
Exploring New York in 8K -
An Adaptive Tile-based Virtual Reality Video Streaming

Experience
Maria Torres Vega, Jeroen van der Hooft, Joris
Heyse, Femke De Backere, Tim Wauters, Filip

De Turck
Ghent University - imec

Ghent, Belgium
name.surname@ugent.be

Stefano Petrangeli
Adobe Research
San Jose, USA

spetrange@adobe.com

ABSTRACT
Adapting and tiling the streaming of virtual reality (VR) video
content has the potential to reduce the ultra-high bandwidth re-
quirements of this type of multimedia services. Towards that goal,
the optimization of a number of aspects is currently actively being
researched. Novel rate adaptation heuristics, sophisticated viewport
prediction algorithms and streaming protocol optimizations have
proven their value to improve certain aspect of the VR streaming
chain. However, the interplay between all these different optimiza-
tions as well as their tradeoff has not yet been explored in an
experimental playground. The purpose of this demonstrator is to
provide a full end-to-end adaptive tile-based VR video streaming
system where each of the optimization aspects can be tuned with
and their effect illustrated on-site.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Human-
centered computing → Virtual reality; • Networks → Net-
work protocols; Public Internet.

KEYWORDS
Virtual Reality, Adaptive Video Streaming, MPEG-DASH, Viewport
Prediction

1 INTRODUCTION
Adaptive tile-based streaming provides the solution to deal with
the ultra-high bandwidth requirements of the streaming of virtual
reality (VR) video content. This could potentially facilitate the usage
of lightweight clients and to copewith the ever-changing conditions
of wireless networks [?]. Towards this goal, optimizations for a
plethora of aspects of the streaming chain are currently under
research and development.

Novel sophisticated viewport prediction algorithms for prefetch-
ing of the content that the user will be observing next [? ?], band-
width and viewport aware rate adaptation algorithms (such as the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys ’19, June 18–21, 2019, Amherst, MA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6297-9/19/06.
https://doi.org/10.1145/3304109.3323831

approaches of Hosseini et al. [?] or van der Hooft et al. [?]), or the
application of HTTP/2 to speed up the request process (Petrangeli
et al. [?]) are already facilitating the streaming of VR videos over
the network. However, while current methods provide suited so-
lutions for one or two of the transmission aspects, the question of
the interplay among all the components and how they affect one
another in real streaming environments remains unanswered.

In this work, we present an end-to-end adaptive tile-based VR
video streaming platform in which the interplay of the different
optimization components is evaluated on-site. In addition to imple-
menting optimizations both from the state-of-the-art and from our
own previous work, this platform provides a proactive quality reas-
signment feature. It allows for real-time changes on the priorities
and qualities of the content according to the most up-to-date pre-
dicted position, while the streaming is taking place. The approach
will be showcased on an omnidirectional high motion video of the
city of New York in an 8K resolution1. In the reminder of this paper,
the different optimizations of which the end-to-end approach is
composed are first presented. Then, implementation details of the
testbed as well as video characteristics are provided. It finalizes
with some conclusions.

2 APPROACH
Figure ?? presents the block diagram of the end-to-end adaptive VR
video streaming approach. The 360° content is encoded at different
quality levels, segmented and tiled at the server side. During the
streaming, the client requests the tiles from the corresponding video
segment at a decided quality. The quality decision is taken by the
client’s rate adaptation heuristic according to the video’s bitrate,
the predicted viewport location, the video’s bitrate and the buffer
size. During the streaming, the quality reassignment block allows
for real-time reordering of the remaining tiles to stream according
to the most up-to-date predicted user’s position. In the remainder
of this Section, each of the chosen tasks and optimizations are
described.

2.1 VR Video Tiling
Tile-based encoding for VR video is often achieved through the
HEVC standard, because it is one of the few encoders that allows
tiling2. Others are for example, VP9. Even if there are currently

1https://www.youtube.com/watch?v=2Lq86MKesG4
2https://www.divx.com/en/software/technologies/hevc/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/228062483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3304109.3323831

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Torres Vega et al.

Adaptive VR
Video Content

Server

Network

Viewport
Predict.

Rate Adaptation
Heuristic(RAH)

VR video player

Next tile/tiles request

Quality Reassignment
(Download queue)

HAS Streaming
(HTTP1.1/HTTP2)

HAS Streaming
(HTTP1.1/HTTP2)

Segment
Generator

Client
Buffer

[, , , …,]

[, , , …,]

[, , …,]
[, , , …,] /

Viewport
Monitor

Quality
Assess.

VR video processing

…
…
…

Segmenting

Encoding

…
…
…

Tiling

Adaptive VR
Video Content

Client

Figure 1: End-to-end block diagram for Virtual Reality
Video streaming.

several mapping strategies to map the sphere onto a 2D projec-
tion (such as cubic, pyramid and dodecahedron mappings [?]), the
equirectangular mapping is most commonly used, in which the
sphere is mapped onto a rectangle ofm × n tiles. This approach
allows for more fine-grained decision-making by the client, using
the available throughput where it is needed. However, as previously
mentioned, tile-based encoding introduces an encoding overhead.
Using different tiling schemes, we will evaluate this overhead and
the resulting video quality under similar network conditions. Simi-
lar to related work, the Constant Rate Factor (CRF) rate control will
be used to differ between visual quality, and thus resulting bitrates
for different quality representations.

2.2 HAS Streaming Protocol: HTTP/1.1 vs
HTTP/2

MostHTTPAdaptive Streaming (HAS) solutions useHTTP/1.1 with
request-response transactions to retrieve the required resources,
buffering fetched video segments and playing them out in linear
order. In the most common case, one GET request is needed in
order to retrieve the next temporal part of the video; therefore, this
approach is feasible as long as the duration of the video segments is
of a higher order than the latency within the network. However, the
introduction of the additional tiling dimension requires multiple
resources to be retrieved, in order to play out one temporal video
segment (each tile requires its own GET request). This could po-
tentially impede the overall throughput between client and server,
resulting in a lower video quality.

There are two possible solutions. First, an approach based on
multiple persistent TCP connections can be used. Most browsers
today (including Chrome, Firefox and Safari) use up to six parallel
TCP connections in order to reduce the page load time, fetching
required resources in parallel. Second, the need for multiple GET
connections can be eliminated by using the server push feature
of the HTTP/2 protocol [?]. To enable this feature for tile-based
VR environments, a custom request handler can be employed at
server-side, allowing the client to define a list of quality levels for
each of the tiles to retrieve. However, it can lead to inaccurate

quality distributions in cases where the viewport prediction error
is too high. This demonstrator will explore the tradeoffs among
these three streaming variants, namely HTTP/1.1, HTTP/1.1 with
parallel connections, and HTTP/2.

2.3 Viewport Prediction Algorithms
Viewport prediction is one of the most important aspects of tile-
based HAS. If the future position is accurately predicted, the client
can compensate for the user’s movements and download relevant
parts of the video at higher quality. In the state-of-the-art, a dis-
tinction is made between approaches that require knowledge on
the content to predict the next position of the user (content-aware
solutions) and the ones that make predictions based only on pre-
vious positions or trajectories (content-agnostic solutions). Most
content-aware approaches require preprocessing of the video con-
tent and thus, are currently too computationally intensive for real-
time predictions and unfit for VR video streaming of live content,
or demonstrations (e.g., Pano2vid [?]). Content-agnostic solutions,
on the other hand, can be more lightweight as they only require the
Head-Mounted Display (HMD) sensor data and are better suited
for real-life demonstrations. Thus, for this work we will focus on
content-agnostic approaches.

The current trend in content agnostic viewport prediction, is to
make predictions based on the previous trajectory of the user. This
is the case of two-dimensional linear extrapolation of the user’s
movement proposed by Petrangeli et al. [?]. In [?], we proposed a
three-dimensional extension of this approach. We modeled the user
movement as a trajectory on the surface of the unit sphere, rather
than a 2D trajectory on the equirectangular projection. In addition,
as the user’s movement is largely volatile, our proposal was to
predict the next viewport not by completing the full trajectory, but
rather a fraction thereof. This approach aims at reducing the impact
of users’ movement, thus resulting in a lower prediction error. In
addition to volatility of movement, in a lot of cases, the user moves
only during certain sections of the video. This greatly difficults
the use of machine learning techniques, because the collected user
data to use for training the algorithms is biased towards lack of
movement. To cope with this, in [?] we proposed to a machine
learning algorithm which first predicts if the user will move at all
to then provide a prediction of the direction. We based our algo-
rithm on reinforcement learning methods, in particular Contextual
Bandit Learning. This demonstration work will put to test these
three approaches. For the remainder of this paper, the approach of
Petrangeli et al. will be dubbed as 2D-Full, the van der Hooft et al.
as 3D-Partial and the algorithm of Heyse et al. as CBL-Weighted.

2.4 Rate Adaptation Heuristic
Adding a spatial dimension increases the complexity of the rate
adaptation heuristic. In this demonstrator, we present and test two
rate adaptation heuristics. The first one, dubbed Uniform Viewport
Quality (UVQ) strongly focuses on the (predicted) viewport location,
uniformly increasing the quality of each tile whose center is within
the viewport. The second heuristic uses a Center Tile First (CTF)
approach, which increases the quality of the tiles to the highest
quality representation, in the order of decreasing distance between
the center of the tile and the viewport location.

Exploring New York in 8K -
An Adaptive Tile-based Virtual Reality Video Streaming Experience MMSys ’19, June 18–21, 2019, Amherst, MA, USA

NETWORK

VR Server
Adaptive Client HMD

(Samsung S8 + GearVR)
CONTROL

DASHBOARD

Original Videos

Raw videos
(Ffmpeg)

HEVC & tiles
(HM)

MP4 & HAS
(MP4Box)

Ti
le

s

HMD Monitor &
Viewport
prediction

(GearVR Fw. Java for
Android)

Control Dashboard
(python-plotly & python-dash)

Segment
generation

(MP4Box)

360° Video display
(ExoPlayer)

Video, tiling, band.,

HTTP/1.1
HTTP/ 2
server
(Python)

HTTP/1.1
HTTP/ 2
Client
(OkHTTP)

Video tiles

HTTP GET Requests
Rate Adaptation

Heuristic
(Java for Android)

Quality
Reassign.

(Java for Android)

Quality Assess.
(Java for Android)

Client buffer
(Java for Android)

Figure 2: Software block diagram of the adaptive VR video
streaming demo. For each of the blocks, the specific library
used can be found in between parenthesis.

2.5 Quality Reassignment
The rate adaptation heuristic makes per-segment decisions based
on the predictions of the viewport, the network conditions at the
time of the calculation, the buffer status, etc. Even if this approach
has significant advantages, it is extremely sensitive to changes on
the initial conditions (user’s viewport position, network conditions,
etc.), especially for larger segment durations. For example, the
user could change its trajectory, or the download of a tile might
take longer than expected due to congestion in the network. In
addition, the shorter the time between the viewport prediction and
the playout of the segment, the more accurate the prediction will
be.

To cope with the real-time changes on conditions, this demon-
strator incorporates a feedback loop. As soon as a segment is re-
moved from the buffer and playout starts, the client starts buffering
the next segment. Therefore, the viewport prediction algorithm
predicts the expected viewport coordinates, based on the client’s
location history. Subsequently, this prediction is fed to the rate adap-
tation heuristic, which makes a decision on the quality of each of
the tiles based on the viewport coordinates, the observed through-
put and the available quality representations. Its calculations and
decisions are forwarded to the download queue, which will start
retrieving the tiles that are furthest away from the currently pre-
dicted viewport location. This allows the client to receive the tiles
which are expected to have the least impact on the final viewport.
Furthermore, it reduces the chances of freezing (all tiles need to be
downloaded before playout of the next segments can start). While
the downloading takes place, the viewport coordinates of the HMD
are regularly updated and new predictions are made. Using the
new viewport location, along with information of the download
queue, the heuristic reassigns the bandwidth budget among all the
tiles which have not yet been downloaded, and forces an update
of the data in the download queue. Thus, initial decisions can be
overruled by the client, in favor of tiles which are expected to be of
higher importance than previously estimated.

2.6 Quality Assessment
Related work on quality assessment of tile-based VR streaming has
focused on the quality of the viewport center only. This allows to
measure how long the user spent on each quality layer. However,
this does not take into account the fact that the users’ eyes also

move within the viewport. To account for this eye movement, in [?
], we introduced a quality metric based on a probabilistic approach.

Based on the experimental users’ gaze data presented by Rai et
al. in [?], we modeled the gaze as a probability distribution which
weights the effect of each of the tiles within the viewport according
to the influence on the overall quality. In [?] we presented the
evaluation of our metric relative to objective metrics such as PSNR
and SSIM. In this demonstrator, we will evaluate the quality with
this metric.

3 EXPERIMENTAL DEMONSTRATOR
As proof of concept demonstrator, we envision a local network in
which the server and the client are connected bymeans of a wireless
access point (Figure ??). The client consists of a Samsung GearVR3
and a Samsung S8 cellphone4, while the server is implemented in
a standard computer (Dell Latitude 55805). Also in Figure ??, the
main software blocks are presented.

On the server side, the videos were first preprocessed making
use of the well-known video processing tools ffmpeg6, HM7 and
MP4Box8 (gray blocks in Figure ??). Ffmpeg extracts the raw video
of the original content. The HM encoder is in charge of tiling the
content and encoding to H.265/HEVC [?], which allows for tiling
the content [?]. The encoding was performed for each quality rep-
resentation. Finally, MP4Box packs the HEVC streams into mp4
containers and prepares the video tiles to be streamed using HAS.
The HTTP server is implemented in Python using the Hyper li-
brary 9, which allows to stream using both HTTP/1.1 and HTTP/2.

The client functionality was implemented in Java using Android
Studio10. In order to monitor the head movement, the GearVR
Framework was used11. It provides a position of the head within
the sphere that can be mapped into the 2D projection of the video
and takes care of all the VR video-related characteristics such as
rendering, distortions on the image to compensate for the lenses,
etc. The GearVR framework was also used in order to project the 2D
video back onto a sphere, which can be assigned to a mediaplayer
for displaying. As media player we employed the Exoplayer12 due to
its demonstrated performance to display omnidirectional video [?].
However, given the fact that the current Exoplayer version cannot
deal with tiled content, the tiles need to be merged into a segment
before displaying it. For this, we again turned to MP4Box, which
is also compatible with Android environments. Finally, the client
side of the HTTP protocol was implemented using the OkHTTP
library13, which allows to stream both in HTTP/1.1 and HTTP/2.

4 DEMONSTRATION SCENARIO
In order to show the tradeoffs, advantages and disadvantages of
the optimizations imposed by our adaptive tile based streaming

3http://www.samsung.com/global/galaxy/gear-vr/
4http://www.samsung.com/global/galaxy/galaxy-s8/
5http://www.dell.com/dm/business/p/latitude-15-5580-laptop/pd
6https://www.ffmpeg.org/
7https://hevc.hhi.fraunhofer.de/HM-doc/
8https://gpac.wp.imt.fr/mp4box/
9https://hyper.readthedocs.io/en/latest/
10https://developer.android.com/studio/
11http://www.gearvrf.org/
12https://github.com/google/ExoPlayer
13https://square.github.io/okhttp/

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Torres Vega et al.

Table 1: Obtained bitrates [Mb/s] for the New York video at
the different tiling schemes.

CRF 1 × 1 4 × 4 6 × 4
25 43.38 ± 13.07 43.34 ± 13.15 43.64 ± 13.53
35 9.32 ± 2.57 9.39 ± 2.72 9, 56 ± 2.61
45 2.98 ± 0.86 3.13 ± 0.88 3, 18 ± 0.89

ADAPTIVE 360° VIRTUAL REALITY VIDEO STREAMING
VR Video

Segment Duration

Start Session

Time

Ba
nd

w
id

th

Max. Band
Cur. Band

Objective Gaze based Quality Assessment

Time

Q
ua

lit
y

Tiling Scheme

HTTP1.1/HTTP2

Rate Adaptation Heuristic

Viewport Prediction Algorithm

Quality Reassignment Rate

Bandwidth consumption

Time

Er
ro

r

Viewport prediction error

VP. Error

Last Segment

Figure 3: VR server Dashboard.

approach we selected the 8K omnidirectional video “New York tour”
(available online on You tube). As explained in the demonstrator
Section, the video needs to be encoded, segmented and tiled to
make it available to the adaptive VR streaming client. In order
to explore the strengths of our optimizations, we selected three
different encoding CRFs (25, 35, 45) using a Group of Pictures (GOP)
of 32 frames. These CRFs results in bitrates of around 43Mb/s for
a CRF of 25, 10Mb/s for a CRF of 35 and 2.5Mb/s for a CRF of 45.
Subsequently, the video streams were split into 1, 065s segments.
This duration corresponds to 1 Group Of Pictures (GOP). Further,
these segments were subjected to three different tiling schemes,
namely 1×1 (or no tiling), 4×4 and 6×4. During the demonstration
at the conference, the users will be able to explore New York from a
360° perspective, while benefitting from the different optimizations
of the streaming.

A dashboard (Figure ??) to change the characteristics (viewport
algorithm and tiling scheme), conditions (network) and content
(videos) during the streaming was implemented using the dash
package of plotly-python14. In addition, the dashboard shows the
real-time performance by means of four representations. First, it
provides a quantitative measure of the bandwidth optimization
by plotting the employed bandwidth compared to the necessary
one if the whole 360° video were streamed at the highest quality.
Second, it shows a view of the error in the prediction in radians as
predicted by the client. This view provides the chance to observe
the comparative performance of each of the presented viewport
prediction algorithms. Third, it provides a QoE assessment using
our own probability based assessment metric [?]. This gives a quan-
titative measure of the effects of the inaccuracies of the viewport

14https://plot.ly/products/dash/

prediction algorithms and the quality selection scheme. Finally, the
dashboard offers a visualization of the segment just streamed to
the HMD with overlapping prediction and actual viewports (sensed
at the beginning of each segment), which provides a qualitative
assessment of the effects of the viewport algorithm. In addition, it
shows the strengths of the approach not only to the current user
but also to other visitors.

5 CONCLUSION
Optimizations on the prediction of the field of view, on how to
adapt the quality of the stream content and to improve the transmis-
sion protocols are making adaptive tile-based VR video streaming
a well-suited solution to cope with the bandwidth requirements
of omnidirectional content. Understanding the interplay of these
optimizations on the overall performance of the system and the per-
ceived quality of the user is thus fundamental. This demo presents
an end-to-end adaptive tile-based virtual reality video streaming
system in which all elements of the chain can be adapted, different
algorithms input and their characteristics changed.

ACKNOWLEDGMENTS
Maria Torres Vega is funded by grant of the Research Foundation
- Flanders (FWO). Jeroen van der Hooft is funded by the Agency
for Innovation by Science and Technology in Flanders (VLAIO).
This research was performed partially within the project G025615N
“Optimized source coding for multiple terminals in self-organizing
networks” from the fund for Scientific Research - Flanders (FWO-V).

