The Group of Dyadic Unitary Matrices

Alexis De Vos, Raphaël Van Laer, and Steven Vandenbrande
Vakgroep elektronica en informatiesystemen
Universiteit Gent
Sint Pietersnieuwstraat 41, B-9000 Gent, Belgium
(Received: September 2, 2011)

Abstract

We introduce the group $\mathrm{DU}(m)$ of $m \times m$ dyadic unitary matrices, i.e. unitary matrices with all entries having a real and an imaginary part that are both rational numbers with denominator of the form 2^{p} (with p a non-negative integer). We investigate in detail the finite groups $\mathrm{DU}(1)$ and $\mathrm{DU}(2)$ and the discrete, but infinite groups $\mathrm{DU}(3)$ and $\mathrm{DU}(4)$. We further introduce the subgroup $\mathrm{XDU}(m)$ of $\mathrm{DU}(m)$, consisting of those members of $\mathrm{DU}(m)$ that have constant line sum 1. The study of $\operatorname{XDU}(2)$ and $\operatorname{XDU}(4)$ leads to conclusions concerning the synthesis of quantum computers acting on one and two qubits, respectively.

1. Introduction

Basically, there exist three kinds of groups:

- finite groups, i.e. groups with a finite order,
- infinite but nevertheless discrete groups, i.e. groups with a countably infinite order, and
- Lie groups, i.e. groups with an uncountably infinite order.

Whereas the size of a finite group is quantified by its order, the size of a Lie group is quantified by its dimensionality. Quantifying sizes of infinite discrete groups is a more difficult task. It necessitates a detailed study of the group.

The most basic example of a countably infinite nonabelian group is the discrete group $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. the special linear group of 2×2 matrices with integer entries. Conrad [1] demonstrates that the group can be generated with merely two generators and shows how to decompose an arbitrary group member into a finite product of factors, each equal to one of these two building blocks. In the present paper, we follow a basically similar approach for describing the group of rational unitary matrices where all matrix elements have a denominator of the form 2^{p}. The motivation to study this group is inspired by its importance in computer theory. Whereas classical reversible computation is described by finite groups and quantum computation is represented by

Lie groups, computing with the so-called square-root-of-NOT logic gate leads to infinite discrete groups [2] of such rational matrices. Whereas classical reversible circuits are generated by controlled NOT gates (a.k.a. Toffoli gates), below we will investigate all circuits generated by controlled square roots of NOT. They constitute a generalization of the classical reversible circuits, but only a small fraction of the set of all quantum circuits.

2. The Group $\mathbf{D U}(m)$

First, we consider all unitary $m \times m$ matrices. It is well known that they form an infinite group, i.e. the unitary group $\mathrm{U}(m)$, an m^{2}-dimensional Lie group.

Next, we consider, within the group $\mathrm{U}(m)$, the matrices which have exclusively Gaussian entries. This means that the matrix entries are Gaussian rationals

$$
\frac{a}{A}+i \frac{b}{B}, \quad \frac{c}{C}+i \frac{d}{D}, \quad \ldots,
$$

where a, A, b, B, \ldots are integers. These matrices form a group. Indeed, being unitary, such matrix has an inverse. The entries of the inverse automatically are also Gaussian rationals. And the product of two such matrices automatically is also such a matrix. We call this group the Gaussian unitary group $\operatorname{GU}(m)$. The group is discrete, as the matrix contains only a finite number (i.e. $2 m^{2}$) of rational numbers $\frac{a}{A}, \frac{b}{B}, \ldots$ and there exist only a countably infinite number of rationals.

Finally, within the group $\operatorname{GU}(m)$, we consider the subset of matrices where all denominators A, B, \ldots are a power of 2 . Thus all entries may be written

$$
\frac{a}{2^{p}}+i \frac{b}{2^{p}}
$$

where the non-negative integer p is chosen such that at least one entry is not reducible, i.e. such that at least one of the $2 m^{2}$ numerators a, b, \ldots is odd. As the real part and the imaginary part of each matrix entry is a dyadic rational, we call such a matrix a dyadic matrix. Whereas m is called the dimension (or degree) of the matrix, the number 2^{p} is called the level [3] of the matrix. As illustrated by the example

$$
\left(\begin{array}{ll}
\frac{5}{2} & 1 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)^{-1}=\left(\begin{array}{rr}
\frac{2}{3} & -\frac{4}{3} \\
-\frac{2}{3} & \frac{10}{3}
\end{array}\right)
$$

the inverse of a dyadic matrix is not necessarily a dyadic matrix. The inverse of dyadic unitary matrix, however, is a dyadic unitary matrix (with the same level), for the simple reason that the inverse of a unitary matrix is its Hermitian transpose. The product of a dyadic matrix with level equal to $2^{p_{1}}$ and a
dyadic matrix with level equal to $2^{p_{2}}$ is a dyadic matrix with level lower than or equal to $2^{p_{1}+p_{2}}$. We thus may conclude that the dyadic unitary matrices form a group. We call this group the dyadic unitary group $\operatorname{DU}(m)$.

3. Two Subgroups of $\mathbf{D U}(m)$

In the present section, we discuss two (out of the many) subgroups of $\mathrm{DU}(m)$.
An $m \times m$ matrix has $2 m$ lines, i.e. m rows and m columns. We consider the matrices whose line sums are all equal. If the matrix is unitary, then the constant line sum is on the unit circle (See Appendix A). If the matrix is dyadic, then the constant line sum is a dyadic rational. Now, on the unit circle there exist only four such Gaussian rationals $\frac{x}{2^{p}}+i \frac{y}{2^{p}}$. Indeed, the condition $\left(\frac{x}{2^{p}}\right)^{2}+\left(\frac{y}{2^{p}}\right)^{2}=1$ leads to $x^{2}+y^{2}=\left(2^{p}\right)^{2}$, which implies that $\left\{x, y, 2^{p}\right\}$ forms a Pythagorean triple. However, there exist no primitive Pythagorean triples where the greatest number is even. We conclude that either x or y has to be zero. Therefore, if the matrix is both unitary and dyadic, the constant line sum equals one of the four complex numbers $1, i,-1$, and $-i$, known as the four Gaussian units. The product of a matrix with constant line sum equal to s and a matrix with constant line sum equal to t is a matrix with constant line sum st. Proof is provided in [4, p. 239]. Therefore, matrices with constant line sum equal to 1 form a group. The members of $\mathrm{DU}(m)$ that have constant line sum equal to 1 , thus form a subgroup of $\mathrm{DU}(m)$; we will call this subgroup $\operatorname{XDU}(m)$. Their study is interesting in the framework of quantum computing. The groups $\operatorname{XDU}\left(2^{w}\right)$ naturally appear when studying quantum circuits built with the gate called 'the square root of NOT', see below in Sections 8 to 11. Matrices belonging to $\operatorname{XDU}(m)$ may be considered as a 'complex generalization' of doubly stochastic (or bistochastic) matrices, where equally well all line sums equal 1 , but where all entries are restricted to real non-negative numbers.

The matrices of $\mathrm{DU}(m)$ with $p=0$, i.e. the $\mathrm{DU}(m)$ matrices of level 1 , form a finite subgroup, isomorphic to the semi-direct product ($\mathrm{DU}(1) \times$ $\mathrm{DU}(1) \times \ldots \times \mathrm{DU}(1)): \boldsymbol{S}_{m}=\mathrm{DU}(1)^{m}: \boldsymbol{S}_{m}$, where \boldsymbol{S}_{m} denotes the symmetric group of degree m (and thus order $m!$). We will call the subgroup the monomial dyadic unitary group $\operatorname{MDU}(m)$, as all its members are matrices with exactly one non-zero entry in each row and each column. The group $\mathrm{P}(m)$ of all $m \times m$ permutation matrices, in turn, is a subgroup of $\operatorname{MDU}(m)$:

$$
\mathrm{P}(m) \subset \mathrm{MDU}(m) \subset \mathrm{DU}(m) \subset \mathrm{U}(m) .
$$

The subgroup $\operatorname{MDU}(m)$ partitions the supergroup $\mathrm{DU}(m)$ into double cosets, each containing matrices of a same level 2^{p}. These double cosets can be regarded as equivalence classes. Any element of a double coset can act as its representative. Here, two matrices are considered equivalent iff they can
be converted into one another by applying a combination of the following operations:

- permutation of two rows or two columns and
- multiplication of a row or a column by i.

This equivalence is analogous to the one used in investigating real and complex Hadamard matrices. See e.g. the equivalence relation \approx by Haagerup [5].

4. The Group $\mathrm{DU}(1)$ and its subgroup $\mathrm{XDU}(1)$

The group $\mathrm{DU}(1)$ is the group of Gaussian numbers $\frac{a}{2^{p}}+i \frac{b}{2^{p}}$, such that $\left(\frac{a}{2^{p}}\right)^{2}+\left(\frac{b}{2^{p}}\right)^{2}=1$. As demonstrated in the previous section, only the numbers ± 1 and $\pm i$ satisfy this condition. Thus $\mathrm{DU}(1)$ is isomorphic to the finite group of the four complex numbers $1, i,-1$, and $-i$. This group has order 4 and is isomorphic to the cyclic group \boldsymbol{Z}_{4}.

The subgroup $\operatorname{MDU}(1)$ is identical to $\mathrm{DU}(1)$. The subgroup $\mathrm{XDU}(1)$ has order 1 and is isomorphic to \boldsymbol{Z}_{1}.

5. The Group $\operatorname{DU}(2)$ and its Subgroup XDU(2)

We consider the unitary matrices of the form

$$
\left(\begin{array}{cc}
\frac{a}{2^{p}}+i \frac{b}{2^{p}} & \frac{c}{2^{p}}+i \frac{d}{2^{p}} \\
\frac{e}{2^{p}}+i \frac{f}{2^{p}} & \frac{g}{2^{p}}+i \frac{h}{2^{p}}
\end{array}\right),
$$

where at least one of the eight integers a, b, c, \ldots, h is odd. For the sake of convenience, we assume that $\{a, b, c, d\}$ contains an odd number. We have

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}+d^{2}=4^{p} \tag{1}
\end{equation*}
$$

According to Lagrange's theorem each natural number can be written as the sum of four squares. So can 4^{p}.

If $p=0$, then only one partition into four squares exists:

$$
\begin{equation*}
1=1^{2}+0^{2}+0^{2}+0^{2} \tag{2}
\end{equation*}
$$

If $p>0$, then (1) implies that $a^{2}+b^{2}+c^{2}+d^{2}$ has to be a multiple of 4 . Therefore, either all four numbers a, b, c, and d are even or all are odd. If $p=1$, then both kinds of partition exist:

$$
\begin{align*}
4 & =1^{2}+1^{2}+1^{2}+1^{2} \tag{3}\\
& =2^{2}+0^{2}+0^{2}+0^{2}
\end{align*}
$$

If $p>1$, then the four numbers are necessarily even:

$$
\begin{aligned}
4^{p} & =\left(2^{p-1}\right)^{2}+\left(2^{p-1}\right)^{2}+\left(2^{p-1}\right)^{2}+\left(2^{p-1}\right)^{2} \\
& =\left(2^{p}\right)^{2}+0^{2}+0^{2}+0^{2} .
\end{aligned}
$$

We denote by $p_{s}(n)$ the number of partitions of a number n into s squares. In contrast to this number of partitions, the total number of representations of the number n as a sum of s squares takes into account order and sign of the parts, thus e.g. considering $4=2^{2}+0^{2}+0^{2}+0^{2}, 4=0^{2}+2^{2}+0^{2}+0^{2}$, and $4=(-2)^{2}+0^{2}+0^{2}+0^{2}$ as three different solutions of $a^{2}+b^{2}+c^{2}+d^{2}=4$. This number of 'lattice on the hypersphere with radius \sqrt{n} ' traditionally is denoted $r_{s}(n)$. We have (for $n>0$ and $s>3$) that $r_{s}(n) \gg p_{s}(n)$. Thanks to Jacobi [6], explicit expressions $[7,8,9]$ exist for $r_{2}(n), r_{4}(n), r_{6}(n), r_{8}(n)$, and $r_{12}(2 n)$. In particular, we have

$$
r_{4}(n)=8 \sum_{4 \nmid d \mid n} d,
$$

yielding

$$
r_{4}\left(4^{p}\right)=\left\{\begin{array}{rll}
8 & \text { if } & p=0 \tag{4}\\
24 & \text { if } & p>0 .
\end{array}\right.
$$

As a result, we have

$$
p_{4}\left(4^{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } & p=0 \\
2 & \text { if } & p>0
\end{array}\right.
$$

Thus there exist no other partitions of 4^{p} than those mentioned above. As a result, there exists no partition $a^{2}+b^{2}+c^{2}+d^{2}$ of 4^{p} (with $p>1$) with at least one odd number a, b, c, or d. That is the reason why there do not exist any dyadic unitary 2×2 matrices with $p \geq 2$. The fact that neither $p_{4}\left(4^{p}\right)$ nor $r_{4}\left(4^{p}\right)$ increase for increasing p, once $p \geq 1$, explains why no dyadic unitary 2×2 matrices with $p>1$ exist.

We conclude that the group $\mathrm{DU}(2)$ consists of matrices with level equal to either 1 or 2 . As a consequence, the group is finite. It consists of the Gaussian unitary matrices where either all denominators are 1 (and numerators are based on (2)) or all denominators are 2 (and numerators are based on (3)):

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) \text { or }\left(\begin{array}{cc}
0 & \alpha \\
\beta & 0
\end{array}\right) \text { or } \frac{1}{2}\left(\begin{array}{cc}
a+i b & c+i d \\
e+i f & g+i h
\end{array}\right),
$$

where α and β are $1, i,-1$, or $-i$ and a, b, \ldots, and h are 1 or -1 . This yields a group of order 96. Its most notorious members are

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \frac{1}{2}\left(\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}\right),
$$

representing, in quantum computation, the dummy gate, the NOT gate $[10,4]$, and the square root of NOT gate $[2,10,4,11,12,13]$, respectively. The group is isomorphic to the group [96, 67] of the GAP library. It consists of 32 matrices with $p=0$ and 64 matrices with $p=1$. The former constitute the subgroup $\mathrm{MDU}(2)$, isomorphic to $(\mathrm{DU}(1) \times \mathrm{DU}(1)): \boldsymbol{S}_{2}$ and thus to $\boldsymbol{Z}_{4}^{2}: \boldsymbol{Z}_{2}$. The subgroup $\mathrm{MDU}(2)$ partitions the supergroup $\mathrm{DU}(2)$ into two double cosets, one containing all the matrices with $p=0$, the other all the matrices with $p=1$.

Besides the permutation group $\mathrm{P}(2)$, also the Pauli group $[14,15] \boldsymbol{P}$ is a subgroup of $\operatorname{MDU}(2)$:

$$
\mathrm{P}(2) \subset \boldsymbol{P} \subset \mathrm{MDU}(2) \subset \mathrm{DU}(2) \subset \mathrm{U}(2)
$$

with successive orders

$$
4<16<32<96<\infty^{4}
$$

According to the definition in Sect. 3, the members of $\mathrm{DU}(2)$ with all four line sums equal to 1 , form the subgroup $\mathrm{XDU}(2)$ of $\mathrm{DU}(2)$. The subgroup has order 4. Only two of the four matrices of $\operatorname{XDU}(2)$ belong to $\operatorname{MDU}(2)$. The subgroup $\mathrm{XDU}(2)$ partitions its supergroup $\mathrm{DU}(2)$ into nine double cosets, five of size 16 and four of size 4 .

6. The Group $\mathrm{DU}(3)$

For the case $m=3$, we have to investigate a partition into six squares:

$$
a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}=4^{p}
$$

with at least one of the integers $\{a, b, c, d, e, f\}$ odd. Whatever the value of p, such partition is possible. Suffice it to successively

- choose an arbitrary odd number a such that $a^{2} \leq 4^{p}$,
- choose an arbitrary number b such that $b^{2} \leq 4^{p}-a^{2}$, and
- apply Lagrange's four-square theorem to the number $4^{p}-a^{2}-b^{2}$.

There always exists at least one partition of the form

$$
4^{p}=1^{2}+0^{2}+c^{2}+d^{2}+e^{2}+f^{2}
$$

As p can have any value from $\{0,1,2, \ldots\}$, this yields a (countably) infinite number of possibilities. This fact constitutes the underlying reason why $\mathrm{DU}(3)$ (in contrast to $\mathrm{DU}(2)$) is a (countably) infinite group. An actual proof of the infinitude of $\mathrm{DU}(3)$ is given in Appendix B .

The numbers $p_{6}\left(4^{p}\right)$ and $r_{6}\left(4^{p}\right)$ grow fast with increasing p. Indeed, according to Jacobi, we have

$$
r_{6}(n)=4 \sum_{2 \nmid d \mid n}(-1)^{(d-1) / 2}\left(\frac{4 n^{2}}{d^{2}}-d^{2}\right)
$$

For $n=4^{p}$ this yields

$$
r_{6}\left(4^{p}\right)=4\left(4 \times 16^{p}-1\right)
$$

i.e. an exponentially increasing function of p, in strong contrast to (4).

Within the infinite group $\mathrm{DU}(3)$, the matrices with $p=0$ form the finite subgroup $\operatorname{MDU}(3)$, isomorphic to $(\mathrm{DU}(1) \times \mathrm{DU}(1) \times \mathrm{DU}(1)): \boldsymbol{S}_{3}$, of order $4^{3} \times 3!=384$. It partitions the whole group into an infinite number of double cosets. All elements of such a double coset have a same value of p. However, two matrices with a same p may be member of two different double cosets. E.g. the two matrices

$$
\frac{1}{2^{2}}\left(\begin{array}{ccc}
1 & 1+2 i & 3-i \\
-3-2 i & 1 & 1+i \\
1-i & -1-3 i & 2
\end{array}\right) \quad \text { and } \frac{1}{2^{2}}\left(\begin{array}{ccc}
-3+i & 1+i & 2 \\
1+i & -3+i & 2 \\
2 & 2 & 2+2 i
\end{array}\right)
$$

sit in two different double cosets, both with $p=2$. The former double coset contains matrices, where all lines (i.e. rows and columns) are based on the partition $16=3^{2}+2^{2}+1^{2}+1^{2}+1^{2}+0^{2}$. The latter double coset contains matrices where four lines are based on this partition, but two other lines are based on $16=2^{2}+2^{2}+2^{2}+2^{2}+0^{2}+0^{2}$. The two double cosets have different size: the former contains $36,864=96 \times 384$ elements, whereas the latter contains only $18,432=48 \times 384$ elements.

For large values of n, we have

$$
p_{s}(n) \approx \frac{r_{s}(n)}{s!2^{s}}
$$

such that, for sufficiently large p, we have

$$
p_{6}\left(4^{p}\right) \approx \frac{1}{2880} 16^{p}
$$

The fact that $p_{6}\left(4^{p}\right)$ grows so rapidly with increasing p leads to a fast growing number of double cosets as a function of the level 2^{p}. For $p=1$, we have two double cosets; for $p=2$, we have six double cosets; and for $p=3$, we have at least seven double cosets. The two double cosets with $p=1$ have e.g. the following representatives:

$$
r_{1}=\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1+i & 1-i \\
0 & 1-i & 1+i
\end{array}\right) \quad \text { and } \quad r_{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 1-i & 1+i \\
1+i & 1 & -i \\
1-i & i & 1
\end{array}\right)
$$

Table 1: Number of $\mathrm{DU}(m)$ matrices.

| | | $m=1$ | $m=2$ | $m=3$ | $m=4$ |
| :---: | ---: | ---: | ---: | ---: | ---: |\ldots

respectively.
It turns out to be advantageous to decompose the number 2 into the irreducible elements of the Gaussian integers,

$$
2=-i(1+i)^{2}
$$

where $-i$ is one of the four Gaussian units (i.e. $1, i,-1$, and $-i$) and $1+i$ is a Gaussian prime. We thus obtain

$$
r_{1}=\frac{1}{1+i}\left(\begin{array}{ccc}
1+i & 0 & 0 \\
0 & i & 1 \\
0 & 1 & i
\end{array}\right), \quad r_{2}=\frac{1}{(1+i)^{2}}\left(\begin{array}{ccc}
0 & 1+i & i(1+i) \\
i(1+i) & i & 1 \\
1+i & -1 & i
\end{array}\right)
$$

We may say that r_{1} is of level $1+i$, whereas r_{2} is of level $(1+i)^{2}$. In this sense, the matrices of level 2^{p} consist of the union of the matrices of level $(1+i)^{2 p-1}$ and the matrices of level $(1+i)^{2 p}$. We may say that the Gaussian prime $1+i$ plays a role like 'some kind of rational square root of 2 ', thus allowing levels resembling a 'halfinteger power of 2 '. We will use χ as a short-hand notation for $1+i$. We will make use of the following property of the number χ : any Gaussian integer is either $0 \bmod \chi$ or $1 \bmod \chi$. A Gaussian number $a+i b$ is $0 \bmod \chi$ iff either both a and b are even or both a and b are odd.

The number of $\mathrm{DU}(3)$ matrices of different levels χ^{q} are given in Table 1. All matrices of level χ^{0} are members of $\operatorname{MDU}(3)$, a group isomorphic to $\mathrm{DU}(1)^{3}: \boldsymbol{S}_{3}$ of order $4^{3} \times 3!=384$. All 3×3 matrices of level χ^{1} consist of a $1 \times$
$1 \mathrm{DU}(1)$ block (4 possible contents) and a $2 \times 2 \mathrm{DU}(2)$ block (64 possibilities), with 9 possible block placings: indeed we have $9 \times(4 \times 64)=2,304$. All matrices of level χ^{2} or higher do not fall apart into blocks. Table 1 reveals that, for $q>0$, the number of $\mathrm{DU}(3)$ matrices with level χ^{q} equals 576×4^{q}. Appendix C explains why. For $p>0$, the $\mathrm{DU}(3)$ matrices of level 2^{p} consist of the matrices of levels $\chi^{2 p-1}$ and $\chi^{2 p}$. Thus (for $p>0$) there are 720×16^{p} such matrices.

An arbitrary matrix A of $\mathrm{DU}(3)$ of level χ^{q} looks like

$$
A=\frac{1}{\chi^{q}}\left(\begin{array}{lll}
a+i b & c+i d & e+i f \tag{5}\\
g+i h & j+i k & l+i m \\
n+i o & p+i q & r+i s
\end{array}\right)
$$

with at least one of the nine entries $a+i b, c+i d, \ldots$, or $r+i s$ not divisible by χ. We now introduce the matrix $R_{n}(A)$, where n is a Gaussian integer. It is obtained by multiplying A by its level χ^{q} and subsequently computing the remainder when dividing each matrix entry by n :

$$
R_{n}(A)=\left(\chi^{q} A\right) \bmod n .
$$

E.g.
$R_{\chi}\left[\frac{1}{(1+i)^{5}}\left(\begin{array}{ccc}4+2 i & 1-3 i & -1-i \\ -1+3 i & -3 & -3+2 i \\ 1-i & 2+3 i & -4-i\end{array}\right)\right]=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$
$R_{2}\left[\frac{1}{(1+i)^{5}}\left(\begin{array}{ccc}4+2 i & 1-3 i & -1-i \\ -1+3 i & -3 & -3+2 i \\ 1-i & 2+3 i & -4-i\end{array}\right)\right]=\left(\begin{array}{ccc}0 & 1+i & 1+i \\ 1+i & 1 & 1 \\ 1+i & i & i\end{array}\right)$.
Note that all entries of an R_{χ} matrix are either 0 or 1 and all entries of an R_{2} matrix are $0,1, i$, or $1+i$.

For any Gaussian integer n, we have $n \bar{n} \bmod \chi=n \bmod \chi$. Therefore, the unitarity condition

$$
a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}=2^{q}
$$

in case $q>0$, leads to

$$
(a+i b) \bmod \chi+(c+i d) \bmod \chi+(e+i f) \bmod \chi=0
$$

and similar for the remaining two rows, as well as for the three columns. Taking also orthogonalities into account, we can conclude that the R_{χ} matrix of a $\operatorname{DU}(3)$ matrix (of level higher than 1) always is of the type

$$
\left(\begin{array}{lll}
0 & 0 & 0 \tag{6}\\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

or equivalent, i.e. of this type after permutation of rows or permutation of columns. One can similarly demonstrate that the R_{2} matrix of a $\mathrm{DU}(3)$ matrix (of level higher than χ^{1}) always is of the following type or equivalent:

$$
\left(\begin{array}{ccc}
0 & 1+i & 1+i \tag{7}\\
1+i & M \\
1+i &
\end{array}\right)
$$

where the lower-right submatrix M exists in five flavours:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
i & i
\end{array}\right),\left(\begin{array}{cc}
1 & i \\
1 & i
\end{array}\right),\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right) \quad \text { and }\left(\begin{array}{cc}
i & i \\
i & i
\end{array}\right)
$$

They correspond to the five 2×2 matrices G_{1}, G_{2}, \ldots, and G_{5} discussed in Appendix D.

By multiplying the $\mathrm{DU}(3)$ matrix of level χ^{q} by an appropriate $\mathrm{DU}(3)$ matrix of level χ, it always is possible to obtain a matrix of level χ^{q-1} (instead of level χ^{q+1}, as one would expect normally). By performing such a multiplication again and again, we can thus lower the level of the matrix from χ^{q} to χ^{q-1}, to χ^{q-2}, \ldots, to χ^{0}. It suffices to proceed, at each of the q stages, in three steps:

- First, one multiplies by an appropriate permutation matrix (automatically of level 1), such that the original R_{χ} matrix is converted into the standard form (6).
- Next, one either or not multiplies by the diagonal matrix (of level 1)

$$
b=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Detailed study [16] demonstrates that the b matrix has to be applied if the R_{2} matrix (7) contains the submatrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
i & i
\end{array}\right) \quad \text { or }\left(\begin{array}{ll}
i & i \\
i & i
\end{array}\right)
$$

and the b matrix should not be applied if the submatrix is

$$
\text { either }\left(\begin{array}{cc}
1 & i \\
1 & i
\end{array}\right) \text { or }\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)
$$

- Finally, one right-multiplies by the matrix (of level χ)

$$
a=\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1-i & 1+i \\
0 & 1+i & 1-i
\end{array}\right)=\frac{1}{1+i}\left(\begin{array}{ccc}
1+i & 0 & 0 \\
0 & -i & 1 \\
0 & 1 & -i
\end{array}\right)
$$

The second and the third step of the procedure are illustrated by an example where we lower the level of a given matrix from χ^{5} to χ^{4} :

$$
\frac{1}{(1+i)^{5}}\left(\begin{array}{ccc}
4+2 i & 1-3 i & -1-i \\
-1+3 i & -3 & -3+2 i \\
1-i & 2+3 i & -4-i
\end{array}\right) b a=\frac{1}{(1+i)^{4}}\left(\begin{array}{ccc}
3-i & -1+i & -2 \\
1+2 i & i & 1+3 i \\
-i & -3-2 i & 1+i
\end{array}\right)
$$

what, expressed in dyadic form, looks like

$$
\frac{1}{8}\left(\begin{array}{ccc}
-6+2 i & 2+4 i & 2 \\
-2-4 i & 3-3 i & 1-5 i \\
2 i & -5-i & 5-3 i
\end{array}\right) b a=\frac{1}{4}\left(\begin{array}{ccc}
-3+i & 1-i & 2 \\
-1-2 i & -i & -1-3 i \\
i & 3+2 i & -1-i
\end{array}\right)
$$

The underlying reason why the 3 -step procedure always works, is explained in Appendix D: it suffices to choose the appropriate matrix

$$
c=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

equal either to

$$
\frac{1}{2}\left(\begin{array}{cc}
1-i & 1+i \\
1+i & 1-i
\end{array}\right) \quad \text { or to } \quad\left(\begin{array}{rr}
-i & 0 \\
0 & 1
\end{array}\right) \frac{1}{2}\left(\begin{array}{ll}
1-i & 1+i \\
1+i & 1-i
\end{array}\right)
$$

in order to guarantee that the product of two R_{2} matrices

$$
\left(\begin{array}{ccc}
0 & 1+i & 1+i \\
1+i & g_{11} & g_{12} \\
1+i & g_{21} & g_{22}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{11} & c_{12} \\
0 & c_{21} & c_{22}
\end{array}\right)
$$

is the 3×3 zero matrix (modulo 2). Now, if an $R_{2}(A)$ matrix is the zero matrix, then all entries of matrix A are divisible by 2 (and therefore by χ^{2}).

By applying the procedure again and again, we eventually obtain a decomposition of an arbitrary matrix into

- q matrices $a^{-1}=\frac{1}{2}\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1+i & 1-i \\ 0 & 1-i & 1+i\end{array}\right)$,
- q or less matrices $b^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 1\end{array}\right)$,
- $q+1$ permutation matrices, and
- one diagonal matrix,
e.g.

$$
\frac{1}{8}\left(\begin{array}{ccc}
-6+2 i & 2+4 i & 2 \\
-2-4 i & 3-3 i & 1-5 i \\
2 i & -5-i & 5-3 i
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{rrr}
-i & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) a^{-1} b^{-1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) a^{-1} b^{-1} \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) a^{-1}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) a^{-1}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) a^{-1} b^{-1}
\end{aligned}
$$

No procedure for shorter decomposition into matrices of levels 1 and χ is possible. Multiplication by a level- χ matrix indeed cannot convert an arbitrary matrix of level χ^{q} into a matrix of level χ^{q-2}.

7. The Subgroup XDU(3)

The members of $\mathrm{DU}(3)$ with all six line sums equal to 1 form the infinite subgroup $\mathrm{XDU}(3)$ of $\mathrm{DU}(3)$. Any line of an $\mathrm{XDU}(3)$ matrix is, just like any line of a $\mathrm{DU}(3)$ matrix, based on a partition into six squares:

$$
a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}=4^{p}
$$

however with the two additional restrictions:

$$
\begin{aligned}
a+c+e & =2^{p} \\
b+d+f & =0
\end{aligned}
$$

The number of integer solutions therefore is much smaller than $r_{6}\left(4^{p}\right)$. Finding the exact number of solutions is no easy problem. It turns out to be equal to $3\left(2 \times 4^{p}-1\right)$, according to [17].

Just like $\operatorname{DU}(3)$, we subdivide $\operatorname{XDU}(3)$ either into classes of different level 2^{p} or into classes of different level $(1+i)^{q}$. The matrices of level 1 form a subgroup: the 3 ! permutation matrices. This subgroup $\mathrm{P}(3)$ divides the supergroup $\mathrm{XDU}(3)$ into double cosets. There exist two double cosets of level 2 , with representatives r_{1} and

$$
\frac{1}{2}\left(\begin{array}{ccc}
1 & i & 1-i \\
-i & 1 & 1+i \\
1+i & 1-i & 0
\end{array}\right)
$$

and with sizes 18 and 36 , respectively. The former is of level $(1+i)^{1}$, the latter of level $(1+i)^{2}$. See Table 2. We note that, for $q>1$, the number of double cosets equals 2^{q-2}, each set being of size 36 , such that the number of matrices equals 9×2^{q}. This is demonstrated in Appendix C.1. The $\operatorname{XDU}(3)$ matrices of level 2^{p} consist of the matrices of levels $(1+i)^{2 p-1}$ and $(1+i)^{2 p}$. Therefore, there are $\frac{27}{2} 4^{p}$ such matrices.

While applying the 3 -step $\mathrm{DU}(3)$ matrix decomposition method to an $\mathrm{XDU}(3)$ matrix, one automatically obtains a product without any diagonal

Table 2: Number of $\operatorname{XDU}(m)$ matrices.

		$m=1$	$m=2$	$m=3$	$m=4$	\ldots
$p=0$	$q=0$	1	2	6	24	
$p=1$	$q=1$	0	2	18	216	
$p=1$	$q=2$	0	0	36	2,256	
$p=2$	$q=3$	0	0	72	16,320	
$p=2$	$q=4$	0	0	144	57,600	
$p=3$	$q=5$	0	0	288	230,400	
$p=3$	$q=6$	0	0	576	921,600	
$p=4$	$q=7$	0	0	1,152		
$p=4$	$q=8$	0	0	2,304		
\ldots						
total		1	4	\aleph_{0}	\aleph_{0}	

${ }_{351}$ where the 3×3 matrices a and a^{-1} are defined in Sect. 6 and where
${ }^{352} \quad p_{1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \quad p_{2}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), \quad p_{3}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$.
353 Because the group $\mathrm{P}(3)$ of permutations can be generated by two gener354 ators, e.g.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

and because
matrices: the second step of the 3-step procedure thus is absent, such that all factors of the decomposition belong to $\mathrm{XDU}(3)$. The underlying reason is given at the end of Appendix D. As an example, we have

$$
{ }_{350} \quad \frac{1}{8}\left(\begin{array}{ccc}
1-3 i & 1+4 i & 6-i \\
6+4 i & 1-i & 1-3 i \\
1-i & 6-3 i & 1+4 i
\end{array}\right)=p_{1} a^{-1} p_{2} a^{-1} p_{3} a^{-1} p_{3} a^{-1} p_{3} a^{-1} p_{3} a^{-1}
$$ $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad$ and $\quad\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$,

$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)=\left(a^{-1}\right)^{2}$,
we may conclude that the group $\mathrm{XDU}(3)$ can be generated by two generators, e.g.

$$
g_{1}=\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1+i & 1-i \\
0 & 1-i & 1+i
\end{array}\right) \quad \text { and } \quad g_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Finally, because

$$
\begin{aligned}
g_{2}= & \frac{1}{2}\left(\begin{array}{ccc}
1+i & 0 & 1-i \\
0 & 2 & 0 \\
1-i & 0 & 1+i
\end{array}\right) \frac{1}{2}\left(\begin{array}{ccc}
1+i & 0 & 1-i \\
0 & 2 & 0 \\
1-i & 0 & 1+i
\end{array}\right) \\
& \times \frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1+i & 1-i \\
0 & 1-i & 1+i
\end{array}\right) \frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1+i & 1-i \\
0 & 1-i & 1+i
\end{array}\right)
\end{aligned}
$$

$\mathrm{XDU}(3)$ can also be generated by the following two generators:

$$
\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1+i & 1-i \\
0 & 1-i & 1+i
\end{array}\right) \quad \text { and } \quad \frac{1}{2}\left(\begin{array}{ccc}
1+i & 0 & 1-i \\
0 & 2 & 0 \\
1-i & 0 & 1+i
\end{array}\right)
$$

Thus any member of $\mathrm{XDU}(3)$ can be written as a product of square roots of 3×3 permutation matrices.

8. The Group DU(4)

Jacobi's formula

$$
r_{8}(n)=16(-1)^{n} \sum_{d \mid n}(-1)^{d} d^{3}
$$

yields

$$
r_{8}\left(4^{p}\right)=\left\{\begin{array}{cl}
16 & \text { if } \quad p=0 \\
\frac{16}{7}\left(8 \times 64^{p}-15\right) & \text { if } \quad p>0
\end{array}\right.
$$

such that it is no surprise $\mathrm{DU}(4)$ is infinite.
We consider within the infinite group $\mathrm{DU}(4)$, the subgroup $\mathrm{MDU}(4)$ of monomial matrices. It is isomorphic to $\mathrm{DU}(1)^{4}: \boldsymbol{S}_{4}$, of order $4^{4} \times 4!=6,144$. Twenty-four of its members are permutation matrices and thus represent the 24 classical reversible logic circuits acting on two bits. The monomial subgroup partitions the total group into an infinite number of double cosets.

All matrices of $m=4$ and $p=1$ have at least one line based on the partition $4=1^{2}+1^{2}+1^{2}+1^{2}+0^{2}+0^{2}+0^{2}+0^{2}$, the remaining lines being based on $4=2^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}+0^{2}$. One of the double cosets contains the two square roots of NOT, such as

$$
\frac{1}{2}\left(\begin{array}{cccc}
1+i & 1-i & 0 & 0 \\
1-i & 1+i & 0 & 0 \\
0 & 0 & 1+i & 1-i \\
0 & 0 & 1-i & 1+i
\end{array}\right)
$$

Fig. 1: From left to right: two square roots of NOT, four controlled square roots of NOT, and the twin square roots of NOT.

Its size is 73,728 . Another double coset (equally of size 73,728) contains the four controlled square roots of NOT, such as ${ }^{\text {a }}$

$$
\frac{1}{2}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1+i & 1-i \\
0 & 0 & 1-i & 1+i
\end{array}\right)
$$

See Fig. 1. All six circuits belong to XDU(4). Both double cosets have level $1+i$.

There exist 393,216 unitary matrices where all entries are from the set of the 4 numbers $\frac{1}{2}\{1, i,-1,-i\}$. These matrices are of the form $\frac{1}{2} H(4,4)$, where $H(4,4)$ denotes the 4×4 complex (or: generalized) Hadamard matrices [18]. They fall apart into two equivalence classes: 294,912 are represented by the dephased matrix

$$
\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \tag{8}\\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

i.e. $1 / 2$ times the 4 -point Fourier transform F_{4}; the 98,304 remaining matrices being represented by the dephased matrix

$$
\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \tag{9}\\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

i.e. the tensor product of two 2-point Fourier transforms F_{2} :

$$
\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

To the latter double coset belongs the matrix representing the twin square

[^0]roots of NOT:
\[

\frac{1}{2}\left($$
\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}
$$\right) \otimes \frac{1}{2}\left($$
\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}
$$\right)=\frac{1}{2}\left($$
\begin{array}{rrrr}
i & 1 & 1 & -i \\
1 & i & -i & 1 \\
1 & -i & i & 1 \\
-i & 1 & 1 & i
\end{array}
$$\right)
\]

All matrices of the form $\frac{1}{2} H(4,4)$ are of level $(1+i)^{2}$.
The above-mentioned four double cosets (containing a total of 540,672 matrices) do not exhaust all unitary dyadic matrices with $p=1$, as is illustrated by the existence of e.g.

$$
\frac{1}{2}\left(\begin{array}{crrc}
1+i & 1 & 1 & 0 \\
1+i & -1 & -1 & 0 \\
0 & 1 & -1 & 1+i \\
0 & -1 & 1 & 1+i
\end{array}\right)
$$

There are in fact nine classes [16] with level 2^{1}.
All matrices of level $(1+i)^{0}$ fall apart in four 1×1 blocks and are member of the $\operatorname{MDU}(4)$ subgroup of $\operatorname{DU}(4)$: we have $24 \times 4^{4}=6,144$ such matrices. All matrices of level $(1+i)^{1}$ either consist of two $\mathrm{DU}(1)$ blocks and one $\mathrm{DU}(2)$ block or consist of two $\mathrm{DU}(2)$ blocks. We have $72 \times\left(4^{2} \times 64\right)+18 \times 64^{2}=$ 147,456 such matrices. Among the $5,701,632$ matrices of level $(1+i)^{2}$, there are $16 \times(4 \times 9,216)=589,824$ ones, which consist of one $\mathrm{DU}(1)$ block and one $\operatorname{DU}(3)$ block. All the matrices of level $(1+i)^{3}$ or higher do not have a block structure. Finally, Table 1 gives the number of $\mathrm{DU}(4)$ matrices for some levels.

Whereas $m=3$ leads to only one matrix type modulo χ, i.e. the matrix type (6), the case $m=4$ leads to six different R_{χ} types:

$$
\begin{align*}
& \left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right), \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
\end{align*}\left(\begin{array}{llll}
1 & 1 & 0 & 0 \tag{10}\\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right),
$$

Detailed study [16] reveals that nevertheless an arbitrary $D U(4)$ matrix can be decomposed into a string of permutation matrices, a^{-1} matrices, and b^{-1} matrices, where a^{-1} is a controlled square root of NOT and b^{-1} is a controlled phase gate, e.g.
${ }^{426} \quad a^{-1}=\frac{1}{2}\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1+i & 1-i \\ 0 & 0 & 1-i & 1+i\end{array}\right) \quad$ and $\quad b^{-1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

However, for a given 4×4 matrix, in order to lower its level from χ^{q} to χ^{q-1}, it may be necessary to apply the 3 -step procedure of Sect. 6 not just once but once, twice, or three times ${ }^{\mathrm{b}}$. To further lower the level (from χ^{q-1} to $\chi^{q-2}, \chi^{q-3}, \ldots$), the 3 -step procedure needs to be applied, each time, either once or twice. As a result, the number of a^{-1} factors in the decomposition is $2 q+1$ at most. One of the underlying reasons why a procedure similar to the $\mathrm{DU}(3)$ procedure is applicable, is the fact that all six matrix types (10) consist of 2×2 blocks, either equal to

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \text { or equal to } \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

such that Appendix D can again be applied [16].

9. The Subgroup XDU(4)

The members of $\operatorname{DU}(4)$ where all eigth line sums are equal to 1 , form the infinite subgroup $\mathrm{XDU}(4)$ of $\mathrm{DU}(4)$. The $\mathrm{XDU}(4)$ matrices of level 1 form the subgroup $\mathrm{P}(4)$ of the $4!=24$ permutation matrices. This subgroup $\mathrm{P}(4)$ divides the supergroup $\operatorname{XDU}(4)$ into double cosets. E.g., there are eleven double cosets of level 2 , i.e. two of level $1+i$ plus nine of level $(1+i)^{2}$, comprising a total of 2,472 matrices. Numbers for higher levels are given in Table 2. The table suggests that the number of matrices grows like 225×4^{q}, for $q>3$.

An arbitrary member of $\operatorname{XDU}(4)$ can be factorized without phase gates. Because the permutation group $P(4)$ can be generated by two generators, e.g.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

and because

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=\left(a^{-1}\right)^{2},
$$

we may conclude that the group $\mathrm{XDU}(4)$ can be generated by two generators,

[^1]\[

g_{1}=\frac{1}{2}\left($$
\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1+i & 1-i \\
0 & 0 & 1-i & 1+i
\end{array}
$$\right) \quad and \quad g_{2}=\left($$
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}
$$\right)
\]

Finally, because g_{2} can be decomposed as

we can conclude that the whole group $\mathrm{XDU}(4)$ can be generated by three different controlled square roots of NOT:

$$
\begin{gathered}
\frac{1}{2}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1+i & 1-i \\
0 & 0 & 1-i & 1+i
\end{array}\right), \quad \frac{1}{2}\left(\begin{array}{ccccc}
1+i & 1-i & 0 & 0 \\
1-i & 1+i & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \\
\\
\\
\end{gathered}
$$

Two of them control a same qubit, the third controls the other qubit. Two of them are controlled by a signal of same polarity, the remaining one is controlled by a signal of opposite polarity. We note that the first and third generator together generate a subgroup of $\operatorname{XDU}(4)$ isomorphic to $\operatorname{XDU}(3)$, i.e. all 4×4 matrices of the form

$$
\left(\begin{array}{ll}
1 & \mathbb{O} \\
\mathbb{O} & y
\end{array}\right)
$$

where \mathbb{O} denotes either the 1×3 zero matrix or the 3×1 zero matrix, and y is a member of $\mathrm{XDU}(3)$.

We summarize the present section by concluding that any matrix in $\mathrm{XDU}(4)$ can be written as a product of controlled square roots of NOT.
10. The Group $\mathbf{D U}(m)$, with $m>4$

Each $\mathrm{DU}(m)$ matrix of level 1 consists of lines of the form $[X, 0,0, \ldots, 0]$ (up to permutation of its vector components), where X is a number from $\{1, i,-1,-i\}$. There are $m!4^{m}$ such matrices. They all are member of one of the m ! subgroups of $\mathrm{DU}(m)$ isomorphic to $\mathrm{DU}(1)^{m}$.

We now consider a $\operatorname{DU}(m)$ matrix of level χ^{1}. Because we have to guarantee the unit norm of each matrix line, a line can only exist (up to ordering) in two different forms: either $[X, 0,0, \ldots, 0]$ or $[Y, Y, 0,0, \ldots, 0]$, where Y is a number from $\{1 / \chi, i / \chi,-1 / \chi,-i / \chi\}$. Orthonormality implies that the matrix consists of merely

$$
(X) \quad \text { and } \quad\left(\begin{array}{cc}
Y & Y \\
Y & Y
\end{array}\right)
$$

blocks. As a result, there exist

$$
m!4^{m}\left[m!\sum_{k=0}^{\lfloor m / 2\rfloor} \frac{1}{k!(m-2 k)!}-1\right]
$$

such matrices. This amount can be written as $m!4^{m}\left(\kappa_{m}-1\right)$, where κ_{m} may be expressed in terms of the confluent hypergeometric series ${ }_{1} F_{1}(-j, k / 2,-l / 4)$, which in turn can be expressed in terms of the Gamma function and the Laguerre polynomials. Additionally, κ_{m} is a number sequenced by Sloane [19] and applied e.g. by Khruzin [20] and Proctor [21]. All these $m!4^{m}\left(\kappa_{m}-\right.$ 1) matrices belong to one of the subgroups of $\mathrm{DU}(m)$ isomorphic to some group $\mathrm{DU}(2)^{k} \times \mathrm{DU}(1)^{m-2 k}$ (with $0 \leq k \leq\lfloor m / 2\rfloor$). The number of these subgroups amounts to $m!\left(\lambda_{m} / 2^{m}-1\right)$, where the number λ_{m} is another hypergeometric series (also expressable in terms of the Gamma function and Laguerre polynomials) as well as another integer sequence [22]. Taking into account the asymptotic behaviour [23] of the Laguerre polynomials for large degree into account, as well as Stirling's formula, we find for $m \gg 1$:

$$
\begin{aligned}
& \kappa_{m} \approx \frac{1}{\sqrt{2}}(m-1)^{m / 2} \exp \left[-\frac{m}{2}+\frac{\sqrt{2 m+1}}{2}+\frac{3}{8}\right] \\
& \lambda_{m} \approx \frac{1}{\sqrt{2}}(m-1)^{m / 2} \exp \left[-\frac{m}{2}+\sqrt{2 m+1}\right] .
\end{aligned}
$$

The set of $\operatorname{DU}(m)$ matrices of level χ^{2} is much richer, as they do also display lines of the form $[Y, Z, Z, 0,0, \ldots, 0]$ and $[Z, Z, Z, Z, 0,0, \ldots, 0]$, where Z is one of the complex numbers $\{ \pm 1 / 2, \pm i / 2\}$. such that, besides the single 1×1 block type, the single 2×2 block type, and the single 3×3 block type, i.e.

$$
(X), \quad\left(\begin{array}{cc}
Y & Y \\
Y & Y
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ccc}
Y & Z & Z \\
Y & Z & Z \\
0 & Y & Y
\end{array}\right)
$$

they also may display five different 4×4 block types:

$$
\left(\begin{array}{rrrr}
0 & Y & Z & Z \\
Y & 0 & Z & Z \\
Z & Z & Z & Z \\
Z & Z & Z & Z
\end{array}\right), \quad\left(\begin{array}{rrrr}
0 & Y & Z & Z \\
Y & 0 & Z & Z \\
Z & Z & 0 & Y \\
Z & Z & Y & 0
\end{array}\right), \quad\left(\begin{array}{rrrr}
Y & 0 & Z & Z \\
0 & Y & Z & Z \\
Y & 0 & Z & Z \\
0 & Y & Z & Z
\end{array}\right),
$$

etcetera. Results by Severini and Szöllősi [24] on unitary (though not necessarily dyadic) matrices demonstrate how the number of different $k \times k$ block types increases fast with increasing k.

We recall here some results of Sects. 4, 5, 6, and 8 . For $m=1$, we have only one level (i.e. level 1) with only one R_{χ} remainder class, i.e. the 1×1 matrix (1). For $m=2$, we have only two levels: level 1 with only one remainder class, i.e.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and level χ with only one remainder class, i.e.

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

For $m=3$, we have \aleph_{0} levels: level 1 with only one remainder class, i.e.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and levels χ^{q} (with $q>0$) with only one remainder class, i.e.

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

For $m=4$, we have \aleph_{0} levels: level 1 with only one remainder class, i.e.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

level χ with two remainder classes, i.e.

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

We now conjecture that also in the case of arbitrary dimension m and arbitrary level (higher than χ^{0}), the R_{χ} types consist exclusively of 2×2 blocks

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

2×2 blocks

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),
$$

and (in case m is odd) a zero row and a zero column. We checked that this hypothesis is true for all matrices with $m<7$. If the conjecture is generally true, then Appendix D may be applied once again, the role of the building blocks a^{-1} and b^{-1} being played by

$$
a^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
2 \cdot \mathbb{1} & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & 1+i & 1-i \\
\mathbb{O} & 1-i & 1+i
\end{array}\right) \quad \text { and } \quad b^{-1}=\left(\begin{array}{ccc}
\mathbb{1} & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & i & 0 \\
\mathbb{O} & 0 & 1
\end{array}\right),
$$

where $2 \cdot \mathbb{1}$ denotes twice the $(m-2) \times(m-2)$ unit matrix $\mathbb{1}$ and where (1) denotes either the $(m-2) \times 1$ zero matrix or the $1 \times(m-2)$ zero matrix. For more details, the reader is referred to [16]. The procedure results in a decomposition of an arbitrary $\mathrm{DU}(m)$ matrix into a finite number of exclusively controlled square root of NOT gates, controlled phase gates and classical reversible gates.

We close the present section by drawing attention to matrices of one particular level. Apart from zero, the smallest norm a unitary dyadic matrix entry can have, is $1 / 2^{q}$. If, in a line, all m entries have this minimum non-zero norm, then

$$
m \frac{1}{2^{q}}=1
$$

Therefore, we define the critical number Q :

$$
Q(m)=\log _{2}(m)
$$

All matrices with $q<Q$ have, in each row and in each column, at least one zero. In fact, in each line, they have at least $m-2^{q}=2^{Q}-2^{q}$ and at most $m-1=2^{Q}-1$ zeroes. Only matrices with $q \geq Q$ may have all entries non-zero. In particular, if Q happens to be an integer, then matrices may be of the Hadamard style, iff $q=Q$. The condition that Q is an integer, is equivalent to m being of the form 2^{w}. All matrices representing a quantum circuit (acting on w qubits) fulfil this condition. Therefore we investigate this case in particular.

In case $m=2^{w}$, matrices with $q=Q=w$ may be of the Hadamard style $[5,18]$. These $2^{w} \times 2^{w}$ matrices look like

$$
\frac{1}{\chi^{w}}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & & & \\
\vdots & & & \\
1 & & &
\end{array}\right)
$$

i.e. χ^{-w} times a tensor product $F_{2} \otimes F_{2} \otimes \ldots \otimes F_{2} \otimes F_{4} \otimes F_{4} \otimes \ldots \otimes F_{4}$ of Fourier transforms.

11. The Subgroup $\operatorname{XDU}(m)$, with $m>4$

The number of $\operatorname{XDU}(m)$ matrices of level χ^{0} is m !, whereas the number of $\mathrm{XDU}(m)$ matrices of level χ^{1} is given by

$$
m!\left(\mu_{m}-1\right),
$$

where μ_{m} is given either by the appropriate ${ }_{1} F_{1}(-j, k / 2,-l / 4)$ series or by the appropriate Sloane sequence [25]. For $m \gg 1$, we have

$$
\mu_{m} \approx \frac{1}{\sqrt{2}}(m-1)^{m / 2} \exp \left[-\frac{m}{2}+\frac{\sqrt{2 m+1}}{\sqrt{2}}+\frac{1}{4}\right]
$$

For an $\mathrm{XDU}(m)$ of arbitrary level χ^{q}, we conjecture a decomposition without b^{-1} phase matrices. If $m=2^{w}$, then the a^{-1} building block is the controlled square root of NOT with $w-1$ controlling lines.

12. Conclusion

We have introduced the dyadic unitary matrix groups $\mathrm{DU}(m)$. The matrix entries consist of Gaussian rationals with denominator 2^{p}. We have investigated into detail the cases $\mathrm{DU}(1), \mathrm{DU}(2), \mathrm{DU}(3)$, and $\mathrm{DU}(4)$. Whereas $\mathrm{DU}(1)$ is isomorphic to the cyclic group \boldsymbol{Z}_{4} of order 4 , the group $\mathrm{DU}(2)$ is a finite group of order 96 , and all groups $\mathrm{DU}(m)$ with $m \geq 3$ are (countably) infinite. We propose a simple algorithm to decompose an arbitrary member of $\mathrm{DU}(3)$ into a product of $\mathrm{DU}(3)$ matrices with exclusively denominators 2^{0} and 2^{1}. A similar, though somewhat more complicated, algorithm is introduced for $m>3$. In case m is a power of 2 , say equals 2^{w}, such decomposition is useful for the synthesis of a quantum computer acting on w qubits, by applying merely building blocks known as 'controlled square roots of NOT'.

In this appendix we prove the following theorem: if a unitary $m \times m$ matrix has m identical row sums, then that row sum is on the unit circle.

Let M be an $m \times m$ unitary matrix, where the m row sums are denoted $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$. We compute

$$
\begin{aligned}
\sum_{k} \sigma_{k} \overline{\sigma_{k}} & =\sum_{k}\left[\left(\sum_{l} M_{k l}\right) \overline{\left(\sum_{n} M_{k n}\right)}\right] \\
& =\sum_{k}\left[\left(\sum_{l} M_{k l}\right)\left(\sum_{n} \overline{M_{k n}}\right)\right] \\
& =\sum_{k} \sum_{l} \sum_{n} M_{k l} \overline{M_{k n}} \\
& =\sum_{k} \sum_{l}\left(\sum_{n \neq l} M_{k l} \overline{M_{k n}}+M_{k l} \overline{M_{k l}}\right) \\
& =\sum_{l} \sum_{n \neq l} \sum_{k} M_{k l} \overline{M_{k n}}+\sum_{k} \sum_{l} M_{k l} \overline{M_{k l}} \\
& =\sum_{l} \sum_{n \neq l} 0+\sum_{k} 1 \\
& =0+\sum_{k} 1 \\
& =m .
\end{aligned}
$$

If all σ_{k} are equal to σ, this yields $m \sigma \bar{\sigma}=m$ and thus $\sigma \bar{\sigma}=1$. The matrix M can thus be written as the product of a matrix M^{\prime} with contant row sum 1 and a scalar σ that merely is a complex phase.

Analogously, if a unitary matrix has all identical column sums, then that column sum is on the unit circle.

Finally, if a unitary matrix has all row sums equal (say, σ) and all column sums equal (say, τ), then these two sums are equal. The proof is trivial: it suffices to compute, in two different ways, the sum of all matrix elements, $\sum_{j} \sum_{k} M_{j k}=\sum_{j} \sigma=m \sigma$ and $\sum_{k} \sum_{j} M_{j k}=\sum_{k} \tau=m \tau$.

Appendix B

An example of a dyadic unitary matrix with dimension m equal to 3 and level equal to 2 is given by

$$
y=\frac{1}{2}\left(\begin{array}{ccc}
1-i & 1 & i \\
1+i & -i & 1 \\
0 & 1+i & 1-i
\end{array}\right)
$$

Its three eigenvalues are $1, \exp \left(i \theta_{1}\right)$, and $\exp \left(i \theta_{2}\right)$, with $\theta_{1}=-\frac{\pi}{2}-\theta$ and $\theta_{2}=-\frac{\pi}{2}+\theta$, where θ is $\operatorname{Arccos}(3 / 4) \approx 41^{\circ} 24^{\prime} 35^{\prime \prime}$.

Because the only rational multiples of π with a rational cosine [26] are $0=\operatorname{Arccos}(1), \pi / 3=\operatorname{Arccos}(1 / 2), \pi / 2=\operatorname{Arccos}(0), 2 \pi / 3=\operatorname{Arccos}(-1 / 2)$, $\pi=\operatorname{Arccos}(-1), 5 \pi / 3=\arccos (-1 / 2), 3 \pi / 2=\arccos (0)$, and $5 \pi / 3=\operatorname{arc}-$ $\cos (1 / 2)$, neither θ_{1} nor θ_{2} is a rational multiple of π. Therefore, the power sequence $\left\{y, y^{2}, y^{3}, \ldots\right\}$ is not periodic. Therefore the sequence $\left\{\ldots, y^{-2}, y^{-1}\right.$, $\left.y^{0}, y^{1}, y^{2}, \ldots\right\}$ forms a countably infinite group. As it is a cyclic subgroup of $\mathrm{DU}(3)$, this proves that $\mathrm{DU}(3)$ is at least countably infinite.

As an immediate consequence, $\mathrm{DU}(m)$ with m larger than 3 also is infinite. Suffice it to note that the $m \times m$ square matrix

$$
\left(\begin{array}{ll}
\mathbb{1} & \mathbb{O} \\
\mathbb{O} & y
\end{array}\right),
$$

where $\mathbb{1}$ represents the $(m-3) \times(m-3)$ unit matrix and \mathbb{O} either the $(m-3) \times 3$ zero matrix or the $3 \times(m-3)$ zero matrix, is a member of $\mathrm{DU}(m)$ and has infinite order.

Appendix C

C. 1 Number of $\operatorname{XDU}(3)$ matrices

We assume six arbitrary integers $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$, and b_{3} (not all zero). With their help, we construct the following three vectors:

$$
\left.\begin{array}{rl}
V_{1} & =\frac{1}{\chi^{q+1}}\left[\begin{array}{lll}
\left(a_{1}-b_{1}\right)+i\left(a_{1}+b_{1}\right) & \left(a_{2}-b_{2}\right)+i\left(a_{2}+b_{2}\right) & \left(a_{3}-b_{3}\right)+i\left(a_{3}+b_{3}\right)
\end{array}\right] \\
V_{2} & =\frac{1}{\chi^{q+1}}\left[\left(a_{2}-b_{2}\right)+i\left(a_{3}+b_{3}\right)\right. \\
\left(a_{3}-b_{3}\right)+i\left(a_{1}+b_{1}\right) & \left(a_{1}-b_{1}\right)+i\left(a_{2}+b_{2}\right)
\end{array}\right] .
$$

The numbers $\left(a_{1}-b_{1}\right)+i\left(a_{1}+b_{1}\right),\left(a_{2}-b_{2}\right)+i\left(a_{2}+b_{2}\right)$, and $\left(a_{3}-b_{3}\right)+i\left(a_{3}+b_{3}\right)$ are divisible by $1+i$,

$$
\left(a_{1}-b_{1}\right)+i\left(a_{1}+b_{1}\right)=\left(a_{1}+i b_{1}\right)(1+i) \text { etc. }
$$

Thus the vector V_{1} is of level χ^{q} at most. We assume that the vector V_{1} has exactly level χ^{q}, i.e. that at least one of the three numbers $a_{1}+i b_{1}, a_{2}+i b_{2}$, and $a_{3}+i b_{3}$ is not divisible by χ. Detailed analysis [17] then demonstrates that the vectors V_{2} and V_{3} are not divisible by χ and thus have level χ^{q+1}.

The three vectors V_{1}, V_{2}, and V_{3} all have the same line sum,

$$
\frac{1}{\chi^{q+1}}\left[\left(a_{1}+a_{2}+a_{3}-b_{1}-b_{2}-b_{3}\right)+i\left(a_{1}+a_{2}+a_{3}+b_{1}+b_{2}+b_{3}\right)\right]
$$

$$
\begin{aligned}
& =\frac{1}{\chi^{q+1}}(1+i)\left[\left(a_{1}+a_{2}+a_{3}\right)+i\left(b_{1}+b_{2}+b_{3}\right)\right] \\
& =\frac{1}{\chi^{q}}\left[\left(a_{1}+a_{2}+a_{3}\right)+i\left(b_{1}+b_{2}+b_{3}\right)\right]
\end{aligned}
$$

They also have the same norm,

$$
\begin{aligned}
& \frac{1}{2^{q+1}}\left(2 a_{1}^{2}+2 b_{1}^{2}+2 a_{2}^{2}+2 b_{2}^{2}+2 a_{3}^{2}+2 b_{3}^{2}\right) \\
& \quad=\frac{1}{2^{q}}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)
\end{aligned}
$$

We assume that this norm is equal to 1 ,

$$
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right) / 2^{q}=1
$$

We also assume that the line sum equals 1. Therefore the norm of the line sum is equal to 1 ,

$$
\left[\left(a_{1}+a_{2}+a_{3}\right)^{2}+\left(b_{1}+b_{2}+b_{3}\right)^{2}\right] / 2^{q}=1
$$

Subtracting the former result from the latter result yields that $a_{1} a_{2}+a_{2} a_{3}+$ $a_{3} a_{1}+b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}$ equals zero. Because straightforward calculation of the inner product $V_{1} \overline{V_{2}}$ leads to the value $\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}+b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}\right) / 2^{q}$, we can conclude that V_{1} and V_{2} are orthogonal to each other. Similarly, we find that all three vectors V_{1}, V_{2}, and V_{3} are orthogonal to one another. Thus the triple $\left\{V_{1}, V_{2}, V_{3}\right\}$ gives rise to an $\operatorname{XDU}(3)$ matrix of level χ^{q+1}. In fact, because of permutation of matrix lines, it actually gives rise to six different XDU(3) matrices of level χ^{q+1}.

We now consider different triples $\left\{V_{1}, V_{2}, V_{3}\right\},\left\{V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right\},\left\{V_{1}^{\prime \prime}, V_{2}^{\prime \prime}, V_{3}^{\prime \prime}\right\}$, , where $V_{1}, V_{1}^{\prime}, V_{1}^{\prime \prime}, \ldots$ all are vectors of level χ^{q}. Then V_{1} is orthogonal to V_{2} and V_{3}, but not to $V_{2}^{\prime}, V_{3}^{\prime}, V_{2}^{\prime \prime}, V_{3}^{\prime \prime}, V_{2}^{\prime \prime \prime}, \ldots[17]$. Thus only the triples $\left\{V_{1}, V_{2}, V_{3}\right\},\left\{V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right\}, \ldots$ can give rise to an $\operatorname{XDU}(3)$ matrix of level χ^{q+1}. As each such triple gives rise to six $\mathrm{XDU}(3)$ matrices, for any $q \geq 0$, there are 6 times as many $\operatorname{XDU}(3)$ matrices of level χ^{q+1} as there are vectors of level χ^{q}. Because with each vector V_{1} of level χ^{q} correspond two vectors (V_{2} and V_{3}) of level χ^{q+1}, the number of vectors with a same level χ^{q} increases like 2^{q}. Therefore, the number of matrices similarly increases as 2^{q} and thus equals $c \times 2^{q}$, with c some appropriate constant. The coefficient c is identified by remarking that there are eighteen $\operatorname{XDU}(3)$ matrices of level χ^{1} (Table 2). One thus finds $c=9$. We conclude: for any $q \geq 1$, there exist $9 \times 2^{q} \mathrm{XDU}(3)$ matrices of level χ^{q}.

C. 2 Number of $\mathrm{DU}(3)$ matrices

A similar reasoning as in Subappendix C. 1 exists for the $\mathrm{DU}(3)$ matrices [17]. Again we assume vectors $V_{1}, V_{1}^{\prime}, V_{1}^{\prime \prime}, \ldots$ of level χ^{q}. With each vector V_{1}

Table 3: The five R_{2} remainder matrices G_{j}.

$\begin{gathered} R_{2}(g)= \\ G_{j} \end{gathered}$	$\begin{gathered} R_{2}(g a)= \\ G_{j} R_{2}(a) \end{gathered}$	$\begin{gathered} R_{2}(g b a)= \\ G_{j} R_{2}(b a) \end{gathered}$
$\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$	$\left(\begin{array}{cc}1+i & 1+i \\ 1+i & 1+i\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
$\left(\begin{array}{ll}1 & 1 \\ i & i\end{array}\right)$	$\left(\begin{array}{cc}1+i & 1+i \\ 1+i & 1+i\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
$\left(\begin{array}{ll}1 & i \\ 1 & i\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{cc}1+i & 1+i \\ 1+i & 1+i\end{array}\right)$
$\left(\begin{array}{cc}1 & i \\ i & 1\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{cc}1+i & 1+i \\ 1+i & 1+i\end{array}\right)$
$\left(\begin{array}{ll}i & i \\ i & i\end{array}\right)$	$\left(\begin{array}{cc}1+i & 1+i \\ 1+i & 1+i\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

Applying Gaussian primes to Sect. 5 leads to the conclusion that the group
Applying Gaussian primes to Sect. 5 leads to the conclusion that the group
$\mathrm{DU}(2)$ consists of 32 matrices of level 1 and 64 matrices g of level χ. The latter all have the same remainder matrix $R_{\chi}(g)$ equal to

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

of level χ^{q} now correspond four vectors $\left(V_{2}, V_{3}, V_{4}\right.$, and $\left.V_{5}\right)$ of level χ^{q+1}, such that the number of vectors with a same level χ^{q} grows like 4^{q}. With each quintuple $\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right\}$ correspond two triples, i.e. $\left\{V_{1}, V_{2}, V_{3}\right\}$ and $\left\{V_{1}, V_{4}, V_{5}\right\}$ and therefore twice six matrices of $\mathrm{DU}(3)$. The number of matrices grows like the number of vectors, i.e. equals $c \times 4^{q}$. We identify the coefficient c by remarking that there are $2,304 \mathrm{DU}(3)$ matrices of level χ^{1} (Table 1). One thus finds $c=576$. We conclude: for any $q \geq 1$, there exist $576 \times 4^{q} \mathrm{DU}(3)$ matrices of level χ^{q}.

Appendix D

but can have five and only five different remainder matrices $R_{2}(g)$ (up to equivalence by row or column swapping). We call these 2×2 matrices G_{1}, G_{2}, \ldots, and G_{5}, respectively, see Table 3.

We now introduce two particular $\mathrm{DU}(2)$ matrices: a of level χ and b of level 1,

$$
a=\frac{1}{\chi}\left(\begin{array}{rr}
-i & 1 \\
1 & -i
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{rr}
-i & 0 \\
0 & 1
\end{array}\right)
$$

We compute the matrices $R_{2}(g a)=G_{j} R_{2}(a)$ and $R_{2}(g b a)=G_{j} R_{2}(b a)$. With

$$
R_{2}(a)=\left(\begin{array}{cc}
i & 1 \\
1 & i
\end{array}\right) \quad \text { and } \quad R_{2}(b a)=\left(\begin{array}{cc}
1 & i \\
1 & i
\end{array}\right)
$$

this yields Table 3 . We see that in two cases multiplication by $R_{2}(a)$ leads to the 2×2 zero matrix and that in the remaining three cases multiplication by $R_{2}(b a)$ leads to the zero matrix. A zero $R_{2}(g) R_{2}(a)$ matrix reveals that the product $g a$ is not of level χ^{2} but instead of level 1 , whereas a zero $R_{2}(g) R_{2}(b a)$ matrix reveals that the product $g b a$ is of level 1 . We thus may conclude that each of the sixty-four $\mathrm{DU}(2)$ matrices g of level χ can be lowered to level 1 either through multiplication by a or through multiplication by $b a$.

Only 2 of the 64 matrices g belong to $\mathrm{XDU}(2)$. They both lead to type G_{4}, such that $R_{2}(g a)$ is the zero matrix.

Acknowledgment

Alexis De Vos thanks Fred Brackx (Vakgroep wiskundige analyse, Universiteit Gent) for valuable discussions concerning the hypergeometric series.

Bibliography

[1] K. Conrad, " $\mathrm{SL}_{2}(\mathbb{Z})$ ", http://www.math.uconn.edu/~kconrad/ blurbs/.
[2] A. De Vos, J. De Beule, and L. Storme, Computing with the square root of NOT, Serdica Journal of Computing 3, 359 (2009).
[3] W. Wang and C. Xu, An excluding algorithm for testing whether a family of graphs are determined by their generalized spectra, Lin. Alg. Appl. 418, 62 (2006).
[4] A. De Vos, Reversible computing, Wiley-VCH, Weinheim, 2010.
[5] U. Haagerup, Orthogonal maximal abelian $*$-subalgebras of the $n \times n$ matrices and cyclic n-roots, in: Operator algebras and quantum field theory, S. Doplicher, R. Longo, J. Roberts, and L. Zsidó, eds., International Press, Cambridge, 1996, pp. 296-322.
[6] C. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Bornträger, Regiomonti, 1829, pp. 103-108.
[7] E. Grosswald, Representations of integers as sums of squares, Springer, New York, 1985, pp. 121-123.
[8] B. Berndt, Fragments by Ramanujan on Lambert series, in: Number theory and its applications, S. Kanemutsi and K. Györy, eds., Kluwer Academic Publishers, Dordrecht, 1999, pp. 35-49.
[9] K. Williams, Number theory in the spirit of Liouville, Cambridge University Press, Cambridge, 2011, pp. 77-99 and 251-261.
[10] R. Wille and R. Drechsler, Towards a design flow for reversible logic, Springer, Dordrecht, 2010.
[11] D. Deutsch, Quantum computation, Physics World 5, 57 (1992).
[12] D. Deutsch, A. Ekert, and R. Lupacchini, Machines, logic and quantum physics, Bulletin of Symbolic Logic 3, 265 (2000).
[13] A. Galindo and M. Martín-Delgado, Information and computation: classical and quantum aspects, Rev. Mod. Phys. 74, 347 (2002).
[14] M. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000, pp. 65, 454, and 611.
[15] M. Planat, Clifford quantum computer and the Mathieu groups, Invertis Journal of Science and Technology 3, 1 (2010).
[16] R. Van Laer, Dyadic quantum computers, MSc. Thesis Universiteit Gent, Gent, 2011.
[17] S. Vandenbrande, Reversibele digitale schakelingen, MSc. Thesis Universiteit Gent, Gent, 2011.
[18] W. Tadej and K. Życzkowski, A concise guide to complex Hadamard matrices, Open Sys. Information Dyn. 13, 133 (2006).
[19] N. Sloane, The on-line encyclopedia of integer sequences, sequence A047974, http://oeis.org/A047974.
[20] A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209.
[21] R. Proctor, Let's expand Rota's twelvefold way for counting partitions!, arXiv:math/0606404.
[22] N. Sloane, The on-line encyclopedia of integer sequences, sequence A000898, http://oeis.org/A000898.
[23] Laguerre polynomials, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Laguerre_polynomial.
[24] S. Severini and F. Szöllősi, A further look into combinatorial orthogonality, Electronic Journal of Linear Algebra 17, 376 (2008).
[25] N. Sloane, The on-line encyclopedia of integer sequences, sequence A000085, http://oeis.org/A000085.
[26] J. Jahnel, When is the (co)sine of a rational angle equal to a rational number?, http://www.uni-math.gwdg.de/jahnel/Preprints/ cos.pdf (2006).

[^0]: a A 'controlled square root of NOT' may also be called a 'square root of controlled NOT', as well as a 'square root of Feynman gate'.

[^1]: ${ }^{\mathrm{b}}$ Once if the R_{χ} type (10) contains a zero row or column; twice if the R_{χ} type contains zero entries but neither a zero row nor a zero column; either twice or three times if the R_{χ} type contains no zero entries.

