups via GENLIN, and 

group differences on slopes were considered statistically significant at p < 0.05. 2) Mean 

ROI volumes were compared across the four groups. Main effects, interactions and pairwise 

t-tests (two-tailed; providing comparisons of mean volumes among the four groups) were 

considered statistically significant at p < 0.05. Comparisons of slopes and mean volumes 

between younger smokers and non-smokers were adjusted for age because of the established 

relationship between age and regional brain volumes. Comparisons of slopes and mean 

volumes among older smokers and non-smokers were adjusted for age and education; 
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comparisons of slopes and mean volumes between younger and older smokers were adjusted 

for pack-years.

2.4.4. FTND score—Associations between the 11 ROI volumes and cigarette pack-years 

(measure of exposure magnitude) and FTND score (measure of nicotine dependence level) 

were examined with linear regression; part (semi-partial) correlations were reported, 

adjusting for age and lifetime average drinks/month. Although we predicted that higher 

pack-years in smokers are inversely related to all subcortical volumes, we corrected the 

alpha level (p = 0.05) for the part correlations for multiplicity of tests with the above 

described modified Bonferroni procedure; a two-tailed p < 0.022 was considered statistically 

significant.

3. Results

3.1. Participant demographics and clinical variables

Smokers and non-smokers were equivalent on age, sex, percent of Caucasians, level of 

anxiety symptomatology and education (see Table 1). Smokers had significantly higher BDI 

scores, and consumed more average drinks per month over lifetime (all p < 0.05). Although 

statistically different between groups, the average BDI score for both groups was in the 

normal range (i.e., < 10) and well below the cutoff for mild depressive symptomatology 

(Richter et al., 1998). Participant alcohol consumption did not approach a hazardous level 

[see (McKee et al., 2007; Mertens et al., 2005)].

3.2. Primary analyses: main effects and interactions for smoking status and age

Significant smoking status × age interactions were observed for volumes of the total 

subcortical WM [χ2(1) = 4.40, p = 0.036], total corpus callosum [χ2(1) = 4.50, p = 0.034], 

thalamus [χ2(1) = 4.29, p = 0.038], and cerebellar cortex [χ2(1) = 4.61, p = 0.032]; in these 

regions, smokers showed significantly greater volume loss with increasing age than non-

smokers (see Figs. 1 and 2). Smokers also showed trends for greater age-related volume loss 

in the brainstem (p = 0.08) and caudate (p = 0.10) Except for the pallidum, cerebellar WM 

and brain stem, age was inversely related to volumes in all other ROIs (all p < 0.01). Greater 

lifetime average drinks/month, although low, was associated with smaller total corpus 

callosum volume (p = 0.018). No main effects were observed for smoking status in any ROI 

(all p > 0.12). Findings were essentially unchanged when female participants were removed 

from the analyses. The greater volume loss in smokers in the above regions was similar in 

the left and right hemispheres in bilateral ROIs (data not shown).

3.3. Exploratory analyses comparing younger and older groups

3.3.1. Comparisons of slopes of volume across younger smokers and non-smokers, as well 

as older smokers and non-smokers were conducted with GENLIN for the subcortical WM, 

total corpus callosum, thalamus, and cerebellar cortex, regions in which smokers showed 

greater age-related volume loss in our Primary Analyses. Older smokers showed greater age-

related volume loss than younger non-smokers in the subcortical WM (β = −0.39, p = 

0.021), total corpus callosum (β = −0.05, p = 0.014), and cerebellar cortex (β = −0.11, p = 

0.046). Older non-smokers had greater age-related volume loss than younger non-smokers in 
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the total corpus callosum (β = −0.04, p = 0.020). No other group differences were observed 

(see Figs. 3–6 ). Both older smokers and non-smokers showed moderate strength 

associations between age and subcortical WM, total corpus callosum, and thalamus volumes, 

while both younger non-smokers and smokers demonstrated very weak associations between 

age and volumes of all ROIs.

3.3.2. Smoking status (smokers vs. non-smokers) × age group (older vs. younger 

participants) interaction GENLIN models were conducted for the subcortical WM, total 

corpus callosum, thalamus, and cerebellar cortex, where smokers showed greater age-related 

volume loss in the Primary Analyses. Main effects of age group (younger vs. older) were 

observed for the total corpus callosum [χ2(1) = 4.24, p = 0.039], thalamus [χ2(1) = 9.43, p = 

0.002], cerebellar cortex [χ2(1) = 13.25, p < 0.001] and a trend for subcortical WM [χ2(1) = 

3.71, p = 0.054], where the younger participants had larger volumes than the older 

participants. No significant main effects were observed for smoking status (all p > 0.051). 

Trends for a smoking status × age group interaction were observed for the total corpus 

callosum (p = 0.055) and thalamus (p = 0.062), which were driven by smaller mean volumes 

in older smokers. Pairwise t-tests indicated older smokers had smaller volumes than younger 

and older non-smokers in the above four ROIs, and smaller volumes than younger smokers 

in the total corpus callosum, thalamus, and cerebellar cortex (all p < 0.05). No other 

significant mean volume differences were observed (see Table 2). In comparisons between 

older smokers and older non-smokers, greater age was related to smaller subcortical WM, 

total corpus callosum, and thalamic volumes (all p < 0.01), but education was not associated 

with any volume (all p > 0.50). Age was not related to volumes in comparisons between 

younger smokers and younger non-smokers (all p > 0.40).

3.4. Associations of pack-Years and FTND with regional subcortical volumes in smokers

In smokers, higher pack-years showed significant negative associations of moderate strength 

with the volumes for total amygdala (see Fig. 7), nucleus accumbens, total corpus callosum 

and subcortical WM after adjusting for age and lifetime average drinks/month (see Table 3); 

the magnitudes were generally similar for bilateral structures (data not shown). A higher 

FTND score was associated with lower total corpus callosum volume (r = −0.37, p = 0.007) 

after adjusting for age and lifetime average drinks/month in smokers; no other significant 

associations between FTND and subcortical volumes were observed. The magnitudes and 

directions of the associations between pack-years, FTND and volumes across ROIs for 

younger and older smokers were largely equivalent.

4. Discussion

The primary findings of this 4 T quantitative MRI study were: 1) Otherwise healthy adult 

smokers demonstrated greater age-related volume loss than non-smokers in the bilateral and 

total (sum of left and right hemisphere) subcortical WM, thalamus, and cerebellar cortex, as 

well as the total corpus callosum; 2) Older smokers showed significantly smaller volumes 

than younger and older non-smokers in the subcortical WM, corpus callosum, thalamus and 

cerebellar cortex, as well as smaller volumes than younger smokers in the corpus callosum, 
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thalamus, and cerebellar cortex; 3) In smokers, greater pack-years were associated with 

smaller amygdala, nucleus accumbens, corpus callosum and subcortical WM volumes.

The greater age-related volume loss in smokers was pronounced in the total lobar WM and 

corpus callosum. The thalamus and cerebellar cortex were the only subcortical GM ROIs 

that showed statistically significant greater age-related volume loss in smokers. Comparisons 

of slopes of volumes across age between younger and older participants suggested the 

greater age-related volume loss observed in smokers in the above regions was primarily 

driven by significantly larger volume loss with age in older smokers relative to younger non-

smokers. Correspondingly, older smokers were the only group to show significant 

associations between age and subcortical WM, corpus callosum, thalamus and cerebellar 

cortex volume. There were no significant differences among smokers and non-smokers, as a 

whole, on any ROI volume. However, older smokers had smaller total lobar WM, corpus 

callosum, thalamus and cerebellar cortex volumes than younger non-smokers, younger 

smokers and older non-smokers; the largest magnitude differences were between younger 

non-smokers and older smokers, reflecting the interacting effects of age and smoking status 

on these regions. No significant differences were observed between younger non-smokers, 

younger smokers and older non-smokers; the effect sizes from these comparisons were 

generally weak, indicating the lack of differences between these groups was not a function 

of inadequate power related to group size.

A central mechanism hypothesized to be related to the neurobio-logical abnormalities 

observed in smokers is increased brain oxidative stress (OxS) that is promoted by elevated 

free radical species and decreased endogenous antioxidant levels (Durazzo et al., 2014a; 

Swan and Lessov-Schlaggar, 2007). The gas and particulate phases of cigarette smoke have 

extremely high concentrations of short-and-long-lived free radical species and other 

oxidizing agents (Ambrose and Barua, 2004; Valavanidis et al., 2009). In addition to 

increased free radical levels, smoking is associated with markedly elevated 

carboxyhemoglobin levels (Deveci et al., 2004), altered mitochondrial respiratory chain 

function (Alonso et al., 2004), and induction of proinflammatory cytokine release by 

peripheral and central nervous system glial cells (Mazzone et al., 2010), which combine to 

further escalate cerebral OxS. It is well established that OxS is directly associated with 

damage to membrane lipids, proteins, carbohydrates, DNA and RNA of neuronal, glial, and 

vascular tissue of the brain [see (Durazzo et al., 2014a) and references therein]. 

Oligodendrocytes (the myelin-producing cells of the brain), granular neurons of the 

cerebellar cortex, and neurons in several hippocampal subregions are highly susceptible to 

OxS (Smith et al., 1999; Wang and Michaelis, 2010). While not universally accepted [see 

(Salmon et al., 2010)], increasing OxS burden with aging is suggested to be a fundamental 

mechanism contributing to neurodegeneration in normal aging (Halliwell, 2006; Zimniak, 

2011). We previously observed that current and former cigarette smoking in cognitively 

normal elders (Durazzo et al., 2016a, 2014b) and current smoking in those with probable 

Alzheimer disease (Durazzo et al., 2016a) are associated with significantly elevated 

cerebrospinal fluid isoprostane concentration, which is a biomarker of increased central 

nervous system OxS. In these groups of elders (76 ± 6 years of age), higher isoprostane 

concentration was related to smaller hippocampal volume. Consistent with this relationship, 

young-to-older adult smokers showed greater age-related volume loss than non-smokers in 
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the total hippocampus and several hippocampal subregions (Durazzo et al., 2013). In the 

current study, adult smokers, as a whole, exhibited greater age-related volume loss in the 

lobar WM and across the entire corpus callosum; however, the results of the exploratory 

analyses suggested this effect was largely driven by the older smokers (46–70 years of age). 

Collectively, our findings in young-to-elder adults suggest the chronic OxS imposed by 

cigarette smoking may interact with the OxS associated with normal aging, which may 

amplify degeneration in subcortical brain regions that are either highly vulnerable to OxS 

(e.g., lobar sub-cortical WM, hippocampus) and/or have a high metabolic activity (e.g., 

cerebellar cortex, hippocampus, and thalamus).

Greater cigarette pack-years in smokers were associated with smaller amygdala, nucleus 

accumbens, total corpus callosum and sub-cortical lobar WM volumes, while higher level of 

nicotine dependence was only related to smaller corpus callosum volume. This pattern 

suggests that greater amount/duration of cigarette exposure rather than nicotine dependence 

level was related to smaller tissue volume in most subcortical regions, consistent with 

findings for cortical volumes/density (Durazzo et al., 2010; Pan et al., 2013; Sutherland et 

al., 2016). Subregions of the amygdala (Mineur et al., 2016) and nucleus accumbens (Crespo 

et al., 2006) have a high density of cholinergic receptors, but is it is not clear if the chronic 

upregulation and decreased sensitivity of nicotinic receptors associated with nicotine 

dependence is related to the morphological integrity of these tissue. Additionally, as the 

FTND is an ordinal metric of limited range, it may not be as robust a predictor as pack-

years.

This study has limitations that may affect the generalizability of our findings. Although 

smokers demonstrated greater age-related volume loss in several ROIs, a longitudinal design 

is required to verify the findings of this cross-sectional study. The formation of the older and 

younger groups was based on a median split of the participants’ age range, yielding groups 

above and ≤45 years of age. Consequently, our operationalization of older and younger 

groups, and the corresponding volumetric findings, should be considered preliminary. 

Undocumented premorbid/comorbid group differences in lifestyle or subclinical biomedical 

conditions (e.g., diet/nutrition, exercise, subclinical pulmonary or cardiovascular 

dysfunction) and/or genetic polymorphisms (Mon et al., 2013) may have influenced the 

results. Since this study excluded individuals with clinically significant smoking-related 

morbidity, it is possible that the age-related effects were underestimated in this healthy 

cohort (Durazzo et al., 2014a). Additionally, given the subcortical lobar WM was not further 

divided into major lobes, further investigation needs to examine any regional specificity of 

age-related WM volume loss in smokers. Finally, the small number of females precluded 

assessment of sex effects.

5. Conclusions

The study results provide novel evidence that cigarette smoking is associated with 

accelerated age-related volume loss in multiple sub-cortical brain regions. The findings also 

suggested the smoking-related effects on subcortical WM and GM regions/nuclei were most 

apparent in the older age group, starting at 46 years of age in this cohort. These data offer 

further insight into the potential neurobiological substrates related to the neuropsychological 
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abnormalities observed in cigarette smokers across adulthood (Durazzo et al., 2016b, 2010), 

and may have implications for cortical-subcortical structural and functional connectivity in 

smokers with increasing age. Why are these findings and continued research on the 

neurobiological consequences of smoking clinically relevant? The fundamental reasons are 

that over 1 billion people worldwide are cigarette smokers, and smoking-related diseases kill 

at least 6 million individuals annually (WHO, 2015). Understanding the effects of chronic 

smoking on brain micro-and-macrostructural integrity, biochemistry, functional and 

structural connectivity, as well as their functional correlates is required to inform the 

development of more effcacious smoking cessation interventions (Addicott et al., 2014, 

2015; Durazzo et al., 2014a, 2016c, 2015).
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Fig. 1. 
(A) Subcortical lobar white matter volume across age for Non-smokers and Smokers. (B) 

Total corpus callosum volume across age for Non-smokers and Smokers.
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Fig. 2. 
(A) Thalamus volume across age for Non-smokers and Smokers. (B) Cerebellar cortex 

volume across age for Non-smokers and Smokers.
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Fig. 3. 
Subcortical lobar white matter volume across age for Younger and Older groups.
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Fig. 4. 
Total corpus callosum volume across age for Younger and Older groups.
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Fig. 5. 
Thalamus volume across age for Younger and Older groups.
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Fig. 6. 
Cerebellar cortex volume across age for Younger and Older groups.

Durazzo et al. Page 19

Drug Alcohol Depend. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Association of amygdala volume with pack-years.
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Table 1

Group Demographics, Alcohol and Cigarette Use Histories, Mood Measures, and Intracranial Volume (ICV).

Measure; min-max Non-smokers (n = 43) Smokers(n = 40)

Age (years) 43 (13) 22–70 47 (11) 22–64

Education (years) 16 (2) 12–20 15 (2) 12–20

Male (%) 81 87

Caucasian (%) 60 70

Lifetime average drinks/month 19 (11) 1–54 26 (14) 3–56*

FTND NA 5 (2) 2–8

Pack-years NA 26 (16) 0.5–63

Age onset of smoking NA 16 (6) 13–24

BDI 3 (3) 0–13 6 (3) 0–13*

STAI 32 (7) 21–46 34 (9) 20–56

Intracranial volume (cc) 1409 (201) 972–1738 1477 (208) 828–1750

Note. BDI: Beck Depression Inventory. FTND: Fagerstrom Tolerance Test for Nicotine Dependence. Min: minimum. max: maximum. NA: not 
applicable. STAI: State −trait Anxiety Inventory − Trait.

*
Smokers > Non-smokers, p < 0.05. Mean (SD).
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Table 3

Associations between Regional Volumes and Pack-Years in Smokers.

Region r p-value

Amygdala −0.49 0.001

Nucleus Accumbens −0.42 0.004

Total Corpus Callosum −0.38 0.006

Subcortical Lobar White Matter −0.35 0.016

Caudate −0.32 0.028

Putamen −0.26 0.049

Thalamus −0.25 0.09

Brain Stem −0.21 0.19

Pallidum −0.12 0.48

Cerebellar Gray Matter −0.07 0.65

Cerebellar White Matter −0.02 0.91

Note. r-values are part (semi-partial) correlations adjusted for age and lifetime average drinks/month; p < 0.022 is statistically significant.
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