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Abstract. Compliant robots can be more versatile than traditional robots,
but their control is more complex. The dynamics of compliant bodies
can however be turned into an advantage using the physical reservoir
computing framework. By feeding sensor signals to the reservoir and ex-
tracting motor signals from the reservoir, closed loop robot control is
possible. Here, we present a novel framework for implemeénting central
pattern generators with spiking neural networks to obfain closed loop
robot control. Using the FORCE learning paradigm, #ve train.a reservoir
of spiking neuron populations to act as a central pattern generator. We
demonstrate the learning of predefined gait patferns, speed contrel and
gait transition on a simulated model of a compliant quadrupedal robot.

Keywords: spiking neural networks, cempliant robetics, quadruped con-
trol, reservoir computing

1 INTRODUCTION

Compliant robots can provide a.greater robustness, flexibility and safety com-
pared to traditional, stiffsfebots [1].\However, the control paradigms used in
traditional robotics cafnot beiapplied to compliant robots, due to the complex-
ity of predicting the state of the compliant body. The complex dynamics can
however be turned into an, advantage with the concept of embodied computa-
tion (also referred to as merpliclogical computation), where the physical body
is treated as a computational resource [2/T3].

Physical reservoir computing provides a framework for harvesting the body
as a computational resource [4]. Monitoring the non-linear body dynamics of a
compliant body can be a useful source of information. In some systems extremely
little additional computation is required to accomplish a task, for instance lo-
comotion control of a tensegrity robot [4] and control of a soft robotic octopus
arm [5]. By combining the body feedback with some additional computational
power (e.g., a 'brain’), more complex locomotion tasks can be accomplished [6].
The computations that naturally occur in the body are then augmented with
a small ’brain’ to achieve partially embodied control. In [6] this was found to
be necessary for gait generation with a quadruped robot. In [7] and [§], more
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complex tasks were addressed using, respectively, a tensegrity robot and a mass-
spring network.

An example of a low level brain function is the generation of rythmic activity
by central pattern generators (CPG). CPGs are neural networks in the spinal
cord of vertebrate animals, that have been observed to generate rythmic activity
and are involved in rythmic movements such as locomotion and respiration [16].
Even though biological CPGs can be active without sensory input or descending
input from other brain regions, both inputs can modulate the CPG. In decere-
brated cat experiments, gait frequency and even gait transition can be controlled
with a simple electrical stimulus to the spinal cord [I7]. Other decerebrated cat
experiments revealed that also sensory inputs can modulate the ongoing rythmic
activity (reviewed in [I§]).

CPGs can be implemented with a neural network by using the reservoir com-
puting framework [19]. By feeding body sensors of a robot téya randomly con-
nected reservoir, a spatiotemporally enriched interpretation of the body sensors
is created. Thanks to this expansion, more complex pafternsican be extracted
from the reservoir activity using only linear regression@Reservoir éemputing with
spiking neurons is traditionally performed with a liquid state machine [10]. Here,
we propose using population coding, where the gmityof the,reservéir is a popula-
tion of spiking neurons. Whilst this method allows %o apply the same principles
as in the well established rate based reserveir computing,«t also allows to po-
tentially profit from using a spike based implementation,The number of tunable
parameters, both at neuron and population leyvél allows for optimizing reservoir
dynamics for closed loop dynamical'Systems. Additionally, efficient hardware im-
plementations (e.g. SpiNNaker( [24]) could allow to run the network with low
power usage on mobile robots: Lastly, this ffamework allows interfacing with
spike-based sensors (e.g. the. DVI camera [25]) that provide low latency and low
redundancy sensor data.

In this paper, we demonstrate the feasability of using populations of spik-
ing neurons in embodied compuitation by creating stable closed loop locomotion
control for a compliant rohot. To achieve this, we applied the physical reser-
voir computing framework to a simulated model of the Tigrillo robot [II], a
compliant quadrupedal platform. We add a ’brain’ to the robot which is also a
reservoir, consisting of spiking neurons. This neural network is trained to func-
tion as a CPG and, similar to biological CPGs, can be modulated by both body
sensors and simple control inputs. To create a stable dynamical system, capable
of generating robust periodic movements, online linear regression can be applied
(FORCE learning, [9]) in a gradual fashion [4]. Figure [1| presents an overview
of the implemented system. Four readout neurons are trained to produce motor
signals for the actuated joints of the Tigrillo model. Four body sensors, sensing
the angle of the passive joints, are fed as input to the neural network.
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Fig. 1. Overview of the closed loop control system. Lea eights in red.

In the next section the components of the clos p system are presented
and the learning algorithms involved are iled, inc
toring the reservoir state. The results secti
have been learned, as well as gait frequenc,

ent gait patterns that
gait switching control.

2 MATERIALS & M

2.1 Simulation

The model used in th s based on the physical Tigrillo robot [I1], see
Figure [2] Tigrillo is a low- latform developed for researching compliance in
quadrupeds. The robot has four legs, consisting of two joints: one actuated with
servo motors (hips and shoulders) and one passive joint (knees and elbows).
The passive joints are loaded with a spring, providing compliance. The angle
of the passive joints (on the physical robot measured with Hall effect sensors)
reflects the state of the robot body and its interaction with its environment,
and is therefore useful as a sensor input in the closed loop control system. The
Tigrillo model is a parametrized stick and box model that mimicks the weight
distribution and physics of the physical robot.

All simulations have been performed on the Neurorobotics Platform (NRP, [14]).
The NRP provides an interface between an environment simulator (Gazebo) and
a spiking neural network simulator (NEST, [12]). In this work, ODE [15] was
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Fig. 2. Tigrillo physical robot (left) and model (right).

used as physics engine.

2.2 CMA-ES

To find motor signals for gaits that suit the body dynamics, the covariance
matrix adaptation evolutionary strategy (CMA-ES)falgorithm [22] is used to
optimize parameters of a parametrized CPG (deseribed in [2I]). This CPG is
implemented by a set of three equations:
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Where ¢ and r describe thé current phase and the radius of the oscillator,
respectively. Both are used to caleulate theya¢tual control value A (in degrees).
1 is the target amplitude.of,the oscillator and ~ is a positive gain that defines
the speed of convergenee of theyradiusito the target amplitude. o is the offset
and w the radial frequency of the oscillator. ¢y, is a filter applied on the phase
of the oscillator and is'different for the stance and swing phase of the control as
determined by the duty facter (d):
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and ¢or = ¢ (mod 27)

The Tigrillo platform has four actuated hip joints controlled by four phase-
coupled CPGs. The front left leg is chosen as reference leg and the phase dif-
ference of the remaining 3 legs is described by three phase offset (po). This is
implemented by adding a term to the formula for the phase (¢) in equation .
For instance, for the coupling between the front left and front right oscillators:
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Gpr = w + wprsin(¢p — dpr — pogr) (3)
with wy, the coupling strength.

CMA-ES can handle non-convex fitness landscapes with many local max-
ima well. Additionally, only few initialization parameters are required. Initial
parameters had a Gaussian distribution with around 0.5 mean and 0.2 SD. Each
generation consisted of 25 individuals, other parameters were kept at default
as described in Hansen [23]. Different gaits were found by optimizing different
subsets of parameters. The parameters optimized in the search for the walking
gait are listed in Table[l} The CPG frequency was kept constant at 1.44 Hz. The
distance travelled from the origin was used as fitness function.

Parameter Symbol Range Unit
Front amplitude [f [20, 140] «decgrees
Hind amplitude h, [20, 140] " degrees
Front duty cycle dy [0.1540.85] NA
Hind duty cycle dn  [04550.85] NA

Front offset oy [-60, 60)¢ degrees

Hind offset op [-60, 60] » degrees

Front right phase offset pagy Wpl150, 210} degrees
Hind left phase offset  popp [2409300]¢degrees
Hind right phase offset  pon, 4160, 120] degrees

Table 1. Parameters and their rdnges included inithe CMA-ES optimization for the
walking gait.

2.3 The Neural Network

The neural network is a reservoir consisting of 300 populations of spiking neurons
(unless specified otherwise), arranged in a three dimensional structure of 3x3 lay-
ers (Figure(l]). Each population consists of 40 neurons of the leaky-integrate-and-
fire (LIF) type with exponentially decaying post-synaptic current (iaf-psc_ezp,
as described in [I3]). Neuron parameters are close to the default, bioplausible
values, though some are hand tuned for desired population response properties
(Table[2)). The ratio of inhibitory/excitatory neurons is 1/4. Within a population,
excitatory neurons connect to inhibitory neurons and vice versa (see Figure
and Table . Our populations are similar to the balanced populations of [20],
which are known to show rich behaviour. All neurons in a population receive
a white noise current of mean 0 and SD 2, this is important in maintaining a



6 Alexander Vandesompele et al.
responsive population.

Each excitatory neuron of a population connects to a neuron of another pop-
ulation with a probability proportional to the Euclidean distance between both
populations (see Table . This distance-based connectivity is not only biologi-
cally plausible but also makes the simulation and the hardware implementation
feasible as it reduces the overall number of connections. The delay of spike trans-
mission between populations is fixed at 100ms.

2.4 The interface between neural network and body

Interfacing the spiking neural network with the robot body requires translating
spiking activity to analog values and vice versa. The motors of the actuated
joints expect an analog value, the desired joint angle. Each motor has a readout
neuron that provides this value. The parameters of the readout neurons have
been adapted such that its membrane potential can be used directly as motor
signal (see Table . Most importantly, the spiking threshold is set to infinity,
preventing the neuron from firing which would reset thefmembrane potential. As
a result the readout neuron is simply a leaky integratoriof its incoming spikes. In
the other direction, body sensor data is fed to theé neural network, Therefore a
DC current proportional to the values of a sensor'is injected into a sensor popu-
lation, whose activity then closely reflects the sensor stream. In this fashion the
interface between the spiking network and the,body is‘acedmplished.

The readout neurons are connected to all éservoir populations. The weights
of these connections are learned gfith EORCE learning [9]. Therefore, the reser-
voir states (i.e. the populatieh activities) need to be known at all times. To
observes the reservoir states, eachypopulation is monitored by a monitor neu-
ron. Monitor neurons arefidentical to readout neurons, but are connected to
a single reservoir poptilation with unit weight. The membrane potential of the
monitor neuron represents the population activity (Figure 4| shows an example
of the membrane potentialof a few monitor neurons) and is used by the FORCE
learning algorithm.

2.5 Gradual FORCE learning

The aim of the learning is to find connection weights that make the membrane
potential of the four readout neurons (see Figure[1) produce the predefined tar-
get signals, the four motor signals as found by the CMA-ES optimization.

By using monitor neurons, we effectively isolate the unweighted contribu-
tion of each reservoir population to a readout neuron. Since readout neurons
and monitor neurons have identical parameters, the membrane potential of a
readout neuron will be a linear combination of all monitor neuron membrane
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Parameter Value

Membrane resting potential [mV] -65

Spiking threshold [mV] -50

Post spike reset membrane potential [mV] -75
Membrane capacitance [nF] 0.2
Membrane time constant [ms] 30
Duration refractory period [ms] 2
Post-synaptic time constant [ms] 0.5

Table 2. Parameters of the LIF neuron model.

Parameter Value
Membrane resting potential [mV] 0
Spiking threshold [mV] 00
Membrane capacitance [nF] 0.2
Membrane time constant [ms] 30

Post-synaptic time constant [ms] 5.5

Table 3. Parameters of the LIF readout and nionitor meurons.

potentials. Therefore it is possible to use the monitor neurons membrane po-
tentials as reservoir states, and FORCE learningiean be applied in an identical
fashion as with rate-based neural networks.

To make a stable closed lodp, system, the control signals are first learned in
open loop with the control signals,as inputgfo the actuators. Subsequently, to
ensure a smooth transitionste,closed loop control, the target signal and readout
signal are gradually mixed (as described’in [4]). The contribution of the readout
neuron is graduallyginereased during this transition. Finally, the system is capa-
ble of autonomously preducing the target signals in a stable closed loop fashion
(as detailed in the results‘seetion).

The regularization variable a of the FORCE learning algorithm must be se-
lected large enough to prevent overfitting, but not too large as it could fail to
approximate the target function sufficiently fast [9]. After a parameter sweep, a
value of 50 for o was observed to be effective. To furthermore ensure robustness
of the closed loop system, it is necessary to insert sources of noise during learn-
ing. Here, impulse noise and gaussian noise were added to the sensor signals (see
also Figure . Similarly, noise is added to the target signals. A low pass filter is
added to smoothen the sensor signals before injecting them to the reservoir. The
actuators also posses low-pass properties, which filters out some of the noise due
to the implementation with spiking neurons.
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Fig. 4. Membrane potentials of a few monitor neurons. Each monitor neuron represents
the activity of one population of spiking neurons.
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Connection Variable Pconnect
Intra-population: Excitatory to inhibitory  Ce 0.1
Intra-population: Inhibitory to excitatory  Cj 0.1

2
Inter-population: Excitatory to excitatory — Cee 0.3¢~ P
Excitatory to monitor neuron Cem 1.0

Table 4. Connectivity of the population model per connection type. Pconnect = con-
nection probability between any two neurons. D = Euclidean distance between two
populations.

3 RESULTS

3.1 Gait Generation

The system is capable of learning and sustaining different gaits that have been
found using CMA-ES. Figures [5] and [f] display the targetfmétor signals and
the generated motor signals during a closed loop walking and bounding gait,
respectively. In these experiments learning took 40 se@onds simulated time for
open loop training followed by 40 seconds for closed dooprtraining. After learning,
the gait generation is sufficiently robust to contife affer disturbances such as
moving the robot or stopping movement by turning the roebot on its back for a
while. The learned motor signal are a bit noisy. This'is mainly due to the rather
small population sizes.

3.2 Speed Control

In order to obtain gaits with tunablé speed, we added an extra control input to
the reservoir that servesq@asi@rcontrol signal to control gait frequency. Similarly
to sensor inputs, the dontrol imput is implemented as a DC current to the reser-
voir. During training, incremental frequencies of the same gait are paired with
an incremental control signal. After learning, the control signal can be used to
alter the frequency (Figure E[) The total learning time for this experiment was
200 seconds.

3.3 Gait Transition

Here, the network is trained to produce both gaits presented previously (walk-
ing and bounding). Again, a simple high level control input is used during and
after training to control the gait transition (Figure . For this experiment, the
reservoir was made more powerful by increasing the number of populations to
600 and the number of neurons per population to 100. The total learning time
for this experiment was 200 seconds.
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respectively) Bottom pane: readout signals during closed-loop control, after FORCE
learning.
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bility to apply learning principle d"in biological networks. This work
demonstrates the feasibilit i pulations of spiking neurons as reservoir

is. Using only simple learni les, stable closed loop locomotion control is
achieved, even if only m
networks, the CPG outpu
and body sensor input.

be modulated by both simple high level inputs

In future work, an implementation on neuromorphic hardware (SpiNNaker)
will allow to run the network in real time on the physical Tigrillo robot.
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