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Abstract 

Purpose: 
Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with 

only minor subject motion. While DWI data corruption is often identified as signal drop 

out in diffusion-weighted (DW) magnitude images, DW phase images may have higher 

sensitivity for detecting subtle subject motion.  

Methods: 
This article describes a novel method to return a metric of subject motion, 

computed using an image texture analysis of the DW phase image. This Phase Image 

Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is computationally 

fast and reliably detects subject motion from diffusion-weighted images. A threshold of 

the motion metric was identified to remove motion-corrupted slices, and the effect of 

removing corrupted slices was assessed on the reconstructed FA maps and fiber tracts. 

Results: 

Using a motion-metric threshold to remove the motion-corrupted slices results in 

superior fiber tracts and fractional anisotropy maps. When further compared to a state-

of-the-art magnitude-based motion correction method, PITA-MDD was able to detect 

comparable corrupted slices in a more computationally efficient manner.  

Conclusion: 

In this study, we evaluated the use of DW phase images to detect motion 

corruption. The proposed method can be a robust and fast alternative for automatic 

motion detection in the brain with multiple applications to inform prospective motion 

correction or as real-time feedback for data quality control during scanning, as well as 

after data is already acquired. 
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INTRODUCTION 

Diffusion magnetic resonance imaging (d-MRI) has been proven to be a useful tool to identify 

microstructure changes, particularly in the brain. As diffusion imaging measures the microscopic 

movement of water molecules, it is extremely sensitive to the subject’s macroscopic or bulk motion. Any 

bulk motion during the diffusion encoding of the sequence can cause severe signal loss, leading to 

erroneous diffusion tensor reconstruction. Three main categories of bulk motion affect diffusion imaging: 

the motion due to respiratory and cardiac cycles, the vibrational motion of patient table due to the 

application of diffusion gradients, and the subject’s bulk head-motion, all of which could cause substantial 

image artifacts. Cardiac gating can be used to avoid corruption due to cardiac pulsation [1] [2]. The 

vibrational motion can be mitigated by using phase encoding (PE) reversal and then combining the blip-

up and blip-down images as in the COVIPER method [3] or through improved hardware design of the MRI 

scanner. While single shot diffusion-weighted EPI could reduce the effect of bulk subject motion as it is 

less sensitive to phase errors, it cannot overcome severe bulk motion as in the case of the involuntary 

motion of patients with Parkinson’s disease [4] or motion in young children [5]. Head motion in those 

cases can lead to inaccurate tensor estimation, which in return leads to erroneous fiber tracking and 

maps pertaining to different diffusion metrics. In some cases, the scans must be repeated with the hopes 

that no motion occurs in the repeated scan. In other severe cases of motion, a given study might be 

discarded or used with compromised reliability, which may have implications in analysis outcome. 

  Diffusion tensor imaging (DTI) could be improved by incorporating a quality measure of each 

diffusion-weighted image and removing motion-corrupted data before data analysis. Computing such 

quality measures based on the magnitude images followed by data rejection of the diffusion-weighted 

images has been proposed previously. Two of these methods, dubbed RESTORE and iRESTORE, were 

based on the voxel-wise identification of outliers in nonlinear diffusion tensor estimators [6] [7]. A slice 

based identification method called eddy [8] [9] (included in the FSL software package (FMRIB, Oxford, 

UK)) detects slices affected by magnitude signal loss through a nonparametric prediction using an 

iterative Gaussian process. Another method based on local binary patterns to extract texture features 

from the DWI data was presented in [10]. In [11], a k-space based method was briefly described, where 

higher entropy of the k-space was correlated with slice motion. A volume-based quality control method in 

the form of open source DTIPrep software was proposed in [12] [13]. While all of these methods are 

effective, their computational demands are high and therefore are not suitable for real-time applications. 

Rigid body motion during diffusion-weighted imaging affects the MR signal by a phase error, 

primarily when the motion occurs during the diffusion gradient encoding step [14] [15] [16]. This type of 

motion usually results in signal dropouts that can be mitigated primarily by discarding the corrupted slices 

[17] [18] [19]. For instance, Fig. 1a shows examples of DWI magnitude images and Fig. 1b shows their 

corresponding phase images; it can be observed that phase images appear to distinguish slices with 

motion more efficiently. Although previous methods have focused on the impact of motion on the 
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magnitude images, we suggest that the direct examination of the phase images themselves could lead to 

a reliable measure for data corruption. 

In this paper, we present a novel phase-based metric to detect motion in diffusion-weighted 

images. This Phase Image Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is 

computationally fast and can reliably detect subject motion.  

 The PITA-MDD method is based on the observation that Haralick’s textural features [20] applied 

to phase images are more sensitive in detecting subject motion than an existing state-of-the-art method 

(eddy) [8] when applied to the corresponding diffusion-weighted magnitude images. The PITA-MDD 

method was briefly described in [21], where one experiment was presented showing a comparison 

between the detected motion using the current method versus that detected using an external motion 

tracking sensor, indicating a good agreement. In this paper, we examined the method’s performance on 

diffusion tensor imaging of the brain and compared the results to the technique included in the eddy 

package [8]. Moreover, we validated the PITA-MDD method by analyzing the motion detection threshold 

using seven datasets where two dMRI repetitions were acquired, one with motion and another without 

motion. We used the FA map of the motion free repetition of each subject as the gold standard and 

compared the FA map reconstructed using different motion detection/rejection thresholds based on the 

Normalized Absolute Error (NAE) of the FA maps.  

This study has two main objectives. The first objective is to propose a new phase-based 

algorithm that can detect subject motion from diffusion-weighted images. The second objective is to 

validate the method using: (a) across-subject stability test, (b) across imaging protocol stability test, (c) 

comparison to a state-of-the-art magnitude-based motion correction method, and (d) noise simulation. 

Results indicate that the proposed method is reasonably accurate and computationally fast, and will, 

therefore, lend itself to real-time detection of motion in DWI data.   

MATERIAL AND METHODS 

Fig. 2 provides a block diagram of the PITA-MDD method, which we briefly overview here and 

then describe in detail below. The method starts with the acquisition of DWI data (including both 

magnitude and phase images). A volume-of-interest-mask of the brain is automatically extracted from the 

b0 volume, and the phase images are multiplied by the calculated mask. A gray level co-occurrence 

matrix (one of Haralick’s textural features) is then computed for each phase image, and then Haralick’s 

homogeneity index is computed from this as a quality metric for each diffusion-weighted image.  

Haralick’s homogeneity index was chosen as it reflects the degree of homogeneity in the phase image. 

A threshold T (the determination of which is described in section 2.3) is used to identify the 

motion-corrupted slices (i.e., a slice acquired with a diffusion weighting gradient) which are purged before 

DTI reconstruction. The validation of our method is based on comparing FA maps calculated using a 

cleaned dataset that was contaminated with motion, against those from a dataset without deliberate 
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motion. In addition, our method was compared with the well-established eddy tool for its sensitivity to 

motion-corruption detection in DWI data. 

2.1 Theory 

Both microscopic and bulk motion are encoded as phase variations in the presence of diffusion encoding 

gradients. Microscopic motion (on the order of tens or hundreds of microns), i.e., the diffusion motion that 

we want to encode, only manifests as a small phase variation across the brain [15]. While microscopic 

motion could induce phase in the image, it would need to be coherent motion. However, microscopic 

diffusion motion induces incoherent phase in the signal, which leads to signal attenuation. Accordingly, 

the resulting phase image appears smooth or homogeneous, which is captured as a high homogeneity 

value using the Haralick’s homogeneity index (HHI). The b0 volume, lacking any diffusion encoding, 

represents the most homogeneous phase image, which in turn has the highest homogeneity value. In the 

case of bulk motion (on the order of mm), even small head rotations lead to larger phase variations in the 

presence of diffusion encoding gradients. By considering the phase wrapping effect, a significant phase 

variation can lead to high-frequency ripples in the DW phase images resulting in a low homogeneity value 

as captured by the HHI. Magnitude signal dropout will occur when large phase variations have been 

produced, which is also termed as spin de-phasing. This explains why our PITA-MDD method is more 

sensitive than the magnitude-based methods in detecting subject motion.  

 In the following analysis, we assume that subject motion during the diffusion sensitizing gradients 

will have a more prominent effect on image phase than motion occurring during the imaging gradients. 

Consider a particular spin with a time-varying gradient 𝐺⃑ and a position 𝑟  in the gradient coordinate 

system. Adopting the convention presented in [22] for infinitesimal rotation (rotation with a very small 

angle, in which the sum of infinitesimal rotations does not depend on the order of the rotations), a bulk 

motion in the form of rotation with a rotation vector Ω⃑⃑⃑ and a translation from the position 𝑟 through the 

displacement vector 𝑆 causes a phase shift ∆𝜑 as detailed in [14]: 

∆𝜑(𝑟, 𝑡) = 𝛾 ∫ 𝑑𝜏[Ω⃑⃑⃑ × 𝐺⃑(𝜏)].
𝑡

0
𝑟 + 𝛾 ∫ 𝐺⃑(𝜏)𝑆(𝑡)𝑑𝜏

𝑡

0
,                 (1) 

where 𝛾 is the gyromagnetic ratio, 𝑡 represents a general time variable, and 𝜏 is a dummy variable of 

integration. The first term of the right-hand side of Eq. (1) is due to rotation, which causes a linear phase 

ramp producing blurring or signal dropout in the resulting magnitude images. The second term, which is 

due to translation, causes only a global phase shift in the resulting phase image.   

In DW brain imaging, head rotations are common, and the resulting motion can cause severe 

phase variations within the images. If the phase ramp in Eq.(1) approaches or exceeds 𝜋 radian/voxel, 

then the phase dispersion within a single voxel will be large enough to cause significant signal attenuation 

[23]. This dropout is what magnitude-based motion detection algorithms rely on to detect motion in DW 

acquisitions. For smaller motions, where the magnitude image may not experience much signal 
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attenuation, the phase variations across the image will still be evident as multiple phase edges (caused 

by phase wrapping). These phase edges alter the textural homogeneity of the phase image, which is 

usually quite apparent to the naked eye. If this textural inhomogeneity can be automatically detected, it 

may prove to be more sensitive than magnitude-based detection and may eventually lead to a more 

practical real-time detection solution. 

The gray level co-occurrence matrix (GLCM) of an image, which we denote by p, is defined as 

the distribution (normalized histogram) of co-occurring values at a given spatial offset [20]. The GLCM 

was computed by first dividing the image into g gray levels, where g is an integer, which means that the 

GLCM will be a g by g matrix. Four GLCMs were computed using pixel offsets in the four different 

directions of adjacencies (horizontal, vertical, and left and right diagonals) and were averaged to obtain a 

final co-occurrence matrix. Three examples of GLCMs are shown in Fig. 3, for phase images with no 

motion, subtle motion, and severe motion. In this example, phase values were quantized to just eight 

discrete levels between – 𝜋 and 𝜋 and the offset was one pixel in the horizontal direction. We then extract 

Haralick’s homogeneity index (HHI) for each DWI slice from the resulting GLCM as follows, 

HHI = ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗                                     (2) 

where 𝑝(𝑖, 𝑗) denotes element (𝑖, 𝑗) in the GLCM matrix. 

The HHI is a good indicator of the extent of motion present in the corresponding DWI. If the phase image 

is corrupted with motion, HHI has a low value, as shown in Fig. 3h. In contrast, high values of HHI are 

indicative of no motion. Our method for defining a threshold on HHI to identify motion-corrupted images is 

described below. 

2.2 Data Acquisition 

We acquired diffusion-weighted images (both magnitude and phase) on two scanners, a 3T 

Prisma
fit
 and a 3T Tim Trio (Siemens Healthcare, Erlangen, Germany).  In the case of the Tim Trio 

scanner, we used a 12-channel head coil, and in the case of the Prisma
fit 

scanner, we used a 64-channel 

head and neck coil. Seven datasets were acquired on five healthy volunteers.  We refer to the volunteers 

as V1, V2, V3, V4, and V5. The volunteers were instructed to rotate their heads voluntarily by an angle 

(around 1 to 5 degrees) for about 5 seconds, and then to return their heads to the original position after 

movement. They were also given a button box during imaging and instructed to press buttons whenever 

they moved their head. The study was approved by the Institutional Review Board at the University of 

Maryland School of Medicine, and all participants provided written informed consent. 

The dMRI protocols are as follows: 

Protocol 1 (Prisma
fit
): Single Shot 2D spin-echo echo planar imaging (EPI) was applied with TR 5.4 s, TE 

66 ms, field of view 240 mm, 54 slices, 2.5 mm slice thickness, matrix size 96 x 96 (image pixel size 2.5 

mm x 2.5 mm), bandwidth 2480 Hz/Px, full k-space, GRAPPA iPAT mode with PE acceleration factor of 

2, and 0.49 ms echo spacing. Diffusion parameters: b-value= 1000 s/mm
2
, bipolar diffusion scheme, 5 
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non-diffusion weighted volumes and 63 diffusion gradient directions, 2 repetitions except for V5  on whom 

only a single repetition data was obtained. Slices were interleaved, and images were reconstructed as 

both magnitude and phase images on the scanner.  

Protocol 2 (Prisma
fit
): Single Shot 2D spin-echo echo planar imaging (EPI) with: TR 5.9 s TE 72 ms, field 

of view 240 mm, 54 slices, 2 mm slice thickness, matrix size 118 x 118 (image pixel size 2 mm x 2 mm), 

bandwidth 2230 Hz/Px, full k-space, GRAPPA iPAT mode with PE acceleration factor of 2, and 0.53 ms 

echo spacing. Diffusion parameters: b-value= 1000 s/mm
2
, bipolar diffusion scheme, 5 non-diffusion 

weighted volumes 63 diffusion gradient directions, 2 repetitions.  

Protocol 3 (Tim-Trio): Single Shot 2D spin-echo echo planar imaging (EPI) was applied with TR 5 s, TE 

79 ms, field of view 240 mm, 45 slices, 3 mm slice thickness, matrix size 80 x 80 (image pixel size 3 mm x 

3 mm), bandwidth 2604 Hz/Px, full k-space, no PAT, and 0.47 ms echo spacing. Diffusion parameters: b-

value=1000 s/mm
2
, bipolar diffusion scheme, 4 non-diffusion weighted volumes, 30 electrostatically 

arranged diffusion gradient directions [24], two repetitions. Images were obtained from all five volunteers 

using Protocol 1, and this dataset was used to test the stability of the proposed method across subjects. 

Volunteer V1 was scanned using both Protocol 1 and 2 and was also scanned using Protocol 3 on a 

separate day (8 months apart), to assess the robustness of the results from multiple scans on the same 

subject. 

2.3 Data Processing 

Cleaning Slices with Motion  

All procedures were developed in Matlab (The MathWorks, Inc., Natick, MA). We used motion 

estimation [25] [26] with the magnitude images to confirm that the motion during the no motion case was 

not more than 1.3 mm. The phase images were first multiplied by a brain mask generated using the FSL 

tool (BET) [27] applied on the b0 images; the mask was regularly updated by the new b0 images. Before 

computing the GLCM of the phase images, the area outside of the brain was excluded. 

Haralick’s Homogeneity index (HHI) was then computed using Eq. (2), yielding an HHI for each slice per 

gradient direction in each dataset. We used a cut-off threshold T, the determination of which will be 

explained in the next subsection. Those images with HHI < 𝑇 were excluded from tensor reconstruction 

(and all subsequent standard downstream computations). The elapsed CPU time for running the 

algorithm on one slice is 2.15 ms on average.  

Determination of the Cut-off threshold 

In all our experiments with two repetitions (V1 to V4), volunteers were instructed to move only in 

the second repetition, Thus, in those experiments, we consider the diffusion tensor reconstructed from the 

first repetition as the ground truth to determine our motion detection threshold (cutoff threshold). During 

further data inspection, data from volunteer V4 appeared to contain small motion artifact in the first 

repetition, therefore five total datasets was used in this step of processing. DTI reconstruction was 

performed on both the clean data (first repetition) and motion corrupted data (second repetition). DTI 
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reconstruction was performed on both the clean data (first repetition) and motion corrupted data (second 

repetition). Motion rejection with cutoff thresholds ranging from 0 to 0.9 was applied on the motion 

corrupted data, and the resulting FA maps were compared to the FA map from the clean data based on 

the NAE. The optimal threshold that results in the least error from the ground truth FA map was 

calculated for each dataset to assess the sensitivity of FA computations to the cutoff threshold. Then a 

cutoff-threshold was determined using the minimum of the sum of squares of the FA errors for all 

compared datasets. 

DTI reconstruction 

Diffusion-weighted images before and after removing motion corrupted slices were processed 

using the Diffusion Toolkit script [28] to estimate the diffusion tensors and the corresponding DTI feature 

maps. Fiber tracts were visualized using TrackVis software [28]. The TrackVis program uses an 

interpolated streamline approach to reconstruct fiber paths. We used an angle threshold of 27° to 

compare the fiber tracts with and without motion removal. 

 

 

2.4 Validation 

Comparison to eddy method 

Eddy is a well-established software tool [9] which uses a statistical method to detect the outlier 

slices based on comparing the expected signal in a DW magnitude image using the neighboring slices in 

the Q-space to the signal observed in the actual slice. This tool is available as a part of the FSL package 

version 5.0.10 (FMRIB, Oxford, UK). The identified motion corrupted slices from eddy were compared 

against our results. 

Noise Simulation 

To simulate the effect of phase noise in identifying motion corrupted slices, Gaussian random 

noise with zero mean was added simultaneously to the real and imaginary part of the images (calculated 

using the phase and magnitude images). Six levels of noise with standard deviations (SD) = 5, 15, 25, 35, 

45, and 55 were added to the whole dataset of V1 at three different resolutions of 3 mm isotropic, 2.5 mm 

isotropic and 2 mm isotropic. We ran both PITA-MDD and eddy on the three resolutions, each at the six 

levels of noise to test the sensitivity of both methods to noise. To examine the sensitivity of the HHI to 

noise, Gaussian random noise with zero mean and SD that varies between 0 and 60 were added to three 

slices (in three different resolutions) with HHI in the range between 0.65 and 0.685 and another set of 

three slices with HHI in the range between 0.92 and 0.98. We further measure the SNR (with different 

level of added noise) by computing the ratio of the mean of the intensity of the voxels inside an arbitrary 

region inside the brain to the standard deviation of the intensity of voxels inside a region in the 

background. 
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RESULTS 

3.1. Motion Detection with HHI 

The left column of Fig. 4a shows the homogeneity textural feature, HHI, extracted from the DW 

phase images of the five volunteers per slice over the entire dMRI acquisition using imaging Protocol 1. It 

is observed that the locations and number of HHI drops in each scan match the time and the number of 

times the volunteers pressed a button to indicate that they are moving at the time during the d-MRI scans. 

It should be noted that HHI is substantially higher during the b0 volumes than in the volumes with applied 

diffusion gradient as the phase images in the former case are more homogeneous. The right column of 

Fig. 4a shows the histogram distribution of HHI for the entire DWI acquisition for each subject. In the 

same column, the small peaks to the left of the main peaks in the histogram plots indicate Haralick’s 

homogeneity indices corresponding to motion corrupted slices. The chosen T threshold (T = 0.56, please 

see details in section 3.2) reliably marked HHI’s and the corresponding DWI slices to be removed before 

diffusion tensor estimation. Fig. 4b shows a set of cases with different motion patterns and the resulting 

HHI distribution of V1. Fig. 4b (rows 1-3) show the histogram distributions of HHI for the entire DWI 

acquisition for the same subject with different resolutions (3 mm x 3 mm), (2.5 mm x 2.5 mm) and (2 mm 

x 2 mm) respectively, and with different motion patterns. Fig 4b (row 4) shows HHI and the corresponding 

histogram distribution of V1 (2 mm x 2mm) without motion; note that the threshold (0.56) in this case will 

not reject any slices. 

3.2. Determination and Validation of the Cut-off Threshold  

As previously stated, in all our experiments the volunteers were instructed to move only during 

the second repetition of the dMRI acquisition, while the first repetition was free of motion and the 

corresponding reconstructed FA served as the ground truth. 

Fig. 5 shows the motion rejection threshold versus the normalized absolute error (NAE) between 

the FA maps of the motion rejected data and that of the ground truth in each experiment. Five datasets 

V1 (3 mm x 3 mm), V1 (2.5 mm x 2.5 mm), V1 (2 mm x 2 mm), V2 and V3 were incorporated in this 

comparison. Fig. 5f shows the mean square of all the errors in the five cases by which we determine the 

threshold T with the minimum FA error to be equal to 0.56. It is an ideal value to use as it is also roughly 

in the center of the low plateau of the FA error. We, therefore, use T=0.56 for the following motion 

rejection analysis. 

3.3 Across Subject Stability 

Table 1 shows the percentage of the detected corrupted slices using the PITA-MDD method and 

the T threshold. Using Protocol 1, rejected motion corrupted data using PITA-MDD ranges from 0.83% to 

2.84%. Please see section 3.5 for the comparison of the PITA-MDD results with that of eddy. 
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 Fig. 6 shows axial and coronal FA maps calculated with all the acquired images versus the maps 

calculated with the detected motion-corrupted slices removed. The quality of the FA maps calculated after 

eliminating the motion-corrupted slices is visually superior to the quality of the FA maps calculated using 

the complete dataset. For example, there are multiple axial slices that appear to be different from the 

surrounding tissues in the non-corrected images. This effect is indicated by horizontal edges in the 

coronal FA maps that should not be present.   

Fig. 7a shows tractography results from a seed of a 1.25 voxel area in the Genu region that are compared 

before and after eliminating the slices corrupted with motion. Trackvis-filters (e.g. trajectories length 

threshold) were made consistent in both cases. Erroneous fiber tracts appear in the uncorrected data and 

are absent in the cleaned data. 

3.4 Across Imaging Protocol Stability 

Table 2 shows the percentage of the detected corrupted slices using our phase-based method on 

V1 using all three imaging protocols at different resolution scales. The phase-based method reliably 

detected all subjects’ head motions as confirmed by button-pressing (as shown in Fig. 4.b). Fig. 7b shows 

the tractography using the whole datasets versus the tractography with the corrupted slices removed. 

Within all three resolutions, the quality of the fiber tracts after eliminating the corrupted slices clearly 

exceeds the quality of the fiber tracts generated by including the corrupted slices. 

3.5. Comparison to eddy 

We compared the detected motion corrupted slices using our phase-based method against those 

computed by eddy (Tables 1 and 2). Table 2 shows the percentage of detected corrupted slices using the 

PITA-MDD method versus the percentage of outliers using the eddy software in Protocol 2 for V1 using 

data obtained at different resolution scales.  

In addition, Tables 1 and 2 show the detection overlap between the proposed method and [8]. 

The PITA-MDD method detected most of the motion corrupted slices that eddy detected. The PITA-MDD 

was more sensitive in picking up motion corruption compared to what may be evident in magnitude-based 

approaches (Fig. 8a). For more subtle motion where image blurring rather than apparent signal dropout 

was visible in magnitude images (slice 5 in Fig. 8a), the PITA-MDD method was able to identify corrupted-

slices based on phase-image textural content. For large motions which are manifested by signal 

dropouts, both methods reliably detected them (slice 1 and 3). 

Fig. 8b shows an example of some outlier slices that were identified by eddy but not by PITA-

MDD. These slices represent examples of the issue outlined in [9] which pointed out that eddy can 

potentially discard valid data which could ideally be used as part of a slice-to-volume resampling scheme. 

It is also possible that PITA-MDD would miss slices where motion occurred outside the sensitizing 

gradients time window, while such displacement may be detected by eddy. 

3.6. Noise Simulation 
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 Fig. 9 shows an example of the magnitude and phase images of a DWI at three levels of 

Gaussian random noise. Assuming the data with no noise added to be the ground truth, Table 3 

demonstrates the ability of the proposed method to detect motion corrupted slices with added noise. With 

increased noise, there is a slight increase in the percentage of slices detected by PITA-MDD and a slight 

decrease of the percentage of slices detected by eddy, while the common slices detected by both 

methods were consistent across noise levels. Figure 10 shows the sensitivity of the HHI in six different 

slices to added Gaussian random noise with zero mean and SD that ranges from 0 to 60, in a low HHI 

(Figure 10a) and high HHI (Figure 10b) scenarios. Both scenarios were illustrated by three different 

resolutions 3mm x 3mm, 2.5mm x 2.5 mm and 2mm x 2mm. In addition, the same figure shows the SNR 

values of the corresponding DWI slice with no added noise and with added Gaussian random noise with 

SD of 60. In both the low and high HHI scenarios, HHI showed a slight drop with the increased noise SD 

level, which is more visually apparent in the low HHI scenario. Such an HHI drop was also more apparent  

in the case of 3 mm resolution in the high HHI senario, as  the DW image SNR was low (SNR < 2) even 

before adding the additional noise.  The 3mm data  set was acquired on an older scanner (Tim Trio), 

which resulted in the inherently lower SNR in the DWI. Nevertheless, the HHI reduction is less than 10% 

in all cases, and is less than 5% for added Gaussian random noise with SD of 40 or lower  (DW image 

SNR of 1 or higher). 

 

DISCUSSION 

Motion-induced artifacts in MR diffusion imaging can produce noticeable artifacts in computed 

results such as FA and tractography. As demonstrated by [9], a rotational motion as small as 5° can 

cause a significant signal dropout that can reduce image quality. In this study, we have presented a novel 

method for detecting motion-corrupted slices. In addition, evidence has been provided that removing 

these slices from the diffusion tensor calculations leads to improvements in the quality of the diffusion 

maps and tractography. The PITA-MDD method is computationally fast and can reliably detect subject 

motion from diffusion-weighted images.  

The amount of accumulated phase due to subject motion is affected by both the direction of 

motion and the direction of diffusion encoding gradient. Ignoring the effect of other imaging gradients, the 

motion perpendicular to the diffusion gradients produces no phase error. In the case of the well-padded 

subject head within a head coil, most motion artifacts come from rotational motion. In the event of 

rotational motion, if one component of the rotational motion is rotating around an axis non-parallel to the 

diffusion gradient, it will cause detectable phase errors in the phase images corresponding to signal 

dropouts or blurring in the magnitude images. While signal dropouts are easily detectable in magnitude 

methods, signal blurring may only be detected by the phase method. 

The PITA-MDD method worked robustly in all experiments, as even a subtle motion could be 

detected by the current method.  It should be noted that while the overall signal level may be preserved in 
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the presence of subtle motion, such images may be blurred and are easily missed by magnitude 

methods. However, unlike eddy, which is a global method that can reject slices due to their displacements 

relative to the whole volume, the PITA-MDD method can detect motion in a slice regardless of its location 

relative to the whole volume. That PITA-MDD trait can address the issue noted by [9] of potentially 

rejecting valid data that can possibly be used as a part of slice-to-volume registration. Although 

magnitude information alone is usually used in slice-to-volume correction, our results suggest that phase 

information might also be used as independent guidance for this process. On the other side, when there 

is motion, merely discarding slices does not correct for head displacement. Accordingly, motion correction 

as a part of standard dMRI preprocessing should be used in conjunction with robust methods to correct 

for head displacement between volumes. 

It is worth noting that the b-value used in all the experiments was 1000 s/mm
2
, as it is the most 

common value used in many applications.  While we did not test the technique at other b-values, we 

expect that the proposed PITA-MDD method will remain sensitive to motion compared to magnitude 

based methods of detection even at lower b-values as demonstrated in [29]. However, when using the 

method with a multi-shell regime it is advisable to use a threshold that changes according to the b-value 

of the slice instead of the fixed threshold value used here. There are different scenarios where different 

weighting schemes should be considered: 1) in cases of mildly corrupted (blurred) slices, where part of 

the gathered information could still be useful and 2) for non-rigid motion where blurring or dropouts may 

only affect certain areas of the image. The latter scenario is true for high b-value imaging where the 

pulsatile motion becomes more relevant and where spatially varying low SNR is a limitation for detection. 

Future studies are needed to investigate the ideal weighting regime in those cases. In addition, a 

limitation of the current method is that it uses a fixed threshold of T=0.56, based on the training data. A 

possible extension of the method would be to use statistical techniques to identify the threshold from the 

data itself. 

It is expected that the method could easily be applicable to image other body parts where lower 

b-value is used, for example in cardiac d-MRI [30] or tongue d-MRI [31] [29]. As demonstrated by the 

noise simulation, the HHI can be affected by very low SNR in DW images (e.g. SNR < 1). Such HHI 

decrease leads to a maximum of 1.42% more slices being detected as motion corrupted slices in our 

noise simulation. Thus, we infer that PITA-MDD will still have high sensitivity to motion at higher b-values, 

with a minor tendency of producing false positive results. On the other hand, the method has a low 

sensitivity to detect motion in low b-value images, particularly for b0 images. Accordingly, a possible 

extension of the developed method might be to fuse magnitude and phase correction methods for the 

detection of motion across the whole range of b-values. As seen in Figure 4, the HHI curves show 

periodic drops related to TR that are correlated to the edge brain slices which contain little brain tissues 

leading the HHI to drop. The performance of the HHI at the edge slices could potentially be improved 

using robust normalization across slices, for example, using normalization coefficients from training data. 
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 A possible extension of this work is to examine the efficiency of the method with well-quantified 

types of motion (rotation and translation) as well as with different speeds to analyze the sensitivity of the 

method pertaining to motion direction and motion speed. This is readily available in other tools for 

diffusion processing [8], [32]. The significance of the presented method is its ability to detect slices with 

motion in real time (i.e., motion detection and feedback during the scanning for quick assessment of data 

quality immediately post-acquisition). The PITA-MDD method could be added to any scanner for online 

motion detection in d-MRI. This can have multiple applications either for prospective motion correction, as 

real-time feedback for data quality control.  An example to use the method is to process each slice phase 

image to provide an indication to the scanner operator whether the data is expected to be reliable or not. 

Notice that we used five non-diffusion weighted volumes per repetition and the generated brain 

mask was used to update HHI calculation. These are only needed if a severe motion is anticipated so that 

the mask used in HHI calculation would accurately reflect the actual brain position. From our experience, 

the HHI calculations are only slightly affected by a small inaccuracy of the brain mask for most brain 

slices, although edge slices where the brain encompasses a very small region within the slice can also be 

affected. Overall acquisitions with only one b0 volume and a single brain mask are unlikely compromised, 

especially when the subject’s head is well padded, and motion is mostly rotational. 

This research proposes a robust method to detect motion in real time. One limitation of this 

method is that it requires phase maps, which may require additional steps to obtain from the scanner. We 

note, however, that manufacturers usually allow the reconstruction of DWI phase maps on the scanner 

without pulse sequence modification. Another limitation of this method is that it is only validated for 

diffusion-weighted images with b-value of 1000 s/mm
2
. In the future, sensitivity analysis of this method 

similar to that presented in [33] could be employed to study the interdependence of the number of 

quantization levels and offsets used for GLCM computation against the SNR, resolution, and b-value 

(dynamic range) of the phase data. In addition, the method could be extended by using modern 

definitions of the Haralick’s descriptors such as those presented in [34] which introduced Haralick 

features that are invariant to the number of quantization gray-levels. 

 

 

CONCLUSIONS 

In this study, we evaluated the use of DW phase images to detect motion corruption. The 

proposed method can be a robust and fast alternative for automatic motion detection. Our results 

demonstrate that the proposed phase-based method produces comparable results to those of the 

magnitude-based methods. The difference in the detected slices between the phase-based method and 

the magnitude methods could be attributed to the blurred images (as shown in Fig. 8a) where the phase-

based method could detect these blurred slices. The PITA-MDD method has multiple applications for 
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either prospective motion correction or as real-time feedback for data quality monitoring during scanning, 

and after data is already acquired. 
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TABLE 1- EXPERIMENT 1 
RATIO OF THE DETECTED MOTION CORRUPTED GRADIENT SLICES RELATIVE TO THE TOTAL NUMBER OF SLICES OF THE FIVE DIFFERENT VOLUNTEERS 

(V1-V5) 
 

Volunteer V1 V2 V3 V4 V5 

Ratio of detected motion corrupted 

slices using the PITA-MDD method 
1.15 % 1.28 % 2.84 % 1.23 % 0.83 % 

Ratio of detected outliers by eddy  2.36% 1.7% 2.83% 1.33% 1% 

Ratio of slices detected by both PITA-

MDD and eddy  
1.03% 1.25% 2.33% 1.18% 0.58% 

 

TABLE 2 –EXPERIMENT 2 
RATIO OF THE DETECTED MOTION CORRUPTED GRADIENT SLICES RELATIVE TO THE TOTAL NUMBER SLICES OF VOLUNTEER 

V1 IN THREE DIFFERENT RESOLUTIONS 

Resolution 3 mm x 3 mm 2.5 mm x 2.5 mm 2 mm x 2 mm 

Ratio of detected motion corrupted gradient 

slices using the PITA-MDD method 
6.25% 1.15 % 0.8% 

Ratio of detected outliers by eddy 6.63% 2.36% 1.4% 

Ratio of slices detected by both PITA-MDD 

and eddy 
5.35 % 1.03% 0.64% 
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Noise level No noise 
Gaussian noise with 

SD=5 

Gaussian noise with 

SD=15 

Gaussian noise with 

SD=25 

Gaussian noise with 

SD=35 

Gaussian noise with 

SD=45 

Gaussian noise 

with SD=55 

Resolution 

in isotopic 

mm  

3  2.5  2  3  2.5  2  3   2.5   2   3   2.5   2   3  2.5   2   3 2.5 2 3 2.5 2 

Ratio of 

detected 

motion 

corrupted 

slices 

using the 

PITA-MDD 

method 

6.25

% 

1.15

% 
0.8% 

6.25

% 

1.17

% 

0.81

% 

6.35

% 

1.25

% 

0.81

% 

6.39

% 

1.43

% 

0.84

% 

6.53

% 

1.71

% 

0.93

% 

6.77

% 

2.07

% 
1% 

7.12

% 

2.57

% 

1.15

% 

Ratio of 

detected 

outliers by 

eddy 

6.63

% 

2.36

% 
1.4% 

6.63

% 

2.36

% 

1.52

% 

6.63

% 

2.28

% 

1.45

% 

6.63

% 

2.18

% 

1.45

% 

6.49

% 

1.95

% 

1.37

% 

6.15

% 

1.89

% 
1.3% 

6.08

% 

1.85

% 

1.32

% 

Ratio of 

slices 

detected 

by both 

PITA-MDD 

and eddy 

5.35

% 

1.03

% 
0.64% 

5.31

% 

1.03

% 

0.66

% 

5.38

% 

1.04

% 

0.66

% 

5.07

% 

1.04

% 

0.66

% 

5.38

% 

1.02

% 

0.64

% 

5.28

% 

1.02

% 

0.66

% 

5.24

% 
1% 0.7% 
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TABLE 3 –NOISE SIMULATION 
RATIO OF THE DETECTED MOTION CORRUPTED GRADIENT SLICES RELATIVE TO THE TOTAL NUMBER OF SLICES OF VOLUNTEER V1 IN THREE DIFFERENT RESOLUTIONS AND WITH ADDED GAUSSIAN RANDOM 

NOISE WITH ZERO MEAN AND SIX LEVELS OF STANDARD DEVIATIONS 
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FIGURE CAPTIONS 

Fig. 1. An example of DW (a) magnitude images with some motion corrupted slices and (b) their 

corresponding phase counterparts; notice the phase images encompassed by red containers as they are 

corresponding to magnitude images with signal dropouts. 

Fig. 2. A flow chart showing the main processing stages used in the PITA-MDD algorithm: T is the cut-off 

threshold. 

Fig. 3. Three GLCM examples, (a) shows a magnitude DWI image with no motion, (b) shows the phase 

image corresponding to (a). (c) shows the computed GLCM of (b), it is mostly a diagonal matrix. (d) 

shows a magnitude DWI image with some subtle motion that cannot be detected using the magnitude 

images, (e) shows the phase image corresponding to (d). (f) shows the computed GLCM of (e). (g) shows 

a magnitude DWI image with severe motion, (h) shows the phase image corresponding to (g). (i) shows 

the computed GLCM of (h). 

Fig. 4. (a) Homogeneity textural features extracted from the DW phase images of the five volunteers, with 

arrows pointing to the slices corrupted with motion, and when the subject pressed the button for motion 

notification. The x-axis represents the slice index, i.e., for 54 slices with a total of 67 volumes and 2 

repetitions, the total number of acquired slices is 54 × 67 × 2 = 7236 slices. The right column shows the 

histograms of the homogeneity indices in the datasets of the five volunteers.  

Fig. 4. (b) Homogeneity textural features extracted from the DW phase images of V1 3 mm x 3 mm, 2.5 

mm x 2.5, and 2 mm x 2 mm slices, 2mm x 2 mm with no motion respectively. The right column shows 

the histograms of the homogeneity indices in the four cases. 

Fig. 5. Validation results showing the NAE between the FA maps of the motion rejected data and that of 

the ground truth versus the threshold. (a) V1 (3 mm x 3 mm) results, (b) V1 (2.5 mm x 2.5 mm) results, (c) 

V1 (2 mm x 2 mm) results, (d) V2 results (e) V3 results, (f) the mean square error (MSE) of the results of 

a-e with the minimum threshold T. 

Fig. 6. Colored FA of V1 through V5 with (a), and (b) showing a coronal slice and their corrected versions 

using the PITA-MDD method, respectively. Similarly, (c) and (d) show an axial slice and their corrected 

versions using the PITA-MDD method, respectively. 

Fig. 7. (a) Tractography with a seed of 1.25 voxel radius placed in the Genu of the corpus callosum. The 

upper row shows datasets including slices corrupted with motion. The lower row shows datasets with 

motion-corrupted slices eliminated from diffusion mapping calculations. V1 through V5 are the datasets of 

the five volunteers. (b) Tractography with a seed of 1.25 voxel radius placed in the Genu of the corpus 
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callosum. The upper row shows datasets including slices corrupted with motion. The lower row shows 

datasets with motion-corrupted slices eliminated from diffusion mapping calculations. Columns I, II, and III 

are datasets corresponding to the V1 volunteer with 3 mm x 3 mm, 2.5 mm x 2.5, and 2 mm x 2 mm 

slices, respectively. 

Fig. 8. A Comparison of the PITA-MDD elimination versus eddy elimination of some corrupted slices. In 

both (a) and (b), the first row shows the magnitude images of some of the DWI of V1 at 2mm x 2mm. The 

second row shows the corresponding phase images of the same slices. The third row compares the 

phase- and magnitude-based eliminations of the above slices, where the blue bar means the slice is 

rejected using the PITA-MDD method, and the orange bar means the slice is rejected using eddy. (a) is 

an example of a slice detected by PITA-MDD while not considered as an outlier by eddy. 

(b) is an example of some gradient slices detected as an outlier by eddy and not by PITA-MDD. 

 

Fig. 9. A comparison between the magnitude and phase images of a DWI (a) with no noise added 

(SNR=16.7), (b) with added Gaussian random noise with zero mean and SD=15 (DWI SNR=2.32), (c) 

with added Gaussian random noise with zero mean and SD=35 (DWI SNR=1.02), (d) with added 

Gaussian random noise with zero mean and SD=55 (DWI SNR=0.67). 

 

Fig. 10. HHI of three slices range between 0.65 and 0.685 (a) and 0.92 and 0.98 (b), with added 

Gaussian random noise with zero mean and SD that varies between 0 and 60  in three different 

resolutions, 3mm x 3mm (acquird on Tim Trio scanner), 2.5mm x 2.5mm and 2mm x 2 mm (acquired on 

Prisma
fit
 scanner).  Also shown is the SNR  of the corresponding DWI slice in the case of no added noise 

and in the case of added Gaussian random noise with SD of 60. 
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