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Abstract

Objective—Adipose derived mesenchymal stem cells (ASCs) are an exciting potential cell 

source for tissue engineering because cells can be derived from the simple excision of autologous 

fat. This study introduces a novel approach for tissue engineering cartilage from ASCs and a 

customized collagen oligomer solution, and demonstrates that the resultant cartilage can be used 

for laryngeal cartilage reconstruction in an animal model.

Methods—ASCs were isolated from F344 rats, seeded in a customized collagen matrix, and 

cultured in chondrogenic differentiation medium for 1, 2 and 4 weeks until demonstrating 

cartilage-like characteristics in vitro. Large laryngeal cartilage defects were created in the F344 rat 

model, with the engineered cartilage used to replace the cartilage defects, and the rats followed for 

1–3 months. Staining examined cellular morphology and cartilage-specific features.

Results—In vitro histological staining revealed rounded chondrocyte-appearing cells evenly 

residing throughout the customized collagen scaffold, with positive staining for cartilage-specific 

markers. The cartilage was used to successfully repair large cartilaginous defects in the rat model, 

with excellent functional results.

Conclusion—This study is the first study to demonstrate, in an animal model, that ASCs 

cultured in a unique form of collagen oligomer can create functional cartilage-like grafts which 

can be successfully used for partial laryngeal cartilage replacement.

Level of Evidence—N/A
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Introduction

With recent advances in tissue engineering, a variety of cartilage engineering approaches 

have been described in the literature.1–7 Perhaps the most renowned cartilage engineering in 

the otolaryngology literature include the reports by Macchiarini et al using bone marrow-

derived mesenchymal stem cells (MSCs) on either decellularized cartilage or polyurethane 

scaffold for tracheal replacements in patients.8 The major limitation with decellularized 

cartilage and polyurethane scaffold for laryngeal cartilage engineering is that the cells coat 

the surface of the scaffold but fail to fully integrate. Since polyurethane is not a natural 

biomaterial, such as collagen, there is also increased risk of an inflammatory or foreign body 

reaction.

Ideally, engineered laryngeal cartilage would have cells evenly distributed throughout the 

scaffold, the ability to fuse with adjacent tissue (laryngeal muscle) without inducing an 

inflammatory response, and the ability to mature and stabilize in vivo. In the current study, 

we explore the use of a patented oligomeric collagen, which uniquely retains natural 

collagen intermolecular cross-links. This model supports suprafibrillar assembly to yield a 

highly interconnected D-banded collagen-fibril network that is more mechanically stable and 

resistant to proteolytic degradation compared to those formed by conventional monomeric 

collagens.9–12 The oligomer collagen scaffold is in the form of a solution that rapidly self-

assembles into a solid contiguous regeneration matrix when activated. The methodology 

allows stem cells and collagen oligomers to be suspended in solution prior to polymerization 

into a solid state, and has been shown to promote rapid vascularization in vivo.10,12 The 

physical properties can be modulated to provide the proper cell-matrix mechanotransduction 

cues for guiding ongoing cartilage development and regeneration. This approach also fosters 

in-vivo tissue integration by creating a cellular microenvironment that captures the cellular 

processes and cell-matrix signaling of embryonic cartilage development rather than mature 

cartilage. In short, this process involves the formation of a pre-cartilagenous state in which 

mesenchymal cells, interfacing with type I collagen, differentiate into chondrocytes that 

produce cartilage-specific ECM components including type II collagen and 

glycosaminoglycans.12 Since this approach mimics native cartilage development, one would 

anticipate implanted cartilage constructs to become increasingly stable in vivo, rather than 

weakening or degrading over time.

The aim of this study was to determine if a unique oligomeric collagen9–12 could be 

combined with adipose derived stem cells (ASCs) to create 3-dimensional laryngeal 

cartilage. We hypothesized that the cartilage grafts created from ASCs in collagen could be 

used to consistently repair partial laryngeal defects in a rat model. If successful, this 

approach could be readily translatable, as cartilage constructs could be derived from a 

simple fat biopsy under local anesthesia, with autologous tissue engineered cartilage derived 

within one month in culture.
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Materials and Methods

ASC Isolation and Culture

ASCs were obtained from 12-week-old male Fischer 344 rats (Envigo, Indianapolis, IN). 

Adipose tissue was collected from surrounding epididymis and cut into less than 1 mm3 

pieces. Tissue then was digested in 0.2% Collagenase IV (Sigma-Aldrich, St. Louis, MO) 

for 60 minutes at 37°C. After centrifugation at 1000 rpm for 5 minutes, the pellet was 

resuspended in ASC culture medium (Dulbecco’s Modified Eagle’s Medium, DMEM 

supplemented with 10% FBS, 1% penicillin/streptomycin/amphotericin,) and filtered 

through a 300 μm and 70 μm filter sequentially. The final cell pellet was resuspended in 

ASC culture medium and cultured at 37°C and 5% CO2. Medium was freshened twice a 

week and cells were passaged when confluent.

Chondrocyte Differentiation

4×104 ASC cells were seeded in 24 well tissue culture plates in culture medium overnight. 

Then medium was replaced with either ASC culture medium or chondrogenic medium 

(Hyclone Advance stem Chondrogenic Differentiation Medium, SH30889.02, Thermo 

Scientific). Medium was changed twice a week. After 2 weeks, morphological change was 

evaluated with microscopy. To detect type II collagen deposition, cells were fixed in 3% PFA 

for 10 minutes. After blocking with 1% BSA, cells were incubated with rabbit polyclonal to 

collagen II antibody (ab34712, Abcam Inc. Cambridge, MA) for 15 hours. The cells were 

then incubated with a secondary goat anti-rabbit antibody Alexa Fluor 488 conjugate 

(A-11034, Thermo Fisher Scientific, Carlsbad, CA) and counterstained with DAPI nuclear 

marker (4’, 6-diamidino-2-phenylindole, dihydrochloride, 62248, Thermo Fisher Scientific, 

Rockford, IL). For control chondrocyte cultures and constructs, human chondrocytes were 

attained (NHAC-kn) (Lonza Walkersville, MD,CC-250) and cultured in the supplied culture 

medium (Lonza, CC-3217) at 37°C and 5% CO2. Medium was refreshed twice a week and 

cells were passaged when confluent. For control cell differentiation, 2×104 NHAC-kn cells 

were seeded in 24 well plates in culture medium overnight, then medium was replaced with 

either supplied medium or chondrogenic medium (Hyclone Advance Stem Chondrogenic 

Differentiation Medium, SH30889.02, Thermo Scientific).

Preparation of ASC Seeded Constructs

F344 rat ASCs were grown in DMEM complete medium until they were ready to use. 5×105 

cells were mixed with 320 μl of neutralized collagen and added to a well of 96 well plate 

(Figure 1). After polymerizing, they were compressed to 0.5mm thickness scaffolds. 

Chondrogenic Differentiation Medium was added to scaffolds. Scaffolds were maintained in 

37°C, 5% CO2 incubator for up to 4 weeks. Medium was freshened twice a week.

Histological Analysis in vitro

ASCs/collagen constructs were harvested at 1, 2 and 4 weeks. Scaffolds were rinsed twice 

with PBS and fixed in 3% PFA for 1 hour, and then frozen in O.C.T Compound (4585, 

Fisher HealthCare, Houston, TX) for cryostat sectioning. Sections were cut into thickness of 

20 μm by cryotome. Standard H&E staining was used to visualize cell distribution (and 
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morphology). Safranin-o (S8884, Sigma-Aldrich, St. Louis, MO) staining was used to 

observe accumulation of sulfated proteoglycans.

Mechanical Test of Engineered Constructs

Five acellular collagen scaffolds and 5 ASC seeded collagen scaffolds were cultured in 

chondrogenic differentiation medium for 3 weeks and then submitted for compression 

testing. Compression testing was performed with samples fully hydrated, with an unconfined 

compression device set at 5.6 lb/24.9 N load cell.

In vivo study

Partial Laryngectomy Procedures—The animal study protocol was approved by 

Purdue University Animal Care and Use Committee, and institutional guidelines, in 

accordance with the National Institutes of Health guidelines, were followed for the handling 

and care of the animals. Twelve Fischer 344 male rats (Envigo, Indianapolis IN) were 

anesthetized with isoflurane via face mask (1–5%). A midline vertical skin incision 

measuring 1.0 cm was made over the larynx, with the incision carried through the skin, 

bluntly dividing the submandibular glands, and then incising and retracting the strap muscles 

inferolaterally to expose the underlying larynx. The beveled tip of an 18 gauge needle was 

used to create a window in the left thyroid cartilage, and then continued dissection used to 

resect the left lateral thyroid cartilage anteromedially (a portion of cartilage was preserved 

posteriorly over the pyriform sinus to avoid mucosal injury). The defect size was consistent 

with our prior published model,4 and the defect was large enough that repair was necessary, 

as control animals (leaving defect unrepaired) did not survive the immediate postoperative 

period. A piece of ASCs/collagen scaffold (pre-cultured in chondrogenic differentiation 

medium for 1 week) of appropriate size was implanted into the defect, the strap muscles 

were re-approximated and the skin was closed with 5–0 Vicryl suture.

Larynges were fixed with 4% paraformaldehyde in PBS for 24 hours, then changed to 30% 

sucrose in PBS solution until tissues sunk to the bottom. Tissues were frozen by cryo‐
embedding media (OCT). The larynges were cut at the axial position to sections with 

thickness of 12μm. Hematoxylin and eosin (H& E) staining was performed to show the 

structure of the scaffolds relative to the native laryngeal tissue as well as inflammation. To 

detect negatively charged sulfated proteoglycans in the implant (characteristic of cartilage), 

sections were stained with Alcian Blue (KTABP2.5, American Mastertech Scientific, Lodi, 

CA).

Results

Chondrocyte Differentiation

Within two weeks, the ASCs in ASC medium demonstrated characteristic ASC morphology 

(elongated/spindle shaped cells throughout), while the ASCs in chondrocyte differentiation 

medium (ASC-CH) became rounded and pyramidal shaped suggesting an overall change in 

outer cellular morphology (Figure 2). By three weeks, the cells were depositing collagen II 

(suggesting chondrocyte transformation) while the ASCs were not (Figure 3). These findings 
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suggested that the ASC phenotype had differentiated into that of a chondrocyte in vitro 
within a timeline of three weeks.

Histological Analysis in vitro

The ASC seeded scaffolds in ASC medium rapidly decreased in size over time, while the 

acellular scaffolds remained stable in size. However, the acellular scaffold progressively lost 

rigidity over time, becoming increasing soft and pliable to touch.. In contrast, ASC-CH 

scaffolds stayed consistent in size over time and became increasingly rigid (Figure 4, left). 
Mechanical testing supported the relative difference in stiffness between the acellular 

construct and the ASC-CH constructs (Figure 4, right). H&E staining demonstrated that, as 

the 3-dimensional ASC-CH constructs mature, the cells become increasingly round and the 

matrix demonstrates more notable lacunae-like changes consistent with maturing cartilage 

(Figure 5). Safranin-o stain, a marker for accumulated sulfated proteoglycans (characteristic 

of cartilage), became more intense over time, with dense Safranin-o positive areas noted 

throughout the ASC-CH constructs by week four (Figure 6).

In Vivo Response to ASC-CH for Cartilage Replacement

In the postsurgical period, animals steadily gained weight, and there were no problems with 

airway compromise, difficulty handling secretions, or other signs of laryngeal dysfunction. 

On gross post-mortem laryngeal examination at 1 month, the engineered graft and native 

laryngeal cartilage were in close approximation, and by 3 months the engineered graft had 

fused and healed into the native cartilage, such that the laryngeal shape was well preserved 

and it was difficult to identify the original site of the hemilaryngeal defect (Figure 7A). 

Alcian blue staining of postmortem laryngeal sections demonstrated the engineered graft to 

be weakly positive at 1 month, while at 3 months the engineered graft demonstrated blue 

stained negatively-charged sulfated proteoglycans consistent with cartilage formation 

(Figure 7B). On H&E staining, the graft maintained adequate thickness, and there was no 

evidence of any inflammatory or foreign body reaction, with adjacent myofibers healing and 

fusing within the collagen matrix of the graft (Figure 8).

Discussion

Numerous previous studies have investigated the use of chondrocyte seeded scaffolds for 

laryngotracheal airway reconstruction. For example, Kamil et al demonstrated that 

chondrocytes (derived from auricular cartilage) in polyethylene oxide/polypropylene oxide 

copolymer could be matured in vivo (in pig dorsum) and then used for laryngotracheal 

reconstruction.13 Goldstein et al used 3-dimensional printing to create a chondrocyte-coated 

poly-lactic acid (PLA) scaffold, and used it for laryngotracheal reconstruction in an animal 

(rabbit) model.14 While both these approaches are novel, if clinically translated, a generous 

cartilage biopsy (for example, a piece of septal cartilage or auricular cartilage) would be 

needed to attain chondrocytes, so it is not necessarily an advantage over the traditional 

surgical approach to harvest cartilage grafts from nasal or auricular donor sites for 

laryngotracheal reconstruction. Other approaches to engineering tracheal cartilage have 

focused on use of bone marrow derived mesenchymal stem cells for tracheal cartilage 
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reconstruction, based on either decellularized cartilage or a polymer based scaffold such as 

polyurethane.3,15

A less invasive approach would entail taking a small biopsy of adipose tissue under local 

anesthesia alone, and using these cells to create cartilage grafts for laryngotracheal 

reconstruction and/or laryngeal tissue engineering. Hashemibeni and colleagues found that 

they could repair small defects of the anterior tracheal wall with grafts which had been 

engineered from differentiated adipose-derived stem cells in an alginate-bead based 

biodegradable scaffold.16 While the grafts did develop into cartilage in vivo, the grafts were 

not well differentiated into cartilage implants in vitro, and defects were too small to 

determine if the engineered cartilage was providing adequate physiologic support. This is 

the first study to demonstrate that ASCs in a unique-developed collagen matrix can be used 

to create functional cartilage-like grafts for partial laryngeal cartilage replacement. Our 

laboratory has previously investigated other scaffold materials such as polycaprolactone 

(PCL), PLA and polyglycolic acid (PGA) with a variety of cell types, with contraction of the 

implants being a consistent problem (data unpublished). When standard collagen polymer is 

used as scaffold, cells tend to rest on the surface of the scaffold rather than being evenly 

distributed throughout the construct. The current study incorporated a unique oligomer-

based collagen as scaffold material, thereby allowing cells to evenly distribute throughout 

the scaffold, and obviating the implant contraction problems that we encountered in prior 

models. Furthermore, because the collagen is still recognized as native, there were no issues 

with inflammatory or foreign body response. Since viable cells are distributed evenly 

throughout the collagen scaffold and do not require a prefabricated mold, the implants can 

be readily customized in size and shape. Future studies will involve using the grafts in larger 

defects and larger animal models for airway laryngotracheal reconstruction, and combining 

the implants with engineered muscle and vibratory surface for hemilaryngeal replacement.

Conclusion

We demonstrate a unique, yet simple approach using a novel collagen scaffold and 

chondrocyte differentiation medium to differentiate ASCs into chondrocytes, creating 

cartilage grafts in vivo that mimic native cartilage. Future studies will be necessary to better 

define potential clinical applications of this approach to engineering laryngeal cartilage.
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Figure 1. 
Basic overview of steps to create 3-dimensional tissue engineered cartilage from adipose-

derived mesenchymal stem cells (ASCs). This novel model of using collagen oligomer 

(“Collymer”) and self-assembly reagent allows ASCs to be evenly distributed throughout the 

tissue engineered cartilage, unlike traditional models of engineering in which begins with 

cells cultured onto a scaffold in the polymerized form, thereby limiting penetration/

distribution of cells.
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Figure 2. 
(A) Phase contrast image taken at 10X magnification at 2 weeks demonstrates rounded cell 

morphology (bracket) in the adipose stem cells (ASCs) incubated in chondrocyte medium 

suggesting transformation into a chondrocyte phenotype. (B) In contrast, in the control 

medium the ASCs demonstrate more characteristic spindle, elongated morphology. (C) In 

the differentiation medium, chondrocyte change to round morphology. (D) In the control 

medium the chondrocytes demonstrate spindle and elongated morphology.
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Figure 3. 
Adipose-derived mesenchymal stem cells (ASCs) and chondrocyte in culture demonstrate 

abundant cells in both the chondrocyte medium (above) or control medium (below). DAPI 

stain demonstrates cell nuclei in blue (fluorescent microscopy, 10x). Corresponding image 

revealing collagen 2 (green) demonstrates abundant collagen 2 in the ASCs and chondrocyte 

within the chondrocyte medium, while no collagen 2 is detected from the ASCs, and less 

collagen 2 is detected from chondrocyte in the control medium.

Zhang et al. Page 10

Laryngoscope. Author manuscript; available in PMC 2019 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Three-dimensional constructs (left) with the ASC (bottom) construct representing the ASCs 

in collagen scaffold grown in ASC medium at 4 weeks; the ASC construct was initially the 

same size as the other constructs, but decreased in size over time. The Acellular (top) 

construct represents the collagen scaffold cultured without cells. The middle ASC-CH 

constructs are demonstrated at 1 week (1 ASC-CH), 2 weeks (2 ASC-CH), or 4 weeks (4 

ASC-CH) in vitro; the constructs did not change in size over time, and become subjectively 

more rigid. Compression testing (right) suggests a relative difference in stiffness of the 

constructs at 4 weeks, with the acellular construct (black line) and samples of native rat 

laryngotracheal cartilage (blue line) being displaced with compression force more than the 

ASC-CH construct (red line) when the same force is applied. Graph represents mean results 

from at least 2 samples per condition, with differences not reaching statistical significance.
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Figure 5. 
H & E stained 20 um sections of three-dimensional construct [consisting of ASCs (A-C) and 

NHAC-kn (E-G) within collagen within chondrocyte differentiation medium] at (A&E) 1 

week, (B&F) 2 weeks, and (C&G) 4 weeks in vitro [brightfield imaging at 10x]. Note that as 

the ASCs differentiate into chondrocytes, many cells become associated with lacunae-like 

changes (arrows) within the matrix; this process begins at 1 week (A) and becomes 

increasingly more defined by 4 weeks (C). Control ASCs (D) and control chondrocyte (H) in 

the same collagen matrix which have been cultured in control medium (ASC medium), with 
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cells remaining spindle-like and demonstrating no comparable cartilage-like changes in the 

matrix.
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Figure 6. 
Cartilage marker, safranin O, has been used to stain these 20 um sections of three-

dimensional construct [consisting of ASCs (A-C) and chondrocyte (E-G) within collagen 

within chondrocyte differentiation medium] at (A&E) 1 week, (B&F) 2 weeks, and (C&G) 4 

weeks in vitro [brightfield imaging at 4x for ASCs and 10x for chondrocyte]. By 4 weeks 

the implant demonstrates many areas of bright orange safranin O staining consistent with 

maturing cartilage. Control ASCs (D) and control chondrocyte (H) in the same collagen 
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matrix which have been cultured in control medium (ASC medium) and do not stain orange 

with safranin O.
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Figure 7. 
Rat larynx after explantation. Anterior view of laryngeal cartilage demonstrate normal 

overall anatomy, with just a small area of remaining white fullness externally where the left 

hemilaryngeal cartilage defect was replaced with the tissue engineered cartilage, and no 

overall distortion of the gross laryngeal anatomy.
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Figure 8. 
H & E stain of implant spanning across laryngeal cartilage defect (black arrow). Edges of 

the remaining native cartilage are demarcated with white arrows.
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