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Nederlandse samenvatting 

Een brede waaier aan materialen die men in het dagelijkse leven gebruikt, gaande van 

eenvoudige verbruiksgoederen tot geavanceerde materialen die bv. gebruikt kunnen worden 

voor de gecontroleerde afgifte van medicijnen, wordt geproduceerd via radicalaire 

polymerisatie. Een belangrijke eigenschap van de overeenkomstige polymeermaterialen is dat 

de macroscopische eigenschappen zoals waargenomen door de eindgebruiker in grote mate 

bepaald worden door de eigenschappen op het niveau van de micro- en meso-schaal. Bijzonder 

is dat deze eigenschappen een verdeeld karakter hebben. Zo wordt op het niveau van de micro-

schaal i.p.v. één enkele ketenlengte/molaire massa een verdeling van ketenlengtes/molaire 

massa’s waargenomen (i.e. de ketenlengte-/molairemassaverdeling). In geval van 

gedispergeerdefasepolymerisatie (bv. emulsie- of suspensiepolymerisatie) wordt op het niveau 

van de meso-schaal een verdeling van deeltjesgrootten waargenomen (i.e. de 

deeltjesgrootteverdeling). 

Opmerkelijk is dat bovengenoemde verdelingen vaak multimodaal zijn. Zo is de ketenlengte-

/molairemassaverdeling die verkregen wordt via gepulseerdelaserpolymerisatie (PLP) – een 

veelgebruikte techniek voor de bepaling van (intrinsieke) snelheidscoëfficiënten – vaak 

multimodaal vanwege de gepulseerde creatie van radicalen. Ook bij een latex verkregen via 

emulsiepolymerisatie speelt multimodaliteit vaak een belangrijke rol, aangezien voor vele 

toepassingen enkel goed gedefinieerde multimodale deeltjesgrootteverdelingen leiden tot een 

hoge volumefractie aan polymeer zonder te leiden tot een te hoge viscositeit waardoor de latex 

niet gemakkelijk verwerkbaar meer zou zijn. Dit illustreert dat een gecontroleerde evolutie van 

de deeltjesgrootteverdeling in gedispergeerdefasepolymerisatie van groot industrieel belang is. 

Een beknopte samenvatting van de methoden beschikbaar voor het modelleren van de 

deeltjesgrootte- en ketenlengteverdeling in gedispergeerdefasepolymerisaties wordt gegeven in 

Hoofdstuk 1, waarmee aangetoond wordt dat de gekoppelde berekening van beide verdelingen 



viii  Nederlandse samenvatting 

een cruciale uitdaging is voor dynamische gedispergeerdefasepolymerisaties zoals 

emulsiepolymerisatie, waarvoor een sterke correlatie tussen beide verdelingen verwacht wordt. 

In deze doctoraatsthesis wordt kinetische Monte Carlo (kMC)-modellering, hetgeen een 

stochastische simulatietechniek is die toelaat individuele reacties en fasetransferfenomenen te 

volgen in chemische processen, toegepast en verder ontwikkeld voor de simulatie van 

multimodale ketenlengte- en deeltjesgrootteverdelingen in radicalaire polymerisaties. 

In Hoofdstuk 2 worden volledige log-molairemassaverdelingen (log-MMDs) verkregen via 

PLP gesimuleerd waardoor naast informatie over propagatie ook informatie over keteninitiatie 

en terminatie verkregen wordt. Een isotherm kMC-model (306-325 K) dat rekening houdt met 

diffusielimiteringen en alle relevante elementaire reacties voor n-butylacrylaat en 2,2-

dimethoxy-2-fenylacetofenon (DMPA) wordt beschouwd. Er wordt aangetoond dat de sterk 

verschillende reactiviteiten van de DMPA-gebaseerde initiatorfragmenten t.o.v. vinyllische 

bindingen cruciaal zijn voor het verkrijgen van gestructureerde multimodale log-MMDs die 

toelaten opeenvolgende buigpunten te identificeren. Het wordt ook aangetoond dat log-MMDs 

gebruikt kunnen worden om de accuraatheid van modellen voor de ketenlengteafhankelijkheid 

van de geobserveerde terminatiesnelheidscoëfficiënt te testen en dat kMC-modellering een 

bijzonder interessante techniek is om de ketengroei van de verschillende radicaaltypes tussen 

de laserpulsen te volgen en om dominante elementaire reacties te identificeren. 

In Hoofstuk 3 wordt een snelle en betrouwbare methode voor de bepaling van de 

fotodissociatiekwantumopbrengst Φdiss voorgesteld. PLP-experimenten worden uitgevoerd met 

variërende pulsenergiën (1.5 – 6 mJ) en regressieanalyse aan de verhouding van de piekhoogten 

zoals waargenomen in de overeenkomstige log-MMDs wordt uitgevoerd. De accuraatheid van 

de methode wordt in silico aangetoond voor DMPA-geïnitieerde PLP-experimenten door het 

beschouwen van grote theoretische fouten (tot 20%). De methode wordt bovendien succesvol 

toegepast voor isotherme PLP van n-butylacrylaat (306 K), hetgeen een geschatte Φdiss = 0.42 
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± 0.04 oplevert. Op langere termijn zal de aangebrachte methode de evaluatie van huidige en 

de ontwikkeling van nieuwe efficiënte fotoinitiatoren vergemakkelijken. 

Op basis van PLP-SEC wordt een nieuwe alternatieve methode voor de bepaling van de 

backbitingsnelheidscoëfficiënt kbb in radicalaire polymerisatie van acrylaten voorgesteld in 

Hoofdstuk 4. Regressieanalyse wordt uitgevoerd aan de locatie van de buigpunten verkregen 

via PLP-experimenten bij variërende solventvolumefracties (0-0.75), gebruikmakend van het 

gesatureerde analoog van het monomeer als solvent om mogelijke solventeffecten te vermijden, 

en lage pulsfrequenties (ca. < 100 s-1), hetgeen het gebruik van goedkopere PLP-toestellen 

mogelijk maakt. Variatie van de solventvolumefractie laat toe de gemiddelde levensduur van 

tertiaire radicalen te variëren, waardoor de sensitiviteit van de methode voor de schatting van 

kbb toeneemt. In silico data wordt gebruikt om de robuustheid van de methode aan grote 

experimentele fouten aan te tonen en om de gezamenlijke schatting van kbb en de 

tertiairepropagatiesnelheidscoëfficiënt te illustreren. De methode wordt bovendien toegepast 

voor de regressie aan experimentele data van DMPA-geïnitieerde PLP-experimenten van n-

butylacrylaat, met butylpropionaat als solvent. Een kbb waarde van 171 ± 21 s-1 (303 K) wordt 

verkregen, hetgeen in overeenstemming is met literatuurwaarden. 

In Hoofdstuk 5 wordt een methodologie analoog aan degene gebruikt in Hoofdstuk 4 toegepast 

voor de bepaling van de β-scissiesnelheidscoëfficiënt kβ, op voorwaarde dat de 

Arrheniusparameters voor backbiting reeds geschat werden bij voldoende lage temperaturen 

(<< 350 K; cf. Hoofstuk 4). De methode is gebaseerd op de sensitiviteit van kβ aan wijzigingen 

in de pulsfrequentie (<< 200 s-1) in isotherme PLP-experimenten (ca. 350 tot 415 K), hetgeen 

leidt tot een voldoende grote variatie van de tijdschalen van de verschillende radicaaltypes. 

Belangrijk is dat deze waarnemingen niet significant beïnvloed worden door macropropagatie 

en thermische zelfinitiatie, hetgeen respectievelijk in silico en experimenteel aangetoond wordt. 

Het wordt bovendien aangetoond dat het gebruik van een solvent (e.g. butylpropionaat) nodig 
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is bij lagere temperaturen (350-410 K); voor hogere temperaturen (410-415 K) volstaat het 

gebruik van data opgemeten onder bulk condities. Regressie aan bulk experimentele data voor 

n-butylacrylaat leidt tot een schatting van kβ = (4.26 ± 1.8) 102 s-1 bij 413 K, een waarde die 

eerder gerapporteerde waarden overschrijdt (kβ = 6 100 – 1.45 102 s-1) en aangeeft dat er in 

radicalaire polymerisatie van acrylaten bij hoge temperaturen een grote neiging is tot de 

vorming van macromonomeren. 

In het tweede deel van deze doctoraatsthesis verschuift de aandacht naar 

gedispergeerdefasepolymerisatie. Rekening houdend met de verwachte sterkere interactie 

tussen de micro- en meso-schaal in emulsiepolymerisatie t.o.v. suspensiepolymerisatie wordt 

enkel emulsiepolymerisatie beschouwd met in het bijzonder aandacht voor 

miniemulsiepolymerisatie in de afwezigheid van morfologische aspecten zoals faseseparatie in 

de deeltjes. 

In Hoofdstuk 6 wordt een nieuwe kMC-modelleringstechniek ontwikkeld die de simulatie van 

vrijeradicalairepolymerisatie in miniemulsie toelaat en expliciet rekening houdt met de evolutie 

van de deeltjesgrootteverdeling en de interactie met de evolutie van de ketenlengteverdeling. In 

dit model wordt het aantal radicalen en de monomeerconcentratie in elk individueel deeltje 

opgevolgd. Bijgevolg maakt het model geen gebruik van een gemiddelde 

monomeerconcentratie in de deeltjes, hetgeen wel het geval is in eerdere studies, inclusief 

degene die de conventionele Smith-Ewart-modelleringstechniek toegepast hebben. Bovendien 

houdt het model rekening met absorptie en desorptie van zowel radicalen als monomeer op 

basis van een diffusie-gebaseerde beschrijving. Er wordt aangetoond dat door gebruik te maken 

van een gereduceerd kMC-model waarin de werkelijke monomeerconcentratie in individuele 

deeltjes overschreven wordt door de gemiddelde monomeerconcentratie in de deeltjes, de 

evolutie van de monomeerconversie en gemiddelde ketenlengte-eigenschappen zoals verkregen 

door een conventioneel Smith-Ewart-model gesimuleerd wordt. Bovendien wordt door gebruik 
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te maken van het volledige kMC-model, met fysisch relevante waarden voor de 

modelparameters, een zeer dynamische en gecorreleerde evolutie van de deeltjesgrootte- en 

ketenlengteverdeling gesimuleerd. 

In Hoofdstuk 7 wordt het kMC-model ontwikkeld in Hoofstuk 6 uitgebreid en toegepast voor 

miniemulsiecopolymerisatie van styreen en N-vinylcaprolactam (VCL). Het wordt aangetoond 

dat de initiële deeltjesgrootteverdeling een grote invloed heeft op de evolutie van de 

miniemulsiekarakteristieken, met lagere polymerisatiesnelheden indien de initiële 

deeltjesgrootteverdeling naar grotere deeltjesgrootten verschuift. Een opeenvolgend dominant 

verbruik van styreen en VCL wordt gesimuleerd, in overeenstemming met de sterk 

verschillende reactiviteitsverhoudingen. Bovendien tonen de kMC-simulaties een zeer 

dynamische deeltjesgrootteverdeling aan, hetgeen wederom de noodzaak van een gekoppelde 

berekening van de ketenlengte- en deeltjesgrootteverdeling aantoont. Deze inzichten zullen de 

ontwikkeling van VCL-gebaseerde nanogels voor bv. de gecontroleerde afgifte van medicijnen 

vergemakkelijken. 

In Hoofdstuk 8 worden de belangrijkste conclusies samengevat en wordt een 

toekomstperspectief gegeven over de beide delen van dit doctoraatsonderzoek. 
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English summary 

A wide variety of polymer products used in every-day life, ranging from commodity materials 

to high-tech materials for e.g. drug delivery applications, are produced via radical 

polymerization. A key feature of the associated polymer products is that the macroscopic 

properties as observed by the end-user are strongly determined by micro- and meso-scale 

characteristics. These characteristics have a distributed nature, for example on the micro-scale 

(i.e. the level of molecules) rather than a single chain length or molar mass, a distribution of 

chain lengths/molar masses (i.e the chain length/molar mass distribution, CLD/MMD) is 

influencing the polymer material behavior. In case dispersed phase polymerization is performed 

(e.g. emulsion or suspension polymerization), at the meso-scale (i.e. the level of the particles) 

a distribution of particle sizes is obtained (i.e. the particle size distribution, PSD). 

Notably, the distributions encountered in radical polymerizations often display multimodality. 

For example, the CLD (or MMD) obtained via pulsed laser polymerization (PLP) – a frequently 

used technique for the determination of (intrinsic) rate coefficients – typically is multimodal 

due to the pulsed creation of radicals. Another example in which multimodality plays a key role 

relates to latexes obtained via emulsion polymerization, for which in several cases only well-

designed multimodal PSDs allow to obtain high solid contents while maintaining a sufficiently 

low viscosity for processability. Hence, it is clear that the regulated growth of the PSD in 

dispersed phase polymerization is of great industrial importance. A brief overview of the state-

of-the-art for the modeling of the PSD and CLD evolution in dispersed phase polymerizations 

is given Chapter 1, from which it becomes evident that the joint and interactive calculation of 

these distributions remains a major challenge for dynamic dispersed phase polymerizations 

such as emulsion polymerization in which a strong correlation between the PSD and CLD 

evolution is expected. 
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In this PhD thesis, kinetic Monte Carlo (kMC) modeling, which is a powerful stochastic 

technique allowing to track individual reaction and phase transfer events in chemical processes, 

is applied and further developed to the simulation of multimodal chain length/molar mass and 

particle size distributions encountered in radical polymerizations. 

In Chapter 2, complete PLP log-molar mass distributions (log-MMDs) are accurately 

simulated to gain not only knowledge on the propagation but also on the chain initiation and 

termination reactivity. An isothermal kMC model (306-325 K) accounting for diffusional 

limitations and all relevant elementary reactions for n-butyl acrylate and 2,2-dimethoxy-2-

phenylacetophenone (DMPA) is considered. The disparate reactivities towards vinylic bonds 

of the DMPA fragments are shown to be essential to ensure the well-defined multimodality of 

the log-MMDs necessary to identify consecutive inflection points. It is also illustrated that PLP 

log-MMD data can be used to test the validity of models for apparent termination rate 

coefficients at low monomer conversions and that kMC simulations are a powerful tool to track 

the chain growth of the different radical types between laser pulses and to identify dominant 

elementary reactions. 

In Chapter 3, a fast method for the reliable estimation of the photodissociation quantum yield 

Φdiss is presented. PLP experiments are performed at various pulse energies (1.5 – 6 mJ) and 

regression analysis is performed to the ratio of the peak heights identified in the size exclusion 

chromatography (SEC) trace. The high accuracy of the method is demonstrated for PLP 

initiated by DMPA, considering in silico generated data including large theoretical errors (up 

to 20%). The method is also successfully applied to experimental data of DMPA based 

isothermal PLP of n-butyl acrylate at 306 K, with an estimated Φdiss of 0.42 ± 0.04. In the long 

term, the method will facilitate the evaluation of current and the design of new highly efficient 

photoinitiators. 
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Based on a PLP-SEC analysis, a novel alternative method to estimate the bulk backbiting rate 

coefficient kbb in acrylate radical polymerization is presented in Chapter 4. For different 

solvent volume fractions (0-0.75), using the saturated analogue of the monomer as solvent to 

rule out solvent effects, regression analysis is applied to inflection point data in the low 

frequency range (< ca. 100 s-1) only, which can be scanned with less expensive PLP equipment. 

Variation of the solvent volume fraction allows to independently alter the average mid-chain 

radical life time and to improve the sensitivity of the method to estimate kbb confidently. The 

robustness of the method is verified considering in silico generated data including large artifical 

errors and also illustrated for a joint estimation of kbb and the mid-chain radical propagation rate 

coefficient kp,m. The method is applied to experimental data of DMPA initiated PLP of n-butyl 

acrylate, taking butyl propionate as the solvent. A kbb value of 171 ± 21 s-1 (303 K) is found, in 

good agreement with literature data. 

In Chapter 5, an analogous methodology as in Chapter 4 is applied for the estimation of the β-

scission rate coefficient from high temperature PLP experiments, provided that the backbiting 

rate coefficient has already been determined at sufficiently low temperatures at which β-scission 

is negligible (<< 350 K; cf. Chapter 4). The method relies on the sensitivity of kβ upon a change 

of the pulse laser frequency (<< 200 Hz) under isothermal pulsed laser polymerization (PLP) 

conditions in the temperature range between ca. 350 and 415 K, leading to a sufficient variation 

of the times scales of the radicals involved. These observations are not significantly influenced 

by macropropagation and thermal self-initiation, as respectively confirmed by in silico testing 

and experimental data. Solution inflection point data (e.g. solvent butyl propionate) are needed 

at the lower temperature range (350-410 K), whereas bulk inflection point data suffice at the 

higher temperature range (410-415 K). The proposed method leads to an estimated kβ value of 

(4.26 ± 1.8)×102 s-1 at 413 K with bulk PLP data, suggesting a high propensity of 

macromonomer formation in acrylate polymerization under high temperature radical 
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polymerization conditions, exceeding the previously suggested levels (kβ = 6 x 100-1.45 x102 

s-1). 

In the second part of this PhD thesis, focus is shifted to dispersed phase radical polymerization. 

In view of the expected stronger interaction between the micro- and meso-scale in emulsion 

polymerization compared to suspension polymerization, focus is on the former polymerization 

technique. For illustration purposes focus is restricted to miniemulsion polymerization in the 

absence of morphological aspects such as phase separation in polymer particles.  

In Chapter 6, a novel kMC modeling tool allowing the simulation of miniemulsion free radical 

polymerization (FRP) is developed, explicitly taking into account the evolution of the PSD and 

its interaction with the evolution of the CLD. In this model, the number of radicals and the 

monomer concentration in each individual particle are tracked. Hence, the model does not make 

use of an average particle monomer concentration at any time as done in previous studies, 

including those based on the conventional Smith-Ewart approach. Moreover, exit/entry of both 

radicals and monomer is accounted for between the particles and the aqueous phase, considering 

a diffusion-based approach. In addition to a successful benchmark to a conventional Smith-

Ewart model using a downsized kMC model that overwrites the actual particle monomer 

concentration with the average one, a dynamic PSD and CLD evolution is simulated using the 

full kMC model and physically reasonable values for all model parameters. 

In Chapter 7, the kMC model is extended and applied to miniemulsion copolymerization of 

styrene and N-vinylcaprolactam (VCL). The initial PSD is demonstrated to have a large effect 

on the evolution of the copolymerization characteristics, with lower polymerization rates as the 

initial PSD shifts to higher particle sizes. A consecutive dominant incorporation of styrene and 

VCL is simulated simulated, in agreement with the disparate monomer reactivity ratios. 

Moreover, the kMC simulations indicate a very dynamic evolution of the PSD, again 

highlighting the need for the simultaneous simulation of both CLD and PSD. Importantly, the 
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obtained insights will aid the design of copolymer VCL nanogel particles for e.g. drug livery 

applications in the near future, also taking into account the experimental knowledge acquired 

during a research stay in the group of Prof. Pich at DWI Leibniz Institute for Interactive 

Materials/ RWTH Aachen University. 

In Chapter 8 the main conclusions are highlighted and an outlook is given on future research 

activities regarding both parts of the PhD thesis. 
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List of symbols 

Greek symbols 

𝛼𝑔𝑒𝑙 Parameter of the composite kt-model for the gel regime - 

𝛼𝐿 Parameter of the composite kt-model for long chains - 

𝛼𝑆  Parameter of the composite kt-model for short chains - 

Γ Partition coefficient - 

∆[𝑅0] Concentration of radicals generated by each laser pulse mol L-1 

ε Molar absorptivity L mol-1 m-1 

λ Wave length m 

ν Laser pulse frequency s-1 

τe Average life time of an end-chain radical s 

τm Average life time of a mid-chain radical s 

Φdiss Photodissociation quantum yield - 

ΦS Solvent volume fraction - 

Ω Optical cross-sectional area  m2 
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c Speed of light m s-1 
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- 

igel Crossover chain length in the composite kt-model for the gel 

regime  

- 

kβ Rate coefficient for β-scission s-1 

kbb Rate coefficient for backbiting s-1 

kdiss Rate coefficient for initiator dissociation s-1 
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kentry Rate coefficient for entry L mol-1 s-1 

kexit Rate coefficient for exit s-1 

ki Rate coefficient for chain initiation L mol-1 s-1 

kiA Rate coefficient for addition of an initiator radical fragment to 

monomer molecule A  

L mol-1 s-1 
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monomer molecule B  

L mol-1 s-1 

kp,AA Rate coefficient for addition of a radical with terminal unit A to 
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L mol-1 s-1 

kp,e Propagation rate coefficient of an end-chain radical L mol-1 s-1 
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macromonomer 

L mol-1 s-1 

kp,m Propagation rate coefficient of a mid-chain radical L mol-1 s-1 

kp,mMM Rate coefficient for addition of a mid-chain radical to a 
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L mol-1 s-1 
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Chapter 1: Multimodality in radical polymerization 

1.1 From chain length to particle size distribution 

A wide variety of polymer products used in everyday life is produced via radical 

polymerization.1-3 A key feature of the associated polymer products is that the macroscopic 

properties as observed by the end-user are strongly determined by micro- and meso-scale 

characteristics.1, 4-8 These characteristics have a distributed nature, for example on the micro-

scale (i.e. the level of molecules; Figure 1: left) rather than a single chain length, a distribution 

of chain lengths (i.e the chain length distribution, CLD) is influencing the polymer material 

behavior.9-12 In case dispersed phase polymerization is performed (e.g. emulsion or suspension 

polymerization), at the meso-scale (i.e. the level of the particles) a distribution of particle sizes 

is obtained (i.e. the particle size distribution, PSD; Figure 1: middle: case of emulsion 

polymerization).13-15 

 

Figure 1. Multi-scale character of dispersed phase radical polymerization (case with reaction loci of nm 

scale). At the micro-scale, the reaction probabilities and diffusion characteristics determine the evolution 

of the chain length distribution (CLD). At the meso-scale, which transcends a local single phase kinetic 

variation, particle dynamics such as particle growth, coagulation and breakage determine the evolution 

of the particle size distribution (PSD). Due to the occurrence of particle size dependent interphase mass 

transfer phenomena, e.g. radical exit and entry, and compartmentalization of radicals, the micro- and 

meso-scale are in general coupled. At the reactor or macro-scale, non-uniformities such as temperature 

and concentration gradients and differences in turbulence intensity lead to a non-uniform evolution of 

the CLD (micro-scale) and PSD (meso-scale).1, 16, 17 
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Notably the distributions encountered in radical polymerizations often display multimodality. 

For example, the CLD (or the molar mass distribution; MMD) obtained via pulsed laser 

polymerization (PLP)18, 19 – a frequently used technique for the determination of (intrinsic) rate 

coefficients – typically is multimodal due to the pulsed creation of radicals.20, 21 The origin of 

the multimodality of the CLD/MMD in PLP and the possibilities this offers for the 

determination of individual rate coefficients will be explained in detail in Chapter 2-5. 

Diffusional limitations on termination can also result in a multimodal MMD. For instance in 

radical polymerization of styrene toward the production of expandable styrene, a multimodal 

character for the log-MMD results at low temperatures as chain transfer to monomer cannot 

prevent the formation of longer chains once the number average chain lengths increases.22 

Another example in which multimodality plays a key role relates to latexes obtained via 

emulsion polymerization, for which in several cases only well-designed multimodal PSDs 

allow to obtain high solid contents while maintaining a sufficiently low viscosity for 

processability.23, 24 Hence, it is clear that the regulated growth of the PSD in dispersed phase 

polymerization is of great industrial importance.  

In this chapter, focus is on the fundamental aspects related to radical dispersed phase 

polymerizations and the implications they have on the modeling of the relevant distributions. 

Upon the consideration of one “large” particle the conventional homogeneous case results, 

explaining why focus is on the heterogeneous case. 

1.2 Radical dispersed phase polymerization: state-of-the-art and challenges 

One of the outstanding industrial challenges for radical polymerization in dispersed systems is 

the regulated growth of the PSD. The PSD, which depending on the polymerization technique 

can be in the μm (suspension polymerization) or nm (emulsion polymerization) size range,2 

determines strongly the polymer processability and therefore the final properties of a polymeric 

material.23, 25-27 For example, the PSD influences the impregnability of suspension 
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polymerization beads and, hence, the insulation capability of the polymer foam upon expansion 

with a blowing agent (e.g. expandable polystyrene process).25 Another example relates to the 

coating industry, in which only well-shaped multimodal acrylic emulsion PSDs result in a high 

solid content and consequently in a low film formation time and a high film quality.26, 27 

Currently, a limited control over the temporal evolution of the PSD can unfortunately be 

obtained, which can be explained by (i) the absence of reliable sensors for the on-line 

measurement of the PSD under industrially relevant conditions of a high solid content,28 which 

inherently leads to too low signal-to-noise ratios; (ii) the limited fundamental knowledge on 

important meso-scale phenomena such as particle nucleation, breakage, and coalescence;29, 30 

and (iii) the complex interplay between the effect of the particle size on the polymerization 

kinetics and polymer molecular structure.31-33 The latter is particularly relevant in the nm size 

range, in which radicals can, depending on the time scale of the reactions, easily enter and exit 

nanoparticles, perturbing the desired chain growth pattern.34-36 A strong interaction between the 

temporal evolution of the CLD at the micro-scale and the PSD at the meso-scale can thus result 

for reaction loci of nm size, taking into account the additional influence of the reaction 

temperature, initial concentrations, and reactor operation mode (e.g. (semi-)batch). This 

interaction becomes even stronger if advanced functional nanoparticles37 are targeted via e.g. 

reversible deactivation radical polymerization, for which a high product quality implies often a 

narrow unimodal PSD.38 

Hence, depending on the application a unimodal or multimodal PSD is required. Since many 

process parameters at different length and time scales determine the industrial feasibility of 

radical polymerization in dispersed systems, a multi-scale modeling approach is clearly 

indispensable to fully regulate the entire CLD and PSD during polymer synthesis. 1, 16, 17, 31 Such 

approach will not only allow an accurate simulation of these distributions but will also facilitate 
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the identification of the best industrial protocols, taking into account environmental and 

economic constraints. 

A logical question to ask is whether simplifications can be made such as the decoupling of the 

CLD and PSD calculation. Next to that one needs to identify in a multiphase reactive 

polymerization the reactive “particle” types. 

In suspension polymerization (Figure 2: left), monomer droplets of μm size are created upon 

stirring in the presence of surfactant. While polymerization progresses, these droplets undergo 

breakage and coalescence events. A dynamic evolution of the PSD results on the µm scale, 

which is affected by many parameters such as the surface tension, dynamic viscosity and 

turbulence intensity, and which can be studied as a good as decoupled from the polymerization 

kinetics.17, 39, 40 Since at higher monomer conversions more viscous “droplets” are however 

formed, coalescence is favored at one point, until eventually, also coalescence ceases to occur 

and the final PSD is established.2 

 

Figure 2. Comparison of suspension (left) and emulsion (right) polymerization. In suspension 

polymerization, the droplets/particles are in the µm size range and the evolution of the polymerization 

kinetics (micro-scale) and particle size distribution (meso-scale) are as good as decoupled. In emulsion 

polymerization, particles are in the nm size range and the evolution of the micro- and meso-scale are 

inherently coupled due to particle size dependent entry/exit events.14, 31 
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Much effort has been dedicated to obtaining a quantitative multi-scale description of radical 

suspension polymerization processes.17, 39, 41-43 For example, Kalfas et al.39 developed a 

population balance model for suspension homo-and copolymerizations. In this work, the 

polymerization kinetics simulations were fully decoupled from the PSD evolution simulations. 

To account for differences in turbulence intensity inside suspension polymerization reactors (cf. 

the higher turbulence intensity near the impeller), Kiparissides and coworkers41, 42 developed a 

two-compartment population balance model. These authors used computational fluid dynamics 

(CFD) simulations to determine the size of and exchange flows between the two compartments. 

More recently, Xie et al.17 developed a CFD-population balance model for suspension atom 

transfer radical polymerization (ATRP). In this work, a CFD model for the calculation of the 

turbulence intensity field was combined with a model for the polymerization kinetics (method 

of moments), particle dynamics (population balance model accounting for growth, aggregation 

and coalescence), and interphase monomer mass transfer (thermodynamic model). The 

simulation of the polymerization kinetics was partially decoupled from the PSD simulation as 

an iterative approach was used. 

In (conventional macro-) emulsion polymerization (Figure 2: right), large monomer droplets (> 

1 µm), (monomer-swollen) micelles (5-10 nm) and polymer nanoparticles (10-500 nm) are 

present, making it a much more dynamic process than suspension polymerization, as also 

illustrated in Figure 3.44-49 As a result, most focus has either been on the simulation of the 

polymerization kinetics (i.e. the micro-scale) while assuming an average (constant) particle 

size,11, 32, 33, 50-53 or on the evolution of the PSD (i.e. the meso-scale) via population balance 

models, assuming a simplified model for the polymerization kinetics (e.g. zero-one or pseudo-

bulk model and typically ignoring chain length dependent termination kinetics).13, 16, 54-56 It 

should however be stressed that from a fundamental point of view a strong coupling between  
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Figure 3. Micro- and meso-scale events occurring in (conventional macro-) emulsion polymerization 

initiated by a water-soluble initiator: dissociation in the aqueous phase, where the radical propagates a 

few times before undergoing heterogeneous (a) or homogeneous (b) nucleation; (c) nucleation of 

colloidally unstable particles; (d,e) interphase monomer mass transfer, (f) radical exit; (g) radical entry. 

the micro- and meso-scale is expected for emulsion polymerization. Hence, an important 

research task is to develop multi-scale models that address this explicit coupling of particle and 

chain growth. 

1.3 Outline 

In this PhD thesis, kinetic Monte Carlo (kMC) modeling is applied to accurately simulate 

multimodal distributions in radical polymerization. In a first part, kMC modeling is applied to 

pulsed laser polymerization (PLP), starting from model developments in earlier work.12, 57, 58 

As demonstrated in Chapter 2, kMC modeling of the complete multimodal PLP MMD allows 

to extract information on chain initiation and termination alongside propagation rate 
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coefficients that follow from the inspection of inflection point data only. Next, the developed 

kMC model for PLP is applied in Chapter 3 to design PLP experiments allowing the estimation 

of the less known photodissociation quantum yield. The PLP kMC model is also used to 

estimate for acrylate radical polymerization the backbiting rate coefficient from low 

temperature PLP experiments (Chapter 4) and the β-scission rate coefficient from high 

temperature PLP (Chapter 5). 

In the second part of this PhD thesis, focus is shifted to dispersed phase radical polymerization. 

In view of the expected stronger interaction between the micro- and meso-scale in emulsion 

polymerization compared to suspension polymerization, focus is on the former polymerization 

technique. For illustration purposes focus is on miniemulsion polymerization in the absence of 

morphological aspects such as phase separation in the polymer particles. In Chapter 6, a novel 

detailed kMC model in which reaction and interphase mass transfer events are tracked particle 

by particle is developed for isothermal batch miniemulsion free radical homopolymerization. 

A joint and interactive prediction of the CLD and PSD evolution is highlighted for the first 

time, considering literature parameters for all model parameters. This model is extended and 

applied to miniemulsion copolymerization of styrene and N-vinylcaprolactam (VCL) in 

Chapter 7, leading to new insights for the design of tailored VCL-based nanoparticles in view 

of drug delivery applications, benefiting from the experimental knowledge acquired during a 

research stay in the group of Prof. Pich at DWI Leibniz Institute for Interactive 

Materials/RWTH Aachen University.  

Finally, an outlook is presented in Chapter 8, with focus on the possibilities of the developed 

kMC model for (i) future PLP studies and (ii) the model-based design of nanoparticles with a 

nanoengineered morphology. 
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Chapter 2: Kinetic Monte Carlo modeling of complete 

PLP-SEC traces extracts information on chain initiation 

and termination 

Summary 

Complete pulsed laser polymerization (PLP) log-molar mass distributions (log-MMDs) are 

accurately simulated using kinetic Monte Carlo (kMC) modeling to gain not only knowledge 

on the propagation but also on the chain initiation and termination reactivity. The isothermal 

kMC model (306-325 K) accounts for diffusional limitations and all relevant elementary 

reactions, considering n-butyl acrylate, 2,2-dimethoxy-2-phenylacetophenone (DMPA), and a 

frequency of 500 s-1. The disparate reactivities towards vinylic bonds of the DMPA fragments 

are essential to ensure the well-defined multimodality of the log-MMDs necessary to identify 

consecutive inflection points. It is also illustrated that PLP log-MMD data can be used to test 

the validity of models for apparent termination rate coefficients at low monomer conversions 

and that kMC simulations are a powerful tool to track the chain growth of the different radical 

types between laser pulses and to identify dominant elementary reactions. 

2.1 Introduction 

Many polymer products in everyday life stem from free radical polymerization (FRP), which is 

characterized by a chain-growth mechanism involving initiation, propagation and termination 

as the basic reactions. A large variety of vinyl monomers, e.g. styrene, methyl (meth)acrylate, 

vinyl acetate, vinyl chloride, and acrylamide can be (co)polymerized under FRP conditions to 

synthesize high molar mass polymers under mild conditions and with a high tolerance toward 

impurities.1, 2 
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Despite the high industrial importance of radical polymerization, no complete quantitative 

understanding of the reaction kinetics is yet obtained.3 The design of the polymer microstructure 

requires the consideration of a detailed reaction scheme, including side reactions which can 

lead to the formation of defects that can influence the polymer macroscopic properties.4-6 

Identification of the most suited polymerization conditions is complicated as many competitive 

phenomena are simultaneously occurring, including diffusional limitations7-10 due to viscosity 

changes along the polymerization. A model-based strategy, supported by experimental 

validation, is recommendable as it allows a facile and fast screening of a broad range of reactant 

candidates and polymerization conditions.11-13 A prerequisite for a successful model-based 

design is the availability of reliable kinetic parameters.6, 10, 14, 15 For many reaction steps, the 

values of the intrinsic/chemical reactivities and the Arrhenius parameters are still uncertain, 

which hampers the design of radical polymerization processes, particularly when conducted in 

large-scale reactors in which temperature control is very relevant. 

One of the most established experimental techniques to measure intrinsic rate coefficients is 

pulsed laser polymerization (PLP).3, 16, 17 This technique, as originally introduced by 

Aleksandrov et al.18 and Olaj et al.,19 is the method of choice to determine the intrinsic 

propagation rate coefficient kp, as illustrated in Figure 1. In PLP, photoinitiator radical 

fragments (I) are formed via laser pulses, j, with a frequency ν (dark time: Δt = ν-1). Part of the 

I radicals propagate until they are terminated with fresh radicals generated at the next pulse(s) 

on the time scale 𝑗Δ𝑡 (j = 1, 2, …). Under well-defined PLP conditions, these time scales are 

reflected in the size exclusion chromatography (SEC) trace via inflection points at chain lengths 

equal to Lj (j = 1, 2, …) so that kp can be determined: 

 𝑘p =
𝐿j

[𝑀]0(𝑗Δ𝑡)
 (1) 

in which [M]0 is the initial monomer concentration.  
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Figure 1. Principle of pulsed laser polymerization (PLP) to measure the intrinsic propagation reactivity 

kp from the inflection points (black dots) in the size exclusion chromatography (SEC) trace (full black 

line; log molar mass distribution (MMD)). These inflection points correspond to maxima for the 

corresponding derivative (dashed blue line). 

Currently, the PLP technique has been used to accurately measure a wide range of kp values, 

mostly for standard monomers such as styrene and methyl methacrylate20-28 and as facilitated 

by the foundation of the IUPAC working party on 'Modeling of kinetics and processes of 

polymerization'. Based on the measured kp data, reliable propagation Arrhenius parameters have 

been extracted, which are a major input in kinetic modeling studies and allow to study the 

impact of the chemical structure on the propagation reactivity, including an evaluation of the 

possible existence of solvent effects.29-40   

A direct application of Equation (1) can however lead to a biased kinetic analysis. Specifically 

for acrylates, depending on the polymerization temperature and laser frequency, the position of 

the PLP inflection points can be influenced by both the propagation of secondary end-chain 

radicals (ECRs) and tertiary mid-chain radicals (MCRs), the latter dominantly formed via 

backbiting reactions.17, 41-48 By dedicated analysis, considering several experimental conditions, 

both the ECR and MCR propagation reactivity for acrylate polymerization can be determined.49, 

50 The determination of kp values for the radical polymerization of acrylamides in aqueous 

media has also shown to be challenging. A concentration dependency has been reported which 

has been attributed to dimer formation51 on the one hand and the formation of a pre-reactive 
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complex52, 53 prior to acrylamide propagation on the other hand. Recently, Kattner and Buback54 

used single pulse–PLP–electron paramagnetic resonance (SP-PLP-EPR) to perform a detailed 

kinetic analysis of acrylamide polymerization in aqueous solution. Based on a comparison with 

experimental data, rate coefficients for reactions with ECRs and MCRs could be assessed, 

opening the pathway to a more complete picture on the propagation kinetics of acrylamides in 

aqueous media.55 Also for other monomers polymerizable in water, e.g. acrylic acid56 and N-

vinylpyrrolidone,57 a strongly improved understanding of the propagation kinetics has been 

obtained by combining PLP experimental and modeling research. Furthermore, PLP allows to 

elucidate radical copolymerization kinetics.58-65 For example, Rooney et al.62 studied the 

copolymerization of n-butyl cyanoacrylate and MMA and demonstrated that a strongly 

alternating comonomer incorporation can be obtained.  

It is important to realize that the PLP-SEC trace is inherently a reflection of all reactions taking 

place and, hence, the application of the PLP-technique is not restricted to the measurement of 

kp values. For instance, Arzamendi et al.43 illustrated that for acrylate radical polymerization 

backbiting strongly influences the shape of the PLP-SEC trace at high temperatures and low 

frequencies, even leading to the disappearance of the typical multimodality of the PLP-SEC 

trace, as visible in Figure 1. In the past decades, various PLP-based methods have been 

developed to determine the backbiting rate coefficient kbb.49, 50, 66-68 Several research groups 

performed frequency tuned PLP-SEC experiments with n-butyl acrylate (nBuA) as monomer 

to determine kbb from inflection point data. In addition, Nikitin et al.69 highlighted that in the 

presence of a chain transfer agent the PLP-SEC trace contains information regarding the 

corresponding chain transfer reactivity. Furthermore, it is known that the termination reactivity 

has a pronounced impact on the PLP-SEC trace, as for instance reviewed by Drawe et al.70 Very 

recently, Ballard et al.71 reminded that information on the mode of termination can also be 
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deduced from PLP-SEC traces, again illustrating that the PLP technique can be used for a 

detailed kinetic analysis of radical polymerization as such. 

Albeit that kinetic information on all relevant reaction steps is hidden in PLP-SEC traces, a 

limited number of kinetic modeling studies50, 61, 70-72 have focused on the complete PLP molar 

mass distribution (MMD), combined with a kinetic analysis transcending the localization of 

only the inflection points (or peak maxima). Analytical MMD models18, 19, 73-75 can 

unfortunately not be relied on as they are only valid under strong simplifications with respect 

to the size of the reaction scheme and/or the treatment of the apparent termination kinetics. 

Even at the very low monomer conversions encountered under PLP conditions, a strong chain 

length dependency exists for the observed termination reactivity, which has been mainly 

attributed to diffusional limitations. This requires accounting for the chain length dependency 

of the apparent termination rate coefficients kt,
app which can greatly influence the PLP MMD 

characteristics.76-78 More advanced mathematical methods such as the Galerkin method, as 

implemented in the deterministic PREDICI software package,50, 78, 79 or the kinetic Monte Carlo 

(kMC) method43, 47, 61, 80-84 have been applied to that purpose. For example, Willemse et al.61 

implemented chain length dependent kt,
app values in a kMC model for pulsed laser 

copolymerization and obtained a good correspondence between chemical composition 

distributions obtained by simulation and matrix assisted laser desorption and ionization time-

of-flight mass spectrometry (MALDI-TOF-MS). Despite such advances, in many kinetic 

modeling studies on PLP MMDs, for simplicity, chain length independent termination kinetics 

have been assumed.43, 47, 50, 79, 80 

In the present work, kMC modeling is applied to perform a more accurate simulation of 

experimental PLP log-MMDs of poly(nBuA) as obtained at polymerization temperatures 

between 306 and 325 K,85 considering the commonly used photoinitiator 2-dimethoxy-2-

phenylacetophenone (DMPA) and literature based kinetic parameters. The novelty lies in the 
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combined fundamental description of both the PLP chemistry and molecular diffusion so that 

not only the inflection points but also the peak heights and tail of experimental log-MMDs are 

accurately described. An extensive reaction scheme including acrylate specific polymerization 

reactions, such as backbiting and β-scission, is therefore combined with a detailed and explicit 

description of the photodissociation and chain initiation process, and of the chain length 

dependency of the apparent termination kinetics.  

Based on earlier SP-PLP results,86 the difference in reactivity of the DMPA radical fragments 

is explicitly accounted for via elementary reactions and its impact is shown to be a prerequisite 

for a good description of the heights of the log-MMD peak maxima. Moreover, the strength of 

PLP-SEC experiments to confirm the accuracy of kt
app models at low monomer conversions is 

illustrated. A detailed tracking of the chain growth of the different radical types between 

consecutive pulses is also performed, highlighting the strength of kMC modeling to further 

improve the kinetic understanding of PLP. The kMC modeling study thus allows a further 

comprehension of the relation between the PLP reactions and their impact on the MMD.  
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Table 1. Reactions and literature based Arrhenius parameters to simulate log-MMDs for PLP of nBuA 

initiated by DMPA; initiator radicals (I and II) defined in Figure 2; macromonomer addition and 

intermolecular chain transfer can be neglected under the investigated conditions. 

Entry Reaction Equation 
A  

[(L mol-1) s-1] 

Ea  

[kJ mol-1] 

k (306 K) 

[(L mol-1) s-1] 
ref 

1 Photodissociation 𝐼2
ℎ𝜈
→  𝑅0,e

I + 𝑅0,e
II  - - a - 

2 Chain initiationb 𝑅0,e
I/III

+𝑀
𝑘p,I/III
→    𝑅1,e 2.4 108 17.9 2.1 105 24 

3 Propagationc 

𝑅i,e +  𝑀 
𝑘p,e
→  𝑅i+1,e 

𝑅i,m +  𝑀 
𝑘p,m
→  𝑅i+1,e  

2.2 107 17.9 1.9 104 24 

4  9.2 105 28.3 1.4 101 67 

5 Backbiting 𝑅i,e  
𝑘bb
→  𝑅i,m, i ≥ 3 1.6 108 34.7 1.9 102 67 

6 β-scission  𝑅i,m
𝑘βs
→ 𝑀𝑀3 + 𝑅i−3,e 1.5 109 63.9 1.8 10-2 87 

7  𝑅i,m
𝑘βs
→ 𝑀𝑀i−2 + 𝑅2,e 1.5 109 63.9 1.8 10-2 87 

8 
Chain transfer to 

monomer 𝑅i,e +𝑀
𝑘trM,e
→   𝑃i + 𝑅0,e

III  

𝑅i,m +𝑀
𝑘trM,m
→    𝑃i + 𝑅0,e

III  

2.9 105 32.6 7.8 10-1 88 

9  2.0 105 46.1 2.7 10-3 88 

10 Terminationd 
𝑅i,e + 𝑅j,e  

𝑘t,ee
app

(𝑖,𝑗)

→      𝑃i(+j)(+𝑃j) 
2.6 1010 8.4 9.6 108 67 

11  𝑅i,e + 𝑅j,m  
𝑘t,em
app

(𝑖,𝑗)
→      𝑃i(+j)(+𝑃j)  

2.8 109 e 6.6 2.1 108 67 

12  𝑅i,m + 𝑅j,m  
𝑘t,mm
app

(𝑖,𝑗)
→      𝑃i(+j)(+𝑃j)  

1.8 107 5.6 2.0 106 67 

13  𝑅0,e
I/II/III

+ 𝑅0,e
I/II/III

 
𝑘t,00
app

→  𝑃0  
2.6 1010 8.4 9.6 108 f 

14  𝑅0,e
I/II/III

+ 𝑅i,e  
𝑘t,0e
app

(𝑖)
→    𝑃i(+𝑃0) 

2.6 1010 8.4 9.6 108 g 

15  𝑅0,e
I/II/III

+ 𝑅i,m  
𝑘t,0m
app

(i)
→     𝑃i(+𝑃0)

 
2.8 109 e 6.6 2.1 108 

h 

a: ∆[R0] is calculated via Equation (2); for 𝜆 = 351 10−9 m, 𝐸pulse = 2.5 10
−3 J and V = 2 10-7 m3 and L =  

5.2 10-3 m (cf. experiments in ref. 85), and a 𝛷 of 0.8 based on Figure 3, ∆[R0] at the first laser pulse is equal to  

4.8 10-5 mol L-1. 
b: increased reactivity of 𝑘p,I/III taken into account (see Appendix A); no propagation of R0,II (cf . discussion  

Figure 2). 
c: chain length dependencies for propagation accounted for according to Equation (S.11)89 in Appendix A; only 

the plateau value for propagation with long ECRs is reported here.  
d: chain length dependent apparent termination rate coefficients are considered (parameters: ref. 67); only 𝑘t

app
(1,1) 

is reported here, taking into account a correction with a factor 2, as indicated by e.g. Derboven et al;90 fraction of 

termination by recombination (0.9 (entry 10), 0.3 (entry 11)  and 0.1 (entry 12)) in agreement with literature data;87, 

91 strictly one of the disproportionation products is also a MM. 
e: A slightly lowered (1.4 109 L mol-1 s-1) based on comparison with experimental data in Figure 3. 
f: assumed equal to 𝑘t,ee

app(1,1). 
g: assumed equal to kt,ee (i,1); 𝑘t,ee

app
(1,1) is reported here. 

h: assumed equal to kt,em (i,1); 𝑘t,em
app
(1,1) is reported here.  
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2.2 Kinetic model 

Kinetic Monte Carlo (kMC) modeling of isothermal PLP of n-butyl acrylate (nBuA; 306-325 

K and ν = 500 s-1; simulation volume = 5 10-12 L, i.e. an initial number of monomer molecules 

of 2 1013) is performed according to the well-established Gillespie algorithm,92 as also 

considered in previous modeling studies on polymerization in general11, 13, 93-97 and PLP in 

particular.43, 47, 61, 80-84 In contrast to deterministic modeling, detailed microstructural 

information is more easily accessible with stochastic modeling, explaining the recent boost in 

the development and application of kMC modeling tools to simulate and design polymerization 

processes. An overview of the reactions considered in the kMC PLP model is given in Table 1. 

The associated Arrhenius parameters, which are all literature based,24, 67, 87, 88 with only one very 

small and thus acceptable modification after comparison with experimental data, and the values 

for the rate coefficients at 306 K are listed as well. Since nBuA is selected as monomer, next to 

the classical PLP reactions such as photodissociation, chain initiation and termination, reactions 

such as backbiting, tertiary propagation, and β-scission are included.87, 91, 98, 99  

An important novelty taken up in the present work is the explicit description of the 

photodissociation kinetics (entry 1 in Table 1), for which the concentration of the photoinitiator 

radical fragments per pulse (Δ[R0]) is calculated based on theoretical concepts. Hence, Δ[R0] is 

no longer seen as an adjustable parameter, in contrast to most previous PLP kinetic modeling 

studies. It should be stressed that the latter studies typically only aim at an accurate simulation 

of inflection point data for which the assumed value of Δ[R0] is less critical. As demonstrated 

in the present work, for an accurate representation of the complete PLP MMD a more detailed 

description is required. Taking into account the decrease in light intensity along the optical path 

according to the Beer-Lambert law,100 it follows from previous theoretical work101, 102 (see 

Appendix A) that: 
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∆[𝑅0] = 2𝛷

𝐸pulse𝜆

ℎ𝑐𝑁A𝑉
[1 − exp(−2.303𝜀[𝐼2]𝐿)] 

(2) 

in which 𝛷 is the quantum yield for photodissociation, 𝜆 the wavelength of the laser, 𝐸pulse the 

energy of a laser pulse, h the Planck constant, c the speed of light, NA the Avogadro constant, 

V the volume of the sample, [𝐼2] the photoinitiator concentration, 𝜀 the molar absorptivity, and 

L the optical path length.  Note that the chemical initiator efficiency is given a value of 1 and is 

thus not included in Equation (2). This is allowed since all termination reactions are explicitly 

accounted for (entry 13-15 in Table 1) and for the DMPA radical fragments no side reactions 

take place in the considered temperature range (306-325 K).86 

 

Figure 2. Top: UV-induced decomposition of 2,2-dimethoxy-2-phenylacetophenone (DMPA), yielding 

a benzoyl (I) and dimethoxy benzyl (II) radical. Bottom: β-scission of the dimethoxy benzyl radical at 

temperatures higher than those considered in the present study (> 325 K);86 chain initiation can be 

neglected for radical II.86, 103-106 

In contrast to previous kMC studies of PLP but in agreement with earlier kinetic analysis with  

SP-PLP,86 in the present work, the difference in chain initiation reactivity of the DMPA radical 

initiator fragments (entry 2 in Table 1) is explicitly taken into account starting from elementary 

reactions, allowing a more detailed description of the chain initiation process. As indicated by 

Fischer et al.,103 upon irradiation with UV light, DMPA decomposes into a benzoyl and 

dimethoxy benzyl radical (Figure 2; top; radical I and II) which are characterized by a strongly 

different reactivity. By means of electron spin resonance (ESR) spectroscopy Fischer et al.103 

observed that the benzoyl radical readily adds to acrylonitrile (kp,I ≠ 0 L mol-1 s-1) while the 
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dimethoxy benzyl does not initiate chain growth (kp,II = 0 L mol-1 s-1). In the reported ESR 

spectrum, the signal of the dimethoxy benzyl radical remained unvaried whereas the benzoyl 

signal was clearly replaced by its adduct formed upon monomer addition. By means of 

photolysis product analysis Fischer and coworkers103 demonstrated that the dimethoxy benzyl 

radical (radical II in Figure 2) can participate in termination reactions (entry 13-15 in Table 1), 

thus having an inhibiting effect. Kowollik et al.86 exploited these observations by extending 

their kinetic scheme for SP-PLP of methyl acrylate and styrene to describe the unusual behavior 

of a decreasing monomer conversion with increasing initial DMPA concentration. The Barner-

Kowollik team104 also confirmed the presence of an initiating and inhibiting species in laser-

induced polymerization of methyl methacrylate by means of end-group analysis via MALDI 

mass spectrometry. Inhibition was further confirmed by Barner-Kowollik and coworkers,105, 106 

who reported the detection of dimethoxy benzyl radical based termination products via 

electrospray ionization-mass spectrometry. These authors concluded that the dimethoxy benzyl 

radical must be much more effective in termination than in chain initiation. Notably also other 

acetophenone-type photoinitiators such as benzoin are known to yield an inhibiting species 

upon photodecomposition.107  

Despite the experimental observations that acetophenone-type photoinitiators such as DMPA 

and benzoin yield an initiating and an inhibiting radical fragment, in previous PLP modeling 

studies43, 47, 61, 80-84 it was assumed that both photoinitiator radical fragments have the same 

reactivity toward chain initiation. As will be shown further, this simplification leads to an 

overestimation of the chain initiation rate and thus a less accurate description of the complete 

PLP-SEC trace. It should be noted that to represent the inhibition with DMPA also an 

alternative approach has been proposed in which additional (unknown) inhibitor radical species 

are introduced in the reaction scheme with tunable rate coefficients.108 Such approach is 

however less generally applicable than the one proposed in the present work. In addition, it has 
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been indicated that the dimethoxy benzyl radical can also undergo β-scission, leading to the 

formation of a methyl benzoate molecule and a very reactive methyl radical (bottom of Figure 

2). Given that the thermal decomposition of the dimethoxy benzyl radical is very slow at the 

temperatures considered in this kMC study (306-325 K) and that UV-initiated decomposition 

of this radical can be neglected due to the very limited duration of the laser pulses,86 -scission 

of the dimethoxy benzyl radical can assumed to be insignificant, explaining its absence in Table 

1.  

Furthermore, in Table 1, a distinction is made between ECRs and MCRs. Backbiting (entry 5 

in Table 1) transforms ECRs into MCRs, which are more stable and, hence, less reactive. Upon 

propagation of MCRs, i.e. tertiary propagation (entry 4 in Table 1), rate retardation takes place 

and short chain branches (SCBs) are formed. Even for very low SCB amounts, as for instance 

encountered under well-defined controlled radical polymerization (CRP) conditions, this rate 

retardation is relevant. For example, Van Steenberge et al.109 recently demonstrated in their 

simulation of miniemulsion nitroxide mediated polymerization of nBuA that an accurate 

description of the polymerization rate requires the consideration of SCB formation. 

As shown in Appendix A the concentration of macromonomers (MMs) formed via β-scission 

and disproportionation is small and macromonomer addition can, at least in a first 

approximation, be neglected. Note that, in principle, in addition to intramolecular chain transfer, 

i.e. backbiting, also intermolecular chain transfer or so-called chain transfer to polymer may 

occur.42 However, this process is kinetically insignificant at low to moderate monomer 

conversions.110-113 Since in PLP experiments the monomer conversion is very limited (< 5%), 

intermolecular chain transfer can be neglected as a reaction possibility.  

Both termination by recombination and disproportionation have been taken into account, with 

the fractional contributions taken from literature.87, 91 Recent kinetic studies71, 114 have although 
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indicated that a more detailed determination of these fractions is recommended but under 

typical acrylate PLP conditions of a high frequency and/or low temperature, leading to a 

dominant ECR formation, termination by recombination can be expected as the dominant 

termination mode. The influence of chain length dependent termination kinetics on the PLP-

SEC trace, either caused intrinsically or due to diffusional limitations, is evaluated via the so-

called composite kt model,9, 115, 116 which is implemented in the kMC model in the same way as 

previously reported92 and which can be applied for both low and high monomer conversions, 

i.e. low and high viscosities.117 Since in PLP only the lower monomer conversions are relevant, 

it suffices to consider only the first two equations of this piecewise defined model to calculate 

the apparent termination reactivities, i.e. the apparent termination reactivities between radicals 

with the same chain length: 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖−𝛼𝑆                      𝑖 ≤ 𝑖𝑐 (3) 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖𝑐
−𝛼𝑆+𝛼𝐿𝑖−𝛼𝐿        𝑖 > 𝑖𝑐 (4) 

in which αS and αL express the chain length dependence for short and long radicals and ic is the 

cross-over chain length, describing the shift between termination controlled by center-of-mass 

diffusion (shorter radicals) and segmental diffusion (longer radicals). In the present work, the 

SP-PLP-EPR based values as reported by Barth et al.67 are used, i.e. αS = 0.85, αL = 0.16, and 

ic = 30. 

For the apparent cross-termination or short-long termination reactivity, i.e. the apparent 

termination reactivity of radicals with differing chain lengths i and j, the geometric mean is 

considered:118-120 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑗) = [𝑘𝑡

𝑎𝑝𝑝(𝑖, 𝑖)𝑘𝑡
𝑎𝑝𝑝(𝑗, 𝑗)]0.5 (5) 

Recent work of Derboven et al.90 highlighted that ideally a direct measurement of short-long 

apparent rate coefficients e.g. via the reversible addition fragmentation chain transfer – chain 
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length dependent - termination (RAFT-CLD-T) is needed to obtain highly accurate 𝑘t
app(𝑖, 𝑗) 

values. However, these authors also indicated that to a first approximation it is allowed to use 

simplified models such as Equation (5), at least under diluted conditions as in PLP. 

Finally, the simulated PLP log-MMDs account for non-idealities during sample preparation and 

analysis. At the end of a PLP experiment quenching is performed which is non-instantaneous 

and thus slightly changes the shape of the PLP-SEC trace at the higher chain lengths, as also 

theoretically highlighted by Nikitin.121 This effect is accounted for by adding ten extra seconds 

to the simulation time after the final pulse. For higher delays no effect is observed, explaining 

the selection of this threshold value. Next to that, during experimental analysis SEC broadening 

can take place. For the simulated MMDs, this broadening is accounted for, following the 

method proposed by Buback et al.79 and as described in Appendix A. 

2.3 Results and discussion 

In this section, it is first demonstrated that the developed kMC model allows an accurate 

representation of the complete log-MMD for PLP of nBuA with DMPA as photoinitiator. To 

allow for a direct comparison with experimental data, modeling is performed for a frequency 

of 500 s-1 and a polymerization temperature of 306 and 325 K.85 Isothermal PLPs are 

considered, assuming an excellent temperature control at any position in the reaction mixture. 

Next, the kMC model is used to obtain a better understanding of several key reactions taking 

place during PLP of acrylates. A differentiation is made between photodissociation, chain 

initiation, and termination. For each reaction, its impact on the description of the complete 

MMD is highlighted. 

2.3.1 Model validation up to high molar masses 

Figure 3 shows a comparison between log-MMDs as simulated with the kMC model (dashed 

green lines), considering the reactions and kinetic parameters listed in Table 1, and as 
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experimentally recorded by Barner-Kowollik et al.85 (black full lines), including error bars 

based on the lowest molar mass. The generated amount of photoinitiator radical fragments per 

pulse (Δ[R0]) is calculated explicitly via Equation (2). For both plots, [DMPA]0 amounts to 5 

10-3 mol L-1 and the number of pulses (Npulse) is equal to 100. The initial monomer concentration 

([nBuA]0) is equal to 6.92 (306 K) and 6.76 mol L-1 (325 K).  

 

Figure 3. Comparison of simulated (dashed green line) and experimentally recorded85 (black full line) 

log-MMD for DMPA initiated PLP of nBuA at 306 K (left) and 325 K (right); [DMPA]0 = 5 10-3 

mol L-1, [nBuA]0 = 6.92 mol L-1 (306 K; left) and 6.76 mol L-1 (325 K; right), number of pulses Npulse = 

100; model parameters: Table 1; quenching accounted for. 

It follows from Figure 3 that at both temperatures a good description of the log-MMD is 

obtained with the kMC model. Compared to previous modeling studies in particular the peak 

heights and the high molar mass region are described much better, which can be related to the 

more representative model assumptions in the present work. At the highest temperature (325 

K), a less characteristic PLP trace is obtained, in agreement with the recent simulation results 

of Ballard et al.71 This again confirms the stronger influence of MCRs on the chain growth 

pattern at higher temperatures.17, 43, 45, 48 At 325 K, the time scale for backbiting (2.4 10-3 s vs. 

5.2 10-3 s at 306 K) becomes closer to the dark time (2 10-3 s). Hence, on average, backbiting 

requires ECRs surviving only one laser pulse. The increased importance of backbiting at 325 K 

is also reflected in the increase of the simulated SCB amount with temperature (0.14 to 0.21 % 

from 306 to 325 K; monomer basis; molar). 

306 K 325 K 
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Figure 4. Effect of non-instantaneous quenching on simulated PLP log-MMD (325 K); instantaneous 

quenching (purple dotted line) vs. non-instantaneous quenching with 10 seconds (green dashed line as 

in Figure 3 (right)). Experimentally recorded log-MMD (full black line) also included; model 

parameters: Table 1; other conditions: see caption Figure 3; effect most important for the highest 

temperature considered. 

In addition, in Figure 3 (right; 325 K) at high molar masses (log M > 5.5) a significant increase 

in w(log M) is observed. This can be attributed to non-instantaneous quenching, i.e. it takes in 

practice some time to add a radical scavenger to the reaction mixture. To illustrate this the 

simulated log-MMD with a purely theoretical instantaneous quenching at 325 K is depicted in 

Figure 4 (purple dotted line) and compared to the log-MMD as shown in Figure 3 (right; dashed 

green line). Clearly, the assumption of instantaneous quenching affects the description of the 

high molar mass region of the experimental log-MMD (black full line), as was also analytically 

demonstrated by Nikitin.121 Hence, for a proper kinetic interpretation of experimental PLP-SEC 

traces it is recommended to account for the time scale of quenching. 

2.3.2 Importance of photoinitiator decomposition 

In Figure 5, kMC simulations results for the PLP SEC trace are displayed in which, in contrast 

to before, Δ[R0] is assumed time independent and equal to a value of 2.4 10-5 mol L-1 (purple 

dotted line) and 9.6 10-5 mol L-1 (blue dashed-dotted line). Hence, with respect to the first pulse 

value as obtained based on Equation (2) (Δ[R0] = 4.8 10-5 mol L-1; SEC trace: dashed green line 

in Figure 5; same as in Figure 3 (left)) a decrease and increase with a factor of 2 is considered. 

Such a variation of Δ[R0] falls within the variation of the input values proposed in previous 
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modeling studies (ca. Δ[R0] = 10-6-10-3 mol L-1; ν = 500 s-1) and allows to highlight the 

relevance of the explicit and fundamental calculation of Δ[R0]. To not overload the discussion, 

focus is restricted to the lowest temperature of 306 K for which more classical PLP behavior is 

to be expected. 

In agreement with the recent work of Drawe et al.70 it follows that on an overall basis the PLP 

log-MMD is highly sensitive to Δ[R0]. For a higher Δ[R0], the intensity of the first peak 

increases and the one of the second peak decreases because the termination rate increases more 

than the propagation rate, taking into account the reaction orders (propagation: first order in the 

radical concentration; termination: second order) and the strong apparent chain length 

dependency for termination (higher reactivity in case of shorter chains). Note that depending 

on the PLP experiment a different level of accuracy for Δ[R0] is required. Small deviations from 

the actual value can be afforded in case for instance only the inflection points are required 

(almost coinciding symbols in Figure 5 for various Δ[R0] values), reconfirming the accuracy of 

previous PLP studies aiming at the determination of the propagation reactivity. On the other 

hand, in case focus is on the accurate representation of the complete SEC trace, as in the present 

work, Δ[R0] needs to be known very accurately (clearly different lines in Figure 5) and Δ[R0] 

should not be seen an adjustable parameter. 

  



Chapter 2  27 

 
Figure 5. Sensitivity of simulated PLP log-MMD to variation of Δ[R0]; reference case: green dashed 

line as in Figure 3 (left; 306 K), i.e. full model with Equation (2) and initial Δ[R0] of 4.8 10-5 mol L-1 

(inflection point: green circle); purple dotted line: constant Δ[R0] of 2.4 10-5 mol L-1  (factor 2 lower 

compared to 4.8 10-5 mol L-1; inflection point: purple square) and blue dashed dotted line line: constant 

Δ[R0] of 9.6 10-5 mol L-1 (factor 2 higher compared to 4.8 10-5 mol L-1; inflection point: blue triangle); 

model parameters: Table 1; inflection points are coinciding, whereas peak heights not. 

The results in Figure 5 also indicate that in practice an optimal Δ[R0] exists, as very recently 

also indicated by Noble et al.122 For a too low Δ[R0], the laser pulses no longer have a 

modulating effect, while a too high Δ[R0] leads to an unclear second peak, which is not desired 

for kp determination according to IUPAC rules. In agreement with earlier literature reports,70, 

123 the first step in the design of a PLP experiment should be the identification of the correct 

order of magnitude for Δ[R0]. In a second step, adequate values for Epulse and [I2]0 have to be 

determined via Equation (2).  

It should be mentioned for completeness that the photoinitiator concentration decreases as a 

function of the reaction time (Figure 6 (left; full blue line) and, hence, Δ[R0] is not constant as 

it decreases for later pulses (Equation (2); Figure 6 (left; purple line)). As a result, the total 

radical concentration [Rtot] does not become periodic after a few pulses (Figure 6 (right)). For 

the calculation of the overall PLP characteristics, it is however allowed to consider the average 

Δ[R0] value over the different pulses in case of a limited consumption of the photoinitiator, i.e. 

in case of a limited number of pulses, as also indicated by Buback et al.79 and Castignolles et 
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al.102 A constant yet average Δ[R0] can thus be used at least to a first approximation, in 

agreement with previous studies.50, 78, 79  

 

Figure 6. Left: Photoinitiator (DMPA; full blue line) and generated photoinitiator radical (purple line) 

concentration as a function of time (Equation (2)); Right: Corresponding evolution of the total radical 

concentration; conditions correspond to Figure 3 (left; 306 K); model parameters; Table 1. 

The kMC model also allows to further differentiate between the contributions of the different 

radical types to [Rtot]. For example, in Figure 7, for the first 10 dark periods (i.e. t < 10Δt), the 

concentration of the ECRs (top left; dotted orange line; [Ri,e]), MCRs (top left; full grey line; 

[Ri,m]) and the two photoinitiator radical fragments (top right; dashed-dotted yellow and purple 

line; [R0,I] and [R0,II])) are depicted, focusing on the lowest temperature of 306 K. The 

concentration traces during the course of the entire experiment are provided in Appendix A. 
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Figure 7. Top: Temporal evolution of the concentrations of the different radical types (ECRs/MCRs 

(left; dotted orange/fully grey line), and the two photoinitiator radical fragments (right): dashed dotted 

yellow (I) and purple (II) line) for the first 10 dark periods; Bottom: inset for a small part of a dark 

period (see boxes above); conditions correspond to Figure 3 (left; 306 K); model parameters in Table 1. 

In Figure 7 (top left) it can be seen that the ECRs are the dominant macrospecies in the radical 

population, which can be expected based on the relatively low reaction temperature and 

relatively high frequency (500 s-1). It further follows that during each dark period [Re] quickly 

decreases to approximately 20% of its maximal value as reached after a new laser pulse. It can 

be also deduced that during 0 < t < 6 Δt, [Rm] globally increases, although just after each pulse 

[Rm] slightly decreases due to the increased MCR termination probability upon the generation 

of new initiator radicals at each pulse. From Figure 7 (top right), it can be inferred that R0,I 

almost immediately reacts via chain initiation ([R0,I] ≈ 0 mol L-1), while R0,II disappears much 

more slowly via termination reactions, indicating the different role of both photoinitiator 

radicals in the PLP kinetics. This is even more clear in Figure 7 (bottom), which focuses only 

on a small part of the dark period just after a new pulse is applied.  
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It should be further noted that the concentrations in Figure 7 are absolute and can be helpful to 

validate the accuracy of experimental measurements by for instance EPR. In addition, these 

simulations allow to assess whether the ECR and MCR concentrations can be obtained by 

equating the backbiting and tertiary propagation rate as sometimes done in literature. The latter 

corresponds to applying the pseudo-steady state approximation (PSSA) under the assumption 

of negligible termination. As shown in Appendix A, the relatively high frequency of 500 s-1 

prevents the PSSA based concentrations from being reached and, hence, in the present work 

the PSSA cannot be applied. 

 

Figure 8. Left: Simulated log-MMD without SEC broadening for the ECRs (full blue line), MCRs 

(dashed yellow line) and termination products (dotted purple line) at t = 0.1 s. Right: log-MMD for the 

termination products without SEC broadening (dotted purple line, same as left) and with a correction 

for SEC broadening as described in Appendix A (full green line, same as in Figure 3 (left; 306 K); also 

same conditions); model parameters are listed in Table 1. 

The dominance of ECRs in Figure 7 (306 K) is also reflected in Figure 8, in which the log-

MMD of these radicals without SEC broadening (full blue line) is shown along with the 

corresponding log-MMD for the termination products (dotted purple line; dead polymer) just 

before a new pulse (t = 0.1 s). The peak maxima of the log-MMD of the ECRs correspond to 

the inflection points of the log-MMD of the dead polymer, which highlights the limited 

importance of backbiting and thus MCR formation under the selected PLP conditions (306 K; 

ν = 500 s-1). It thus confirms that under these conditions in the so-called low termination limit49 
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the ECR propagation rate coefficient can be evaluated either via the peak maxima of the ECR 

log-MMD or the inflection points of dead polymer log-MMD (Equation (1)).  

For completeness in Figure 8 (left) the MCR log-MMD is also included (dashed yellow line). 

It follows that the peaks in the MCR distribution show a significant fronting compared to the 

well-defined peaks of the ECR log-MMD (full blue line), which is due to the slower propagation 

of tertiary radicals. Furthermore, the chain growth of the different radical types can be 

visualized by plotting the simulated log-MMDs at different times between the pulses. For 

example, Figure S4 in Appendix A shows the chain growth of the different radical types in 

between the 50th and 51st pulse, from which the rate retardation taking place due to backbiting 

can be inferred.  

Finally, from Figure 8 (right; 306 K) it follows that SEC broadening leads to less sharp peaks, 

in agreement with earlier reports,70, 79 In the high molar mass region, peaks can even disappear. 

For instance, the third peak of the uncorrected simulated SEC trace (dotted purple line) is no 

longer distinguishable in case SEC broadening is taken into account (dashed green line). It is 

thus reconfirmed that SEC broadening needs to be accounted for upon the modeling of PLP 

experimental data. Reversely it can be in principle stated that the removal of SEC broadening 

from experimental traces instead of a correction of simulated log-MMDs allows a more 

confident kinetic parameter determination, as e.g. more inflection points can be identified 

(Figure 8; right). However, in practice this requires complex mathematical inversion methods, 

which can be also noise-sensitive. Hence, it can be expected that a correction of the simulated 

SEC traces with SEC broadening, as currently performed, is still the preferred data treatment 

method. 
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2.3.3 Importance of different chain initiation reactivity of the DMPA radical fragments 

As explained above (cf. Table 1 and Figure 2), the kMC model accounts for the different chain 

initiation capability of the DMPA fragments. One of these fragments, i.e. the dimethoxy benzyl 

radical (Figure 2; radical II) cannot, or only in a very limited fashion, lead to chain initiation, 

which affects the overall PLP kinetics. To illustrate the impact of this incapability of chain 

initiation, in Figure 9, a comparison is made between the simulation results for the monomer 

conversion (left) and the log-MMD (right) in case inhibition is ignored, i.e. both initiator 

radicals are equally reactive (dotted red lines), and those in which the inhibition effect is 

included (dashed green lines). Again focus is for simplicity only on a polymerization 

temperature of 306 K. For completeness, the experimental SEC trace (black full line) and the 

experimentally recorded monomer conversion after quenching (black symbol; average error 

bar) are added as well. For comparison, all log-MMDs are normalized within the same selected 

range of experimentally covered molar masses. 

 

Figure 9. Left: Comparison between simulation results of the monomer conversion in case both DMPA 

radical fragments (Figure 2; radical I and II) are equally reactive (dotted red line), and those in which 

the inhibition effect of the dimethoxy benzyl radical (radical II) is included (dashed green line). 

Experimentally recorded monomer conversion after quenching is indicated by a black symbol. Right: 

corresponding simulation results of the log-MMD (dashed green line as in Figure 3 (left)). Model 

parameters in Table 1 (with inhibition). 

Inspection of Figure 9 (left) allows to deduce that the polymerization rate is too high if the chain 

initiation reactivity of the dimethoxy benzyl radicals is overestimated. A too high monomer 

kp,I ≠ 0 L mol-1 s-1, kp,II = 0 L mol-1 s-1 

kp,I = kp,II ≠ 0 L mol-1 s-1 
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conversion of ca. 6% would be simulated after quenching instead of the expected monomer 

conversion of ca. 3%. Furthermore, it is observed in Figure 9 (right) that the chain initiation 

kinetics have a noticeable effect on the intensity of the peaks of the log-MMD. In case the 

different chain initiation reactivity of the DMPA radical fragments is taken into account, sharper 

simulated peaks are observed (green dashed line), in agreement with the experimental curve 

(black full line). In contrast, for equally reactive photoinitiator radical fragments, a less 

characteristic PLP-SEC trace is obtained (dotted red line), i.e. the higher order peaks are less 

distinguishable. Since the inflection point of the second PLP peak is used as a consistency test 

for the determination of kp according to IUPAC rules20 (Equation (1) for j = 2), a clear second 

peak is required for an elegant application of the PLP technique. Hence, in this case, the 

inhibition effect of the dimethoxy benzyl radical is beneficial, explaining the success of PLP 

studies with DMPA as photoinitiator. In other words, the non-ideality of DMPA makes it an 

ideal photoinitiator for PLP.     

The inhibition effect is also reflected in the overall termination behavior. Due the chain 

initiation incapability of the dimethoxy benzyl radicals, termination with benzoyl initiated 

macroradicals originating from previous pulses is enhanced compared to the case of equal chain 

initiation reactivities. Hence, a more defined termination pattern is obtained compared to the 

case of equal chain initiation reactivities, in which for termination a broader range of chain 

lengths is available. The latter is illustrated in Figure 10 (top left and right), which shows the 

individual termination fractions limiting the chain length i and j to 600. In particular from the 

insets (bottom of Figure 10), for which the chain length range i and j is limited to 30 and 320, 

it follows that the chain initiation incapability of the dimethoxy benzyl radicals results in a 

larger fraction located at the i- and j-axis. This indicates that termination reactions with at least 

one radical of chain length 0 (i.e. an initiator radical fragment) occur more, which leads to 
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termination products having a narrower range of chain lengths around L1 and L2 and thus 

sharper peaks in the log-MMD, as highlighted in Figure 9 (right). 

     

     

Figure 10. Fraction of termination reactions between radicals of chain length i and j in case inhibition 

accounted for (left) and neglected (right); in the top figures symmetry exists about the diagonal as there 

is no difference between Ri + Rj and Rj + Ri termination; initiator radical: chain length of 0; initial 

conditions: Figure 3 (left; 306 K); model parameters: Table 1.   

Finally, it should be noted that the termination events between radicals originating from the 

same laser pulse are displayed around the diagonal, while the terminating radicals belonging to 

the same narrow chain length distribution of radicals centered around i = kp,e [M] t, with t 

typically going from 0 to ∆t. Spots of an increased termination behavior very close to the i and 

j-axis can also be identified. They emerge from the termination of chains with a length very 

close to 0 and to L1 (270) or L2 (540). These spots thus relate to the formation of dead polymer 

chains upon the generation of new pulses and initiator radicals, i.e. the relevance of short-long 

kp, I ≠ 0 L mol-1s-1 

kp,II = 0 L mol-1s-1 

kp, I ≠ 0 L mol-1s-1 

kp,II ≠ 0 L mol-1s-1 
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termination is again observed. On the other hand, a part of the radicals only terminate later on, 

i.e. between one and two/three dark times, as witnessed by the parallel green regions to the 

diagonal.  

2.3.4 Importance of chain length dependent termination 

Figure 11 illustrates the impact of the chain length dependency of the apparent termination 

reactivity (Equation (3)-(4)) on the shape of the log-MMD under PLP conditions. At a 

temperature of 306 K a comparison is first made between the results as obtained with the full 

kMC model (dashed green line; same line as in Figure 3 (left)) and those obtained in case chain 

length independent termination rate coefficients are considered (dash-dotted red line; 𝑘t
app

=

𝑘t
app(1,1)). Again for comparison the experimentally recorded log-MMD is included (full 

black line; same as in Figure 3 (left)). Also, the kMC simulation results are depicted with a 

simplified diffusion model (dotted blue line) with only one exponent α for the apparent 

homotermination rate coefficient:  

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖−𝛼                     (6) 

Both the simulation results for α = αL (dotted blue line) and α = αS (long purple dashes) are 

shown. For comparison, all log-MMDs in Figure 11 are again normalized within the same 

selected range of molar masses as experimentally recorded. 

It can be seen in Figure 11 that termination is overestimated in case no (apparent) chain length 

dependency is taken into account. Under such premise the fraction of long chains is strongly 

underestimated and a unimodal distribution results, as easily observable by comparing the 

simulated log-MMD (red dashed-dotted line) with the experimental one (black full line). On 

the other hand, by accounting for the decrease in kt
app with increasing chain length, longer chains 

may be theoretically formed and the simulated log-MMD has a more pronounced tail. This tail 

formation, which is in agreement with experimental observations, is however limited in case 
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the chain length dependence of kt
app is expressed by the simplified diffusion model  with α = αL 

(Equation (6); dotted blue line). The simplified diffusion model with α = αS (Equation (6); 

purple long dashes) on the other hand leads to an overestimation of longer chains (αS > αL; 

stronger dependence of kt
app). Only with the more advanced composite kt model (Equation (3) 

and (4); parameters determined by SP-PLP-EPR;67 dashed green line) an excellent match with 

the experimentally recorded log-MMD (full black line) is obtained up to high molar masses. It 

should however be mentioned that a better description with Equation (6) is possible if the 

exponent is seen as a free parameter, as for instance demonstrated by Moad et al.72 for PLP of 

styrene and MMA.  

 

Figure 11. Comparison between simulation results of the log-MMD in case the chain length dependence 

of kt
app is expressed by the composite kt model (Equation (3) and (4); dashed green line, as in Figure 3 

(left)), by a simplified kt model (Equation (6), dotted blue line: α = αL, long purple dashes: α = αS), and 

in case the chain length dependence of kt is ignored (dashed-dotted red line). Experimentally recorded 

log-MMD also included; other model parameters in Table 1; normalization in same range of molar 

masses for visualization purposes. 

In general, it is thus clear that differentiation between termination involving shorter chains, as 

controlled by center-of-mass diffusion (αS; Equation (3)), and termination involving longer 

chains as controlled by segmental diffusion (αL: Equation (4)), is of key importance. Hence, as 

 
Experiment 

Composite kt-model (Eq. (3), (4)) 

Simplified  kt-model (Eq. (6); αL) 

Simplified  kt-model (Eq. (6); αS) 

No chain length dependency 
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for photoinitiation, an accurate description is needed of the termination events to accurately 

represent the PLP kinetics. 

In agreement with earlier literature reports,72 PLP-SEC data can thus be also used to validate 

the accuracy of kt
app models at low monomer conversions, highlighting for instance the 

importance of SP-PLP-EPR studies.67 Alternatively, these PLP data are relevant to test 

composite kt models as constructed based on e.g. RAFT-CLD-T measurements. With RAFT-

CLD-T it is inherently difficult to scan the conditions of high chain lengths and very diluted 

conditions (very low monomer conversions) so that the associated RAFT-CLD-T parameters 

are mostly based on the extrapolation of the experimental results recorded in the more 

concentrated regions (higher monomer conversions). Based on the results in Figure 11, it 

follows that additional PLP measurements allow to improve RAFT-CLD-T based composite kt 

models and therefore contribute to a better mapping of the effect of the chain length and 

monomer mass fraction on the apparent termination reactivity. Both from an academic and 

industrial point of view,6, 9, 90, 124 such improvements are beneficial for a better understanding 

of all radical polymerization processes, further highlighting the relevance of a detailed kinetic 

analysis as performed in Figure 11. 

2.4 Conclusions 

Kinetic Monte Carlo (kMC) modeling is successfully applied to accurately represent the 

complete experimental PLP-SEC trace, considering nBuA as monomer, DMPA as 

photoinitiator, and a detailed reaction scheme including chain transfer reactions. It is shown 

that a detailed description of both the photoinitiation process and the apparent termination 

kinetics are indispensable to obtain accurate simulation results. Reversely, PLP-SEC data can 

be used to tune or test the related fundamental parameters for photoinitiation and termination. 
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Importantly, the non-ideality of DMPA as a photoinitator, i.e. generating a chain initiating and 

non-initiating fragment, results in sharper peaks and thus better defined inflection points, 

allowing a more reliable kp determination according to IUPAC rules. Hence, it has been 

explained why DMPA is a very efficient photoinitiator for PLP kinetic studies. The sharpness 

and number of peaks can also be controlled by tuning the radical generation rate, starting from 

fundamental concepts.  

In case the complete SEC trace is the simulation target, it is recommended in future PLP 

simulation studies to explicitly calculate the radical generation rate to avoid a biased 

interpretation of the PLP kinetics. For such simulations, a correction for non-instantaneous 

quenching is also needed to accurately represent the high molar mass range. On the other hand, 

if the focus is only the accurate representation of the inflection points, a less detailed kinetic 

model can be safely used. 

Furthermore, it has been theoretically indicated that it is worthwhile to make experimental PLP 

log-MMD data SEC broadening free rather than correcting simulated data for this broadening. 

Such treatment of experimental SEC traces, although computationally intensive, allows to 

retrieve a higher amount of kinetic information on the polymerization kinetics, for instance the 

identification of a higher number of inflection points. 

It has been also highlighted that kMC modeling allows to study the chain growth of the different 

radical types. In particular, a differentiation between the behavior of the end- and mid-chain 

radicals (ECRs/MCRs) allows to quantify the complex radical log-MMD as a superposition of 

narrow and broad peaks. Such in silico information allows to corroborate experimental 

measurements on for instance the ECR and MCR concentration and to improve the mechanistic 

understanding of the radical polymerization kinetics with several radical types.  
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Chapter 3: Estimating the photodissociation quantum 

yield from PLP-SEC peak heights 

Summary 

A fast method for the reliable estimation of the photodissociation quantum yield Φdiss is 

presented. Pulsed laser polymerization (PLP) experiments are performed at various pulse 

energies (1.5 – 6 mJ) and regression analysis is performed to the ratio of the peak heights 

identified in the size exclusion chromatography (SEC) trace. The high accuracy of the method 

is demonstrated for PLP initiated by 2,2-dimethoxy-2-phenylacetophenone (DMPA), 

considering in silico generated data including large theoretical errors (up to 20%). The method 

has also been successfully applied to experimental data of DMPA based isothermal PLP of n-

butyl acrylate at 306 K, with an estimated Φdiss of 0.42 ± 0.04. In the long term, the method will 

facilitate the evaluation of current and the design of new highly efficient photoinitiators. 

3.1 Introduction 

Pulsed laser polymerization (PLP) is currently seen as the preferred method to determine the 

propagation rate coefficient kp in radical polymerization.1, 2 Upon irradiation with a frequency 

ν, initiator radical fragments (R0) are generated upon the dissociation of a photoinitiator, which 

is typically 2,2-dimethoxy-2-phenylacetophenone (DMPA). These R0 species add to monomer 

(M) until they are transformed into dead polymer species, typically via termination. 

Characteristic points of the resulting PLP - size exclusion chromatogram (SEC) trace are 

inflection points at chain lengths Lj (j = 1, 2, …). Under well-defined PLP conditions with a 

negligible monomer conversion, the inflection points can be directly linked to kp:3, 4 

 𝑘p = 𝐿j[𝑀]0
−1(𝑗Δ𝑡)−1 (1) 

in which [M]0 and Δt are the initial monomer concentration and the dark time between pulses, 

the latter equal to the reciprocal of ν. 
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More recently, PLP experiments have also been conducted to determine other rate coefficients 

than kp. For example, the backbiting rate coefficient, kbb, in acrylate radical polymerization has 

been measured, considering nuclear magnetic resonance (NMR) data on the branching 

amounts5 and PLP inflection point data at various ν.6-8 In addition, an accurate description of 

the complete PLP-size exclusion chromatography (SEC) trace has been targeted, as it contains 

information on all kinetically relevant reactions.9-11 Very recently Marien et al.9 demonstrated 

that the disparate chain initiation reactivities of the DMPA fragments strongly affect the heights 

of the PLP peaks. These authors demonstrated that the existence of a non-initiating DMPA 

fragment is essential to ensure the multimodality required for the identification of consecutive 

inflection points in the SEC trace, in agreement with earlier modeling efforts of Kowollik et 

al.12 for single pulse PLP. 

A crucial input parameter for the detailed kinetic description of PLP is the concentration of the 

R0 species generated at each laser pulse (Δ[R0]), which upon consideration of the Bouguer-

Lambert-Beer law can be calculated from:9, 13, 14 

 
∆[𝑅0] = 2𝛷diss

𝐸pulse𝜆

ℎ𝑐𝑁A𝑉
[1 − exp(−2.303𝜀[𝐼2]𝐿)] (2) 

in which Φdiss is the photodissociation quantum yield, Epulse the energy of a laser pulse, λ the 

laser wavelength, c the speed of light, h the Planck constant, NA the Avogadro constant, V the 

volume of the sample, ε the molar absorptivity of the photoinitiator, L the optical path length, 

and [I2] the photoinitiator concentration at the considered reaction time. 

The photodissociation quantum yield Φdiss takes into account that only a fraction of the 

photoinitiator molecules that are excited via photon absorption results in dissociation, as 

illustrated in Figure 1 displaying the energy level diagram for an acetophenone photoinitiator 

type. Photon absorption results in a transfer from the singlet ground state S0 to a singlet excited 

state S1. The created singlet excited state can undergo intersystem crossing (ISC) to a triplet 
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state T2 and an internal conversion (IC) to a triplet state T1. A further lowering of the excited 

energy of the molecule can occur via α-cleavage, leading to the generation of the desired 

benzoyl (I) and dimethoxy benzyl radical (R1 = R2 = OCH3 in II) for DMPA. An excited singlet 

or triplet sate can however be converted back into a singlet ground state (red arrows), therefore 

leading to a Φdiss smaller than 1.  

Figure 1. Energy level diagram for photodissociation of an acetophenone photoinitiator type;15 ISC: 

intersystem crossing, IC: internal conversion; excitation to higher singlet states as well as vibrational 

and rotational energy levels not shown for clarity. 

By using Equation (2) one assumes that the PLP photodissociation process is quasi-

instantaneous. This assumption is valid in view of the relevant time scales, which have been 

investigated using time-resolved laser spectroscopy by Allonas et al.16 for photodissociation of 

DMPA in benzene. Intersystem crossing from S1 to T1 has been observed to occur within 15 ps, 

i.e. the response time of the apparatus, and a triplet lifetime of 250 ps has been identified. Since 

the duration of the laser pulse is close to 5 ns, excitation of DMPA molecules takes place in a 

time interval much smaller than the time scale for chain initiation, which is ca. 0.7 µs for n-

butyl acrylate (nBuA) monomer at 306 K.17, 18 

It should be noted that the actual fraction of radicals leading to chain initiation is lower than 

∆[𝑅0] as defined by Equation (2). Typically in kinetic studies a chemical initiator efficiency f 

is introduced to reflect this reduction in concentration with respect to an accurate description of 

the monomer addition rates. However, a more detailed modeling strategy involves the explicit 

consideration of all phenomena disturbing chain initiation.9 For DMPA, this implies that in the 

kinetic model, as shown in Table S2 in Appendix B, the termination reactions for the DMPA 
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radical fragments are explicitly accounted for and only one fragment is allowed to initiate chain 

growth, with no other side reactions needed in case the laser duration is limited (as is typically 

the case in PLP) and the reaction temperature is kept sufficiently low (e.g. 306 K).9, 12  

Despite the importance of a correct calculation, in most PLP kinetic modeling studies, Δ[R0] is 

given a typical, yet arbitrary value or even seen as an adjustable parameter. Such a formal model 

strategy unfortunately does not explicitly take into account that Δ[R0] is related to Epulse and 

[I2], which makes a consistent kinetic analysis for varying reaction conditions challenging. The 

popularity of the formal modeling approach can be explained by the difficulties encountered 

during the Φdiss measurement.19, 20 Although the method of Allonas et al.19 - which uses a 

combination of ab initio calculated bond dissociation energies and experimental calorimetric 

data to assess Φdiss - provides certain insights, quantitative information on Φdiss remains limited, 

hampering the use of Equation (2) to reliably determine Δ[R0] and to accurately describe PLP-

SEC traces. It should be noted that the experimental determination of kp via Equation (1) does 

not require knowledge of Φdiss. Such knowledge is on the other hand required e.g. for the in 

silico determination of an Epulse and an [I2]0 that give rise to a multimodal PLP-SEC trace 

possessing at least two inflection points fulfilling the consistency check L2 ≈ 2L1. 

In the present work, a reliable and fast method is presented to reliably estimate Φdiss. Regression 

analysis is performed based on the PLP-SEC peak heights, considering Epulse as the independent 

variable. The method is applied under well-chosen PLP conditions, including a low temperature 

and high frequency to avoid side reactions (e.g. chain transfer to monomer). For illustration 

purposes, DMPA is considered as photoinitiator and nBuA as monomer in view of its 

extensively studied radical polymerization kinetics.8, 17, 21, 22 
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3.2 Experimental section 

3.2.1 Materials 

n-Butyl acrylate (nBuA) was provided by BASF and freed from inhibitor via distillation. 2,2-

Dimethoxy-2-phenylacetophenone (DMPA) was obtained from VWR International and used as 

received. 

3.2.2 PLP experiments 

0.2 mL solutions of nBuA containing 3 mmol L-1 DMPA were transferred into sample vials 

(optical path length L = 0.52 cm). These vials were placed into a stainless steel sample holder 

that was brought to 306 K employing a VWR 1196D thermostat. The reaction temperature 

measured at the sample did not exceed a deviation larger than 0.1 K. As low monomer 

conversions (≤ 0.03) were recorded it can thus be expected that isothermicity is obtained at least 

to a first approximation,23 also taking into account the low initial temperature (306 K) and the 

small sample volume (0.2 mL).  

An overview of all the conditions is provided in Table S1 in Appendix B. Photopolymerization 

was initiated by laser pulsing (ν = 500 s-1) with a Xantos XS-500 system operated at the XeF 

line (λ = 351 nm). The laser beam uniformly reached the sample from the bottom with an energy 

that was varied between 1.5 and 6 mJ. At the end of the polymerization, hydroquinone dissolved 

in THF was directly added to the samples. Via evaporation solvent and remaining monomer 

were subsequently removed. Two samples at identical conditions were always combined before 

SEC analysis to increase the detector reliability. 

3.2.3 Characterization 

Size exclusion chromatography (SEC) measurements were conducted on a PL-SEC 50 Plus 

Integrated System with an autosampler and a PL-gel 5 μm bead-size guard column (50 × 7.5 

mm), followed by a PL-gel 5 μm mixed E column (300 × 7.5 mm), three PL-gel 5 μm mixed C 



50  Chapter 3 

 

columns (300 × 7.5 mm), and a differential refractive index (RI) detector with THF as eluent, 

a flow rate of 1 mL min-1, and an analysis temperature of 308 K. The GPC system was calibrated 

with linear polystyrene standards (4.8 102 to 2.5 106 g mol-1) and linear poly(methyl 

methacrylate) standards (8.0 102 to 1.6 106 g mol-1). To obtain the absolute poly(nBuA) molar 

masses polymer specific Mark-Houwink-Kuhn-Sakurada (MHKS) parameters were used.17 

3.3 Simulation section 

3.3.1 Modeling technique  

To simulate the SEC trace for low temperature PLP with nBuA and thus to identify the 

corresponding peak heights, kinetic Monte Carlo (kMC) modeling is performed. In agreement 

with work of Marien et al.6, 9 and as discussed in Appendix B, for low temperature PLP, a basic 

model consisting of photodissociation, chain initiation, propagation, backbiting, and chain 

length dependent termination can accurately predict the ratio of PLP-SEC peak heights. Hence, 

side reactions such as chain transfer to monomer and β-scission do not need to be considered. 

The concentration of radicals generated at each pulse is calculated via Equation (2). The 

decrease of the photoinitiator concentration as a function of time is thus explicitly accounted 

for.  

The kMC solution strategy in general is based on previous modeling efforts on the stochastic 

description of radical polymerization processes.24-26 For the actual estimation, all model 

parameters except Φdiss are taken from literature and provided in Appendix B (Table S2). In 

particular, in Appendix B, attention is focused on the relevance of the correct (apparent) chain 

length dependent termination reactivities. SEC broadening is accounted for as discussed in 

previous work,27 with the SEC broadening parameter equal to 0.05, in agreement with typical 

values reported in literature.8, 9, 28 
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3.3.2 Regression analysis procedure 

In the present work, the following objective function S is considered for the regression analysis: 

 

𝑆 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

 (3) 

in which yi corresponds to the measured ratio of the first two PLP-SEC peak heights of the ith 

experiment (N experiments in total) and ŷi to the corresponding model predicted value. This 

regression analysis is performed using the Levenberg-Marquardt algorithm (ODRPACK 

v2.01). All independent variables are assumed to be error-free. In addition to the 95% 

confidence interval, the F value for the global significance of the regression is calculated, which 

needs to be sufficiently higher than the corresponding tabulated value (Ftab). For more details 

on the estimation procedure as such, the reader is referred to previous work.29-31 

3.4 Results and discussion 

3.4.1 Model development and theoretical evaluation 

In agreement with previous simulation results,9, 28 the peak heights of a PLP-SEC trace are 

highly sensitive to Δ[R0] and thus to Epulse (Equation (2)). This is demonstrated in Figure 2 in 

which for various pulse energies the log-molar mass distribution (log-MMD) is shown as 

simulated for a theoretical Φdiss of 0.5 and all other model parameters as in Table S2 in 

Appendix B (3th column; values equal to orders of magnitude). For a higher Δ[R0], the height 

of the first peak (h1 in Figure 2) increases and the height of the second peak (h2 in Figure 2) 

decreases, i.e. h1/h2 increases. 
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Figure 2. Simulated PLP-SEC traces at various pulse energies and a theoretical Φdiss of 0.5; other model 

parameters as specified in Table S2 in Appendix B (column 3; values equal to orders of magnitude); ν 

= 500 s-1, number of pulses cf. Table S1 (Appendix B), [DMPA]0 = 5 10-3 mol L-1, [M]0 = 7 mol L-1. 

This trend for the ratio of the peak heights in Figure 2 can be explained by the larger increase 

in the termination rate compared to the propagation rate as a result of the corresponding 

differences in the reaction orders (propagation: first order in the radical concentration; 

termination: second order) and the strong chain length dependence of the (apparent) termination 

reactivity with a higher reactivity for shorter chains.32 An increase of Epulse promotes 

termination and suppresses the formation of longer chains, resulting in a larger h1/h2. Hence, it 

can be expected that Φdiss can be estimated based on experimental h1/h2 data and a reliable PLP 

kinetic model, explicitly considering Equation (2). This can be theoretically demonstrated by 

performing regression analysis to simulated h1/h2 data, as obtained with a kMC model with 

given input parameters that are deliberately superimposed with random Gaussian error.6 

For example Figure 3 shows such regression results, considering DMPA as photoinitiator and 

all model parameter values equal to orders of magnitude with in particular an input value of 0.5 

for Φdiss. In a first test case (left), a Gaussian error with a standard deviation (σ) of 0.06 is 

selected, corresponding to an experimental error (2σ) of ca. 10%. In a second test case (right), 

a σ of 0.12 is selected reflecting a large experimental error of ca. 20%. For both test cases, an 

excellent fit is obtained, as evidenced by the full green lines in Figure 3 (left and right). The 

corresponding estimates for Φdiss are respectively 0.520 ± 0.065 and 0.523 ± 0.116 (95% 
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confidence intervals). These are both very close to the implemented and thus to be estimated 

value of Φdiss, highlighting the accuracy of the proposed method. Even for the very large 

(theoretical) experimental error of 20%, an accurate estimate is obtained, indicating the method 

is robust toward experimental outliers. Similar conclusions can be made based on in silico 

testing with  methyl methacrylate (MMA), as shown in Appendix B.  

 

Figure 3. In silico validation of the proposed method for the estimation of Φdiss from h1/h2 data; symbols: 

data generated using a kMC model with an input value of 0.5 for Φdiss and all other model parameters as 

in Table S2 in Appendix B (column 3; values: orders of magnitude; cf. Figure 2), superimposed with a 

random error (Gaussian sampling with standard deviation σ = 0.06 (left) and σ = 0.12 (right)); full line: 

model after regression analysis; conditions: caption Figure 2; model parameters: Table S2 in Appendix 

B. 

3.4.2 Application to DMPA based PLP of nBuA 

In the previous section, the high accuracy and robustness of the developed method has been 

theoretically illustrated for two monomer types. In what follows, the strength of the method is 

further demonstrated by applying it to experimental data for DMPA based PLP of nBuA for 

various Epulse values. An overview of the experimental conditions covered is given in Table S1 

in Appendix B. The model parameters of the PLP kinetic model are provided in Table S2 

(column 4) in Appendix B and are all taken from literature. 
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Figure 4. Application of the proposed method to DMPA based PLP of nBuA; symbols: experimentally 

measured ratio of PLP-SEC peak heights (Table S1 in Appendix B); error bars determined from 

duplicate experiments; full line: fit with Φdiss = 0.42 (95% confidence interval: 0.42 ± 0.04; F = 3816 >> 

Ftab = 8); conditions: Table S1 (Appendix B); model parameters: Table S2 (Appendix B). 

For the experimental PLP system, regression analysis yields a parameter estimate of 0.42 for 

Φdiss with a narrow 95% confidence interval (Φdiss = 0.42 ± 0.04) and an excellent fit to the 

experimental data, as shown in Figure 4. A significantly lower value is obtained compared to 

the work of Allonas et al.19 (Φdiss = 0.95). On the other hand, taking into account the obtained 

confidence interval, a slightly lower value as reported by Müller and Vallejos20 (Φdiss = 0.52) 

is obtained. It should however be stressed that both studies did not include a robustness check 

of their method or a detailed regression analysis. 

The potential of the method has thus been demonstrated both theoretically and experimentally. 

It should be further noted that in case accurate monomer-specific model parameters are used 

and solvent effects can be ruled out, the obtained estimate for Φdiss does not depend on the 

selected monomer. Hence, the correctness of the obtained estimate can always be verified by 

selecting another monomer for which benchmarked model parameters are available. 

3.5 Conclusions 

For the estimation of the photodissociation quantum yield Φdiss, a simple and fast method using 

only the ratio of PLP-SEC peak heights has been presented. Based on regression analysis to in 

silico data the method has been shown to be very accurate and robust, even if rather large 
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theoretical experimental errors are considered. The method has also been successfully applied 

to experimental data of DMPA based PLP of nBuA.  

On a longer term, the method allows the fast determination of Φdiss for a wide range of 

photoinitiators, which is required for the evaluation of current and the design of new 

photoinitiators. 
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Chapter 4: Estimating the backbiting rate coefficient 

from low temperature PLP experiments 

Summary 

Based on a pulsed laser polymerization – size exclusion chromatography (PLP-SEC) analysis, 

an alternative method to estimate the bulk backbiting rate coefficient kbb in acrylate radical 

polymerization is presented. For different solvent volume fractions (0-0.75), using the saturated 

analogue of the monomer as solvent to rule out solvent effects, regression analysis is applied to 

inflection point data in the low frequency range (< ca. 100 s-1) only, which can be scanned with 

less expensive PLP equipment. Variation of the solvent volume fraction allows to 

independently alter the average mid-chain radical life time and to improve the sensitivity of the 

method to estimate kbb confidently. The robustness of the method is verified considering in 

silico generated data including large artificial errors. The method is applied to experimental 

data of 2,2-dimethoxy-2-phenylacetophenone (DMPA) initiated PLP of n-butyl acrylate, taking 

butyl propionate as the solvent. A kbb value of 171 ± 21 s-1 (303 K) is found, in good agreement 

with literature data. The method presents a generic approach for the estimation of kbb for other 

acrylate monomers, allows a complete statistical analysis, and can be used as a complementary 

tool to existing methods. On a longer term, the method can even be extended for the 

simultaneous estimation of the bulk kbb and mid-chain radical propagation rate coefficient kp,m. 

4.1 Introduction 

One of the most prominent reactions in chain-growth polymerization is propagation, as it is the 

main contributor to the final chain length of each macrospecies. For radical polymerization, 

which contributes significantly to the production of macromolecular materials via a chain-

growth mechanism, pulsed laser polymerization (PLP) has evolved as the preferred 

experimental technique to measure the intrinsic propagation rate coefficient kp.1, 2 Accurate kp 
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values for a broad temperature range are essential for an optimal polymer product design and a 

reliable polymerization reactor control, in view of the high amount of heat generated during 

monomer incorporation. The latter is particularly relevant upon the establishment of the so-

called Trommsdorff or gel-effect, leading to a strong increase in polymerization rate due to 

unavoidable diffusional limitations on termination.3-6 

Depending on the nature of the monomer and the reaction medium a direct or more dedicated 

PLP analysis can be required.7, 8 For bulk and solution radical polymerizations with one 

dominant macroradical type, kp can be reliably obtained by generating multiple photoinitiated 

radical pulses with a frequency ν (or dark time Δt = ν-1) so that in the corresponding size 

exclusion chromatography (SEC) trace - after a limited monomer conversion (< 5 mol%) - 

repetitive inflection points Lj (j = 1, 2, …) can be identified that are directly linked to kp: 

 𝐿𝑗 = 𝑘𝑝[𝑀]0(𝑗Δ𝑡) (1) 

in which [M]0 is the initial monomer concentration. On the other hand, for polymerizations with 

several dominant macroradical types, it has been postulated that Equation (1) needs to be 

modified to:9-12 

 𝐿𝑗 = 𝑘𝑝,𝑎𝑝𝑝[𝑀]0(𝑗Δ𝑡) (2) 

in which kp,app is an apparent rate coefficient reflecting the mixed propagation behavior of the 

different macroradical types. For example, in acrylate PLP in general secondary end-chain 

radicals (ECRs) and tertiary mid-chain radicals (MCRs) are present (Scheme 1), leading to a 

SEC trace with at least one inflection point L1 controlled by the extent of chain growth between 

pulses as defined by Equation (2).13-15 At very high frequencies, however, the radical population 

is restricted to ECRs so that Equation (2) can be directly applied to determine the ECR 
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propagation reactivity (kp,app = kp,e). In a next step, the MCR reactivity (kp,m) can be assessed 

from the kp,app values at the lower frequencies.11, 12 

Currently, the PLP technique has been successfully applied to obtain mostly bulk kp,e values for 

a wide range of commercially relevant monomers and to study the impact of the chemical 

structure on the propagation reactivity.16-24 Many focus has been on (meth)acrylate monomers. 

For instance, in a IUPAC benchmark paper18 based on earlier data25-27 it has been reported that 

in bulk for linear alkyl methacrylates, kp increases for longer ester side chains. The  observation 

has been underpinned by additional data provided by Haehnel et al.28 and a PLP - matrix 

assisted laser desorption ionization - time of flight - mass spectroscopy study of Willemse et 

al.29 This later trend has also been observed for linear alkyl acrylates.2, 30 It has been further 

indicated that the bulk kp values of branched alkyl methacrylates can be described by a joint 

Arrhenius fit.30 In contrast, this family type behavior was not detected for branched alkyl 

acrylates. Based on literature data provided,27, 31, 32 the IUPAC group19 reported a family type 

behavior also for the bulk kp of methacrylates with cyclic ester side chains; an observation also 

supported by recent additional data.33, 34 

Attention has also been focused on the existence of a solvent effect on kp. For non-conventional 

solvents such as ionic liquids a very strong solvent effect has been measured.35-37 In contrast, 

for the more common organic solvents the situation is less clear. Barner-Kowollik, Junkers and 

colleagues38 reported that only a weak solvent effect is present for linear alkyl acrylates, 

selecting toluene and butyl acetate as solvents. Their claim, which is in agreement with the 

earlier contribution of Beuermann,37 is based on the observation that the deviations between 

solution and bulk kp values are generally within the expected experimental error of the PLP 

technique. Later on, Buback39 pointed out that an opposite trend exists for kp with increasing 

size of the ester side chain in bulk (increasing kp values) and toluene (decreasing kp values), 

questioning the formulated claim of a weak solvent effect for common organic solvents. In a 
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reply, Barner-Kowollik, Junkers and colleagues40 emphasized that Buback39 is only focusing 

on a small part of the investigated dataset. These authors put forward that globally an increasing 

trend for kp with increasing size of the ester side chain remains the expectation both in bulk and 

solution and therefore the impact of the solvent on kp can assumed to be limited for common 

organic solvents. 

Scheme 1. Backbiting leading to a transformation of the radical nature from secondary (end-chain 

radical; ECR) to tertiary (mid-chain radical; MCR) in acrylate radical polymerization; dominant path 

via six-membered transition state.  

In addition to the determination of kp, the PLP technique has also been applied for the 

measurement of other important intrinsic rate coefficients. In particular, the backbiting rate 

coefficient kbb for acrylate radical polymerization, which reflects the tendency of ECRs to 

switch to MCRs (Scheme 1), has been extensively measured. Since propagation of MCRs is 

slower than propagation of ECRs, backbiting can result in a pronounced rate retardation besides 

the formation of short chain branches (SCBs), making kbb a key kinetic parameter in the model-

based design of acrylate synthesis procedures. 

Several PLP-based methods are available to determine kbb in acrylate radical polymerization. 

These methods all allow to achieve isothermicity, favoring them over the traditional method of 

multiresponse regression analysis41-43 of acrylate polymerization data on monomer conversion, 

average molar masses, and/or branching density. In batch operation mode, these data are 

typically recorded under strongly non-isothermal conditions. By considering a shift to a 

semibatch operation mode this non-isothermicity can be partially avoided.41 Very recently 

Hamzehlou et al.44 explicitly accounted for this non-isothermicity in their regression analysis, 

using bulk and solution batch free radical n-butyl acrylate (nBuA) polymerization data. 

Although more activated reactivities have been obtained compared to a series of isothermal 
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PLP studies, this study highlights the importance of dedicated kinetic analysis to obtain more 

reliable acrylate specific kinetic parameters. It should be stressed that such carefully determined 

kinetic parameters are indispensable to enable a quantitative understanding of the relation 

between the reaction conditions and the final polymer properties.44, 45  

Under the isothermal PLP conditions one of the first methods to obtain kbb was developed by 

Plessis et al.46 who measured the amount of SCBs in bulk and solution PLP of nBuA via 13C 

nuclear magnetic resonance (NMR) analysis. By applying the pseudo-steady state assumption 

(PSSA) for the calculation of the MCR concentration and subsequent regression analysis, these 

authors determined kbb, although a qualitative 13C NMR analysis is known to be difficult.47 On 

the other hand, kbb has also been determined by fitting the concentration traces of ECRs and 

MCRs as measured by electron spin resonance (ESR) spectroscopy after applying a single laser 

pulse, which is also known as single pulse-PLP (SP-PLP).48 However, a reliable ESR analysis 

is often cost-intensive as it requires complex calibration procedures.48, 49  

Furthermore, Nikitin et al.11 determined the kbb Arrhenius parameters by conducting at different 

temperatures so-called frequency tuned PLP-SEC experiments, which yield S-shaped kp,app 

curves as a function of the frequency. From the specific frequency ν0 corresponding to the sharp 

decrease of kp,app with decreasing ν, these authors proposed to obtain kbb via the semi-empirical 

relationship:11 

 𝜈0 = 𝛼 𝑘𝑏𝑏 (3) 

in which 𝛼 is an in silico based proportionality coefficient, and 𝜈0 the frequency at which a shift 

from two inflection points to one could be identified in the PLP-SEC traces when going from 

high to low frequency. The first inflection point, which is also appearing at the lowest 

frequencies, is associated with the mixed propagation behavior of ECRs and MCRs (Equation 

(2)), whereas the second one is related to the propagation of ECRs which did not backbite before 
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undergoing termination at a next pulse (Equation (2) with kp,app = kp,e). Nikitin et al.11 further 

indicated that based on the obtained kbb (Equation (3)) and the reliable measurement of kp,e at 

high frequencies, in a next step, kp,m can be obtained at very low frequencies, using the following 

relation: 

 
𝑘𝑝,𝑎𝑝𝑝 = 𝑘𝑝,𝑒 −

𝑘𝑝,𝑒 − 𝑘𝑝,𝑚

1 +
𝑘𝑝,𝑚[𝑀]0

𝑘𝑏𝑏

 
(4) 

in which the PSSA is assumed for the calculation of the MCRs,9, 11, 12 termination reactions are 

neglected and it is assumed that kp,app can be considered frequency independent and equal to the 

average propagation reactivity as defined based on the overall polymerization rate. 

It should although be stressed that a reliable determination of kbb and kp,m via Equation (3) and 

(4) is not always straightforward. Firstly, the unambiguous determination of ν0 and 𝛼 in 

Equation (3) can be complicated, as recently also pointed out by Wenn and Junkers.12 A 

conventional regression analysis for the estimation of kbb is thus not straightforward. To 

partially resolve this issue, Wenn and Junkers12 recently suggested a more feasible tuning 

procedure based on the sideward shift of the simulated S-shaped curves by a variation of kbb 

and considering arbitrary kp,app testing values.12 Secondly, in practice, kp,app does not reach a 

constant value in the low frequency range but continues to lower with decreasing frequency. 

Hence, kp,m can only be assessed via Equation (4), as also indicated by Wenn and Junkers.12  

It is thus clear that the aforementioned PLP-based methods for the determination of kbb (and 

kp,m) can be further improved, either by the development of more accurate analysis techniques 

or the refinement of the model assumptions to facilitate a more accurate regression analysis. 

In the present work, an alternative method is presented and applied to estimate the bulk kbb from 

inflection point PLP-SEC data (Equation 2; j = 1). On a longer term, this method allows for the 

simultaneous estimation of kbb and kp,m, including a complete statistical analysis. The presented 
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method is related to the one of Nikitin et al.11 and Wenn and Junkers12 but focuses only on the 

regime of low frequencies, which can be easily scanned with less expensive PLP equipment 

and which is most sensitive to variations in the propagation rates relative to the backbiting rate. 

For these low frequencies, in contrast to the method of Nikitin et al.11 and Wenn and Junkers,12 

PLP experiments with various solvent volume fractions (ΦS) are considered, which leads to a 

significant data variation and allows for a reliable regression analysis, even in the presence of 

large experimental errors as confirmed by a robustness check. To safely rule out potential 

solvent effects the saturated analogue of the monomer is chosen as the solvent and the 

polymerization temperature is set sufficiently low to avoid any kinetically significant impact of 

chain transfer to solvent reactions. 

4.2 Experimental section 

4.2.1 Materials 

n-Butyl acrylate (nBuA; monomer) was provided by BASF and freed from inhibitor via 

distillation. Butyl propionate (solvent), which can be seen as the saturated analogue of the 

monomer, was purchased from TCI Europe and 2,2-dimethoxy-2-phenylacetophenone 

(DMPA) from VWR International. Both chemicals were used as received. 

4.2.2 PLP experiments 

0.3 mL solutions of nBuA and butyl propionate (solvent volume fraction (ΦS) of 0, 0.5, and 

0.75), containing 2.5 10-3 mol L-1 DMPA, were transferred into sample vials. These vials were 

placed into a stainless steel sample holder that was brought to 303 K by a VWR 1196D 

thermostat. The temperature was directly measured at the sample and did not exceed a deviation 

larger than 0.1 K during the experiments so that isothermicity can be safely assumed. An 

overview of all the initial conditions is provided in Table S1 in Appendix C. 
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Photopolymerization was initiated by laser pulsing with a Xantos XS-500 system operated at 

the XeF line (351 nm). The laser beam was adjusted to hit the sample from the bottom with an 

energy of 1.5 10-3 J per pulse. For each ΦS, experiments with a varying frequency were 

performed, with a minimal value of 10 s-1 and a maximal value of 60 s-1. This ν range was 

determined in such a way that PLP-SEC traces with an inflection point corresponding to the 

mixed propagation behavior of ECRs and MCRs (cf. Equation (2)) were obtained. 

At the end of the polymerization, hydroquinone dissolved in THF was directly added to the 

samples. Subsequently, solvent and remaining monomer were removed by evaporation. 

4.2.3 Characterization 

Size exclusion measurements (SEC) measurements were performed on a PL-SEC 50 Plus 

Integrated System with an autosampler and a PL-gel 5 μm bead-size guard column (50 × 7.5 

mm), followed by a PL-gel 5 μm mixed E column (300 × 7.5 mm), three PL-gel 5 μm mixed C 

columns (300 × 7.5 mm), and a differential refractive index (RI) detector with THF as eluent, 

an analysis temperature of 308 K, and a flow rate of 1 mL 

min-1.  

The GPC system was calibrated using linear polystyrene standards ranging from 4.8 102 to 2.5 

106 g mol-1 and linear poly(methyl methacrylate) standards ranging from 8.0 102 to 1.6 106 g 

mol-1. Polymer specific Mark-Houwink-Kuhn-Sakurada (MHKS) parameters were used to 

obtain the absolute poly(nBuA) molar masses.20 

4.3 Simulation section  

4.3.1 Modeling technique 

Kinetic Monte Carlo (kMC) modeling is applied for the calculation of the inflection points of 

the SEC trace for isothermal PLP of acrylates, using a basic PLP reaction scheme consisting of 

photodissociation, chain initiation, propagation, backbiting and termination, and considering 
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chain-length dependent termination kinetics (see Appendix C). The entire PLP experiment is 

always simulated with the number of pulses listed in Table S1 in Appendix C. More details on 

the kMC modeling technique as such can be found in previous work.50-52  

It should be stressed that a basic PLP reaction scheme can be considered for the determination 

of the position of the inflection points, as explained in Appendix C. A sensitivity analysis (also 

Appendix C) indicates that no dedicated kinetic parameter selection is required, except for kp,e 

similar to other methods. Hence, the method can be reliably applied for less studied acrylate 

monomers as well. 

It should also be noted that the PLP-SEC technique is sensitive to SEC broadening. An 

explanation on how SEC broadening is accounted for, in accordance with the procedure 

introduced by Buback et al.,53 is given in Appendix C. Alternatively, analysis via matrix 

assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectroscopy can be 

applied.54 

4.3.2 Regression analysis procedure 

Regression analysis is performed using the Levenberg-Marquardt algorithm (ODRPACK 

v2.01), considering the minimization of the following objective function: 

 

𝑆 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

 (5) 

in which yi corresponds to the ith experimental kp,app (N measured points in total; Equation (2) 

with j=1) and ŷi is the corresponding model predicted value. The individual confidence intervals 

and the global significance of the regression are calculated. The latter is reflected by a F value 

which needs to be sufficiently higher than the corresponding tabulated value (Ftab).55, 56 For 

more details on the estimation procedure as such, the reader is referred to previous work.57-59  
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In a first stage, regression analysis is performed based on in silico inflection point data 

generated with the kMC model using given input values for the to be estimated parameter(s) 

and including artificial error with a given standard deviation σ. This in silico testing is used to 

verify the robustness of the method. Attention is focused both on the sole estimation of kbb and 

the simultaneous estimation of kbb and kp,m.  

In a second stage, regression analysis is performed based on actual experimental data selecting 

nBuA as monomer and butyl propionate as solvent (cf. Experimental section and Appendix C). 

Here, focus is restricted to the estimation of kbb only. For a reliable joint estimation of kbb and 

kp,m, a sufficient number of experimental data points need to be available, which is however 

outside the scope of the present work. 

4.4 Results and discussion 

In what follows, the principle and advantages of the alternative method to estimate bulk kbb 

values are first elaborated, followed by a demonstration of the accuracy and robustness of the 

method through simulations accounting for various degrees of artificial error. Next, based on 

experimentally recorded inflection point data for PLP of nBuA in butyl propionate at 303 K, 

regression analysis is successfully performed to estimate kbb, for illustration purposes using kp,e 

and kp,m values from literature. The reported kbb value is compared with literature data. 

4.4.1 Principle and advantages of the method 

In agreement with the method of Nikitin et al.11 and Wenn and Junkers,12 in the present work, 

PLP kp,app data (Equation (2); j = 1) at different frequencies are considered to determine kbb. The 

novel aspect is the consideration of kp,app data at a varying solvent volume fraction ΦS and this 

only in the low frequency range, which is accessible with less expensive PLP equipment. Note 

that the use of solution PLP for a reliable parameter estimation has also been put forward by 

Plessis et al.46 and that the saturated analogue of the monomer is chosen as the solvent so that 
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a possible impact of the reaction medium on the intrinsic reactivities can be safely ruled out. 

Such absence can always be verified by comparing bulk and solution PLP data at conditions 

leading to conventional PLP behavior (i.e. at low temperatures and/or high frequencies). 

Table 1. Principle of the method to estimate kbb in acrylate radical polymerization for Δt = ν-1 = 

10-2 s; an increase of ΦS leads to an increased MCR average life time τm within Δt; solvent: 

saturated analogue of the monomer. 

 Equation Bulk (ΦS = 0) Solution 

(ΦS = 0.75) 

τe [s] 
1

𝑘bb
 10-3 10-3 

τm [s] 
1

𝑘p,m(1 − 𝛷S)[𝑀]0,bulk
 1.4 10-3 5.7 10-3 

 

The principle of the method is illustrated in Table 1, selecting typical orders of magnitude for 

kp,e, kp,m, and kbb (104 L mol-1 s-1, 102 L mol-1 s-1, and 103 s-1) and the initial bulk monomer 

concentration [M]0,bulk (7 mol L-1). For a frequency of 100 s-1, it follows that a variation of ΦS 

allows to alter the average MCR life time (τm) within ∆t, in agreement with the NMR studies of 

Ahmad et al.47 and Plessis et al.46 An increase in ΦS from 0 to 0.75 leads to a strongly increased 

τm, while the average ECR life time (τe) remains unchanged. Hence, an increase in ΦS leads to 

an increased contribution of the more stable tertiary radicals and thus lowers kp,app. In other 

words, by altering ΦS the impact of kbb on kp,app can be regulated in a highly sensitive manner, 

allowing reliable regression analysis if kp,m is accurately known or simultaneously estimated. 
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Figure 1. In silico validation of the proposed alternative method to determine kbb for acrylate radical 

polymerization from kp,app data (Equation 2; j = 1) with a known kp,e and kp,m; symbols: generated data 

with the kMC model (dashed lines), superimposed with an artificial random error (Gaussian sampling 

with a standard deviation σ); error bars correspond to a correction with ± σ (input value); model 

parameters: Table S2 in Appendix C; fits after regression analysis: full lines. Analogous figure for the 

estimation of both kbb and kp,m in Appendix C (Figure S6); both for Figure 1 and Figure S6 the estimated 

parameters are very close to the implemented ones and for the full frequency range the correct inflection 

points are obtained, highlighting the high robustness of the method. 

4.4.2 Accuracy and robustness of the method 

The high accuracy of the method to estimate bulk kbb values is demonstrated in a first instance 

theoretically, assuming that both kp,e and kp,m are known. Regression analysis is performed with 

kp,app data (Equation (2); j = 1) obtained from simulated PLP-SEC traces (see details in 

Appendix C). These in silico generated data (dashed lines in Figure 1) are perturbed by random 

noise based on Gaussian sampling (with standard deviation σ) to mimic experimental error 

(symbols in Figure 1). ΦS values of 0 (bulk situation) and 0.75 (solvent-rich situation) are 

selected and for all rate coefficients in the basic PLP model typical orders of magnitude are 

used (Table S2 in Appendix C). 

Two theoretical test cases are considered with the input kbb value for the PLP kMC model equal 

to 1000 s-1 (same as in Table 1) and considering frequencies of 50, 100, 150 and  

200 s-1. The maximum frequency value is consistent with the reported time scales in Table 1 to 

allow for an efficient regression analysis. In the first theoretical test case, the kp,app data are 
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perturbed by a Gaussian error with an acceptable σ of 400 L mol-1 s-1, emulating an experimental 

error of ca. 10% as can be judged from the error bars for the symbols in Figure 1. This σ is 

doubled to 800 L mol-1 s-1 for the second theoretical test case, resulting in a double relative error 

of ca. 20%. 

The corresponding estimates for kbb are 1007 ± 157 s-1 and 967 ± 262 s-1 (95% confidence 

intervals) with the corresponding fits shown in Figure 1 (full lines). The obtained estimates for 

kbb are thus very close to the implemented and therefore to be estimated value of 1000 s-1, 

highlighting the potential of the proposed method. Even for an artificial experimental error of 

20% (second theoretical test case) the method is still sufficiently accurate, as a mismatch of less 

than 4% results for the estimated kbb value, although the confidence interval is much broader. 

The high robustness towards experimental outliers is also confirmed by the closely matching 

dashed and full lines in Figure 1, which are obtained by simulation with respectively kbb input 

values (noise-free) and estimated values (from noisy inflection point data). 

The robustness is further confirmed in case the regression analysis aims at a higher number of 

parameter estimates. This is theoretically illustrated in Appendix C in which the updated Figure 

1 is presented (Figure S6), aiming at the simultaneous estimation of both kbb and kp,m. As 

indicated in Table 1, the relative importance of the time scales for ECRs and MCRs depends 

on kp,m and, hence, it can be expected that an error on this rate coefficient can have a kinetically 

significant impact on the reliability of the regression results focusing only on the estimation of 

kbb. Importantly, the results in Appendix C (Figure S6) allow to conclude that in addition to kbb, 

kp,m can also be accurately estimated, as a good match with the implemented value (100 L 

mol-1 s-1) is obtained.  

Since regression analysis to a limited amount of in silico kp,app data (8 in silico generated points 

as in Figure 1) is performed, broader individual 95% confidence intervals result as compared 

to the case of a sole estimation of kbb. Hence, in practice, a sufficient large set of PLP-SEC 
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inflection point data is required before the simultaneous estimation of kbb and kp,m can be reliably 

performed with the proposed method. 

4.4.3 Application of the method with nBuA at 303 K 

Based on the theoretical results in the previous section, it can be deduced that the presented 

method is robust and is also complementary to the already available methods to determine kbb. 

In this section, the potential of the method is further illustrated by considering experimentally 

measured inflection point PLP data for the radical polymerization of nBuA.  

Figure 2. Top: application of the alternative method for DMPA photoinitiated PLP of nBuA; initial 

conditions: 303 K, [DMPA]0 = 2.5 10-3 mol L-1, and Epulse = 1.5 10-3 J; experimental data: symbols; error 

bars correspond to an error of 10% on the average recorded kp,app value;17 lines: fits with kbb = 171 s-1 

(95% confidence interval: 171 s-1 ± 21 s-1; F = 1084 >> Ftab = 4.84); Bottom: typical experimental SEC 

trace (black full line) and corresponding derivative (blue full line), allowing the determination of kp,app 

(Equation (2); j = 1) via the indicated inflection point (black symbol); initial conditions: ν = 10 s-1, ΦS = 

0.75 (additional SEC traces are included in Appendix C). 

As indicated above, the considered experimental data set is restricted to the estimation of kbb 

only. Regression analysis (full lines in Figure 2; left) to experimental bulk (ΦS = 0) and solution 

(ΦS = 0.5 and 0.75) kp,app data (symbols in Figure 2) in the low frequency range (ν ≤ 60 s-1) is 

performed to estimate the bulk kbb at 303 K. The maximal ν of 60 s-1 is identified based on 

preliminary simulations in which the existence of an inflection point corresponding to the mixed 

propagation behavior of ECRs and MCRs as defined by Equation (2) (j = 1) can be guaranteed. 

For illustration purposes, a typical experimental SEC trace (full black line) and the 
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corresponding derivative (full blue line) are provided in Figure 2 (bottom; ν = 10 s-1, ΦS = 0.75). 

The full range of experimental initial conditions is provided in Appendix C (Table S1). 

In Appendix C it is also shown that for the determination of the position of the simulated 

inflection points that serve as input values in the regression analysis, a dedicated kinetic 

parameter selection is not required and a basic PLP model can be reliably used. In particular, it 

is demonstrated that chain transfer to monomer and solvent can be neglected at the considered 

low temperature, i.e. they do not influence the position of the inflection points. The impact of 

an acceptable uncertainty on the apparent termination reactivities is also shown to be very 

limited, highlighting the generic potential of the proposed method. 

A bulk kbb value of 171 ± 21 s-1 (95% confidence interval; see Figure 2 for the corresponding 

fit) is obtained, which is in very good agreement with the value reported by Nikitin et al.11 (167 

s-1) and Barth et al. (168 s-1).48 Hence, the robustness of the proposed method can be claimed 

not only theoretically but also experimentally. 

4.5 Conclusions 

For the estimation of the bulk backbiting rate coefficient in acrylate radical polymerization, an 

alternative method using PLP inflection point data and allowing a complete statistical analysis 

is presented, selecting the saturated analogue of the monomer as the solvent. A key feature is 

the variation of the solvent volume fraction in the low frequency range, which allows to 

independently change the average MCR life time and to obtain a high sensitivity towards kbb 

using less expensive PLP equipment.  

Regression analysis of in silico generated data shows that the method is robust, even if large 

artificial errors are introduced and kp,m needs to be also estimated. Additionally, the method has 

been successfully applied to kp,app data of nBuA at 303 K, yielding a kbb value in agreement with 

literature data. 
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On a long term, the method will contribute to the determination of kbb values for a wide 

monomer range and the obtained parameter values can be compared with those obtained with 

the already reported methods to further improve the fundamental understanding of acrylate 

radical polymerization kinetics in general. 
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Chapter 5: Estimating the β-scission rate coefficient from 

high temperature PLP experiments 

Summary 

A novel method to estimate the β-scission rate coefficient (kβ) in radical polymerization of 

acrylates is introduced, provided that the backbiting and tertiary propagation rate coefficient 

have already been determined at sufficiently low temperatures at which β-scission is negligible 

(<< 350 K). The method relies on the sensitivity of kβ upon a change of the pulse laser frequency 

(<< 200 Hz) under isothermal pulsed laser polymerization (PLP) conditions in the temperature 

range between ca. 350 and 415 K, leading to a sufficient variation of the times scales of the 

radicals involved. These observations are not significantly influenced by macropropagation and 

thermal self-initiation, as respectively confirmed by in silico testing and experimental data. 

Solution inflection point data (e.g. solvent butyl propionate) are needed at the lower temperature 

range (350-410 K), whereas bulk inflection point data suffice at the higher temperature range 

(410-415 K). The proposed method leads to an estimated kβ value of (4.26 ± 1.8)×102 s-1 at 413 

K with bulk PLP data, suggesting a high propensity of macromonomer formation in acrylate 

polymerization under high temperature radical polymerization conditions, exceeding the 

previously suggested levels (kβ = 6 x 100-1.45 x102 s-1). 

5.1 Introduction 

Pulsed laser polymerization (PLP) combined with size exclusion chromatography (SEC) 

analysis is a versatile technique for the determination of rate coefficients in radical 

polymerization processes. These rate coefficients are the core of any kinetic and process control 

model and are essential for the understanding of the relation of chemical structure and 

reactivity.1–3  
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Most focus has been on the determination of the intrinsic propagation rate coefficient kp, with 

IUPAC supported benchmark results for radical polymerization of standard monomers such as 

styrene and methyl methacrylate,4–9 in which under pulsation one dominant macroradical type 

is obtained so that:10,11 

 𝑘p = 𝐿𝑖[[𝑀]0(𝑖Δ𝑡)]−1 (1) 

in which [𝑀]0 is the initial monomer concentration, 𝐿𝑖 the chain length associated with the ith 

(i=1,2,…) inflection point of the PLP-SEC trace, and ∆𝑡 the dark time between pulses, i.e. the 

reciprocal of the pulse laser frequency (e.g. 100 Hz). 

For polymerizations with more than one macroradical type, Equation (1) needs to be written 

with an apparent propagation rate coefficient (kp,app),12–16 highlighting that the positions of the 

inflection points are not uniquely correlated with the chain growth pattern of one active species. 

As the ultimate goal is the determination of elementary intrinsic rate coefficients, an elegant 

variation of the PLP conditions is required to alter the relative importance of the radical types 

and to obtain limiting conditions with only one macroradical type so that the original Equation 

(1) can be applied.  

For example, in acrylate radical polymerization, both secondary end-chain radicals (ECRs) and 

tertiary mid-chain radicals (MCRs) exist with the latter being formed from the former by 

transfer reactions such as intermolecular H-abstraction (chain transfer to polymer) or backbiting 

(left part of Scheme 1).16–20 Upon addition of monomer to a MCR, i.e. tertiary propagation, a 

short chain branch (SCB) results and the conventional chain growth pattern can continue as 

again an ECR is obtained. Under high frequency PLP conditions, backbiting can however be 

suppressed so that only ECRs exist, giving access the secondary intrinsic propagation rate 

coefficient kp,e. Several methods have been developed to retrieve the intrinsic tertiary 

propagation rate coefficient kp,m along with the intrinsic backbiting rate coefficient kbb.14–16,21 
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As SCBs are generated upon tertiary propagation, quantitative 13C-nuclear magnetic resonance 

(NMR) measurements can be performed, comparing the contribution of quaternary and tertiary 

carbon atoms in the polymer backbone of the dead polymer chains.  

 

Scheme 1. End-chain radicals (ECRs) and mid-chain radicals (MCRs) in acrylate radical polymerization 

as formed due to intramolecular H-abstraction or backbiting. Dashed box: at elevated temperature (e.g. 

above 350 K17,23–27), β-scission of a MCR leads to the formation of macromonomers (MMs); these MMs 

compete with conventional monomer for chain growth; here case with addition of ECR only shown for 

one the MMs; Y=COOR (nBuA: R: butyl group); not shown for simplicity: intermolecular H-abstraction 

or chain transfer to polymer and radical migration. 

A detailed kinetic model can subsequently be employed to obtain the desired rate coefficients. 

Alternatively, the frequency dependence of kp,app can be exploited under PLP conditions, with 

the steepness of the decay from higher to lower pulse laser frequencies providing information 

on the difference in kp,e and kp,m, and kbb.14,15,20,22,23 

Recently, Marien et al.16 highlighted that to increase the sensitivity toward kp,m and kbb, 

parameter estimation of kp,app data at different pulse laser frequencies under both bulk and 

solution conditions should be considered. To avoid solvent effects, these authors recommend 

to utilize the saturated analogue of the monomer as solvent (e.g. butyl propionate as solvent for 

n-butyl acrylate nBuA as monomer). By including a variation of the solvent volume fraction 

next to a frequency variation, a broader span of PLP time scales for the ECRs and MCRs can 

be achieved, taking into account that backbiting is a unimolecular and tertiary propagation a 
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bimolecular reaction. A broader span of time scales implies a larger sensitivity and therefore 

contributes to a more facile and reliable parameter estimation. 

It should be stressed that for acrylate radical polymerization at elevated temperature (> e.g. 350 

K), additional reactions play a role (right part of Scheme 1; dashed box). Specifically, MCRs 

can under high temperature conditions undergo β-scission,17,23,24,26–28 lowering the average 

chain length and leading to the formation of macromonomers (MMs). As MMs contain 

unsaturations, they can compete with conventional monomer for further chain growth, resulting 

in the formation of MCRs through so-called macropropagation (example in Scheme 1 only for 

one MM/ECR pair). More recent research has also indicated that MCRs can migrate so that the 

radical is shuffled along the lateral chain.29–34 In case backbiting is the dominant trigger for 

MCR formation, a specific chain growth pattern can be detected after β-scission, i.e. the short 

unsaturated fragments with respect to the original terminal unit are different with a chain length 

of 2 and not 1.33 With a dominance of chain transfer to polymer, the random nature of the H-

abstraction is further enhanced by consecutive migration.31 

Reliable intrinsic rate coefficients for high temperature acrylate radical polymerization 

reactions are, however, scarce as no dedicated methods are available yet as is the case for the 

determination of kbb and kp,m.30 Currently, the common method for the assessment of the 

intrinsic β-scission and macropropagation rate coefficient (kβ and kmac) is parameter tuning to 

(semi-)batch bulk/solution polymerization data, with the additional complexity of non-

isothermicity.25,27,28,35,36 A strong correlation of parameters is expected with the additional 

interference of (less studied) side reactions such as thermal self-initiation.30,37–39 The majority 

of existing experimental literature data can also not be used as such, as no temperature history 

has been recorded. The issue of non-isothermicity could be resolved by switching to a micro-

reactor set-up,40 but still a detailed kinetic model is required with the need of multi-parameter 

estimation. Overall, it is therefore worthwhile to further explore – at elevated temperature – the 



Chapter 5  81 

time scale ranges for ECRs and MCRs as accessible with PLP and to further extent frequency 

based methods based on Equation (1). 

In the present work, such an extension is introduced that is capable to reliably extract kβ from 

inflection point data under PLP conditions at which macropropagation and thermal-self 

initiation can be neglected. The potential of the method is first illustrated in silico using 

literature values for all rate coefficients. It is theoretically illustrated that in the ‘lower’ 

temperature range (< 410 K) kβ needs to be determined based on solution inflection point data, 

whereas bulk inflection point data suffice in the ‘higher’ temperature range (≥ 410 K). The latter 

is illustrated for n-butyl acrylate (nBuA) polymerization at 413 K, showcasing a successful 

regression analysis under bulk conditions. 

5.2 Experimental details  

5.2.1 Materials 

n-Butyl acrylate (nBuA, monomer, ≥99%) purchased from Sigma-Aldrich was used after 

passing over an alumina oxide bed for removing the inhibitor. The photoinitiator 2,2-

dimethoxy-2-phenylacetopheneone (DMPA, 99%) was used as received from Sigma-Aldrich. 

Tetrahydrofuran (THF, ≥99.8%) obtained from Chem-Lab and hydroquinone (HQ, ≥99.5%) 

from Sigma-Aldrich were also used as received. 

5.2.2 Experimental procedure 

A monomer solution in a 50 mL round bottom flask was loaded with photoinitiator DMPA 

(2.5×10-3 mol L-1). The solution was degassed for 45 minutes by purging with nitrogen. In 

parallel 0.7 mL PLP vials were degassed under argon atmosphere for 30 minutes. After 

degassing 0.4 mL monomer solutions were added to the vials. These vials were placed into the 

reaction chamber of the PLP setup for which the temperature was increased from ambient 
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temperature to the polymerization temperature (413 K). Since the number of pulses is limited 

(≤ 60), leading to monomer conversions below 3%, isothermicity can be assumed.41 

PLP was performed with a Xantos XS-500 system operated at the XeF line (351 nm). The laser 

hit the sample from the bottom with a pulse energy of 1.5×10-3 J. A frequency range from 1 to 

50 Hz was covered, which was determined based on a sensitivity analysis of simulation results 

covering a wider range of frequencies and literature values for the kinetic parameters. After a 

PLP experiment, the sample vial was immediately removed from the reaction chamber and a 

mixture of THF and HQ added to the sample to avoid further polymerization. The solvent and 

remaining monomer were removed by evaporation by maintaining the mixture in the oven 

overnight (temperature: 343 K). 

5.2.3 Analysis 

The conversion of monomer to polymer was measured gravimetrically. Size exclusion 

chromatography (SEC) was performed on a PL-GPC 50 Plus instrument with an autosampler 

and a refractive index (RI) detector. A  50×7.5 mm Resipore guard column and two Reispore 

300×7.5 mm columns were used in series. THF was used as eluent with a flow rate of 1 ml 

min-1 and the temperature of the oven was maintained at 303 K. Calibration was performed 

using polystyrene standards (Medium EasiVials kit, Agilent Technologies) in the 1.62×102 to 

4.83×105 g mol-1 range. Absolute molar masses were obtained employing the Mark-Houwink-

Kuhn-Sakurada (MHKS) parameters of poly(nBuA) in THF, i.e. K= 7.4×10-5 dL g-1 and α = 

0.75,42 and polystyrene in THF, i.e. K=11.4×10-5 dL g-1 and α = 0.716.43 

5.3 Kinetic model: reactions and regression analysis 

The simulations to test the proposed method were carried out using a kinetic Monte Carlo 

(kMC) model as previously developed,16,44–46 allowing the simulation of both the inflection 

points and the complete SEC trace. In agreement with literature data, ECRs and MCRs are 
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considered.12–16,20,22,23 Essential for the current model are DMPA photodissociation, chain 

initiation, propagation of ECRs/MCRs, chain length dependent apparent termination, 

backbiting of ECRs, and β-scission of MCRs (kβ).  

The complete set of elementary reactions and the corresponding literature based kinetic 

parameters 35,45,47–50 are shown in Table 1. As β-scission can occur to the ‘left’ and to the ‘right’ 

(cf. Scheme 1), two elementary β-scission reactions are considered for the MCRs with to a first 

approximation the same rate coefficient kβ.  As elevated temperatures are considered (> 350 

K), the dimethoxy benzyl radicals resulting from DMPA photodissociation can also undergo β-

scission (kβ0), leading to the formation of methyl radicals47,51 as an additional source of chain 

carriers.  

In agreement with previous work, chain transfer to polymer can be ignored.52 Furthermore, 

thermal self-initiation can be neglected based on experimental analysis in the present work 

(Figure 1; left). Under conventional free radical polymerization (FRP) conditions it has been 

suggested that the monomer nBuA can initiate radical polymerization at elevated 

temperature.39,53 Hence, experiments – without pulsation – were carried out at 413 K using the 

sample vials from actual PLP experiments. The sample vials were filled with 0.4 mL oxygen 

free nBuA (after purging with argon for 30 minutes) and placed in the reaction chamber for 

several minutes to evoke thermal self-initiation, bearing in mind that the time frame for a PLP 

experiment is only one minute as it takes about 50 seconds to reach the desired temperature 

(e.g. 413 K) and the pulsation time is very short.  

As shown in Figure 1, there is negligible monomer conversion for the initial first minute at 

which the temperature is at the set-point, which is relevant for the PLP experiment. 

Subsequently, the monomer conversion increases gradually along with the temperature, 

confirming that under conventional FRP conditions thermal self-initiation is indeed relevant. 
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Preliminary modeling analysis (refer to Appendix D for details: Figure S2-4 in Section  S3.2) 

also revealed that macropropagation, i.e. the addition of the macromonomers formed out of β–

scission, is kinetically insignificant under the selected PLP conditions. Figure 1 (right) depicts 

the theoretical SEC traces (413 K; 5 pulses) if macropropagation is also considered. Even with 

a macropropagation rate coefficient (kmac) that is deliberately higher than the propagation rate 

coefficient of ECRs (kp,e), the resulting SEC trace is practically identical as in the case without 

macropropagation.  

It should be stressed that the current work focuses on the determination/estimation of kβ only 

with the other kinetically relevant rate coefficients already determined by other techniques 

under low temperature conditions.35,47–49 
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Table 1 Reactions and Arrhenius parameters for PLP of n-butyl acrylate (photoinitiator DMPA) at 

elevated temperature (> 350 K) and used to test the proposed method (Figure 1, 2 and 3); for Figure 4 (413 

K; application of method to bulk experimental data in the present work) all parameters are maintained 

except the one for β-scission which is estimated at a higher value (4.26 ×102 s-1) than the literature value 

reported in this table. 

aΔ[R0] is calculated via Equation S2 in Appendix D for λ = 351 × 10−9 m, Epulse = 1.5 × 10−3 J, V =4×10−7 

m3, l = 1.04 × 10−2 m, and Φ of 0.4245; Δ[R0] at the first laser pulse is equal to 1.04 × 10−5 mol L−1 (initial 

DMPA concentration= 2.5 x 10-3 mol L-1). b higher chain initiation rate because of reaction 8, as a higher 

number of initiator radical prone to chain initiation.47,56 cChain length dependent propagation considered 

(refer to Appendix D Section S3.3).57,58 dChain length dependent (apparent) termination rate coefficients 

considered with 𝑘𝑡
𝑎𝑝𝑝

(1,1) reported here, taking into account correction factor 240 and literature based 

fraction of termination by recombination (for other chain lengths refer to Appendix D Section S3.3).27,35 
eAssumed equal to 𝑘𝑡,𝑒𝑒

𝑎𝑝𝑝
(1,1); fAssumed equal to 𝑘𝑡,𝑒𝑒

𝑎𝑝𝑝
(𝑖, 1); 𝑘𝑡,𝑒𝑒

𝑎𝑝𝑝
(1,1)is reported here. gAssumed equal 

to 𝑘𝑡,𝑒𝑚
𝑎𝑝𝑝

(𝑖, 1); 𝑘𝑡,𝑒𝑚
𝑎𝑝𝑝

(1,1) is reported here. hMeBez= methyl benzoate formed during β-scission of 

dimethoxybenzyl radical; iradicals derived from the photoinitiator DMPA (I to III): benzoyl radical, 

dimethoxybenzyl radical, and methyl radical; kmid-chain radical; jradical formed by H-abstraction from 

nBuA. 

Reaction Equation 
A                        

[(L mol-1)s-1] 

EA.               

[kJ mol-1] 

k [(L mol-1) s-1] 

at 413 K 
Ref 

Photodissociationi 2 0, 0,

h I II

e eI R R     a 45 

Chain initiation p,I/III/IV/ /

0, 1,

kI III IV

e eR M R   2.4×108 17.9 1.3×106 b 

Propagationc 

p,e

, 1,

k

i e i eR M R    2.2×107 17.9 1.2×105 48 

p,m

, 1,

k

i m i eR M R    9.2×105 28.3 2.4×102 49 

Backbiting bb

, ,  i 3
k

i e i mR R   1.6×108 34.7 6.6×103 49 

β-scission of 

MCRk 

β

, 3 3,

k

i m i eR MM R    1.5×109 63.9 1.2×101 35 

β

, 2 2,

k

i m i eR MM R   1.5×109 63.9 1.2×101 35 

β-scission of 

dimethoxy benzyl 

radical 

βo

0, 0, MeBez
kII III h

e eR R   2.0×1013 61.8 3.1×105 47 

Chain transfer to 

monomerj 

trM,e

, 0,

k IV

i e i eR M P R    2.9×105 32.6 2.2×101 50 

trM,m

, 0,

k IV

i m i eR M P R    2.0×105 46.1 3.0×10-1 50 

Terminationd  
app
t,ee ( , )

, , ( )

k i j

i e j e i j jR R P P    1.3×1010 8.4 1.1×109 49 

  
app
t,em ( , )

, , ( )

k i j

i e j m i j jR R P P    4.2×109 6.6 6.1×108 49 

  
app
t,mm ( , )

, , ( )

k i j

i m j m i j jR R P P    9.0×106 5.6 1.8×106 49 

 app
t,00/ / / / / /

0, 0, 0

kI II III IV I II III IV

e eR R P   1.3×1010 8.4 1.1×109 e 

  
app
t,0e ( )/ / /

0, , 0

k iI II III IV

e i e iR R P P    1.3×1010 8.4 1.1×109 f 

  
app
t,0m ( )/ / /

0, , 0

k iI II III IV

e i m iR R P P    4.2×109 6.6 6.1×108 g 
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Regression analysis is performed based on PLP inflection point data, driven by the Marquardt-

Levenberg algorithm following the procedure as detailed in previous work.16,54,55 Previous PLP 

work22 also highlights that parameter variations within experimental margins have a limited 

impact in case the target is only the representation of inflection point data instead of complete 

SEC traces.  

Note that under PLP conditions, migration is virtually non-existent. Based on the currently 

available data on migration rate coefficients,31,34 it follows that on average migration occurs 

once after backbiting. Hence, the shorter chain length fraction of the β-scission product is only 

altered to a very limited extent, with a negligible effect on the inflection point – at least to a 

first approximation. 

Figure 1. Left: Thermal self-initiation of n-butyl acrylate (nBuA) leading to increased monomer 

conversion, after heating toward 413 K in a PLP vial without pulsation in the laser set-up (average values 

from repeat experiments); for PLP experiments only the first minute is relevant at which the contribution 

is negligible shown by pink region; also given is the temperature change; Right: negligible impact of 

macropropagation as illustrated by as good as identical theoretical SEC traces, even if the 

macropropagation rate coefficients are higher than the propagation rate coefficient for ECRs: reaction 

conditions: 413 K and frequency 10 Hz; other parameters from Table 1. 

5.4 Results and discussion 

In the following section, the effect of kβ on the relation of the first inflection point (kp,app; i=1; 

Equation (1)) and the laser pulse frequency is first theoretically evaluated in bulk at 413 K and 

in solution at temperatures below or equal to 413 K. Sufficient sensitivity in view of parameter 
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determination is illustrated so that the proposed method can be applied to nBuA experimental 

data in the next step. 

5.4.1 Effect of kβ on the relation laser pulse frequency and inflection point in bulk at 413 K 

Using the literature values collated in Table 1, it is initially tested in silico if kβ sufficiently 

affects the relation between the laser pulse frequency and the first inflection point (Equation (1) 

with kp,app and i=1). Focus is placed on bulk conditions and a high polymerization temperature 

of 413 K (boiling point of nBuA: 418 K) as it is known that β-scission is only relevant at higher 

temperatures.17,23–27,59–61 Figure 2(top) shows the change in kp,app with the laser pulse frequency 

with kβ halved and doubled with respect to the reference value in Table 1. A 5 to 35 % change 

in kp,app  is observed in the frequency range of 1-50 Hz, highlighting the potential of the method 

proposed toward parameter determination. Note that a higher kβ leads to a lower kp,app at a given 

frequency as the regular chain growth less favourable, in agreement with the lowering of the 

position of the inflection point. 

The log-MMDs and corresponding derivatives at laser pulse frequencies of 10 and 50 Hz are 

shown in Figure 2 (bottom). The MMD shifts towards the left with increasing kβ with the shift 

being more pronounced for the lower frequency of 10 Hz (left figure). By considering very low 

pulse laser frequencies, it is therefore possible to ensure sufficient sensitivity at the selected 

high temperature. Further inspection of Figure 2 (bottom) shows that a secondary inflection 

point can be identified for the covered range of theoretical kβ. This inflection point is, however, 

less clear for a higher kβ and thus the theory suggests that for a strong relevance of β-scission 

only one inflection point is visible. In contrast, under conditions with no relevance of β-scission, 

it is likely that such second inflection points exist. Indeed, previous experimental reports at both 

lower14,16and higher62 frequencies do mention the existence of two inflection points. 
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Figure 2. Top: Simulated effect of the β-scission rate coefficient (kβ) on the shift of the first inflection 

point  with changing pulse laser frequency (Equation (1) with kp,app and i=1) in bulk PLP of n-butyl 

acrylate at 413 K by kinetic Monte Carlo (kMC) simulations using the reference parameters in Table 1; 

kβ is halved and doubled with respect to the reference value (kβ =12.4 s-1): kβ = 6.2 s-1 (red), kβ = 12.4 s-

1 (green) and kβ  = 24.8 s-1 (blue); for a higher kβ the symbols globally shift to lower kp,app, highlighting 

the sensitivity of the proposed method. Bottom: simulated log MMD (dashed lines) and corresponding 

derivative (solid lines) at laser pulse frequency of 10 Hz (bottom left) and 50 Hz (bottom right). 

5.4.2 Effect of kβ on the relation laser pulse frequency and inflection point: solution and at 

temperatures below 413 K 

It is well-accepted that kβ is important at higher polymerization temperatures17,23–27,59–61but the 

actual temperature window is not reliably known and is dependent on a number of factors such 

as concentration of initiator, concentration of monomer, and solvent amount.27,28,61 Thus, a 

sensitivity analysis based on the kinetic parameters in Table 1 was carried out at alternative 

temperatures than 413 K in bulk (Figure 3: top) and in solution (Figure 3:bottom; 383 and 413 

K), implicitly assuming the absence of a solvent effect. The latter can in practice be mimicked 

employing the saturated analogue of the monomer (e.g. butyl propionate for n-butyl acrylate).16    
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Figure 3 (top; bulk) highlights a too low sensitivity of kβ at lower temperatures of 353 and 383 

K in the laser pulse frequency from 1-200 Hz, as the results show negligible change (< 5%; red 

and green bars) in kp,app by a doubling of kβ versus it reference value in Table 1. Sensitivities 

above 5% are recommended to avoid the impact of experimental error. Hence, under bulk 

conditions a high temperature (> 410 K) can only be considered for application of the method 

as at lower temperatures it is very likely that the regression analysis will not be significant. 

The same laser pulse frequency range is used in Figure 3 (bottom left; 413 K) in order to assess 

the influence of the solvent fraction. The highest solvent fraction (ϕs=0.75; black bars) is most 

sensitive to a change in kp,app, including a very high sensitivity (> 10%)  at the lower frequencies 

and still an acceptable sensitivity (10%) at the higher frequencies, i.e. up to 200 Hz. Lower 

solvent fractions (ϕs=0.5 and ϕs=0; purple bar and blue bar, the latter the same as the blue bar 

in the top figure) show in contrast only sufficient sensitivity in the lower frequency range 

(below 50 Hz). Raw log-MMD data to further support these conclusions are provided in 

Appendix D; Figure S5-S8 in Section S4). Furthermore, a similar trend is repeated for the lower 

temperature Figure 3 (bottom right; 383 K). Only by considering a sufficiently high solvent 

fraction (ϕs=0.5; yellow bar) it is possible to obtain at least an acceptable sensitivity for certain 

(lower) frequencies, as e.g. opposed to the bulk case (bulk green bar in Figure 3 (bottom right); 

same green bar as in Figure 3; top) for which even at the lower frequencies it is difficult to have 

a sufficient sensitivity. 

Thus, in order to deduce kβ with the proposed method, one needs to perform experiments in the 

lower frequency range, preferably below 50 Hz. In case a rate coefficient is targeted at a lower 

temperature solution conditions are necessary. In the present work, for illustration purposes, 

focus is on the high temperature of 413 K so that bulk PLP experiments suffice. 
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Figure 3. Simulated change in the first inflection point (Equation (1) with kp,app and i=1) vs. laser pulse 

frequency if the β-scission rate coefficient (kβ) is doubled with respect to reference value (Table 1) in 

PLP of n-butyl acrylate by kinetic Monte Carlo (kMC) simulations. Top: temperature influence at 

solvent volume fraction ϕs of 0 (bulk) and reference kβ of 0.52 sec-1 (353 K), 2.9 sec-1 (383 K), and 12.4 

sec-1 (413 K); Bottom (left): solvent fraction effect at 413 K, with reference kβ of 12.4 sec-1; Bottom 

(right): solvent fraction effect at 383 K, with reference kβ of 2.9 sec-1; these results are complementary 

to the one in Figure 2 where focus only on bulk and 413 K; same colour relates to the same conditions 

(always bulk). 

5.4.3 Application of method to bulk experimental data at 413 K 

Figure 4 depicts the kp,app data as obtained from the experimentally recorded first inflection 

point data for bulk PLP of nBuA at 413 K (experimental SEC traces in Figure S1 of Appendix 

D). The full line represents the model description, using the estimated value of 4.26 × 102 s-1 

for kβ and the literature values for the other reaction steps as specified in Table 1. Good 

agreement can be observed between experiment and model, underpinned by the high value for 

the global significance of the regression (F value of 4.57 × 102 much higher than the tabulated 

one of 6.61). The dashed lines in Figure 4 are the simulations results upon changing kβ according 
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to the edges of the 95% confidence interval (4.26±1.8)×102 s-1, again confirming the 

aforementioned sensitivity.  

Notably the estimated value is higher than previously reported values (6100-1.45102 s-1; all ca. 

140°C),27,28,35,36 which could be attributed to the use of a data set under well-defined conditions, 

in particular obtained without the interference of other higher temperature reactions such as 

macropropagation and thermal self-initiation. Furthermore, the SEC trace data in Figure S1 in 

Appendix D show one inflection point and not two as in Figure 2 (bottom right), where a 

considerably lower kβ is employed. Hence, the findings based on Figure 2, Figure 4, and Figure 

S1 in Appendix D, highlight the relevance of the developed method in the future understanding 

of high temperature acrylate kinetics. 

 

Figure 4. Comparison of experimental and simulated kp,app  (first inflection point) for bulk PLP of nBuA 

at 413 K. For the simulation line, the estimated value of 4.26 × 102 s-1 is used, as determined in the 

present work. To highlight the relevance of the parameter estimation also the simulation lines according 

to the edges of the confidence interval are included: (4.26±1.8) × 102 s-1. Experimental data are averaged 

values for three repeat experiments. 
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5.5 Conclusions 

Access to the β-scission rate coefficient can be provided in the kinetically significant range for 

acrylate radical polymerization by the proposed inflection point based PLP method. The method 

focuses on the lower pulse laser frequencies at elevated temperature and can additionally 

consider experimental data as obtained by varying the solvent volume fraction using the 

saturated analogue of the monomer. Rate coefficients of backbiting and tertiary propagation 

need to be determined a priori at sufficiently low temperatures at which β-scission can be 

ignored. 

The potential of the method has been demonstrated based on bulk PLP data at 413 K, leading 

to the kinetic insight that β-scission proceeds faster than currently anticipated. The present work 

therefore contributes to a better global understanding of acrylate kinetics and is essential in 

future work regarding the relation of the polyacrylate molecular structure and the macroscopic 

properties at higher temperatures. 
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Chapter 6: Particle by particle kinetic Monte Carlo 

tracking of reaction and mass transfer events in 

miniemulsion free radical homopolymerization 

Summary 

In many studies on emulsion polymerization emphasis is on a constant average particle size and 

an average monomer concentration for all particles, and the zero-one or pseudo-bulk 

approximation is applied. Based on kinetic Monte Carlo simulations it is demonstrated that the 

kinetics need to be followed particle by particle while acknowledging the difference in radical 

and monomer concentration per particle in contrast to the conventional Smith-Ewart 

methodology. Focus is on miniemulsion free radical polymerization, with physically reasonable 

values for all parameters and considering interphase mass transfer of initiator and monomer 

molecules and initiator-derived, monomeric and oligomeric radicals, following a diffusion-

based approach. The temporal evolutions of the chain length distribution (CLD) and the particle 

size distribution (PSD) are correlated and affected by radical exit/entry and monomer mass 

transfer. The results unveil unprecedented insight in dispersed phase radical polymerizations 

and open the pathway to a joint PSD and CLD control and design. 

6.1 Introduction 

Emulsion radical polymerizations are extensively used to synthesize dry polymers for rubber 

production or waterborne latexes with applications such as paints, coatings, adhesives and drug 

delivery.1-7 These polymerizations are characterized by an organic phase that is dispersed in an 

aqueous medium in the presence of emulsifier or surfactant. In the industrial (macro)emulsion 

process large monomer droplets (> 1 μm), (monomer swollen) micelles (5-10 nm), and polymer 

nanoparticles (dp = 10-500 nm) are present, making it a much more dynamic process than 
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conventional bulk polymerization, due to the existence of several reaction loci and interphase 

interactions.8-11 

A special class of emulsion radical polymerization is miniemulsion radical polymerization in 

which only small monomer droplets/particles (< 500 nm), as formed under high shear 

conditions with (co)stabilizer, are initially present. The miniemulsion kinetics converting these 

monomer droplets/particles into polymer particles are complicated and characterized by many 

competing phenomena taking place on different length and time scales.12 For example, radicals 

can enter and exit the particles, strongly affecting the chain growth pattern per particle. 

Depending on the initiator type, radicals are generated upon initiator dissociation in the organic 

and/or aqueous phase. In case initiator dissociation takes place in the aqueous phase, polymer 

particles containing a single radical are created upon entry of a radical to a monomer 

droplet/particle or an inactive polymer particle. In case initiator dissociation takes place in a 

particle, two radicals are created simultaneously in a small volume leading to large termination 

probabilities, the so called confined space or single molecule concentration effect13-18, at least 

if exit of radicals is unlikely. However, if exit of one radical occurs, the remaining radical can 

grow significantly and termination is delayed, changing the miniemulsion kinetics and polymer 

properties. It is therefore not surprising that several contradictory postulations have been made 

related to the faith of radicals generated in miniemulsion polymerization.19-26  

In order to resolve this issue kinetic modeling has been applied, in most cases focusing only on 

the calculation of the evolution of the monomer conversion (XM) and the average particle radical 

concentration or equivalently the average number of radicals per particle, �̅�. Often deterministic 

models describing the temporal evolution of the number of particles containing certain numbers 

of one or more radical types have been considered. These models assume an average particle 

size and an average particle monomer concentration which is updated at each integration step.14, 

25, 27-34 Such deterministic description has been originally introduced in the pioneering work of 
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Smith and Ewart35 for emulsion free radical polymerization (FRP) with a water-soluble 

initiator, leading to textbook limiting cases for �̅�. With negligible exit and instantaneous 

termination in small particles, zero-one kinetics (maximally one radical per particle) are 

obtained and �̅� approaches a limiting value of 0.5. With larger particles (e.g. dp > 200 nm), high 

initiator concentrations and/or low (apparent) termination rates, e.g. due to a strong gel effect, 

�̅� becomes much higher than 0.5 and the pseudo-bulk kinetic limit is obtained.12  

For zero-one-two systems (maximally two radicals per particle), Smith-Ewart models have 

been also extended to so-called doubly distinguished particle models to calculate next to the 

monomer conversion evolution the variation of the chain length distribution (CLD). 

Specifically for particles with 2 radicals population balances are integrated accounting for the 

variation of the (two) chain lengths.27-30 Population balance equations describing the temporal 

evolution of the particle size distribution (PSD) due to particle nucleation, coagulation and 

growth have been also considered.36-40 To avoid numerical difficulties these intractable 

multidimensional population balances have been constructed assuming zero-one or pseudo-

bulk kinetics and ignoring the chain length dependent nature of apparent termination kinetics. 

The potential of Smith-Ewart based models has been further highlighted for the more recently 

developed reversible deactivation radical polymerization (RDRP) techniques. For example, 

Zetterlund et al.14, 41, 42 investigated the relevance of compartmentalization for nitroxide 

mediated polymerization (NMP), differentiating between nanoparticles with x macroradicals 

and y nitroxide radicals so that conventional population balances needed to be extended to two-

dimensional Smith-Ewart equations. Further extensions were made by Van Steenberge et al.34 

covering more NMP radical types, leading to 4-dimensional Smith-Ewart equations, and toward 

the calculation of average polymer properties such as the end-group functionality, the number 

average chain length xn, the dispersity, and the short branching content, with the average chain 

length characteristics approximated under the validity of the pseudo-bulk approximation.33  
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Alternatively, stochastic or kinetic Monte Carlo (kMC) modeling has been applied to simulate 

the monomer conversion evolution, �̅�, and the chain length distribution in FRP (mini)emulsion 

polymerization.18, 43-49 For example, for miniemulsion polymerization with water-soluble 

initiators and a single radical type, Tobita et al.18, 44 simulated the reaction events of a single 

particle up to a certain time, calculating the aqueous phase radical concentration based on the 

pseudo-steady state approximation (PSSA). Noise-free results are then obtained by repeating 

the single particle simulation e.g. 200 times. A downside is that the interaction between particles 

due to exit and re-entry phenomena is not fundamentally captured. The concept of single 

particle simulations has been also considered by Arzamendi and Leiza,45 who additionally 

accounted for semi-batch operation modes and the presence of both end- and mid-chain radicals 

with n-butyl acrylate as monomer. Within the field of RDRP, Tobita and Yanase18 developed a 

basic kMC model for reversible addition fragmentation chain transfer (RAFT) polymerization 

and NMP miniemulsion polymerization, considering a single particle size and focusing on the 

effect of this particle size on the polymerization rate, neglecting radical exit, chain transfer 

reactions and chain length dependent termination and again simulating one particle at a time. 

Also Luo et al.47 developed a kMC model for RAFT miniemulsion polymerization, focusing on 

the effect of the RAFT agent on droplet nucleation, however only simulating one particle. 

Furthermore, only a very limited number of kMC studies have focused on the calculation of the 

PSD.46, 50 For instance, Nie et al.,46 developed a kMC model for microemulsion FRP, which is 

commenced with small monomer droplets and micelles, taking into account the PSD variation 

but assuming zero-one kinetics a priori, limiting the applicability of the model. 

Despite the significant progress in the (mini)emulsion modeling field major challenges persist 

as several simplifications are still commonly applied. A first simplification, as highlighted 

above, is that most models assume a limited maximum number of radicals per particle (e.g. 2) 

combined with an average (constant) particle diameter and, hence, do not consider the entire 
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PSD, although this distribution is a key and dynamic emulsion property.37, 51-53 A second 

simplification is that typical models consider an average particle monomer concentration, 

whilst monomer fluctuations along reaction loci are expected as a function of time.54 A third 

simplification relates to the calculation method for mass transfer phenomena. For radical exit 

and entry diffusion-based models are often considered in which the entry and exit rate 

coefficients are a function of the diffusion coefficients and the reaction locus diameter,6, 33, 34, 

55-58 with as a constraint a constant, hence, simplified partitioning coefficient. For monomer 

mass transfer, a diffusion-based approach has also been applied. For example, Rodriguez et 

al.59 considered monomer mass balances describing the evolution of the average monomer 

concentration in the monomer droplets/particles and in the polymer particles while assuming 

an average size for both populations and solving the Smith-Ewart equations for �̅�, taking into 

account monomer mass transfer via diffusion from the droplets and via the aqueous phase to 

the particles or via collisions between droplets and particles. Mostly thermodynamic models 

based on the Morton equation have been considered for the description of monomer mass 

transfer, in which the equilibrium state that is strived for is a function of hard to determine 

Flory-Huggins interaction parameters and the particle diameter.54, 60-65 In these models, focus 

is restricted to the description of the evolution of the PSD as a result of monomer mass transfer, 

e.g. due to Ostwald ripening, either in the absence of polymerization or with simplified reaction 

kinetics. For example, by assuming equal monomer chemical potentials in all droplets/particles 

at each simulation step, neglecting the surface energy contribution, i.e. the size dependent term 

of the Morton equation, and by formally describing �̅�, Jansen et al.54 theoretically showed that 

monomer mass transfer can lead to droplet disappearance and a narrowing of the PSD. Very 

recently Asua65 theoretically described mass transfer of a reactive costabilizer, e.g. comonomer, 

due to Ostwald ripening from small to large nanoparticles (PSD with initially two peaks). In 

this work, a film diffusion model with artificial Flory-Huggins interaction parameters was 
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considered, describing mass transfer of the reactive costabilizer either in the absence of 

polymerization or for different artificial values of the polymerization rate. 

The aforementioned three types of simplifications limit the correctness of (mini)emulsion 

polymerization kinetic simulations. At the micro-scale (Figure 1; top),9 which is conceptually 

defined as an ensemble of molecules so that for a given phase local concentration changes can 

be calculated and local restrictions due to diffusivity changes can be captured, the reaction 

probabilities depend on the monomer concentration. At the meso-scale (Figure 1; top), which 

transcends a local single phase kinetic variation, interphase mass transfer phenomena, e.g. 

radical exit and entry, are particle size dependent.35, 58, 66-68 Hence, from a fundamental point of 

view the (mini)emulsion kinetics and particle growth are coupled in contrast to what is assumed 

upon the consideration of particle averages.  

As computing power grows exponentially over time, it has become worthwhile to develop more 

detailed kMC (mini)emulsion kinetic models avoiding the previously mentioned 

simplifications. Main computational focus has however been on improving the description of 

bulk/solution polymerization benefiting from the introduction of composite binary trees and 

matrix-based representations.69-77
 Very recently, Drache et al.50 developed a kMC model for the 

seeded radical emulsion polymerization of styrene initiated by a water-soluble initiator. While 

in that work the entire PSD is taken into account, which allows to assign higher probabilities 

for entry to larger particles, the Maxwell-Morrison or so-called propagation controlled 

mechanism78 is assumed. This means that radical entry is only allowed once a radical reaches a 

critical chain length and this entry takes place instantaneously and irreversibly, i.e. exit of 

radicals is ignored. For oil-soluble initiators the Maxwell-Morrison approach cannot be applied.  

In the present work, a novel kMC modeling tool is presented allowing the simulation of 

isothermal batch miniemulsion radical polymerization, explicitly taking into account the 

evolution of the PSD and its correlation with the CLD. In contrast to previous work, the kMC 



Chapter 6  103 

modeling tool does not rely on the simplification of an average particle monomer concentration, 

a maximum number of radicals per particle, a Maxwell-Morrison entry mechanism, chain 

length independent termination kinetics or a pseudo-bulk approximation for the calculation of 

chain length characteristics. The kMC model has of course the possibility to include these 

simplifications. Indeed, in the first part of this work an average particle monomer concentration, 

a Mawell-Morrison entry mechanism and chain length independent termination kinetics are 

considered to benchmark the kMC model to a conventional Smith-Ewart model. In the second 

part of this work, the kMC modeling tool is applied in its full detail, i.e. all the aforementioned 

simplifications are avoided. As such, it is demonstrated that the developed model opens the 

window to a much more detailed understanding of miniemulsion FRP kinetics and particle 

growth and that the interaction of micro- and meso-scale phenomena is essential to fully design 

radical dispersed phase polymerizations. 

6.2 Model development 

In the present work, a novel kMC tool is developed to describe the kinetics and particle growth 

for dispersed phase radical polymerization involving nanosized reaction loci. For illustration 

purposes focus is on isothermal batch miniemulsion FRP in which the initial state is a 

distribution of small monomer droplets (< 500 nm) with conventional radical initiator that can 

thermally decompose. The novelty lies in the explicit consideration of kinetic non-uniformities 

due to differences in particle size, such as the temporal evolution of the number of radicals and 

chain growth, and of the interaction of micro- and meso-scale phenomena.  

This implies that the micro-scale reaction events in the organic and aqueous phase and meso-

scale mass transfer phenomena between those phases are sampled - for the first time - particle 

by particle, as conceptually illustrated in Figure 1 (top). In contrast to previous modeling 

studies,14, 25, 27-34, 44, 46, 48 the particle kinetics are not tracked assuming a constant average 

particle size and an average particle monomer concentration that is updated per integration step, 
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and no zero-one or pseudo-bulk approximation is needed to assess the average chain length 

characteristics. Instead, at each time the interplay of the complete CLD and the complete PSD 

is captured (Figure 1; bottom). Hence, observed chain length and particle size averages can be 

retrieved a posteriori as the actual individual distributions are always available. The core of the 

model is the Gillespie algorithm79 as commonly applied to stochastically describe the kinetics 

of bulk/solution polymerization, with storage and execution of events conducted based on 

composite binary trees as introduced by Van Steenberge et al.34 More details on the kMC 

modeling tool are provided in Appendix E, including a flow chart (Figure S1) with the essential 

model implementations and extensions with respect to bulk/solution kMC models as previously 

developed. 
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Figure 1. Top: illustration of the principle of the novel kinetic Monte Carlo (kMC) modeling tool to 

account for consecutive reaction and mass transfer events in miniemulsion free radical polymerization 

explicitly accounting for differences in particle size and composition (e.g. number of radicals and 

monomer concentration). Six consecutive events are shown, starting at event i (at a certain time t): 

dissociation in particle 2; chain initiation in particle 4; initiator radical exit from particle 3; initiator 

radical entry to particle 4; termination in particle 2; several (lumped) monomer entries to particle 4 

altering the particle size; and entry of an initiator radical; after each event the time step is stochastically 

increased, i.e. steps 2 – 6 in Figure S1 of Appendix E are executed; Bottom: examples of model output, 

including the particle size distribution (PSD) and the chain length distribution (CLD) per particle size 

(next to the global one) as a function of time (here simplified case with initially only two particle 

diameters: 100 and 200 nm). The strength lies in the interactive calculation of CLD and PSD, i.e. the 

interplay between micro- and meso-scale phenomena. 

An overview of the reactions and mass transfer events is shown in Table 1, with diffusional 

limitations on the micro-scale captured by apparent rate coefficients9, 80-84 and meso-scale mass 

transfer coefficients calculated with a diffusion-based approach. 6, 33, 34, 55-58 Most important are 

diffusional limitations on termination for which chain length and monomer conversion 

dependent apparent rate coefficients are used,85 as calculated based on the RAFT-CLD-T 

technique (Equation (S5)-(S9) in Appendix E). At each time step, each termination possibility 
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between a radical of chain length i and chain length j (kt,app (i,j)) in a certain particle is 

considered explicitly. For simplicity, only termination by recombination is considered. For all 

model parameters, typical orders of magnitude are employed, with some simplifications in view 

of the conceptual framework of the work, e.g. the same (intrinsic) reactivity for organic and 

aqueous phase reactions. For simplicity diffusional limitations on propagation are ignored as 

even under bulk conditions these are likely only relevant at very high monomer conversion (> 

0.95).81 

First the kMC tool is benchmarked to a conventional Smith-Ewart model, which assumes an 

average particle size and an average monomer concentration per particle (formally no monomer 

fluctuations over the particles) at each integration step (case of a water soluble initiator). Next 

an oil-soluble initiator is considered, as envisaged by a high partition coefficient (ΓI2 = 100 = 

[I2,org]eq/[ I2,w]eq). Exit and entry propensities are calculated as outlined in the emulsion research 

field.6, 37, 55-58 Partitioning of all radical types is allowed, with the exception of macroradicals 

with a chain length larger than the critical one for solubility in the aqueous phase (isol = 5; 

typical value37). For illustration purposes, a bimodal initial monomer droplet size distribution 

is assumed, consisting of two monodisperse peaks relating to an initial diameter (dp,0) of 100 

nm and 200 nm leading to an equal total volume of both particle types. The difference in density 

between monomer and polymer is neglected for simplicity.           
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Table 1. Reactions and mass transfer events for the simulation of isothermal miniemulsion FRP (Figure 3-11); for benchmark 

to Smith-Ewart model (Figure 2): no mass transfer events except entry of R4. For illustration purposes, orders of magnitude for 

all parameters24, 25, 31, 85-87 and the same (intrinsic) reactivity for reactions in the organic and aqueous phase; initiator efficiency 

of 1 for simplicity; the reported k for entry and exit events corresponds to a particle diameter of 100 nm (general formulas: see 

footnotes). Also specified are the time scales at t = 0 min for a particle diameter of 100 and 200 nm (formulas for these scales: 

Table S1 in Appendix E); the partition coefficients (organic over water) are literature based: 𝛤𝐼2 = 100, ΓI = 10, ΓM = 800, 𝛤𝑀∗= 

800, ΓR (i ≤ isol) = 10, and ΓR (i > isol) = ∞ with isol the maximum chain length of a radical present in the aqueous phase (5). 

Event Equation 
k 

(dp = 100 nm) 

τ0 [s] 

(dp= 100 nm) 

τ0 [s] 

(dp= 200 nm) 

Reactions in particles     

Dissociation 𝐼2,𝑝
𝑘𝑑,𝑝
→  2 𝐼𝑝 10-5 s-1 105 105 

Chain initiation 𝐼𝑝 +𝑀𝑝
𝑘𝑖,𝑝
→ 𝑅1,𝑝 103 L mol-1 s-1 1.3 10-4 1.3 10-4 

 𝑀𝑝
∗ +𝑀𝑝

𝑘𝑖,𝑝
→ 𝑅1,𝑝 103 L mol-1 s-1 1.3 10-4 1.3 10-4 

Propagation 𝑅𝑖,𝑝 +𝑀𝑝
𝑘𝑝,𝑝
→  𝑅𝑖+1,𝑝 102 L mol-1 s-1 1.3 10-3 1.3 10-3 

Chain transfer to monomer 𝑅𝑖,𝑝 +𝑀𝑝
𝑘𝑡𝑟𝑀,𝑝
→    𝑀𝑝

∗ + 𝑃𝑖,𝑝 10-2 L mol-1 s-1 1.3 101 1.3 101 

Termination a 𝑅𝑖,𝑝 + 𝑅𝑗,𝑝
𝑘𝑡,𝑎𝑝𝑝,𝑝
→     𝑃𝑖+𝑗,𝑝 109 L mol-1 s-1 b 3.2 10-4 2.5 10-3 

Reactions in water     

Dissociation 𝐼2,𝑤
𝑘𝑑,𝑤
→  2 𝐼𝑤 10-5 s-1 105 105 

Chain initiation 𝐼𝑤 +𝑀𝑤
𝑘𝑖,𝑤
→  𝑅1,𝑤 103 L mol-1 s-1 1.0 10-1 1.0 10-1 

 𝑀𝑤
∗ +𝑀𝑤

𝑘𝑖,𝑤
→  𝑅1,𝑤 103 L mol-1 s-1 1.0 10-1 1.0 10-1 

Propagation 𝑅𝑖,𝑤 +𝑀𝑤
𝑘𝑝,𝑤
→  𝑅𝑖+1,𝑤 102 L mol-1 s-1 1.0 100 1.0 100 

Chain transfer to monomer 
𝑅𝑖,𝑤 +𝑀𝑤

𝑘𝑡𝑟𝑀,𝑤
→    𝑀𝑤

∗

+ 𝑃𝑖,𝑤 
10-2 L mol-1 s-1 1.0 104 1.0 104 

Termination a 𝑅𝑖,𝑤 + 𝑅𝑗,𝑤
𝑘𝑡,𝑎𝑝𝑝,𝑤
→     𝑃𝑖+𝑗,𝑤 109 L mol-1 s-1 a 1.6 10-1 1.6 10-1 

Phase transfer events     

Entry of I2 b 𝐼2,𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝐼2
→      𝐼2,𝑝 6 105 L mol-1 s-1 2.7 102 1.4 102 

Entry of I b 𝐼𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝐼
→     𝐼𝑝 6 105 L mol-1 s-1 2.7 102 1.4 102 

Entry of M  b 𝑀𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝑀
→     𝑀𝑝 6 105 L mol-1 s-1 2.7 102 1.4 102 

Entry of M * b 𝑀𝑤
∗
𝑘𝑒𝑛𝑡𝑟𝑦,𝑀∗

→      𝑀𝑝
∗ 6 105 L mol-1 s-1 2.7 102 1.4 102 

Entry of Ri b,c 
𝑅𝑖,𝑤

𝑘𝑒𝑛𝑡𝑟𝑦,𝑅
→     𝑅𝑖,𝑝 6 105 L mol-1 s-1 c 2.7 102 1.4 102 

Exit of I2 d 𝐼2,𝑝
𝑘𝑒𝑥𝑖𝑡,𝐼2
→    𝐼2,𝑤 2 10-2 s-1 5.2 101 2.1 102 

Exit of I d 𝐼𝑝
𝑘𝑒𝑥𝑖𝑡,𝐼
→   𝐼𝑤 2 10-1 s-1 5.2 100 2.1 101 

Exit of M  d 𝑀𝑝
𝑘𝑒𝑥𝑖𝑡,𝑀
→    𝑀𝑤 2 10-3 s-1 4.2 102 1.7 103 

Exit of M * d 𝑀𝑝
∗
𝑘𝑒𝑥𝑖𝑡,𝑀∗
→     𝑀𝑤

∗  2 10-3 s-1 4.2 102 1.7 103 

Exit of Ri c,d 
𝑅𝑖,𝑝

𝑘𝑒𝑥𝑖𝑡,𝑅
→    𝑅𝑖,𝑤 2 10-1 s-1 c 5.2 100 2.1 101 

a apparent termination coefficients (RAFT-CLD-T): Equation (S5)-(S9) in Appendix E;85 αS = 0.5 , αL = 0.15, αgel = mp–0.1; 

iSL = 30, igel = 3 mp
–2; kt,app for i = j = 1 and mp = 0 (no polymer) is only reported here. 

b kentry,I/M*/R = Centry,I/M*/R NA DI/M*/R,w dp with Centry,I/M*/R = 10-5 and DI/M*, = DR,w (i = 1) = 10-7 dm2 s-1; DR,w(i): Equation (S10) 

in Appendix E. 
c value for i = 1 is reported here. 
d kexit,I/M*/R = Cexit,I/M*/R DI/M*/R,p dp

-2 with Cexit,I/M*/R = 6 Centry,I/M*/R DI/M*/R,w π-1 ΓI/M*/R
-1 DI/M*/R,p

-1 (references6, 33, 34, 55-58); DR,p 

(i = 1) = 10-7 dm2 s-1; DR,p(i): Equation (S10) in Appendix E.87 
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6.3 Results and Discussion 

6.3.1 Benchmark to a conventional Smith-Ewart model: average polymerization 

characteristics based on the simplification of one particle size and an average particle 

monomer concentration 

A benchmark of the novel kMC modeling tool is first performed to a conventional Smith-Ewart 

based model for miniemulsion FRP with a basic reaction scheme considering a water-soluble 

initiator, and assuming intrinsic kinetics, a constant particle diameter (50 nm), an average 

particle monomer concentration (no monomer fluctuations over particles), and a Maxwell-

Morrison entry mechanism. The basic reaction scheme implies that only dissociation, chain 

initiation and propagation in the aqueous phase, entry of macroradicals to the particles (i=4) 

and propagation and termination in the particles are taken in account. Hence, in Table 1, the 

rate coefficients for chain transfer to monomer (both in the aqueous and organic phase), for 

termination in the aqueous phase and for exit and entry of initiator and monomeric radicals as 

well as initiator and monomer molecules are given a zero value.  

Focus is on the simulation of temporal evolution of �̅�, XM, and the ‘dead’ polymer number and 

the mass average chain length xn and xm. For the kMC model the flowsheet (Figure S1 of 

Appendix E) is used but with the simplification that the particles are overruled by average 

monomer concentrations each stochastic time step. The deterministic equations of the Smith-

Ewart model (Equation (S11)-(S21)), in addition to the associated moment equations for the 

determination of xn and xm (Equation (S22)-(S29)), are given in Appendix E.  
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Figure 2. Successful benchmark with the conventional Smith-Ewart based model (details in Appendix 

E) under the constraint/simplification of the absence of monomer fluctuations over the particles (average 

monomer concentration), a single particle size (50 nm), and intrinsic kinetics: comparison of the average 

number of radicals per particle �̅� (a), monomer conversion XM (b), the ‘dead’ polymer number average 

chain length xn (c), and the mass average chain length xm (d) for an oil-in-water miniemulsion free radical 

polymerization with a water-soluble initiator ; [I2]w = 10-3 mol L-1, [I2]p = 0 mol L-1, [M]w = 10-2 mol L-

1, [M]p = 8 mol L-1; kd,w = 10-5 s-1, ki,w = 103 L mol-1 s-1, kp,w = 102 L mol-1 s-1, Centry,R = 10-5, kp,p = 103 L 

mol-1 s-1, kt,p = 109 L mol-1 s-1; all other rate coefficients listed in Table 1 are given a value equal to zero: 

1023 particles are stochastically simulated; Smith-Ewart model (black dashed lines): Equation (S11)-

(S29) in Appendix E; kMC model (green full lines): the flowsheet (Figure S1 of Appendix E) is used 

but with the simplification that the particles are overruled by average monomer concentrations. Figure 

S2 of Appendix E shows the evolution of XM, xn and xm if monomer fluctuations are accounted for (i.e. 

no average particle monomer concentration assumed): deviations are observed, highlighting the 

relevance of the developed model. 

The excellent benchmark between the simplified kMC model (green full lines) and the Smith-

Ewart model (dashed black lines) results are shown in Figure 2 under typical initial conditions: 
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[I2]w = 10-3 mol L-1, [I2]p = 0 mol L-1, [M]w = 10-2 mol L-1, and [M]p = 8 mol L-1. From Figure 2 

(a) it follows that �̅� initially increases as a function of time as entry more and more creates 

active particles with one radical. This increase converges toward a limiting value of 0.5, 

consistent with the large termination rate coefficient (no diffusional limitations) and the absence 

of radical exit, i.e. a miniemulsion is obtained in which as soon as a particle contains two 

radicals termination takes place. The low xn (Figure 2 (c)) and xm (Figure 2 (d)) values at low 

reaction times (t < 200 s) imply that radicals that entered a same particle only had a limited time 

for chain growth. At higher times (t > 200 s), active particles with one radical had more time 

for chain growth before entry causes termination, consistent with the higher xn and xm values. 

From Figure 2 (b) it can be observed that the increase in �̅� for t < 750 s leads to a fast increase 

in XM. For t > 750 s the increase in XM becomes lower as the decrease in monomer concentration 

in the particles becomes dominant, which also explains the maximum observed in the evolution 

of xn (Figure 2 (c) and xm (Figure 2 (d)). 

It is important to note that a different evolution of XM, xn and xm are obtained if the monomer 

fluctuations over the particles are accounted for in the kMC model, as shown in Figure S2 of 

Appendix E (blue lines). This clearly indicates the need for the novel modeling methodology 

with an explicit consideration of monomer mass transfer. 

6.3.2 Beyond the conventional description: interaction of CLD and PSD with monomer 

fluctuations 

To illustrate the importance of exit and entry of the radical species (e.g. initiator and vinyl 

radicals) and non-radical species (e.g. monomer and initiator) in isothermal miniemulsion FRP 

initiated by an oil-soluble initiator (model parameters: Table 1), a stepwise extension of the 

kMC model is considered, as illustrated in Table 2. In a first step (case 1 in Table 2), initiator 

dissociation, chain initiation, propagation, chain transfer to monomer, and termination are 

considered in both the organic and aqueous phase, assuming intrinsic kinetics. In the next three 
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steps (case 2-4 in Table 2), respectively exit/entry of initiator radicals, monomeric radicals 

formed via chain transfer to monomer and macroradicals are consecutively added as reaction 

possibility. In case 5 and 6 in Table 2, also exit/entry of respectively monomer, and monomer 

and initiator is considered. Finally, chain length and monomer conversion dependent apparent 

termination kinetics are taken into account (case 7 in Table 2). Note that for the cases with 

monomer transport (case 5-7 in Table 2) a time dependent PSD is obtained, whereas in the other 

cases (cases 1-4 in Table 2) the initial bimodality is theoretically maintained. 

Table 2. Theoretical cases to illustrate in a step-wise manner the relevance of each exit/entry in Table 

1, and the apparent chain length and monomer conversion dependence for termination; hence, only in 

the last case (case 7) all phenomena of Table 1, including apparent termination kinetics, are accounted 

for: Figure 3-11 gradually capture this increase in complexity. 
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Importance of exit and entry of initiator radicals  

The effect of exit and entry of initiator radicals on the miniemulsion FRP kinetics, starting from 

a bimodal PSD with peaks at 100 nm and 200 nm (equal volume fraction for both particle types) 

and an oil-soluble initiator, is illustrated in Figure 3. This figure shows for case 1 in Table 2 (no 

exit/entry of any species; red lines) and case 2 in Table 2 (exit/entry of only initiator radicals; 

green lines) the temporal evolution of the concentration of initiator (a), ‘dead’ polymer (b), 

monomer (c), and the ‘dead’ polymer number average chain length xn (d) for particles having a 

dp,0 of 100 nm (full lines) and 200 nm (dotted lines). Note that in the remainder of the text this 

line type distinction (full lines for dp,0 = 100 nm and dotted line for dp,0 = 200 nm) is always 

followed. 

As initiator dissociation is an irreversible unimolecular reaction, the decrease of the initiator 

concentration is the same for both particle sizes and the temporal evolution of the initiator 

concentration is unaffected by exit/entry of initiator radicals (coinciding lines for case 1 and 

case 2 in Figure 3 (a)). On the other hand, the temporal evolution of xn (Figure 3 (d)) is strongly 

affected by exit/entry of initiator radicals. In case 1 (without exit/entry) much lower xn values 

are obtained compared to case 2 (with exit/entry of I). The effect also depends on the particle 

size. In case 1 (without exit/entry) a smaller particle size leads to lower xn values whereas the 

opposite is true for case 2.  

To understand these observations for xn focus should be on the number of radicals in a particle 

of 100 and 200 nm (Figure S3 and S4 in Appendix E) and on the time scales for reactions and 

phase transfer events. Due to the slow rates of initiator dissociation - in the absence of exit/entry 

(case 1) - in both particle types it is very likely that two radicals generated by a dissociation 

event are terminated before two new radicals are generated at a next dissociation event. Hence, 

the number of radicals can expected to be zero or two (Figure S3 of Appendix E).  
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Figure 3. Importance of exit and entry of initiator radicals by comparing results for case 1 (red lines; no 

exit/entry) and 2 (green lines; exit/entry of initiator radicals) in Table 2 with initially a bimodal particle 

size distribution with two peaks at dp,0 = 100 and 200 nm; temporal evolution of (a) the initiator 

concentration, (b) concentration of ‘dead’ polymer, (c) monomer concentration, (d) ‘dead’ polymer 

number average chain length; lower graphs of (e) monomer concentration and (f) number average chain 

length are also shown; model parameters: Table 1; [I2]p,0 = 10-2 mol L-1, [I2]w,0 = 10-4 mol L-1, [M]p,0 = 8 

mol L-1, [M]w,0 = 10-2 mol L-1; number of particles in simulation volume: 126; volume fraction of aqueous 

phase = 0.7, volume fraction of 100 nm particles is equal to volume fraction of 200 nm particles = 0.15; 

112 particles of 100 nm and 14 particle of 200 nm initially; the simulation lines are the averages over 

the particles with that size; full lines: dp,0 = 100 nm; dashed lines: dp,0 = 200 nm. 

Furthermore, the time scales in the beginning of the miniemulsion polymerization ([𝑀] ≈

[𝑀]0; column 4 and 5 in Table 1) for dissociation, chain initiation, propagation, and chain 

transfer to monomer are the same for both particle sizes. However, if two radicals are present 

in a 100 and 200 nm particle, the time scale for termination is 8 times smaller in the 100 nm 

particle due to the so-called confined space effect or single molecule concentration effect,13-18 
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leading to a lower xn in those particles. This also explains the slower decrease in monomer 

concentration in the 100 nm particles for case 1 (Figure 3 (c) and Figure 3 (e)).  

With exit/entry of initiator radicals (case 2) the situation is different. If one of the two initiator 

radicals generated upon initiator dissociation can exit the particle or if an initiator radical in the 

aqueous phase can enter an empty particle, particles can contain only one radical, as illustrated 

in Figure S4 in Appendix E. Since this radical cannot terminate until another radical enters the 

particle or radicals are formed through a dissociation event in the particle, chain stoppage is 

delayed. This leads to much higher xn values in case 2 (with exit/entry of I) compared to case 1 

(without exit/entry of I). Since the time in between two individual dissociation reaction events 

is smaller in 200 nm particles than in 100 nm particles, due to the higher initial amount of 

initiator molecules, and radical entry to 200 nm particles is faster than to 100 nm particles, 

termination occurs faster in a 200 nm particle and xn is now lower in a larger particle. 

Consistently, for case 2, a slower decrease of the monomer concentration is observed for 200 

nm particles (Figure 3 (c)) than for 100 nm particles. 

Note that in case 2 (with exit/entry of I) chain initiation can no longer occur in the 100 nm 

particles after ca. 1200 min, as all monomer has been already consumed (Figure 3 (c); full green 

line). Hence, in those particles macroradicals are no longer generated and termination can no 

longer occur, leading to a stagnation of the ‘dead’ polymer concentration (full green line in 

Figure 3 (b)).  

Close inspection of Figure 3 (d) reveals that in case 2 (i.e. case with entry/exit of I; green lines) 

at one point a maximum is obtained for xn, with this maximum being more pronounced for the 

particles with a dp,0 of 100 nm. The existence of this extremum can be rationalized as follows. 

In the very beginning of the polymerization, the only termination events taking place are 

between radicals originating from the same particle. Hence, initially only ‘dead’ polymers of 

very short chain length result, due to a very strong confined space effect. For larger times, also 
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termination after entry of a radical to a particle containing only one radical can take place, 

leading to the formation of ‘dead’ polymer with a much higher chain length (cf. delayed 

termination), leading to an increase of the (cumulative) xn value. This increase in xn is however 

counteracted by the decreasing monomer concentration which lowers the propagation rate and, 

hence, the additional chain lengths, explaining the observed maximum. 

The developed modeling methodology also allows to access CLDs per particle and, hence, also 

the overall (average) CLD per particle size. For a time of 3000 min, the overall (number) CLD 

for particles with a dp,0 of 100 (full line) and 200 nm (dashed line) are shown in Figure 4 (a) for 

case 1 (no exit/entry; red lines). In agreement with the higher xn observed for the 200 nm 

particles compared to the 100 nm particles (Figure 3 (d); full versus dashed red line) the CLD 

of the 200 nm particles displays a more extended tail. Upon switching to case 2 (with exit/entry 

of initiator radicals; green lines), as shown in Figure 4 (b), both the CLDs of the 100 and 200 

nm particles display a pronounced tail, as also envisaged by the much lower cumulative number 

fractions at the lower chain lengths for case 2 (Figure 4 (d); cumulative distributions of Figure 

4 (b)) compared to case 1 (Figure 4 (c); cumulative distributions of Figure 4 (a)). This is also 

consistent with the significantly higher xn values in case 2 compared to case 1, as observed in 

Figure 3 (d), both for dp,0 = 100 nm and dp,0 = 200 nm. Also note for case 2 (Figure 4 (d)) the 

lower cumulative number fractions for the high chain lengths (103 – 104) for dp,0 = 100 nm 

compared to 200 nm, explaining again the higher xn values for the former particles (Figure 3 

(d)).   
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Figure 4. (a) Overall chain length distribution (CLD) for dp,0 = 100 nm (full line; average for all those 

particles) and 200 nm (dashed line) at t = 3000 min for case 1 (no exit/entry) in Table 2; initial 

conditions: caption Figure 3; (b) corresponding figure for case 2 (again t = 3000 min; with exit/entry of 

initiator radicals); (c) cumulative distributions of (a); (d) cumulative distributions of (b). 

Importance of exit and entry of monomeric radicals  

In dispersed phase systems the importance of chain transfer to monomer and the associated exit 

of the monomeric radical fragment, may affect the chain growth.88-90 As indicated in Table 2, 

in case 3 (blue lines) also exit and entry of monomeric radicals formed via chain transfer to 

monomer are included next to exit and entry for initiator radicals (case 2; green lines). Since 

initiator dissociation is unimolecular and irreversible, inclusion of these two phase transfer 

events does not affect the temporal evolution of the initiator concentration (Figure 5 (a)). Figure 

5 (b)-(c) indicate that the temporal evolution of the concentration of ‘dead’ polymer and 

monomer is almost unaffected. The same is true for xn (Figure 5 (d)). These similarities can be 

explained by the larger time scale for exit of monomeric radicals than for chain initiation (Table 

2; column 4 and 5). 
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Figure 5. Importance of exit and entry of monomeric radicals formed via chain transfer to monomer by 

comparing case 2 (green lines; only exit and entry of initiator radicals) and case 3 (blue lines; case 2 + 

exit and entry of the monomeric radicals) in Table 2; temporal evolution of (a) the initiator concentration, 

(b) concentration of ‘dead’ polymer, (c) monomer concentration, and (d) ‘dead’ polymer number 

average chain length; model parameters: Table 1; initial conditions: see caption Figure 3; coinciding of 

blue and green lines.  

Importance of exit and entry of macroradicals  

In case 4 in Table 2 also exit and entry of macroradicals are included next to exit and entry of 

initiator and monomeric radicals as formed by chain transfer to monomer. A critical chain 

length isol of 5 above which macroradicals can no longer exit a particle is considered (i > isol: 

Cexit,R(i) = 0, ΓR(i) = ∞; Table 1). Both for exit (i ≤ isol) and entry (all i) of macroradicals chain 

length dependent diffusion coefficients are calculated based on Equation (S10) in Appendix E. 

In Figure 6, a comparison is made between case 3 (blue lines; exit and entry of initiator radicals 

and monomeric radicals) and case 4 (purple lines; case 3 + exit/entry of macroradicals), again 

considering the initial miniemulsion characteristics as covered in Figure 3 and 5. Analogously 

to the previous cases, the temporal evolution of the initiator concentration (Figure 6 (a)) is not 
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affected, again reminding that initiator dissociation is unimolecular and irreversible. Since the 

time scale for radical exit is smaller for smaller particles, exit of macroradicals is more 

important for the 100 nm particles. Hence, the effect of additionally considering exit and entry 

of macroradicals will be the largest for the 100 nm particles. This explains the slightly faster 

decrease of the monomer concentration in the 100 nm particles for case 4 (Figure 6 (c)) and the 

slightly higher xn values (Figure 6 (d)), as exit of a macroradical (next to an initiator radical) 

from a particle containing two radicals leads to a particle containing only one radical in which 

bimolecular termination cannot occur. It can also be observed that the stagnation of the ‘dead’ 

polymer concentration evolution (Figure 6 (b)) for the 100 nm particles, due to the absence of 

monomer (Figure 6 (c)), is partially counteracted if macroradicals can enter the 100 nm particles 

(t > 1200 (blue line) vs. 1500 min (purple line)). 
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Figure 6. Importance of exit and entry of macroradicals by comparing case 3 (blue lines; exit and entry 

of initiator radicals and monomeric radicals formed by chain transfer) and case 4 (purple lines; case 3 + 

exit/entry of macroradicals) in Table 2; critical chain length above which radicals can no longer exit is 

5 (Table 1); temporal evolution of (a) the monomer concentration, (b) concentration of ‘dead’ polymer, 

(c) monomer concentration, and (d) ‘dead’ polymer number average chain length; model parameters: 

Table 1; initial conditions: see caption Figure 3. 

Importance of exit and entry of monomer molecules  

As illustrated in Figure 3 (c), Figure 5 (c) and Figure 6 (c) (case 2-4; all with exit/entry of 

radicals but not with exit/entry of monomer molecules), a particle size dependent evolution of 

the monomer concentration is obtained due to the different exit/entry rate of radicals from/to 

particles of a different size. This leads in practice to a driving force for monomer transport, 

which is accounted for in case 5 in Table 2 (exit/entry of I, M* and Ri (i ≤ 5) and monomer 

molecules). The effect on the miniemulsion characteristics is displayed in Figure 7, with focus 

on the comparison between results for case 4 (purple lines; exit/entry of I, M* and Ri (i ≤ 5)) 

and case 5 (black lines; case 4 + exit/entry of monomer). 
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Figure 7. Importance of exit and entry of monomer molecules by comparing case 4 (purple lines; 

exit/entry of I, M* and Ri (i ≤ 5)) to case 5 (black lines; case 4 + exit/entry of monomer molecules) in 

Table 2; temporal evolution of (a) the initiator concentration, (b) concentration of ‘dead’ polymer, (c) 

monomer concentration, and (d) ‘dead’ polymer number average chain length; model parameters: Table 

1; initial conditions: see caption Figure 3; as monomer mass transfer is accounted for in case 5 a dynamic 

particle size distribution (PSD) different from the initial bimodal one is obtained (Figure 8). The black 

lines in this figure represent thus at any time the average contribution for the particles originally having 

a size of 100 and 200 nm. 

It follows that this monomer transfer is fast enough so that similar monomer concentrations per 

particle size are obtained (almost coinciding black lines in Figure 7 (c)). Based on the 

comparison with the lines for case 4 (no exit/entry monomer), overall monomer is transferred 

from particles with dp,0 = 200 nm to particles with dp,0 = 100 nm, leading to a decrease of the 

(volume average) diameter of the dp,0 = 200 nm particles and an increase of the (volume 

average) diameter of the dp,0 = 100 nm particles, as illustrated in Figure 8 (a). This explains the 

decrease in initiator concentration for the dp,0 = 100 nm particles (diluting) and the increase in 

initiator concentration for the dp,0 = 200 nm (concentrating) particles going from case 4 to case 

5 (Figure 7 (a)). Analogously, the same observations are made for the ‘dead’ polymer 
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concentration (Figure 7 (b)). As with monomer transfer the monomer concentration in the dp,0 

= 100 nm particles is higher in case 5 compared to case 4, higher xn values are obtained for 

these particles (Figure 7 (c)). Accordingly, the lower monomer concentration for the dp,0 = 200 

nm particles in case 5 leads to lower xn values. 

 

Figure 8. (a) Evolution of the volume average diameter for the particles with dp,0 = 100 nm (blue line) 

and dp,0 = 200 nm (red line) for case 5 (exit/entry of radicals I, M* and Ri (i ≤ 5) + exit/entry of M); (b) 

dp of the individual particles in case 5 at a monomer conversion Xm of 0% (blue symbols; bimodal 

initialization with dp,0 = 100 and 200 nm ), 25% (red symbols), 50% (purple symbols) and 100% (yellow 

symbols); from this subplot the particle size distributions (PSDs) depicted in (c) are obtained; (d) chain 

length distributions (CLDs) for case 5 at XM = 100%; conditions: caption Figure 3. 

Importantly, as monomer transport takes place between the organic and aqueous phase, the PSD 

becomes dynamic and, hence, for case 5 (with monomer transport) the kMC model highlights 

contributions of much more particle sizes than just the two initial ones, as confirmed in Figure 

8 (b) displaying the diameter of individual particles at a monomer conversion (XM) of 0, 25, 50, 

and 100%. It follows that after 25% monomer conversion (red symbols) the theoretical bimodal 

initial PSD (XM = 0%, blue symbols) is perturbed, with some particles having a higher dp due 
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to a net monomer supply, while other particles have a lower dp as they supplied monomer to 

other particles through multiple interactions between the aqueous and organic phase. Note that 

some dp,0 = 100 nm particles did not undergo any significant polymerization, as detectable with 

the kMC model. Such particles only supplied monomer to other particles, explaining the very 

low dp contributions (red symbols) in Figure 8 (b). In agreement with Figure 8 (a), it can also 

be noted that globally the diameter of particles with initially a particle diameter of 100 nm 

increases, while the diameter of particles with initially a particle diameter of 200 nm decreases. 

It can be further observed in Figure 8 (b) that the PSD progressively narrows (less scatter in y-

direction) if the monomer conversion increases to 50% (purple symbols) and 100% (yellow 

symbols), consistent with the work of Jansen et al.54 This can also be seen in Figure 8 (c), in 

which the actual PSD is given in the form of a histogram. Figure 8 (d) represents the final CLDs 

for particles with dp,0 = 100 nm and dp,0 = 200 nm and the corresponding global and cumulative 

ones. Clearly, the global CLD is influenced by the PSD evolution as both original populations 

give rise to different contributions.  

Importance of exit and entry of initiator molecules  

As monomer transport in case 5 (exit/entry of I, M*, Ri (i ≤ 5), and M) makes that globally small 

particles become larger and large particles become smaller, a decrease of the initiator 

concentration in the small particles and an increase in the large particles is theoretically obtained 

(Figure 7 (a)). These gradients in initiator concentration imply that mass transfer of initiator 

molecules needs to be also accounted for, which is done in case 6 in Table 2 (case 5 + exit/entry 

of I2). To highlight this extra complexity Figure 9 is included, highlighting differences between 

case 5 (black lines) and case 6 (orange lines).  
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Figure 9. Importance of exit and entry of initiator molecules by comparing case 5 (exit/entry of radicals 

I, M*, Ri (i ≤ 5) and M) and case 6 (case 5 + exit/entry of initiator molecules I2); temporal evolution of 

(a) the initiator concentration, (b) concentration of ‘dead’ polymer, (c) monomer concentration, and (d) 

‘dead’ polymer number average chain length; model parameters: Table 1; initial conditions: see caption 

Figure 3. 

If mass transfer of initiator molecules is considered (case 6), the temporal evolution of the 

initiator concentration (Figure 9 (a)) is almost the same for the particles with dp,0 = 100 and 200 

nm. Similarly, also the difference between the evolution of the ‘dead’ polymer concentrations 

for both initial particle sizes is more similar in case 6 compared to case 5 (Figure 9 (b)). While 

no significant effect of phase transfer of initiator molecules on the temporal evolution of the 

monomer concentration (Figure 9 (c)) is observed, the higher initiator concentration for the dp,0 

= 100 nm particles in case 6 (higher located orange full line) leads to a faster initiator 

dissociation and thus a faster termination. These increases explain the lower xn values in case 6 

compared to case 5 (Figure 9 (d); lower located orange full line). For the dp,0 = 200 nm particles, 

the initiator concentration is lower in case 6 compared to case 5 and, hence, the reverse is true 

implying higher xn values for the dp,0 = 200 nm particles in case 6 compared to case 5. Overall 
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it is thus clear that this complex case with several exit/entries leads to partial homogenization 

but still the temporal evolution of the polymer properties such as xn (Figure 9 (d)) are largely 

different for particles of different initial size, highlighting the need of the kMC model 

developed. The latter is also confirmed in Figure 10 in which the final PSD (a) and CLD (b) are 

shown; the final PSD is clearly very different from the initial one (blue bars in Figure 8 (c)). 

 

Figure 10. Particle size distribution (a) and overall chain length distribution (so for all particles and the 

aqueous phase) at full monomer conversion (XM = 100%) for case 6; model parameters: Table 1; initial 

conditions: see caption Figure 3. The PSD and CLD evolution are coupled, with the final PSD being 

clearly different than the initial one (blue bars in Figure 8 (c)). 

Importance of apparent termination kinetics  

In the last case (case 7 in Table 2), also chain length and monomer conversion dependent 

apparent termination kinetics are considered (Equation (S5)-(S9) in Appendix E). The 

importance of these apparent kinetics is evaluated in Figure 11 by a comparison of the 

miniemulsion characteristics of case 6 (yellow lines; all exit/entry phenomena + intrinsic 

termination rate coefficients) and case 7 (cyan lines). Limited changes are observed, which can 

be explained by the selected process conditions leading to a low average number of radicals per 

particle. Recent work of the Devlaminck et al.86 demonstrated that diffusional limitations on 

termination are likely only relevant in miniemulsion if at one point a zero-one kinetic behavior 

is obtained with �̅� equal to 0.5. This threshold value of 0.5 is not exceeded in the present work, 

consistent with the limited impact of diffusional limitations on termination in Figure 11. 
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Figure 11. Importance of conversion and chain length dependent termination by comparing case 6 (all 

exit/entry phenomena) and case 7 all exit/entry phenomena + apparent termination rate coefficients); 

temporal evolution of (a) the initiator concentration, (b) concentration of ‘dead’ polymer, (c) monomer 

concentration, and (d) ‘dead’ polymer number average chain length; model parameters: Table 1; initial 

conditions: see caption Figure 3; a limited effect is observed as the conditions are in the regime of a low 

average radical number per particle. 

6.4 Conclusions 

A novel kinetic Monte Carlo (kMC) modeling tool has been presented, allowing the simulation 

of miniemulsion free radical polymerization (FRP) explicitly taking into account the evolution 

of the particle size distribution (PSD) and its interaction with the evolution of the chain length 

distribution (CLD). In this model, the number of radicals and the monomer concentration in 

each individual particle are tracked, hence, the model does not make use of an average particle 

monomer concentration at any time as done in previous studies, including those based on the 

conventional Smith-Ewart approach. Moreover, exit/entry of both radicals and monomer is 

accounted for between the particles and the aqueous phase, considering a diffusion-based 

approach. 
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To highlight the consistency of the developed kMC model with the emulsion field it is 

demonstrated for a simplified intrinsic FRP reaction scheme with a water-soluble initiator that 

the conventional Smith-Ewart kinetics are obtained if a downsized version of the kMC model 

is used. Analogously to the Smith-Ewart model the particle monomer concentrations are 

averaged out in the downsized kMC model. In contrast, if the kMC model accounts for the 

monomer fluctuations over the particles a different evolution of the monomer conversion and 

average chain length characteristics is obtained, highlighting the relevance of the present work. 

This relevance is further demonstrated for the description of the miniemulsion kinetics 

considering a detailed FRP reaction scheme with micro-scale diffusional limitations on 

termination and an oil-soluble initiator. Radical exit and entry rates have been shown to strongly 

effect the miniemulsion polymerization kinetics, with acceptable monomer conversions and 

polymer chain lengths only explainable due to the occurrence of such meso-scale interphase 

mass transfer phenomena. Moreover, the radical exit and entry rates depend on the particle size, 

leading to different monomer concentrations in particles of different size. These monomer 

fluctuations are counteracted by monomer phase transfer, leading to a time dependent PSD, 

which in turn affects the evolution of the CLD, highlighting the need for the coupled calculation 

of both distributions. 

On a longer term the modeling platform can be further improved at its individual scales, with 

in particular focus on the description of mass transfer phenomena combining diffusion and 

thermodynamic based methods, benefiting from recent meso-scale emulsion work. 
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Chapter 7: Kinetic Monte Carlo modeling for the 

coupled simulation of the chain length and particle size 

distribution in miniemulsion copolymerization of styrene 

and N-vinylcaprolactam 

Summary 

Kinetic Monte Carlo modeling is applied for the coupled simulation of the chain length and 

particle size distribution (CLD/PSD) in isothermal batch miniemulsion copolymerization of 

styrene and N-vinylcaprolactam (VCL), which is an interesting polymerization system in view 

of e.g. drug delivery applications. A polymerization temperature of 333 K and the oil-soluble 

initiator 2,2′-azobis(2-methylpropionitrile) is considered. It is theoretically shown that the 

disparate monomer reactivity ratios lead to a consecutive dominant incorporation of styrene and 

VCL. Moreover, a strong effect of the initial (Gaussian) PSD is observed, with much higher 

polymerization rates if the PSD shifts to lower particles sizes. Overall, a very dynamic PSD 

evolution is simulated, with a negative skewing at low monomer conversions and a 

uniformization of the PSD as the monomer conversion increases. 

7.1 Introduction 

Thermo-responsive crosslinked polymer nanoparticles or nanogels have unique capabilities as 

pharmaceutical carriers as they allow the controlled release of a potent substance at well-

defined physiological temperatures.1, 2 The most popular thermoresponsive polymers for 

nanogel application are poly(N-vinylcaprolactam), pVCL, and poly(N-isopropylacrylamide), 

pNIPAM.3-5 As such these polymers display a lower critical solution temperature (LCST) in 

water around body temperature, which implies that below this temperature they are water-

soluble and above that temperature phase segregation takes place.6 Crosslinked particles based 
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on these polymers, i.e. nanogels, display a volume phase transition temperature (VPTT), i.e. 

they collapse upon increasing the temperature from T < VPTT to T > VPPT, allowing the 

release of a drug, as illustrated in Figure 1 (a). Recently, significant attention is paid to pVCL 

(Figure 1 (b)) as this polymer has a more beneficial biocompatibility compared to pNIPAM.3, 7 

 

Figure 1. (a) Collapsing of a drug-loaded thermo-responsive nanogel when heated over the volume 

phase transition temperature (VPTT) leading to the release of a potent substance (yellow symbols); 

crosslinking points: orange symbols; (b) Chemical structure of poly(N-vinylcaprolactam), pVCL, which 

can be the blue polymer in (a). 

The most frequently used method for the synthesis of pVCL nanogels is dispersion/precipitation 

polymerization.8-10 There one starts from a homogeneous mixture, i.e. the monomer (here N-

vinylcaprolactam, VCL) dissolved in water. Polymerization is initiated by a water-soluble 

initiator. As the oligomers start to grow they become increasingly water-insoluble (as T > 

LCST) and, hence, these oligomers precipitate, leading to (precursor) particles. At this point, 

the system becomes heterogeneous with the particles dispersed in the continuous aqueous 

phase. Polymerization now takes place both in water and in the particles which leads to particle 

growth. In addition, aggregation of (precursor) particles leads to particle growth and further 

polymerization in the water phase can occur as long as water-soluble initiator is present. By 

adding a crosslinker to the initial reaction mixture, e.g. N,N-methylenebis-(acrylamide), 

chemically crosslinked nanoparticles that can reversibly swell and collapse around the VPPT 

are obtained.9, 10 

Alongside dispersion/precipitation polymerization a limited number of studies have used mini- 

or microemulsion polymerization for the synthesis of pVCL nanogels. For example, Medeiros 
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et al.11 synthesized pVCL nanogels via water-in-oil (i.e. inverse) miniemulsion polymerization. 

By using hexadecane as the continuous phase, Span 80 (sorbitan monoleate) as an oil-soluble 

surfactant, NaCl salt as a lipophobe to prevent Ostwald ripening and N,N-methylenebis-

(acrylamide) as a crosslinker, nanogels with a diameter in the range of ca. 200 – 600 nm were 

obtained, starting from a monomer droplet population. On the other hand, Crespy et al.12 

performed ‘direct’ oil-in-water miniemulsion polymerization of VCL with toluene as an organic 

solvent and sodium dodecyl sulfate (SDS) as surfactant. As a last example, Shah et al.13 

synthesized copolymer nanoparticles of VCL and methyl methacrylate (MMA) via oil-in-water 

microemulsion polymerization, thus starting from micelles and monomer droplets, and leading 

to stable, non-crosslinked particles of less than 50 nm in average diameter.  

Crucial for (mini)emulsion based nanogel production is the need for an on spec (co)polymer 

composition, crosslinking density, and particle size distribution (PSD), as these properties 

determine key nanogel features such as the VPTT, the swelling degree (and hence the loading 

capacity), and the rheological behavior.1, 8, 14, 15 Limited focus has however been put on a 

systematic understanding of the relation of reaction conditions and the final nanogel properties. 

Typically (mini/micro)emulsion studies are also focused on homopolymerization conditions 

and/or a limited number of experimental variables and responses.11-13  

Due to the high number of variables it is recommended to apply multi-scale modeling in which 

at the micro-scale the interplay of chemistry and viscosity is grasped in a given reaction locus 

(e.g. polymer particle) and at the meso-scale interphase mass phenomena (e.g. exit and entry of 

radicals) are included.16 Ideally, model parameters are determined by careful parameter 

estimation to bulk and emulsion polymerization data.17-19 Recent work of Marien et al.20 on 

radical miniemulsion homopolymerization has indicated that advanced kinetic Monte Carlo 

(kMC) modeling is ideally suited to handle the interactive evolution of the chain length 

distribution (CLD) and PSD. Only by particle by particle tracking of the reaction and mass 
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transfer events it becomes possible to capture the correlation between chain and particle growth. 

Notably this work highlighted the limitations of the conventional Smith-Ewart approach to 

model miniemulsion polymerization kinetics. Monomer transport needs to be accounted for and 

an average monomer concentration per particle cannot be simply assumed. 

A next logical step is to evaluate if the developed kMC model can also be applied for radical 

miniemulsion copolymerization and can support the design of e.g. nanogel synthesis. In the 

present work, the main characteristics of miniemulsion copolymerization of VCL with a 

hydrophobic comonomer are therefore simulated. Focus is on a polymerization temperature of 

333 K and the oil-soluble initiator 2,2′-azobis(2-methylpropionitrile), AIBN. For simplicity, the 

addition of the crosslinker is not included in the simulation results and all model parameters are 

literature based, with some simplifications due to lack of literature data. Incorporation of certain 

amounts of the hydrophobic comonomer allows to tune the VPPT and to facilitate the 

miniemulsion formation. For illustration purposes, styrene is considered as a hydrophobic 

comonomer in view of the availability of benchmarked model parameters for styrene.  

It is theoretically shown that the disparate monomer reactivity ratios induce a consecutive 

dominant incorporation of styrene and VCL. Moreover, a strong effect of the initial (Gaussian) 

PSD is observed, with higher polymerization rates if this PSD shifts to lower particles sizes. 

Overall, a very dynamic PSD evolution is simulated, with a negative skewing at low monomer 

conversions and a uniformization of the PSD as the monomer conversion further increases. 

7.2 Model development 

In the present work, the kinetic Monte Carlo (kMC) model developed by Marien et al.20 

allowing to track particle by particle reaction and interphase mass transfer events in 

miniemulsion free radical homopolymerization (see Chapter 6) is extended to 

copolymerization. Focus is on copolymerization of styrene and VCL at 333 K, for which for 
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simplicity a terminal model is assumed, i.e. the reactivity of a radical is assumed to depend only 

on the terminal unit.21, 22 2,2′-Azobis(2-methylpropionitrile), AIBN, is used as an oil-soluble 

radical initiator. The simulated number of particles is sufficiently high for numerical accuracy. 

A listing of all reaction and mass transfer events considered in the kMC model and their 

corresponding rate coefficients is shown in Table 1 (the label A refers to styrene and B to VCL; 

for particle size dependent coefficients the value at 100 nm is reported). It follows that a basic 

FRP reaction scheme, consisting of dissociation, chain initiation, propagation, chain transfer to 

monomer, and termination, is considered with a further distinction based on the reaction locus 

being the organic phase or water. It should be noted that limited kinetic information is available 

for radical polymerization of VCL. In particular, to the best of our knowledge, no absolute 

homopropagation rate coefficients are available for VCL. Hence, homopropagation rate 

coefficients for VCL are approximated by the ones reported for N-vinylpyrrolidone,23 which 

belongs to the same family of vinyl lactams. Notably N-vinylpyrrolidone has a pronounced 

solvent effect attributed to intermolecular interactions leading to a hindered internal rotational 

motion in the transition structure. A 20-fold increase in the homopropagation rate coefficient is 

for instance observed at 303 K from bulk to dilute aqueous solution conditions.23 This solvent 

effect is taken into account in the current work, as envisaged by the higher propagation rate 

coefficients for VCL in the aqueous phase compared to the ones for the organic phase (Table 

1).  

Cross-propagation rate coefficients are calculated from literature data24 on the reactivity ratios. 

Disparate reactivity ratios have been reported in literature24 (rA = kp,AA/kp,AB = 21.2, rB = 

kp,BB/kp,BA = 0.026), indicating a tendency to induce a consecutive dominant incorporation of A 

and B.21, 25 Due to the lack of literature data, chain transfer to monomer coefficients (or the ratio 

of chain transfer to monomer rate coefficients to propagation rate coefficients) for VCL are 

approximated by the ones for N-vinylpyrrolidone.26  
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To account for a representative description of the gel-effect apparent chain length and monomer 

conversion dependent termination rate coefficients pertaining to standard styrene 

homopolymerization are used in all cases, again bearing in mind that with VCL such parameters 

are lacking. The apparent termination rate coefficients are explicitly linked to each termination 

couple taking into account the actual chain lengths of the two radicals and the polymer mass 

fraction corresponding to the reaction locus in which the two radicals reside, i.e. no average 

<kt,app> is used. The individual apparent termination coefficients are calculated using Equation 

(S5)-(S9) in Appendix E.27  

Entry and exit rate coefficients are calculated in agreement with the emulsion field28-34 

(formulas: see footnotes Table 1). In agreement with Marien et al.20 entry and exit phenomena 

of non-compartmentalized species (i.e. the comonomers and initiator) are described via lumped 

events, see Equation (S1)-(S4) in Appendix E. Globally these equations reflect that the system 

strives for the establishment of equilibrium. The latter is reflected by partitioning coefficients  

(Γ values) for which literature based data are considered.10, 35 Moreover, possible diffusional 

limitations on entry and exit of oligomers are accounted for via Equation (S10) in Appendix 

E.36 It should be stressed that the scope of the current work is theoretical and the results must 

be interpreted in the following way. In case the model parameters in Table 1 are considered 

then the model outcome is as predicted in the present work.  
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Table 1. Reactions and phase transfer events for the simulation of batch isothermal (T = 333 K) 

miniemulsion copolymerization of styrene (‘A’ label) and N-vinylcaprolactam (‘B’ label) initiated by 

2,2′-azobis(2-methylpropionitrile), AIBN; the reported k values for entry and exit events corresponds to 

a particle diameter of 100 nm (formulas: see footnotes). 

Event Equation k (dp = 100 nm) Ref. 

Reactions in particles    

Dissociationa 𝐼2,𝑝
𝑓𝑝,𝑘𝑑,𝑝
→    2 𝐼𝑝 1.3 10-5 s-1 37 

Chain initiation 𝐼𝑝 +𝑀𝐴,𝑝
𝑘𝑖𝐼𝐴,𝑝
→   𝑅1,𝐴,𝑝 3.4 103 L mol-1 s-1 b,38 

 𝐼𝑝 +𝑀𝐵,𝑝
𝑘𝑖𝐼𝐵,𝑝
→   𝑅1,𝐵,𝑝 2.2 104 L mol-1 s-1 b,23 

 𝑀𝐴,𝑝
∗ +𝑀𝐴,𝑝

𝑘𝑖𝑀𝐴
∗ 𝐴,𝑝

→     𝑅1,𝐴,𝑝 3.4 103 L mol-1 s-1 b,23 

 𝑀𝐴,𝑝
∗ +𝑀𝐵,𝑝

𝑘𝑖𝑀𝐴
∗ 𝐵,𝑝

→     𝑅1,𝐵,𝑝 1.6 102 L mol-1 s-1 b,24, 38 

 𝑀𝐵,𝑝
∗ +𝑀𝐴,𝑝

𝑘𝑖𝑀𝐵
∗ 𝐴,𝑝

→     𝑅1,𝐴,𝑝 8.5 106 L mol-1 s-1 b,23, 24 

 𝑀𝐵,𝑝
∗ +𝑀𝐵,𝑝

𝑘𝑖𝑀𝐵
∗ 𝐵,𝑝

→     𝑅1,𝐵,𝑝 2.2 104 L mol-1 s-1 b,23 

Propagation 𝑅𝑖,𝐴,𝑝 +𝑀𝐴,𝑝
𝑘𝑝𝐴𝐴,𝑝
→    𝑅𝑖+1,𝐴,𝑝 3.4 102 L mol-1 s-1 38 

 𝑅𝑖,𝐴,𝑝 +𝑀𝐵,𝑝
𝑘𝑝𝐴𝐵,𝑝
→    𝑅𝑖+1,𝐵,𝑝 1.6 101 L mol-1 s-1 c,24, 38 

 𝑅𝑖,𝐵,𝑝 +𝑀𝐴,𝑝
𝑘𝑝𝐵𝐴,𝑝
→    𝑅𝑖+1,𝐴,𝑝 8.5 104 L mol-1 s-1 c,23, 24 

 𝑅𝑖,𝐵,𝑝 +𝑀𝐵,𝑝
𝑘𝑝𝐵𝐵,𝑝
→    𝑅𝑖+1,𝐵,𝑝 2.2 103 L mol-1 s-1 23 

Chain transfer to monomer 𝑅𝑖,𝐴,𝑝 +𝑀𝐴,𝑝
𝑘𝑡𝑟𝑀,𝐴𝐴,𝑝
→      𝑃𝑖,𝑝 +𝑀𝐴,𝑝

∗  1.8 10-2 L mol-1 s-1 d,39 

 𝑅𝑖,𝐴,𝑝 +𝑀𝐵,𝑝
𝑘𝑡𝑟𝑀,𝐴𝐵,𝑝
→      𝑃𝑖,𝑝 +𝑀𝐵,𝑝

∗  1.4 10-1 L mol-1 s-1 d,26, 39 

 𝑅𝑖,𝐵,𝑝 +𝑀𝐴,𝑝
𝑘𝑡𝑟𝑀,𝐵𝐴,𝑝
→      𝑃𝑖,𝑝 +𝑀𝐴,𝑝

∗  1.4 10-1 L mol-1 s-1 d,26, 39 

 𝑅𝑖,𝐵,𝑝 +𝑀𝐵,𝑝
𝑘𝑡𝑟𝑀,𝐵𝐵,𝑝
→      𝑃𝑖,𝑝 +𝑀𝐵,𝑝

∗  1.1 100 L mol-1 s-1 d,26 

Termination 𝑅𝑖,𝑝 + 𝑅𝑗,𝑝
𝑘𝑡,𝑎𝑝𝑝,𝑝,𝑖,𝑗
→      𝑃𝑖+𝑗,𝑝 1.0 109 L mol-1 s-1 e,40 

Reactions in water    

Dissociationa 𝐼2,𝑤
𝑓𝑤,𝑘𝑑,𝑤
→    2 𝐼𝑤 1.3 10-5 s-1 37 

Chain initiation 𝐼𝑤 +𝑀𝐴,𝑤
𝑘𝑖𝐼𝐴,𝑤
→   𝑅1,𝐴,𝑤 3.4 103 L mol-1 s-1 b,38 

 𝐼𝑤 +𝑀𝐵,𝑤
𝑘𝑖𝐼𝐵,𝑤
→   𝑅1,𝐵,𝑤 3.3 105 L mol-1 s-1 b,23 

 𝑀𝐴,𝑤
∗ +𝑀𝐴,𝑤

𝑘𝑖𝑀𝐴
∗ 𝐴,𝑤

→     𝑅1,𝐴,𝑤 3.4 103 L mol-1 s-1 b,23 

 𝑀𝐴,𝑤
∗ +𝑀𝐵,𝑤

𝑘𝑖𝑀𝐴
∗ 𝐵,𝑤

→     𝑅1,𝐵,𝑤 1.6 102 L mol-1 s-1 b,24, 38 

 
𝑀𝐵,𝑤
∗ +𝑀𝐴,𝑤

𝑘𝑖𝑀𝐵
∗ 𝐴,𝑤

→     𝑅1,𝐴,𝑤 1.3 107 L mol-1 s-1 b,23, 24 

 𝑀𝐵,𝑤
∗ +𝑀𝐵,𝑤

𝑘𝑖𝑀𝐵
∗ 𝐵,𝑤

→     𝑅1,𝐵,𝑤 3.3 105 L mol-1 s-1 b,23 

Propagation 𝑅𝑖,𝐴,𝑤 +𝑀𝐴,𝑤
𝑘𝑝𝐴𝐴,𝑤
→    𝑅𝑖+1,𝐴,𝑤 3.4 102 L mol-1 s-1 38 

 𝑅𝑖,𝐴,𝑤 +𝑀𝐵,𝑤
𝑘𝑝𝐴𝐵,𝑤
→    𝑅𝑖+1,𝐵,𝑤 1.6 101 L mol-1 s-1 c,24, 38 

 𝑅𝑖,𝐵,𝑤 +𝑀𝐴,𝑤
𝑘𝑝𝐵𝐴,𝑤
→    𝑅𝑖+1,𝐴,𝑤 1.3 106 L mol-1 s-1 c,23, 24 

 
𝑅𝑖,𝐵,𝑤 +𝑀𝐵,𝑤

𝑘𝑝𝐵𝐵,𝑤
→    𝑅𝑖+1,𝐵,𝑤 3.3 104 L mol-1 s-1 23 

Chain transfer to monomer 
𝑅𝑖,𝐴,𝑤 +𝑀𝐴,𝑤

𝑘𝑡𝑟𝑀,𝐴𝐴,𝑤
→      𝑃𝑖,𝑤 +𝑀𝐴,𝑤

∗  1.8 10-2 L mol-1 s-1 d,39 

 
𝑅𝑖,𝐴,𝑤 +𝑀𝐵,𝑤

𝑘𝑡𝑟𝑀,𝐴𝐵,𝑤
→      𝑃𝑖,𝑤
+𝑀𝐵,𝑤

∗  
5.3 10-1 L mol-1 s-1 d,26, 39 

 𝑅𝑖,𝐵,𝑤 +𝑀𝐴,𝑤
𝑘𝑡𝑟𝑀,𝐵𝐴,𝑤
→      𝑃𝑖,𝑤 +𝑀𝐴,𝑤

∗  5.3 10-1 L mol-1 s-1 d,26, 39 
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Table 1 continued    

 
𝑅𝑖,𝐵,𝑤 +𝑀𝐵,𝑤

𝑘𝑡𝑟𝑀,𝐵𝐵,𝑤
→      𝑃𝑖,𝑤
+𝑀𝐵,𝑤

∗  
1.6 101 L mol-1 s-1 d,26 

Termination 𝑅𝑖,𝑤 + 𝑅𝑗,𝑤
𝑘𝑡,𝑎𝑝𝑝,𝑤𝑖,𝑗
→       𝑃𝑖+𝑗,𝑤 1.0 109 L mol-1 s-1 e,40 

Phase transfer events   

Entry of I2 𝐼2,𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝐼
→     𝐼2,𝑝 6.0 106 L mol-1 s-1 f 

Entry of I 𝐼𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝐼
→     𝐼𝑝 6.0 106 L mol-1 s-1 f 

Entry of MA
  𝑀𝐴,𝑤

𝑘𝑒𝑛𝑡𝑟𝑦,𝑀𝐴
→       𝑀𝐴,𝑝 6.0 106 L mol-1 s-1 f 

Entry of MB
  𝑀𝐵,𝑤

𝑘𝑒𝑛𝑡𝑟𝑦,𝑀𝐵
→       𝑀𝐵,𝑝 6.0 106 L mol-1 s-1 f 

Entry of MA
 * 𝑀𝐴,𝑤

∗
𝑘𝑒𝑛𝑡𝑟𝑦,𝑀𝐴

∗

→       𝑀𝐴,𝑝
∗  6.0 106 L mol-1 s-1 f 

Entry of MB
 * 𝑀𝐵,𝑤

∗
𝑘𝑒𝑛𝑡𝑟𝑦,𝑀𝐵

∗

→       𝑀𝐵,𝑝
∗  6.0 106 L mol-1 s-1 f 

Entry of Ri 𝑅𝑖,𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝑅
→     𝑅𝑖,𝑝 

6.0 106 L mol-1 s-1 
c 

f 

Exit of I2 𝐼2,𝑝
𝑘𝑒𝑥𝑖𝑡,𝐼2
→    𝐼2,𝑤 1.7 10-1 s-1 g 

Exit of I 𝐼𝑝
𝑘𝑒𝑥𝑖𝑡,𝐼
→   𝐼𝑤 2.4 100 s-1 g 

Exit of M 
A 𝑀𝐴,𝑝

𝑘𝑒𝑥𝑖𝑡,𝑀𝐴
→     𝑀𝐴,𝑤 7.0 10-2 s-1 g 

Exit of MA
 * 𝑀𝐴,𝑝

∗
𝑘𝑒𝑥𝑖𝑡,𝑀𝐴

∗

→     𝑀𝐴,𝑤
∗  7.0 10-2 s-1 g 

Exit of M 
B 𝑀𝐵,𝑝

𝑘𝑒𝑥𝑖𝑡,𝑀𝐵
→     𝑀𝐵,𝑤 7.6 10-1 s-1 g 

Exit of MB
 * 𝑀𝐵,𝑝

∗
𝑘𝑒𝑥𝑖𝑡,𝑀𝐵

∗

→     𝑀𝐵,𝑤
∗  7.6 10-1 s-1 g 

Exit of Ri (i ≤ isol) 𝑅𝑖,𝑝
𝑘𝑒𝑥𝑖𝑡,𝑅
→    𝑅𝑖,𝑤 2.4 100 s-1 c g 

a Initiator efficiency f; for illustration purposes, a constant value equal to 0.6 is used for all reaction loci.41 

b Chain initiation rate coefficient assumed 10 times higher than the long chain limit for macropropagation.42 

c Reactivity ratios rA = kp,AA/kp,AB = 21.2, rB = kp,BB/kp,BA = 0.026.24 

d Same chain transfer to monomer ratios CtrM = ktrM/kp assumed for the organic and aqueous phase; hence, higher 

chain transfer to monomer rate coefficients for VCL in the aqueous phase as higher propagation rate coefficient 

due the reported solvent effect for the analogue N-vinylpyrrolidone;23 .CtrM,AA = ktrM,AA/kp,AA = 5.3 10-5 (ref:39), 

CtrM,BB = ktrM,BB/kp,BB = 4.8 10-4 (ref:26); ktrM,AB = ktrM,BA = (ktrM,AA ktrM,BB)0.5. 

e Chain length and monomer conversion dependent termination rate coefficients are considered to account for a 

gel-effect,40 see Equations (S5)-(S9) in Appendix E; kt,app (1,1) is reported here; due to lack of literature data for 

VCL termination rate coefficients, the termination reactivity assumed independent of terminal unit. The diffusivity 

is described based on styrene units. 

f kentry,Z = Centry,Z NA DZ,w dp (references28-34) with Z = I2, I, MA, MB, MA*, MB*, or R and Centry,Z = 10-4 and DI2/I/M/M*, 

= DR,w (i = 1) = 10-7 dm2 s-1; DR,w(i): Eq (S10) in Appendix E (ref 36). 

g kexit,Z = Cexit,Z DZ,p dp
-2 with Cexit,Z = 6 Centry,Z DZ,w π-1 ΓZ

-1 DZ,p
-1 (references28-34); DR,p (i = 1) = 10-7 dm2 s-1; DR,p(i): 

Eq (S10) in Appendix E (ref 36); 𝛤𝐼2 = 115, 𝛤𝐼 = 8 (intermediate literature value), 𝛤𝑀𝐴 = 𝛤𝑀𝐴
∗ = 273, 𝛤𝑀𝐵 = 𝛤𝑀𝐵

∗ =

25, 𝛤𝑅𝑖(𝑖 ≤ 𝑖𝑠𝑜𝑙) = 8, 𝛤𝑅𝑖(𝑖 > 𝑖𝑠𝑜𝑙) = ∞; isol = 7 (intermediate value for styrene and VCL). 
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7.3 Results and discussion 

The evolution of the typical (average) copolymerization characteristics for a miniemulsion 

polymerization with an initial fraction of styrene/VCL monomer A/B (fA/B,0) equal to 0.5 and a 

Gaussian initial PSD with a volume average diameter equal to 100 nm (see Figure 3; top left) 

are shown in Figure 2. Following initial conditions are considered with the subscripts p and w 

referring to the particles (organic phase) and the water phase: [AIBN]p,0 = 1.0 10-2 mol L-1, 

[AIBN]w,0 = 8.7 10-5 mol L-1, [A]p,0 = 4.3 mol L-1, [A]w,0 = 2.9 10-2 mol L-1, [B]p,0 = 4.1 mol     

L-1, [B]w,0 = 3.5 10-1 mol L-1; and volume fraction of the aqueous phase: 0.3. 

The evolution of the conversion of monomer A (styrene; full blue line; XA), monomer B (VCL; 

dotted red line; XB) and the total monomer conversion (i.e. based on both A and B; dashed black 

line; Xtot) are shown in Figure 2 (a). A faster increase of XA is observed, in agreement with the 

high value of rA (rA = kp,AA/kp,AB = 21.2) and the low value of rB (rB = kp,BB/kp,BA = 0.026). Such 

reactivity ratios imply that radicals with both terminal unit A and B preferentially add to 

monomer A, hence, most radicals have a terminal A unit and mostly homopropagation of A 

occurs. At high reactions times (t > 400 min), a pronounced increase in XB is observed as almost 

all A monomer has been consumed and homopropagation of B becomes the dominant 

propagation mode. Due to the higher value of kp,BB compared to kp,AA a faster increase in Xtot is 

observed for these high reaction times (t > 400 min). 

The evolution of the fraction of monomer molecules of type A (fA; full blue line) and B (fB; full 

red line) is shown in Figure 2 (b) together with the evolution of the fraction of monomer units 

incorporated on average in the ‘dead’ polymer of type A (FA; dashed blue line) and B (FB; 

dashed red line). In agreement with the faster increase in XA for t < 400 min (Figure 2 (a)), FA 

>> FB for t < 400 min and a decrease of fA and increase of fB are observed for these reactions 

times. Once almost all A monomer has been consumed (t > 400 min), the fraction of B on 
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average in the ‘dead’ polymer increases to its final value with as expected FB = FA = fA,0 = fB,0 

= 0.5. 

 

Figure 2. Simulation results for the batch isothermal miniemulsion copolymerization of styrene (A; 

molar fraction at start = fA,0 = 0.5) and N-vinylcaprolactam (B; molar fraction at start = fB,0 = 0.5) initiated 

by 2,2′-azobis(2-methylpropionitrile), AIBN; initial PSD and its evolution: see Figure 3; (a): conversion 

of monomer A (full blue line), monomer B (dotted red line) and the total monomer conversion (i.e. based 

on both A and B; dashed black line); (b): fraction of monomer molecules of type A (fA; full blue line) 

and type B (fB; full red line); fraction of units on average in the ‘dead’ polymer of type A (FA; dashed 

blue line) and type B (FB; dashed red line); (c): number (xn; full purple line) and mass (xm; dashed black 

line) average chain length of the ‘dead’ polymer and the corresponding dispersity (xm/xn; dotted green 

line); (d): final CLD and corresponding cumulative distribution; Initial conditions: T = 333 K, [AIBN]p,0 

= 1.0 10-2 mol L-1, [AIBN]w,0 = 8.7 10-5 mol L-1, [A]p,0 = 4.3 mol L-1, [A]w,0 = 2.9 10-2 mol L-1, [B]p,0 = 

4.1 mol L-1, [B]w,0 = 3.5 10-1 mol L-1; volume fraction aqueous phase: 0.3; model parameters: Table 1; 

simulated number of particles: 127. 

Figure 2 (c) shows the evolution of the ‘dead’ polymer number (xn; full purple line) and mass 

(xm; dashed black line) average chain length and the corresponding dispersity (xm/ xn; dotted 

green line). In agreement with work on homopolymerization,20 a maximum in xn and xm is 



Chapter 7  143 

observed for low reaction times. At low reaction times the only termination events taking place 

are between radicals originating from the same particle (cf. oil-soluble initiator). Hence, due to 

a strong confined space effect,43-46 initially only ‘dead’ polymers of very short chain length are 

formed. For larger times, also termination after entry of a radical to a particle containing a single 

radical can take place, leading to the formation of ‘dead’ polymer with much higher chain 

lengths and an increase of the (cumulative) xn value. This increase in xn is however counteracted 

by the decreasing monomer concentration (cf. Figure 2 (a)), which lowers the propagation rate, 

and, hence, the additional chain lengths, explaining the observed maximum. It can also be noted 

that the shift from initially forming only very short ‘dead’ polymer chains to also forming longer 

‘dead’ polymer chains also leads to a maximum in the dispersity (full green line). Closer 

inspection reveals that a strong variation in the dispersity values is obtained, highlighting the 

relevance of the developed model which fully reflects time dependencies. Furthermore, a slight 

increase in xn and xm can be observed at high reaction times (t > 400 min), which can be 

explained by the depletion of almost all A monomer at these reaction times and the higher value 

of kp,BB compared to kp,AA. 

Figure 2 (d) shows the number CLD (full blue line) and its cumulative distribution (dotted blue 

line) at the end of the polymerization (Xtot = 1). Due to a strong confined space effect at low 

times,43-46 a large fraction (ca. 20%) of the ‘dead’ polymer chains has a very short chain length 

(< 10). In particular, there is a dominant contribution of chain length 2 and 4, as can be 

envisaged from the two peaks. The fraction of large polymer chain lengths (chain length 100-

10000) can be attributed to particles in which a single radical grows to high chain lengths due 

to absence of a second radical for termination.20, 43 

The evolution of the PSD corresponding to the conditions of Figure 2 is shown in Figure 3. In 

agreement with Jansen et al.,47 at a total monomer conversion of 25%, a negatively skewed 

distribution is observed. This skew is due to the presence of droplets/particles that did not 
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undergo any significant polymerization and, hence, only supplied monomer to other particles, 

which leads to particles with sizes larger than initially present (Figure 3; top left vs. top right). 

As the polymerization rate is lower in larger particles,20 the large particles eventually supply 

monomer to particles of small and intermediate size in which polymerization is faster, leading 

to a narrowing of the PSD when the monomer conversion further increases to 50% (Figure 3; 

bottom left) and 100% (Figure 3; bottom right). 

 

Figure 3. Evolution of the particle size distribution (PSD) corresponding to Figure 2; volume-weighted 

PSD at a total monomer conversion (i.e. based on both comonomers) of 0% (i.e. the initial PSD; top 

left; Gaussian), 25% (top right), 50% (bottom left) and 100% (i.e. the final PSD; bottom right); initial 

conditions: see caption Figure 2; model parameters: see Table 1; corresponding overall chain length 

distributions (CLDs) at XM = 1 is shown in Figure 2 (d). 

The effect of the initial PSD on the evolution of the copolymerization characteristics of Figure 

2 is studied in Figure 4 by considering a Gaussian initial PSD with average diameter 𝑑𝑝,0̅̅ ̅̅ ̅ = 200 

nm (Figure 5; top left) instead of 𝑑𝑝,0̅̅ ̅̅ ̅ = 100 nm as before (Figure 2 and 3). For 𝑑𝑝,0̅̅ ̅̅ ̅ = 200 nm 

the (co)monomer conversions (Figure 4 (a)) show a similar trend as for 𝑑𝑝,0̅̅ ̅̅ ̅ = 100 nm (same 
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lines as in Figure 2). However, a significantly slower increase in monomer conversion is 

observed, in agreement with the larger time scale for radical entry and larger time between two 

dissociation events for smaller particles, leading to a delayed termination. Analogously, a 

similar but slower evolution of fA, fB, FA and FB is observed in Figure 4 (b). As can be envisaged 

from Figure 4 (c), a more pronounced maximum for xn and xm at low reaction times (< 100 min) 

is observed for the smaller particles. The difference between the average chain length 

characteristics however narrows as the reaction time increases, as is also the case under 

homopolymerization conditions.20 A significant effect of the initial PSD can however still be 

observed for the final CLD. Consistent with a delayed termination in smaller particles, a higher 

contribution of high chain length (e.g. > 100) is observed for 𝑑𝑝,0̅̅ ̅̅ ̅ = 100 nm (dotted blue line), 

as can be envisaged from the lower cumulative number fraction at a chain length of e.g. 100. 

For completeness, the evolution of the PSD corresponding to Figure 4 (case with 𝑑𝑝,0̅̅ ̅̅ ̅ = 200 

nm) is shown in Figure 5. As in Figure 3, a negative skewing is observed at low (Figure 5; top 

right) and intermediate (Figure 5; bottom left) monomer conversions and a uniformization 

occurs toward high monomer conversion (Figure 4; bottom right).  
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Figure 4. Effect of the initial PSD on the simulation results of Figure 2; initial conditions: see caption 

Figure 2; model parameters: see Table 1. 



Chapter 7  147 

 

Figure 5. Evolution of the particle size distribution (PSD) corresponding to Figure 4 (the case of a 

Gaussian initial PSD with average diameter 𝑑𝑝,0̅̅ ̅̅ ̅ = 200 nm); volume-weighted PSD at a total monomer 

conversion (i.e. based on both comonomers) of 0% (i.e. the initial PSD; top left), 25% (top right), 50% 

(bottom left) and 100% (i.e. the final PSD; bottom right); initial conditions: see caption Figure 2; model 

parameters: see Table 1. 

7.4 Conclusions 

A kinetic Monte Carlo model for the simulation of isothermal batch miniemulsion 

copolymerization has been developed. Reaction and interphase mass transfer events of initiator, 

monomer-molecules and initiator-derived, monomeric and oligomeric radicals are tracked 

particle by particle. The model allows the interactive and joint simulation of the micro-scale 

characteristics such as the chain length distribution and copolymer composition and meso-scale 

characteristics such as the particle size distribution.  

Miniemulsion copolymerization of styrene and N-vinylcaprolactam (VCL) initiated by 2,2′-

azobis(2-methylpropionitrile) has been selected as a case study, taking into account the 

opportunities VCL copolymer nanoparticles offer for e.g. controlled drug delivery. 
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The evolution of the (co)monomer conversions, the fraction of the comonomers in the reaction 

mixture and incorporated on average in the polymer chains, and the number and mass average 

chain lengths are consistent with the disparate monomer reactivity ratios of styrene and VCL. 

The effect of the initial PSD has been studied by comparing the evolution of the 

copolymerization characteristics obtained with an initial Gaussian PSD with a volume-average 

diameter of 100 nm and 200 nm. Similar but much slower evolving trends for the monomer 

conversions and copolymer compositions are obtained for the latter case, highlighting the strong 

interaction between the PSD (meso-scale) and the polymerization kinetics (micro-scale). 

In agreement with previous experimental work, investigation of the temporal evolution of the 

PSD demonstrated a negative skewing of the PSD at low and intermediate conversions due to 

droplets/particles that did not undergo any significant polymerization and, hence, only supplied 

monomer to other particles. Toward higher monomer conversions, a more uniform PSD is 

obtained. 

The presented modeling tool unveils unprecedented insight into dispersed phase 

copolymerization and will help the design of tailored nanoparticles for e.g. drug delivery 

applications on a longer term.  
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Chapter 8: General conclusions and future outlook 

8.1 General conclusions 

Many polymer products used in every-day life, ranging from commodity materials to high-tech 

materials for e.g. controlled drug delivery applications, are produced via radical polymerization. 

Notably, the macroscopic material properties of the associated polymer products are strongly 

determined by micro- and meso-scale characteristics that have a distributed nature, such as the 

chain length or molar mass distribution (CLD/MMD) on the micro-scale (i.e. the level of 

molecules) and the particle size distribution (PSD) on the meso-scale (i.e. the level of particles). 

Often these distributions display multimodality. A detailed overview of the origin and possible 

advantages multimodality offers for (dispersed phase) radical polymerizations has been given 

is Chapter 1, together with an overview of the state-of-the-art for the modeling of these 

distributions. 

In this PhD thesis, kinetic Monte Carlo (kMC) modeling, which is a powerful stochastic 

technique allowing to track individual reaction and phase transfer events in chemical processes, 

has been applied for the accurate simulation of multimodal CLD/MMD and PSD encountered 

in radical polymerizations. In a first part of this PhD thesis, kMC modeling has been applied to 

pulsed laser polymerization (PLP), which is a frequently used technique for the determination 

of individual (intrinsic) rate coefficients. In Chapter 2, it has been demonstrated that the kMC 

simulation of complete experimental multimodal PLP MMDs allows to obtain information 

beyond only information on the conventional propagation reactivity from the location of the 

inflection points. In particular, it has been demonstrated that the success of 2,2-dimethoxy-2-

phenylacetophenone (DMPA) as a photoinitiator for PLP can be attributed to the disparate 

reactivities of the DMPA radical fragments, leading to sharper peaks and, hence, a more facile 

identification of the inflection points. Moreover, the crucial role of diffusional limitations on 
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termination has been illustrated. Only if chain length dependent termination kinetics are 

accurately accounted for, an excellent agreement between the simulated and experimental 

MMD can be obtained. Next, the developed kMC model for PLP has been applied in Chapter 

3 to develop a novel methodology for the estimation of the photodissociation quantum yield, 

which, up until now, was a difficult parameter to estimate. By performing regression analysis 

to the ratio of the peak heights in the PLP MMD, a reliable estimation for the DMPA 

photodissociation quantum yield has been obtained. The kMC model has also been applied to 

the estimation of the backbiting (and tertiary propagation) rate coefficient from low temperature 

PLP experiments (Chapter 4) and the β-scission rate coefficient from high temperature acrylate 

PLP experiments (Chapter 5). It should be noted that due to the higher activation energy of β-

scission this stepwise approach is affordable. A variation of both the laser pulse frequency and 

solvent volume fraction has been proposed to obtain reliable and robust estimates for the 

backbiting and β-scission rate coefficient. By using the saturated analogue of the monomer as 

solvent, solvent effects could be ruled out in acrylate PLP. 

In the second part of this PhD thesis, focus has shifted to dispersed phase radical 

polymerization. In view of the expected stronger interaction between the micro- and meso-scale 

in emulsion polymerization compared to suspension polymerization focus has been on the 

former polymerization technique. For illustration purposes miniemulsion polymerization was 

studied in the absence of morphological aspects such as phase separation in the polymer 

particles. In Chapter 6, a novel detailed kMC model in which reaction and interphase mass 

transfer events are tracked particle by particle has been developed for isothermal batch 

miniemulsion free radical homopolymerization. A joint and interactive prediction of the CLD 

and PSD evolution has been demonstrated for the first time, considering literature parameters 

for all model parameters. The relevance of each radical polymerization reaction and each mass 

transfer event in view of striving for the establishment of partitioning has been highlighted. It 
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has been also illustrated that the conventional Smith-Ewart deterministic modeling 

methodology with average monomer concentrations per particle and an average particle size is 

inaccurate as monomer fluctuations between particles matter and the organic phase kinetics are 

particle size dependent. This model has been extended and applied to miniemulsion 

copolymerization of styrene and N-vinylcaprolactam (VCL) in Chapter 7. Notably, the initial 

PSD has been demonstrated to have a large effect on the evolution of the copolymerization 

characteristics, with lower polymerization rates as the initial PSD shifts to higher particle sizes. 

A consecutive dominant incorporation of styrene and VCL has been simulated, in agreement 

with the disparate monomer reactivity ratios. Moreover, the kMC simulations indicated a very 

dynamic evolution of the PSD, again highlighting the need for the simultaneous simulation of 

both CLD and PSD. Importantly, the obtained insights will aid the design of copolymer VCL 

nanogel particles for e.g. drug delivery applications, also benefiting from the experimental 

knowledge acquired during a research stay in the group of Prof. Pich at DWI Leibniz Institute 

for Interactive Materials/ RWTH Aachen University. 

8.2 Future outlook 

8.2.1 Pulsed laser polymerization research axis 

A novel alternative method for the estimation of the backbiting, tertiary propagation and β-

scission rate coefficient from bulk and/or solution low frequency inflection point data has been 

developed in this PhD thesis. While this PhD thesis was being finalized, a large experimental 

data set has been obtained at the Laboratory for Chemical Technology (LCT) for PLP of n-

butyl acrylate, allowing the reliable estimation of Arrhenius parameters for these reactions. On 

a longer term, the method can also be applied to other acrylates, for which, to date, no kinetic 

information on backbiting, tertiary propagation and β-scission is available. This would then 

allow to investigate whether acrylates display a trend or family type behavior for these 

reactions. 
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Moreover, in view of the applications of pVCL nanoparticles and the absence of reliable 

absolute propagation rate coefficients for VCL, propagation rate coefficients for VCL are 

currently being measured at LCT. On a longer term, a comparison with other vinyl lactams can 

be made, allowing to investigate if a trend or family type behavior can be detected. 

Finally, as the model developments presented in this PhD thesis allow not only the simulation 

of inflection points but also of complete PLP-SEC traces, regression analysis to (parts of) 

complete SEC traces could be considered in future work in order to obtain even more kinetic 

information from PLP experiments. 

8.2.2 Emulsion polymerization research axis 

A novel kMC modeling tool allowing the joint and interactive CLD and PSD calculation for 

isothermal batch miniemulsion homo- and copolymerization has been developed in this PhD 

thesis. A first challenge to allow a further exploitation of this modeling tool is the extension to 

the industrial macro-emulsion polymerization process, in which initially larger monomer 

droplets are present than in a miniemulsion polymerization and also (monomer-swollen) 

micelles are present. Hence, for a macro-emulsion polymerization e.g. also homogeneous 

nucleation leading to (precursor) particles, coagulation of precursor particles and breakage of 

monomer droplets need to be taken into account. 

A second challenge to allow a further exploitation of the developed modeling tool is the 

consideration of morphology aspects due to polymer phase separation inside polymer particles. 

Hence, depending on the phase separation mechanism, e.g. radial gradients in polymer 

composition need to be taken into account. 

A final challenge is the refinement of the meso-scale model and the more reliable determination 

of meso-scale model parameters. Ideally, micro-scale model parameters are first determined via 

regression to dedicated bulk/solution polymerization data obtained e.g. via PLP. In a next step, 
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meso-scale model parameters are to be determined via regression to emulsion polymerization 

data. 
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Appendix A: Supporting Information for Chapter 2 

A.1 Model details 

A.1.1 Photodissociation kinetics 

The generated amount of DMPA photoinitiator radical fragments per pulse (Δ[R0]) is calculated 

explicitly (Equation (2) in Chapter 2), based on the principles introduced by Odian,1 who 

reported a derivation for the rate of photodissociation (mol L-1 s-1) as a function of the intensity 

delivered by the light source (I0*; W dm-2): 

 
𝑟𝑑 = 𝛷

𝐼0∗𝜆

ℎ𝑐𝑁𝐴𝐿
[1 − exp(−2.303𝜀[𝐷𝑀𝑃𝐴]𝐿)] 

(S.1) 

in which Φ is the quantum yield for photodissociation, λ the wavelength of the laser, ε the molar 

absorptivity of the photoinitiator (dm2 mol-1), L the optical path length (dm), h the Planck 

constant (J s), c the speed of light (dm s-1), [DMPA]  (mol L-1) the DMPA concentration at the 

selected time t (s), and NA the Avogadro constant (mol-1). The quantum yield is the probability 

of the photoinitiator to dissociate upon absorption of a photon. Note that no (chemical) 

efficiency factor f is used since all reactions with I species are explicitly accounted for,  hence,  

f  is taken equal to one. 

Equation (S.1) follows from the following mathematical manipulations. Focusing only on a unit 

cell in the reaction mixture at distance D (dm) the corresponding photodissociation rate (𝑟𝑑) at 

t (s) can be calculated from: 

 𝑟𝑑 =  𝛷 𝑟𝑎 (S.2) 

in which ra is the rate at which photons are absorbed (mol dm-3 s-1), at t and D. The rate of 

photon absorption ra can be related to the intensity of the absorbed light I (mol (dm)-2 s-1): 

 
 𝑟𝑎 = −

𝑑𝐼

𝑑𝐷
 

(S.3) 
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in which I can be calculated using the Bouguer-Lambert-Beer law: 

  𝐼 = 𝐼0exp (−𝛼[𝐷𝑀𝑃𝐴]𝐷) (S.4) 

in which I0 is the incident light intensity at the outer surface (mol dm-2 s-1), and α the absorption 

coefficient of DMPA (dm2 mol-1). It should be noted that alternatively, the molar absorptivity 

ε can be used which is related to α by: 

 α = ε ln10 = 2,303 ε (S.5) 

Hence, by combining the above equations ra follows from: 

 
𝑟𝑎 = −

𝑑𝐼

𝑑𝐷
= 2,303 𝜀 [𝐷𝑀𝑃𝐴]𝐼0 exp (−2.303 𝜀 [𝐷𝑀𝑃𝐴]𝐷) 

(S.6) 

In addition, the light intensity 𝐼0 can be expressed in J dm-2 s-1 (I0*), The latter can be accounted 

for by insertion of a conversion factor, i.e. NA h c/λ which is the energy of a mole of photons: 

 
𝑟𝑎 = 2,303 𝜀 [𝐷𝑀𝑃𝐴](

𝐼0∗𝜆 

𝑁𝐴ℎ 𝑐
)exp (−2.303 𝜀 [𝐷𝑀𝑃𝐴]𝐷) 

(S.7) 

Upon integration (D from 0 to L) and dividing by L the average rate of photon absorption (<ra>) 

is obtained, which can be used for the whole (still small) sample at least to a first approximation: 

 
< 𝑟𝑎 >=

𝐼0∗𝜆

ℎ𝑐𝑁𝐴𝐿
[1 − exp(−2.303𝜀[𝐷𝑀𝑃𝐴]𝐿)] 

(S.8) 

Furthermore, I0* can be expressed as a function of the laser pulse energy (Epulse): 

 
𝐼0∗ =

𝐸𝑝𝑢𝑙𝑠𝑒

Ω∆𝑡𝑝𝑢𝑙𝑠𝑒
 

(S.9) 

with Ω the optical cross-sectional area and Δtpulse the duration of the pulse. Since the change in 

DMPA concentration during a pulse can assumed to be negligible, Δ[R0] can thus be calculated 

by multiplying rd (Equation (S.2) for the entire sample (i.e. ra replaced by <ra>) with Δtpulse and 

multiplying by two, since two radicals are formed per dissociation event. 
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∆[𝑅0] = 2𝛷

𝐸𝑝𝑢𝑙𝑠𝑒𝜆

ℎ𝑐𝑁𝐴𝑉
[1 − exp(−2.303𝜀[DMPA]𝐿)] 

(S.10) 

which is Equation (2) in Chapter 2. 

A.1.2 Chain length dependent propagation kinetics 

Chain length dependent propagation kinetics are accounted based on the work of Heuts and 

Russell:2 

 
𝑘𝑝(𝑖) = 𝑘𝑝 [1 + 𝐶1exp (−

ln(2)

𝑖1/2
𝑖)] 

(S.11) 

Note that in Equation (S.4) i refers to the chain length (0 for an initiator-derived radical), in 

contrast to the equation as originally reported by Heuts and Russell,2 in which i = 1 for an 

initiator-derived radical. In this work, C1 = 10 and i1/2 = 1. These values have been reported by 

Haven et al.3 for the modeling of so-called single unit monomer insertion (SUMI) reactions, 

considering acrylate monomers (n-butyl acrylate, t-butyl acrylate and 2-ethylhexyl acrylate), 

and allowed the representative simulation of product distributions. 

A.1.3 SEC broadening 

For the simulated log-MMDs, SEC broadening is accounted for according to the method 

proposed by Buback et al.,4 which is based on the principles described by Tung5 and Billiani6. 

The log-MMD as observed after SEC broadening, wSEC(log M), is expressed as the convolution 

of the unbroadened log-MMD w(log M) with a Gaussian distribution with SEC broadening 

parameter σvb: 

 𝑤𝑆𝐸𝐶(log 𝑀)

=
1

(2𝜋)0.5𝜎𝑣𝑏
∫ exp (−

(log(𝑀) − log(�̃�))2

2(𝜎𝑣𝑏)2
)𝑤(log  �̃�) 𝑑𝑙𝑜𝑔(�̃�)

+∞

0

 

(S.12) 

In this work, σvb is taken equal to 0.051, in agreement with typical values reported in literature.7, 

8  
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A.2 Concentration profiles of β-scission and termination products 

 

 

Figure S1. Top: concentration profiles for macromonomer formed via β-scission (left) and 

disproportionation (right); bottom: concentration profile for termination products (disproportionation 

and recombination); initial conditions: Figure 3 (left; Chapter 2); model parameters; Table 1 (Chapter 

2).   

Figure S1 shows the concentration of macromonomer formed via β-scission (top left) and 

disproportionation (top right), and the total concentration of  termination products (bottom; both 

disproportionation and recombination) at 306 and 325 K. It follows that the concentration of 

macromonomer formed via β-scission is three orders of magnitude smaller than the 

concentration of termination products. Hence, β-scission products do not significantly 

contribute to the PLP-SEC trace. Only a small fraction of the termination products (9 % at 325 

K, 7 % at 306 K; molar basis) correspond to macromonomers formed via disproportionation. 

Due this low fraction of macromonomers and also taking into account that macromonomer 

propagation is slower than conventional propagation, macromonomer propagation can be 

neglected. 
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A.3 Further illustration of the strength of kMC modeling to visualize the chain 

growth of the different radical types 

A.3.1 Radical concentration traces up to the final pulse (extension of Figure 6 (right) and 

Figure 7 in Chapter 2) 

 

 

Figure S2. Temporal evolution of the concentrations of the different radical types ([Ri,e] (top left), [Ri,m] 

(top right), [R0,I] (bottom left) and [R0,II] (bottom right) up to the final pulse (i.e. extension of Figure 7 

in Chapter 2 in which focus is only on the first 10 pulses) 

 

A.3.2 Comparison of actual concentrations and approximate ones after application of the PSSA 

Under the assumption of negligible intermolecular chain transfer and termination, the pseudo-

steady state approximation (PSSA) for the ECR and MCR concentration can be expressed as:9 

 𝑘𝑏𝑏 ∑[𝑅𝑖≥3,𝑒]

∞

𝑖=3

= 𝑘𝑝,𝑚[𝑀]0[𝑅𝑚] (S.13) 
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Defining xECR and xMCR as the fraction of macroradicals being secondary of nature (ECR; i ≥ 3) 

and tertiary (MCR), and taking into account that: 

 𝑥𝐸𝐶𝑅 + 𝑥𝑀𝐶𝑅 = 1 (S.14) 

allows to obtain the PSSA based fractions by solving Equation (S.13) and (S.14) to xECR and 

xMCR:9 

 𝑥𝐸𝐶𝑅
𝑃𝑆𝑆𝐴 =

𝑘𝑝,𝑚[𝑀]0

𝑘𝑏𝑏 + 𝑘𝑝,𝑚[𝑀]0
 (S.15) 

 
𝑥𝑀𝐶𝑅

𝑃𝑆𝑆𝐴 =
𝑘𝑏𝑏

𝑘𝑏𝑏 + 𝑘𝑝,𝑚[𝑀]0
 (S.16) 

in which the monomer concentration is assumed equal to the initial one, an acceptable 

assumption since the monomer conversion is limited in PLP experiments (ca. < 5%).  

In Figure S3, it is shown that xECR and xMCR calculated from the concentrations as obtained by 

the kMC simulations (no PSSA assumed; rate coefficients are listed Table 1 in Chapter 2) do 

not reach the PSSA based fractions (Equation (S.15) and Equation (S.16)) within a dark period. 

Since a relatively high frequency is applied (500 s-1), new ECRs are already generated before 

the PSSA based concentrations can be reached. 
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Figure S3. Illustration of the approximate nature of PSSA based ECR and MCR concentrations; full 

line: actual fraction; dashed line: PSSA based fraction obtained via Equation (S.14) and (S.15); 

conditions: Figure 3 (left) in Chapter 2. 

A.3.3 Visualization of the chain growth in between pulses 

As mentioned in Chapter 2, the chain growth in between two pulses can be visualized by 

considering the log-MMD of the ECRs (full blue line) and MCRs (dotted yellow line) at 

different times. In Figure S4, focus is on the chain growth in between the 50th and 51st pulse 

(i.e. 49Δt ≤ t ≤ 50Δt); the log-MMD at three times is shown, namely at (1/3)Δt (top left), (2/3)Δt 

(top right) and just before the 51st pulse (bottom). Radicals originating from the previous pulses 

can clearly be distinguished in the higher molar mass regions, which is additionally illustrated 

in Figure S4 (left) in which the ECR log-MMDs of the three subfigures of Figure S3 are now 

all in the same plot. The conversion of ECRs to MCRs via backbiting can be inferred from 

Figure S3, considering the increase in importance of MCRs originating from the last laser pulse 

at increasing time. A more pronounced (longer) fronting is observed at higher times, as also 

shown in Figure S4 (right) in which all subfigures are included in the same plot. Due to the low 

reactivity of the MCRs, the peak corresponding to MCRs formed after a time Δt  can be detected 

in the MCR log- MMD at times in between two pulses (Figure S3 (top left/ right)). 
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Figure S4. Simulated log-MMD without SEC-broadening for the ECRs (full blue line) and MCR 

(dashed yellow line) at different times (top left: t = 49Δt + (1/3)Δt, top right: t = 49Δt + (2/3)Δt, bottom: 

t = 50Δt = 0.1 s (same as in Figure 8 in Chapter 2); same conditions as in Figure 3 (left; Chapter 2); 

model parameters are listed in Table 1 of Chapter 2. 
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Figure S5. Simulated log-MMD without SEC-broadening for the ECRs/MCRs at different times (dotted 

blue line: t = 49Δt + (1/3)Δt; dashed blue line: t = 49Δt + (2/3)Δt; full blue line: t = 50Δt = 0.1 s (same 

as in Figure 8 in Chapter 2); same conditions as in Figure 3 (left; Chapter 2); model parameters are listed 

in Table 1 of Chapter 2. 
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Appendix B: Supporting Information for Chapter 3 

B.1 Experimental details for the measurement of the ratio of PLP-SEC peak 

heights 

An overview of all initial conditions for PLP of n-butyl acrylate (nBuA) and the corresponding 

experimental results for the ratio of the peak heights of the SEC trace is given in Table S1. For 

each pulse energy, an experimentally recorded SEC trace is shown in Figure S1. 

Table S1: Experimental results for PLP of nBuA at 306 K and varying Epulse; initial conditions: 

[DMPA]0 = 3 10-3 mol L-1, [nBuA]0 = 6.91 mol L-1, ν = 500 s-1. 

Entry Epulse [mJ] 
Number of 

pulses [-] 
h1/h2 

1 1.5 200 0.895 

2 2.5 100 0.989 

3 3.5 80 1.228 

4 4.5 65 1.419 

5 6 40 1.626 

 

 
Figure S1: Experimentally recorded SEC traces for PLP of nBuA at various pulse energies; conditions: 

see Table S1. 
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B.2 Model details for the simulation of the ratio of PLP-SEC peak heights 

B.2.1 Reactions and model parameters  

In Table S2 the reactions considered in the kinetic Monte Carlo (kMC) model to simulate the 

PLP-SEC trace and, hence, the PLP-SEC peak heights are listed. The model parameters for the 

in silico testing of the method with the parameters having values reflecting typical orders of 

magnitude (column 3) and the parameters for the in silico application to MMA (column 5) are 

also shown.  Similarly, the parameter are given for the actual application of the method to PLP 

of nBuA (column 4). The concentration of radicals generated at the laser pulses, Δ[R0], is 

calculated via Equation (2; main text) with the input value of Φ for the theoretical evaluation 

and the value estimated via regression analysis to the peak heights of nBuA PLP at 306 K given 

in entry 1 of Table S2. For each laser pulse, Δ[R0] is calculated taking into account the 

decreasing photoinitiator concentration. 

Note that intermolecular chain transfer can be neglected at the low monomer conversions 

considered in this work.1-4 Moreover, due to the low temperature (306 K), β-scission of MCRs 

can safely be neglected.1, 5 In addition, as illustrated by the coinciding lines in Figure S2 (full 

green line: ktrM,e = 0 L mol-1 s-1, ktrM,m = 0 L mol-1 s-1; dotted black line: ktrM,e = 8.0 10-1 L mol-1 

s-1, ktrM,m = 2.8 10-3 L mol-1 s-1 (ref. 6)), chain transfer to monomer can also be neglected in the 

present work. 

It should be further reminded, as explained in the main text, that the current modeling strategy 

with an explicit treatment of the chemical reactions with the DMPA radical fragments does not 

require the introduction of a chemical initiator efficiency. 
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Figure S2: Illustration of the negligible effect of chain transfer to monomer on h1/h2 for PLP of nBuA 

under the conditions considered in this work (Table S1); full green line: ktrM,e = 0 L mol-1 s-1, ktrM,m = 0 L 

mol-1 s-1; dotted black line: ktrM,e = 7.9 10-1 L mol-1 s-1,6 ktrM,m = 2.7 10-3 L mol-1 s-1; 6 model parameters: 

Table S2 (column 4). 

Chain length dependent (apparent) termination kinetics are taken into account and expressed 

as: 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖−𝛼𝑆                      𝑖 ≤ 𝑖𝑐 (S.1) 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖𝑐
−𝛼𝑆+𝛼𝐿𝑖−𝛼𝐿        𝑖 > 𝑖𝑐 (S.2) 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑗) = [𝑘𝑡

𝑎𝑝𝑝(𝑖, 𝑖)𝑘𝑡
𝑎𝑝𝑝(𝑗, 𝑗)]0.5 (S.3) 

with αS, αL and ic equal to 0.85, 0.16 and 30 (theoretical evaluation (Figure 2, 3 in the main text) 

and application to nBuA (Figure 4 in the main text); parameters cf. ref. 7) or αS, αL and ic equal 

to 0.65, 0.15 and 100 (in silico application to MMA (Figure S3); parameters cf. ref. 8). 

Non-instantaneous quenching at the end of a PLP experiment is accounted for in agreement 

with ref.9   
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Table S2. Basic reaction scheme to simulate low temperature PLP initiated by DMPA, including a 

listing of the model parameters used for the theoretical evaluation of the method (only orders of 

magnitude) and the actual application to nBuA at 306 K, for which intermolecular chain transfer and β-

scission can be neglected based on literature data1-5, and for which chain transfer to monomer can also 

be neglected, as demonstrated above. The model parameters for the in silico application to PLP of MMA 

are also listed. 

Reaction Equation 

Theoretical evaluation 

(Figure 2, 3) 

Φ [-] or 

k [(L mol-1) s-1] 

nBuA 306 K  

(Figure 4) 

Φ [-] or 

k [(L mol-1) s-1] 

MMA 306 K 

(Figure S3) 

Φ [-] or 

k [(L mol-1) s-1] 

Photodissociation[a] 𝐷𝑀𝑃𝐴
ℎ𝜈,𝛷
→   𝑅0,e

I + 𝑅0,e
II  0.5 

0.42 (this work; 

estimated ) 
0.42 

Chain initiation[b] 𝑅0,e
I +𝑀

𝑘p,I
→ 𝑅1,e 104 2.0 104 4.1 102 

Propagation 𝑅i,e +  𝑀 
𝑘p,e
→  𝑅i+1,e 

𝑅i,m +  𝑀 
𝑘p,m
→  𝑅i+1,e  

104 2.0 104 [10] 4.1 102 [11] 

 101 1.4 101 [7] - 

Backbiting 

(i ≥ 3 ) 𝑅i,e  
𝑘bb
→  𝑅i,m  102 1.9 102 [7] - 

Termination[c] 

(i, j ≥ 0 ) 

𝑅i,e + 𝑅j,e  

𝑘t,ee
app

(𝑖,𝑗)
→     𝑃i(+j)(+𝑃j) 

109 9.6 108 [7] 1.5 109 [8,d] 

 𝑅i,e + 𝑅j,m  

𝑘t,em 
app

(𝑖,𝑗)
→      𝑃i(+j)(+𝑃j)  

108 3.1 108 [7] - 

 𝑅i,m + 𝑅j,m  

𝑘t,mm
app

(𝑖,𝑗)
→      𝑃i(+j)(+𝑃j)   

106 2.0 106 [7] - 

a: dissociation into a benzoyl and dimethoxy benzyl radical; Δ[R0] calculated via Equation (2; main text), 

with both for the theoretical validation and the actual application to PLP of nBuA ε = 280 L mol-1 cm-1,  

λ = 351 nm, V = 0.2 mL and L = 0.52 cm (cf. Experimental Section (main text)). 
b: 𝑘p,I can be taken equal to the plateau value for propagation with long ECRs, no propagation of R0,II 

(cf. ref. 9) 
c: chain length dependent (apparent) termination rate coefficients are considered (Equation (S.1) - (S.3); 

parameters: ref. 7, 8); 𝑘t
app
(1,1) is reported, taking into account a correction with a factor 2, as indicated 

by e.g. Derboven et al.;12 fraction termination by recombination (δ) in agreement with literature data 

(column 3,4: δee = 0.9, δem = 0.3, δmm = 0.1 cf. ref 5, 13; column 5: δee = 0.25 cf. ref. 14); i, j = 0: 𝑅0,e
I//II

 

(hence termination of the propagating and non-propagating radical also taken into account) 
d: 𝑘t,ee

app
(1,1) determined from its value at 353 K as reported in ref. 8 and an Ea of 9 kJ mol-1 in agreement 

with ref. 15 
 

 

B.2.2 Correction for SEC broadening 

In agreement with the method described in previous work,16 the simulated log-MMD w(log M) 

is corrected according to the following formula to account for SEC broadening: 
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 𝑤𝑆𝐸𝐶(log𝑀)

=
1

(2𝜋)0.5𝜎𝑣𝑏
∫ exp (−

(log(𝑀) − log(�̃�))2

2(𝜎𝑣𝑏)
2

)𝑤(log  �̃�) 𝑑𝑙𝑜𝑔(�̃�)

+∞

0

 

(S.4) 

In this work, the SEC broadening parameter σvb is taken equal to 0.05, in agreement with typical 

values reported in literature.9, 17, 18 

B.3 In silico application to PLP of MMA 

In order to test if the method yields the same estimate for Φdiss for other monomers, the method 

is applied to in silico PLP data of MMA at 306 K (all conditions are listed in the caption of 

Figure S3; in order to increase the intensity of the SEC signal, multiple samples at identical 

conditions may be combined before SEC analysis). These data are obtained via kMC 

simulations using the model parameters as listed in Table S2 (5th column) and a value of 0.42 

for Φdiss (cf. value estimated from PLP data of nBuA). In a subsequent step this data is 

superimposed with a random error determined via Gaussian sampling with standard deviation 

σ = 0.3 to mimic an experimental error of ca. 10%. By performing a regression analysis to the 

latter data an estimate for Φdiss of 0.43 ± 0.07 (95% confidence interval) is obtained, with the 

corresponding fit shown in Figure S3. Since the obtained estimate (Φdiss = 0.43) is very close 

to the estimate obtained via regression analysis to PLP data of nBuA (Φdiss = 0.42), it has been 

demonstrated that in case accurate monomer-specific model parameters are used, the obtained 

estimate for Φdiss does not depend on the selected monomer.        
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Figure S3. In silico application to PLP of MMA; symbols: data generated using a kMC model with an 

input value of 0.42 for Φdiss (cf. value estimated from PLP data of nBuA) and all other model parameters 

as in Table S2 (5th column), superimposed with a random error (Gaussian sampling with standard 

deviation σ = 0.6 (i.e. an error of ca. 10%); full line: model after regression analysis; conditions: T = 

306 K, ν = 10 s-1, [DMPA]0 = 0.3 mmol L-1, sample volume: 0.2 mL (optical path length: 0.52 cm), Npulse 

= 225 (1.5 mJ), 150 (2.5 mJ), 120 (3.5 mJ), 100 (4.5 mJ), 70 (6mJ). 

B.4 Sensitivity to the apparent termination reactivity 

As for any method, the accuracy of the presented approach is affected by the accuracy of the 

model parameters. In particular, the method is most sensitive to the apparent termination 

reactivity kt,app (i,j). In this section, the effect a large error on kt,app (i,j) has on the estimate for 

Φdiss is investigated. 

To this purpose, a regression analysis to the same data as in Figure 3 (left; main text), i.e. h1/h2 

data obtained via simulation with an input value of 0.5 for Φdiss and the model parameters as 

listed in Table S2 (column 3) and superimposed with a Gaussian error mimicking an 

experimental error of ca. 10%, is performed. However, in the regression analysis kt,app (i,j) is 

increased with 50% compared to Table S2 (column 3). Hence, a large error of 50% is considered 

in this case study. An estimate of 0.34 ± 0.04 (95% confidence interval) is obtained. The 

overestimation of kt,app (i,j) thus leads to an underestimation of Φdiss. Importantly, such 

inaccuracies can be detected by applying the method to another monomer for which extensively 
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studied rate coefficients are available. Indeed, provided that accurate monomer-specific model 

parameters are used, the same value of Φdiss is obtained. 
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Appendix C: Supporting Information for Chapter 4 

C.1 Experimental details for the measurement of the inflection points 

In this section, an overview of the experimental results is given. In Table S1, all the initial 

conditions and the corresponding results for the inflection points are listed. Typical PLP-SEC 

traces are shown in Figure S1 with an indication of the inflection points (black circles). 

Table S1. Experimental results for PLP of nBuA at 303 K for varying solvent volume fraction and laser 

pulse frequency; initial conditions: [DMPA]0 = 2.5 10-3 mol L-1, Epulse = 1.5 10-3 J; solvent: butyl 

propionate 

Entry 
Volume fraction  

solvent [-] 
Frequency [s-1] 

Number of 

pulses [-] 
kp,app [L mol-1 s-1] 

1 0 10 25 4366 

2 0 20 35 7820 

3 0 40 45 8913 

4 0 60 55 9873 

5 0.5 10 35 3727 

6 0.5 20 45 4575 

7 0.5 40 65 6218 

8 0.5 60 75 7816 

9 0.75 10 50 2858 

10 0.75 20 65 4193 

11 0.75 40 85 5179 

12 0.75 60 95 7152 
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Figure S1. Typical measured PLP-SEC traces (full black line) and their corresponding first derivative 

(full blue line) for PLP of nBuA at 303 K for varying solvent volume fraction (ΦS = 0, 0.5, 0.75) and a 

laser pulse frequency ν = 10 s-1; black circle: inflection point (i.e. maximum of first derivative) used for 

kp,app determination (Equation (2) in the main text); initial conditions: [DMPA]0 = 2.5 10-3 mol L-1, Epulse 

= 1.5 10-3 J; solvent: butyl propionate (see also Table S1). 

C.2 Model details for the calculation of the inflection points 

C.2.1 Reactions and model parameters for the basic PLP model 

An overview of the reactions considered in the kinetic Monte Carlo (kMC) model to calculate 

the inflection points and thus to obtain the simulated input for the regression analysis is 

provided in Table S2 (basic reaction scheme). In the same table, the model parameters for the 

theoretical evaluation of the method (parameters: only typical orders of magnitude) and the 

application to the actual experimental data (cf. Table S1) are included.  

 

 



Appendix C  179 

Table S2. Basic reaction scheme to simulate low temperature PLP of nBuA initiated by DMPA, 

including a listing of the model parameters used for the theoretical evaluation of the method (only orders 

of magnitude) and the actual application to nBuA at 303 K; intermolecular chain transfer, βC-scission 

and macromonomer addition neglected based on literature data.1, 2 Chain transfer to monomer and 

solvent can be also neglected, as demonstrated in Section 3. 

Reaction Equation 

Theoretical evaluation 

∆[𝑅0] [mol L-1], 

k [(L mol-1) s-1] 

nBuA 303 K 

∆[𝑅0] [mol L-1], 

k [(L mol-1) s-1] 

Photodissociation[a] 𝐷𝑀𝑃𝐴
∆[𝑅0]
→    𝑅0,e

I + 𝑅0,e
II  10-4 2 10-5 

Chain initiation[b] 𝑅0,e
I +𝑀

𝑘p,I
→ 𝑅1,e 104 1.8 104 

Propagation 𝑅i,e +  𝑀 
𝑘p,e
→  𝑅i+1,e 

𝑅i,m +  𝑀 
𝑘p,m
→  𝑅i+1,e  

104 1.8 104 [3] 

 102 1.2 101 [4] 

Backbiting (i ≥ 3 ) 𝑅i,e  
𝑘bb
→  𝑅i,m  103 1.7 102 

Termination[c] (i, j ≥ 0) 𝑅i,e + 𝑅j,e  

𝑘t,ee
app

(𝑖,𝑗)
→     𝑃i(+j)(+𝑃j) 

109 9.3 108 [4] 

 𝑅i,e + 𝑅j,m  

𝑘t,em 
app

(𝑖,𝑗)
→      𝑃i(+j)(+𝑃j)  

108 6.1 108 [4] 

 𝑅i,m + 𝑅j,m  

𝑘t,mm
app

(𝑖,𝑗)
→      𝑃i(+j)(+𝑃j)   

106 1.9 106 [4] 

a: dissociation into a benzoyl and dimethoxy benzyl radical; ∆[𝑅0] of the first laser pulse is reported (Equation (S.3)) 
b: 𝑘p,I can be taken equal to the plateau value for propagation with long ECRs, no propagation of R0,II (see Subsection 2.1) 
c: chain length dependent (apparent) termination rate coefficients according to the composite kt model are considered (see 

Subsection 2.1); 𝑘t
app
(1,1) is reported, taking into account a correction with a factor 2, as indicated by e.g. Derboven et al.;5 

fraction termination by recombination (δ) in agreement with literature data (δee = 0.9, δem = 0.3, δmm = 0.1) 2, 6; i, j = 0: 𝑅0,e
I/II

 

 

In what follows, specific attention is focused on the kinetic parameters for photodissociation, 

chain initiation, and termination. In Section 3 it is demonstrated that the reactions included are 

indeed sufficient for the reliable calculation of the inflection points. 

The generated amount of photoinitiator radical fragments per pulse (Δ[R0]) is calculated 

explicitly.7 The rate of photodissociation (mol L-1 s-1) as a function of the intensity delivered by 

the light source (I0; W dm-2) is calculated as: 

 
𝑟𝑑𝑖𝑠𝑠 = 𝛷𝑑𝑖𝑠𝑠

𝐼0𝜆

ℎ𝑐𝑁𝐴𝐿
[1 − exp(−2.303𝜀[𝐷𝑀𝑃𝐴]𝐿)] 

(S.1) 
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with Φdiss the quantum yield for photodissociation (0.95;8 also see subsection 3.1.1), λ the 

wavelength of the laser (351 10-7 cm), ε the molar absorptivity of the photoinitiator (280 L mol-

1 cm-1), L the optical path length (0.78 cm), h the Planck constant (6.63 10-34 J s), c the speed of 

light (3 109 dm s-1) , and NA the Avogadro constant (6.02 1023 mol-1). The intensity (I0) can be 

expressed as a function of the laser pulse energy (Epulse; 1.5 10-3 J): 

 
𝐼0 =

𝐸𝑝𝑢𝑙𝑠𝑒
Ω∆𝑡𝑝𝑢𝑙𝑠𝑒

 
(S.2) 

with Ω the optical cross-sectional area (3.85 10-3 dm2) and Δtpulse the duration of the pulse. Since 

the change in DMPA concentration during a pulse can assumed to be negligible (initial [DMPA] 

= 2.5 10-3 mol L-1), Δ[R0] can be calculated by multiplying rdiss (Equation (S.1)) with Δtpulse, 

taking into account a factor 2 (two radicals formed per dissociation reaction): 

 
∆[𝑅0] = 2𝛷𝑑𝑖𝑠𝑠

𝐸𝑝𝑢𝑙𝑠𝑒𝜆

ℎ𝑐𝑁𝐴ΩL
[1 − exp(−2.303𝜀[DMPA]𝐿)] 

(S.3) 

In agreement with earlier kinetic analysis of single pulse-pulsed laser polymerization (SP-PLP) 

experiments,9 and based on literature data,10-13 in the present work, the difference in chain 

initiation reactivity of the DMPA radical initiator fragments (entry 2 in Table S2) is taken into 

account. No further decomposition needs to be taken into account due to the selected low 

polymerization temperature of 303 K.9 

Chain length dependent termination kinetics - either caused intrinsically or by diffusional 

limitations - are evaluated via the composite kt model.14-17 For the low monomer conversion 

ranges as encountered during PLP, it suffices to consider: 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖−𝛼𝑆                      𝑖 ≤ 𝑖𝑐 (S.4) 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖𝑐
−𝛼𝑆+𝛼𝐿𝑖−𝛼𝐿        𝑖 > 𝑖𝑐 (S.5) 
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in which αS and αL express the chain length dependence for short and long radicals, and ic is the 

cross-over chain length. The values as reported by Barth et al.4 are used, i.e.  αS = 0.85,  αL = 

0.16, and ic = 30. 

C.2.2 Correction for SEC broadening 

When designing and interpreting PLP-SEC experiments, it has to be taken into account that 

axial dispersion during analysis leads to a broadening. Buback et al.18 have proposed a 

procedure to account for this experimental broadening, based on principles suggested by Tung19 

and Billiani.20 

Tung19 proposed to express the chromatogram f as the convolution of the chromatogram in case 

no experimental broadening would occur, h, with a broadening function G: 

 𝑓(𝑣) = ∫ 𝐺(𝑣 − �̃�)ℎ(�̃�)𝑑�̃�

+∞

0

 (S.6) 

According to Billiani20 the broadening function can be represented by a Gaussian distribution 

with variance 𝜎𝑣
2: 

 𝐺(𝑣 − �̃�) =
1

𝜎𝑣√2𝜋
exp (−

(𝑣 − �̃�)2

2𝜎𝑣
2
) (S.7) 

Shortt21 demonstrated that the relation between the broadened MMD 𝑤𝑆𝐸𝐶(log𝑀) and the 

chromatogram f(v) is given by: 

 𝑤𝑆𝐸𝐶(𝑙𝑜𝑔𝑀) = −
𝑓(𝑣)

𝑑(log𝑀)/𝑑𝑣
 (S.8) 

Analogously, the relation between w(log M), with 𝑀 representing the molar mass, and the 

chromatogram h(v), with w(log 𝑀)and h(𝑣) both representing the case no broadening occurs, 

is given by: 
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 𝑤(𝑙𝑜𝑔𝑀) = −
ℎ(𝑣)

𝑑(log𝑀)/𝑑𝑣
 (S.9) 

If the relation between the elution volume v and log M is linear: 

 𝑙𝑜𝑔𝑀 = 𝑎− 𝑏𝑣 (S.10) 

it follows that: 

 
𝑑(log𝑀)
𝑑𝑣

= −𝑏 (S.11) 

Substituting (S.11) into (S.8) and (S.9), respectively, yields: 

 𝑓(𝑣) = 𝑏 𝑤𝑆𝐸𝐶(𝑙𝑜𝑔𝑀) (S.12) 

 ℎ(𝑣) = 𝑏 𝑤(𝑙𝑜𝑔𝑀) (S.13) 

Finally, substituting (S.7), (S.12), and (S.13) into (S.6), yields: 

 

𝑤𝑆𝐸𝐶(log𝑀)

=
1

(2𝜋)0.5𝜎𝑣𝑏
∫ exp (−

(log(𝑀) − log(�̃�))2

2(𝜎𝑣𝑏)
2

)𝑤(log  �̃�) 𝑑𝑙𝑜𝑔(�̃�)

+∞

0

 

(S.14) 

Equation (S.14) has the important implication that broadening is assumed Gaussian with respect 

to log(M) and, hence, larger chain lengths will SEC-broaden exponentially. The SEC 

broadening parameter (σvb) can be determined via regression to the SEC-measured MMD for a 

narrow polystyrene standard. It can be expected that this leads to an upper limit for the 

broadening parameter, as this value also reflects the width of the MMD of the polystyrene 

standard. It has been opted in the present work to use the literature value of 4 10-2.22 

C.3 Robustness of the alternative method 

In the present section, the robustness of the alternative method is illustrated. Via a sensitivity 

analysis it is first demonstrated that a correct calculation of inflection points does not imply the 

need of a detailed model with highly accurate kinetic parameters. Next it is shown that the 

method can in principle be applied for the simultaneous estimation of the backbiting and mid-
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chain radical propagation rate coefficient, indicating that a lack of knowledge on the latter does 

not lead to a failure of the method. 

C.3.1 Sensitivity of kp,app to the model parameters 

C.3.1.1 Photodissociation 

In this work, Δ[R0] is fundamentally calculated via Equation (S.3) by substituting the values for 

the experimental parameters (Epulse = 1.5 10-3 J, [DMPA] = 2.5 10-3 mol L-1,  λ = 351 10-7 cm, 

Ω = 3.85 10-3 dm2, L = 0.78 cm), the physical constants (h = 6.63 10-34 J s, c = 3 109 dm s-1, NA 

= 6.02 1023 mol-1) and physicochemical coefficients (ε = 280 L mol-1 cm-1 and Φdiss = 0.95). It 

should be noted that Φdiss has been also reported equal to 0.52;23 in contrast to the value reported 

by Allonas et al.8 (Φdiss = 0.95). For Φs = 0 and ν = 10 s-1 the effect of such a variation in Φdiss 

(and thus Δ[R0]) on the PLP-SEC trace and in particular on the position of the inflection point 

is shown to be negligible in Figure S2 (full purple line: Φdiss = 0.95, L1 = 3778; dashed yellow 

line: Φdiss = 0.52, L1 = 3851).  

 

Figure S2. Theoretical illustration of the negligible effect of a possible variation of Φdiss on the PLP-

SEC trace (full purple line: Φdiss = 0.95; dashed yellow line: Φdiss = 0.52) and in particular on the 

inflection point (symbols) for Φs = 0 and ν = 10 s-1; initial conditions: Table S1; model parameters: Table 

S2. 
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C.3.1.2 Chain transfer to monomer 

In principle the estimated parameter values could depend on the chain transfer to monomer rate 

coefficients ktrM,e (transfer from an ECR) and ktrM,m (transfer from an MCR). In Figure S3 it is 

theoretically demonstrated that at the temperature considered in this study (303 K), chain 

transfer to monomer has a negligible effect on the PLP-SEC trace (dashed yellow line: ktrM,e = 

6.9 10-1 L mol-1 s-1 and ktrM,m = 2.3 10-3 L mol-1 s-1 (literature values24), L1 = 3528; full purple 

line: ktrM,e = ktrM,m = 0 L mol-1 s-1, L1 = 3778) and in particular on the position of the inflection 

point (symbols in Figure S3), even under the conditions of the highest importance of chain 

transfer to monomer, i.e. highest monomer concentration (ΦS = 0) and lowest frequency (ν = 

10 s-1) considered in this study. 

 

Figure S3. Theoretical illustration of the negligible effect of chain transfer to monomer on the PLP-

SEC trace and in particular on the inflection point at 303 K; transfer to monomer accounted for (dashed 

yellow line; ktrM,e and ktrM,m from ref.24) and neglected (full purple line; ktrM,e = ktrM,m = 0 L mol-1 s-1); ΦS 

= 0, ν = 10 s-1  (i.e. conditions corresponding to the highest importance of chain transfer to monomer); 

initial conditions: Table S1; model parameters: Table S2.  

C.3.1.3 Chain transfer to solvent 

In addition to chain transfer to monomer, chain transfer to solvent can occur. In order to 

investigate the effect of this chain transfer reaction on the PLP-SEC trace and in particular on 

the inflection point, simulations with the coefficient of chain transfer to solvent (CtrS) based on 

literature data are performed. CtrS is assessed by the value for chain transfer from poly(ethyl 
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acrylate) radicals to ethyl acetate at 353 K (CtrS = 8.9 10-5).25 The value of CtrS at 353 K is 

converted to the value at 303 K using for simplicity the activation energy of the rate coefficient 

of chain transfer to monomer (CtrM), which yields a value for CtrS of 3.9 10-5. In Figure S4, the 

PLP-SEC trace for CtrS = 3.9 10-5 (dashed yellow line; L1 = 465) and CtrS = 0 (full blue line; L1 

= 496) is shown, with the inflection pointed indicated by a symbol. It is clear that at 303 K, 

chain transfer to solvent has a negligible effect on the PLP-SEC trace and thus on the inflection 

point, even under the conditions of the highest importance of chain transfer to solvent, i.e. 

highest solvent volume fraction (ΦS = 0.75) and lowest frequency (ν = 10 s-1) considered in this 

study. Hence, chain transfer to solvent can safely be neglected in the present work and no 

accurate rate coefficients need to be known for the reliable estimation of kbb and kp,m. In addition, 

in general, the temperature and frequencies can always be regulated to avoid a possible impact. 

 

Figure S4. Theoretical illustration of the negligible effect of chain transfer to solvent on the PLP-SEC 

trace and in particular on the inflection point at 303 K; transfer to solvent accounted for (dashed yellow 

line; CtrS based on ref25) and neglected (full purple line; CtrS = 0 L mol-1 s-1); ΦS = 0.75, ν = 10 s-1  (i.e. 

conditions corresponding to the highest importance of chain transfer to solvent); initial conditions: Table 

S1; model parameters: Table S2. 
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C.3.1.4 Termination 

Finally, the estimated parameter value for kbb (and kp,m) could depend on the apparent 

termination reactivities. In Figure S5 it is demonstrated for ΦS = 0 and ν = 10 s-1 that a 

significant variation of the termination reactivity (variation of kt(1,1) by a factor 2) results in a 

shift of the PLP-SEC trace (full purple line: literature value for kt(1,1),4 L1 = 3778; dotted blue 

line: kt (1,1) x 2, L1 = 3638; dashed yellow line: kt (1,1) : 2, L1 = 3913); the variation of the 

position of the inflection point is however negligible. Note that for a general monomer always 

a quick tuning of this parameter can be performed by considering the shift of the complete trace. 

 

Figure S5. Theoretical illustration of the limited effect of the termination reactivity on the position of 

the inflection point (symbols) for ΦS = 0 and ν = 10 s-1; full purple line: literature value for kt(1,1),4 

dotted blue line: kt (1,1) x 2, dashed yellow line: kt (1,1) : 2; initial conditions: Table S1; model 

parameters: Table S2. 

C.3.2 Simultaneous estimation of kbb and kp,m 

In the main text, the high accuracy of the method to estimate bulk kbb values provided that kp,m 

is accurately known is demonstrated (Figure 1). In this section, it is theoretically illustrated that 

in addition to kbb, kp,m can also be accurately estimated provided that sufficient PLP-SEC 

inflection point data are available. 

In agreement with the main text (Figure 1 (left)), regression analysis of in silico kp,app data 

perturbed by a Gaussian error with a standard deviation of 400 L mol-1 s-1 (i.e. a relative error 
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of ca. 10%) is performed, however this time aiming at the estimation of both kbb and kp,m. For 

all rate coefficients typical orders of magnitude are again used (Table S2). A kbb and kp,m value 

of 1012 s-1 and 102 L mol-1 s-1 are obtained with the corresponding fits shown in Figure S6 (full 

lines). The obtained estimates (1012 ± 307 s-1 and 102 ± 40 L mol-1 s-1) are thus very close to 

the implemented and to be estimated value of 1000 s-1 and 100 L mol-1 s-1 (Table S2); statistical 

analysis indicates a correlation coefficient of 0.83, which is sufficiently low highlighting the 

limited correlation between the parameters. Large individual 95% confidence intervals are 

however obtained as only a small data set is considered. Hence, in case both parameters need 

to be estimated for an actual experimental data set it can be concluded that this set needs to be 

larger, in particular in case of high experimental errors. 

 

Figure S6. Potential of the method to estimate both kbb and kp,m for acrylate radical polymerization from 

kp,app data (Equation 2); symbols: generated data with the kMC model (dashed lines), superimposed with 

an artificial error with a standard deviation σ (same as in Figure 1 (left) in the main text; model 

parameters: Table S2; full lines: fits after regression analysis. 
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Appendix D: Supporting Information for Chapter 5 

D.1 Experimental details for the application of the proposed method 

This section describes the details of the bulk n-butyl acrylate (nBuA) PLP experiments at 413 

K. Typical SEC traces with the corresponding derivative at the outer pulse laser frequencies of 

the considered range are shown in Figure S1. These SEC traces are used to determine the 

apparent propagation rate coefficient (kp,app; Equation (1) in Chapter 5; i=1) by locating the 

(first) inflection point of the log-MMD plot.  

 

Figure S1. Experimental PLP-SEC trace (full blue line) and corresponding first derivative (full green 

line) for PLP of nBuA at 413 K under bulk conditions and a frequency of 10 Hz (left) and 50 Hz (right); 

initial conditions:   3 1

0
DMPA 2.5  10  mol L   and 

3

pulseE 1.5  10  J  . Number of pulses: 20 

at frequency of 10 Hz and 60 at frequency of 50 Hz. 

D.2 Correction for SEC broadening 

The log-MMD as obtained via size exclusion chromatography shows broadening.1 In this work, 

SEC broadening is accounted for based on the method proposed by Buback et al.2 For a more 

detailed description and derivation the reader is referred to previous work.3,4 The log-MMD 

after SEC broadening is calculated as: 

 

   

 
 

2

0.5 2

0

log( ) log( )1
(log  M) exp  (log ) log( )
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SEC

M M
w w M d M

b b   

  
  
 
 

  

      

(S1) 

In this work 𝜎𝑣𝑏 is taken equal to 0.04, in agreement with literature data.1,5  
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D.3 Kinetic modeling details 

The reaction scheme and the corresponding literature-based Arrhenius parameters for PLP of 

nBuA at high temperature are shown in Table 1 in Chapter 5. Thermal self-initiation and 

macropropagation reactions are neglected based on Figure 1 in Chapter 5 and the discussion in 

this section. 

D.3.1 Photodissociation kinetics 

The concentration of initiator radicals generated at each laser pulse ( 0[ ]R ) is calculated via:6,7 

 
 pulse

0 diss

A

[ ] 2 1 exp 2.303  [DMPA] 
    

E
R l

h c N l


      

     (S2) 

 

in which diss  is the photodissociation quantum yield (0.426), 
pulseE  the laser pulse energy 

( 31.5 10 J ),   the laser wavelength ( 9351 10 m ), h the Planck constant ( 236.63 10 J s ), c

the speed of light ( 9 13 10 m s ), AN the Avogadro constant ( 23 16.02 10 mol ),   the optical 

cross-sectional area ( 5 23.85 10  m ), l the optical path length ( 21.04 10  m ),   the molar 

absorptivity of the photoinitiator ( 2 128 m  mol ), and [DMPA] the concentration of the 

photoinitiator. 

D.3.2 Negligible impact of macromonomer propagation under PLP conditions 

The macromonomers formed via β-scission can propagate with end-chain and mid-chain 

radicals, adding additional complexity to the kinetics of n-butyl acrylate free radical 

polymerization. To investigate the effect of macromonomer propagation on the PLP kinetics, 

simulations were carried out considering the macromonomer propagation reaction and its rate 

coefficient was varied from minimum to maximum values as reported in the literature.8 For 

simplicity and to even enlarge a possible effect, the macropropagation rate coefficient for MCRs 
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is taken equal to the one for ECRs. The effect is although negligible as shown in Figure S2-

Figure S4. 

 

Figure S2. Effect of the macromonomer propagation reactivity on the apparent propagation rate 

coefficient (kp,app; Equation (1) in Chapter 5; i=1) in bulk PLP of n-butyl acrylate. Simulations were 

carried out by changing the macromonomer propagation rate coefficient (kmac). Other parameters as in 

Table 1 in Chapter 5; T = 413 K. For simplicity and to enlarge a possible effect, the macropropagation 

rate coefficient for MCRs is taken equal to the one for ECRs. 

 

 

Figure S3. Corresponding log-MMD for Figure S2 at a frequency =10 Hz (also Figure 1 (right) in 

Chapter 5). 
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Figure S4. Corresponding macromonomer concentrations for Figure S3. 

D.3.3 Chain length dependencies 

Chain length dependent propagation kinetics are accounted based on (details in reference 6;  

based on the work of Heuts and Russell 9).  

 
𝑘𝑝(𝑖) = 𝑘𝑝 [1 + 𝐶1exp(−

ln(2)

𝑖1/2
𝑖)]        (S3) 

Here i refers to the chain length (0 for an initiator-derived radical), in contrast to the equation 

as originally reported in which i = 1 for an initiator-derived radical.  

Chain length dependent termination kinetics are evaluated via the composite kt model. For the 

low monomer conversion ranges as encountered during PLP, it suffices to consider: 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖−𝛼𝑆 𝑖 ≤ 𝑖𝑐 (S4) 

 𝑘𝑡
𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡

𝑎𝑝𝑝(1,1)𝑖𝑐
−𝛼𝑆+𝛼𝐿𝑖−𝛼𝐿 𝑖 > 𝑖𝑐 (S5) 

in which αS and αL express the chain length dependence for short and long radicals, and ic is the 

cross-over chain length (details in reference 5).  
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D.4 Extra information related to the sensitivity of kp,app to kβ (related to Figure 2 

and 3 in Chapter 5) 

In this section the sensitivity of kp,app to kβ at varying reaction conditions is investigated. 

D.4.1 Effect of the temperature on the sensitivity of kp,app to kβ 

 

Figure S5. Effect of the temperature on the sensitivity of kp,app to kβ in PLP of n-butyl acrylate; (a) 353 

K and (b) 383 K. Reference kβ = 0.52 s-1 at 353 K and reference kβ = 2.9 s-1 at 383 K. Simulation 

conditions: ϕs=0; other parameters: Table 1 in Chapter 5. 

  



196  Appendix D 

D.4.2 Effect of the solvent volume fraction on the sensitivity of kp,app to kβ 

 

Figure S6. Sensitivity of kp,app to kβ in PLP of n-butyl acrylate at varying solvent volume fractions as 

observed via kMC simulations. (a) ϕs=0.5 and (b) ϕs=0.75. Simulation conditions: 413 K, kβ= 12.41 s-1; 

other parameters: Table 1 in Chapter 5. 
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Figure S7. Effect of the solvent volume fraction on the simulated log-MMD in PLP of n-butyl acrylate 

at selected laser pulse frequencies. Simulation conditions: 413 K, kβ= 12.4 s-1; other parameters: Table 

1 in Chapter 5. 
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Figure S8. Effect of kβ on the simulated log-MMD at varying solvent volume fractions. (a) ϕs=0, (b) 

ϕs=0.5 and (c) ϕs=0.75. Simulation conditions: Temperature=413 K; frequency=10 Hz; other 

parameters: Table 1 in Chapter 5. 
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Appendix E: Supporting Information for Chapter 6 

E.1 Modeling methodology of the kMC simulation tool for the interactive 

calculation of the CLD and PSD in batch isothermal miniemulsion FRP 

A flow chart illustrating the modeling methodology for batch isothermal miniemulsion FRP is 

shown in Figure S1. The code requires as input (step 0) a list with all reactions and mass transfer 

events and the corresponding kinetic and diffusion parameters (here Table 1 of the main text). 

In addition, the initial concentration of the initiator and the monomer in the organic and aqueous 

phase need to be specified. Moreover, the initial droplet size distribution (i), which is here the 

initial particle size distribution, as well as the initial number of droplets/particles in the 

simulation volume (ii), and the volume fraction of the organic phase (iii) need to be given as 

input. Finally, the time up to which one wants to simulate the miniemulsion kinetics needs to 

be mentioned. 

Next, in step 1, from (i) and (ii) the initial volume of each particle is calculated. From the former 

and (iii) the initial volume occupied by the organic and aqueous phase in the simulation volume 

is calculated. From these volumes and the given values for the initial concentration of I2 and M 

in the organic and aqueous phase, the initial number of I2 and M molecules in both phases are 

calculated. 

This allows to calculate – analogously to bulk simulations1 - the individual and overall 

microscopic Monte Carlo rates (i.e. rates in s-1) with increasing time for all reactions and mass 

transfer events (step 2). From a random number r1 and the total microscopic rate the time τ in 

between two events is calculated in agreement with the pioneering method of Gillespie.2 In a 

next step, the microscopic rates are converted into probabilities, which – upon selection of a 

second random number r2 - allows to determine which reaction or mass transfer event takes 

place (step 3), again in agreement with the method of Gillespie.2 It should be noted that for the 
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calculation of the total microscopic rate and for determining which reaction or mass transfer 

event takes place, mass transfer of I2 and M are not taken into account. Due to the typically very 

large number of I2 and M molecules in each reaction locus, sampling of individual mass transfer 

events of I2 and M would lead to a too large computational cost. Hence, it is more 

recommendable to only update I2 and M at certain time instances (see step 6). 

 

Figure S1. Flow chart illustrating the kMC simulation strategy and extensions compared to kMC 

modeling of bulk/solution polymerization to allow for an explicit calculation of the chain length and 

particle size distribution in minemulsion radical polymerization. 

 

If a particle is involved then the locus of the selected event (i.e. the specific particle) is 

determined based on the individual probabilities of the selected event in each locus and a third 

random number (step 4). In case the selected event involves one or two macroradicals (i.e. in 

case of propagation, termination, entry or exit of a macroradical), the chain length of the 

reacting radical(s) is determined based on a fourth random number, and in case of diffusion 

limitations, also based on the chain length dependent microscopic rates. The selection of the 
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specific particle and/or chain length(s) of the reacting radical(s) follows selection procedures 

as developed in previous work on bulk/solution polymerization.1 The number of the reacting 

species in the locus of the event is updated in a next step (step 5). 

Then it is evaluated whether the number of events that has taken place since the last time that 

the number of I2 and M molecules have been updated is equal to x (e.g.10) times the number of 

droplets/particles in the simulation volume, i.e. if on average approximately x (e.g. 10) events 

have taken place per particle. If this is the case, the number of I2 and M molecules at the current 

time ti (ti-1 is the time I2 and M were previously updated) is updated at follows (step 6): 

𝑛𝐼2(𝑖, 𝑡𝑖) = 𝑛𝐼2(𝑖, 𝑡𝑖−1) + [𝑅𝑒𝑛𝑡𝑟𝑦,𝐼2(𝑖, 𝑡𝑖−1) − 𝑅𝑒𝑥𝑖𝑡,𝐼2(𝑖, 𝑡𝑖−1)][𝑡𝑖 − 𝑡𝑖−1], 𝑖 = 1, . . 𝑁𝑝 (S1) 

𝑛𝑀(𝑖, 𝑡𝑖) = 𝑛𝑀(𝑖, 𝑡𝑖−1) + [𝑅𝑒𝑛𝑡𝑟𝑦,𝑀(𝑖, 𝑡𝑖−1) − 𝑅𝑒𝑥𝑖𝑡,𝑀(𝑖, 𝑡𝑖−1)][𝑡𝑖 − 𝑡𝑖−1], 𝑖 = 1, . . 𝑁𝑝 (S2) 

𝑛𝐼2,𝑎𝑞(𝑡𝑖) = 𝑛𝐼2(1, 𝑡𝑖−1) + [∑𝑅𝑒𝑥𝑖𝑡,𝐼2(𝑖, 𝑡𝑖−1) −∑𝑅𝑒𝑛𝑡𝑟𝑦,𝐼2(𝑖, 𝑡𝑖−1)

𝑁𝑝

𝑖=1

𝑁𝑝

𝑖=1

] [𝑡𝑖 − 𝑡𝑖−1] (S3) 

𝑛𝑀,𝑎𝑞(𝑡𝑖) = 𝑛𝑀(1, 𝑡𝑖−1) + [∑𝑅𝑒𝑥𝑖𝑡,𝑀(𝑖, 𝑡𝑖−1) −∑𝑅𝑒𝑛𝑡𝑟𝑦,𝑀(𝑖, 𝑡𝑖−1)

𝑁𝑝

𝑖=1

𝑁𝑝

𝑖=1

] [𝑡𝑖 − 𝑡𝑖−1] (S4) 

with 𝑛𝐼2(𝑖, 𝑡𝑖) and 𝑛𝑀(𝑖, 𝑡𝑖) the number of I2 and M molecules in particle i (Np particles in total) 

at time ti, 𝑛𝐼2,𝑎𝑞(𝑡𝑖) and 𝑛𝑀,𝑎𝑞(𝑡𝑖) the number of I2 and M molecules in the aqueous phase at 

time ti and 𝑅𝑒𝑛𝑡𝑟𝑦,𝐼2/𝑀(𝑖, 𝑡𝑖−1) and 𝑅𝑒𝑥𝑖𝑡,𝐼2/𝑀(𝑖, 𝑡𝑖−1) the microscopic entry/exit rate (i.e. in s-1) 

of I2/M from/to particle i at time ti-1.  

Next it is evaluated if the actual time is equal to the desired total simulation time ttot. If not, the 

algorithm returns to step 2 and, if, yes, the simulation is stopped and the complete output can 

be generated.  
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E.2 Additional kMC modeling details 

E.2.1 Calculation of apparent chain length and monomer conversion dependent termination 

rate coefficients (macroscopic rate coefficiens) 

The composite kt model3 as accessible via reversible addition fragmentation chain transfer – 

chain length dependent – termination (RAFT-CLD-T) experiments was used to describe the 

apparent chain length and monomer conversion dependent termination rate coefficients. The 

apparent termination rate coefficient for termination between two radicals of chain length i, 

kt,app(i,i), is calculated via:  

i < igel 

 𝑘𝑡,𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡(1,1)𝑖
−𝛼𝑆                                                                       𝑖 < 𝑖𝑆𝐿 (S5) 

 𝑘𝑡,𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡(1,1)𝑖𝑆𝐿
𝛼𝐿−𝛼𝑆𝑖−𝛼𝐿                                                         𝑖 ≥ 𝑖𝑆𝐿 (S6) 

i ≥ igel 

 𝑘𝑡,𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡(1,1)𝑖𝑔𝑒𝑙
𝛼𝑔𝑒𝑙−𝛼𝑆𝑖−𝛼𝑔𝑒𝑙                                                   𝑖 < 𝑖𝑆𝐿 (S7) 

 𝑘𝑡,𝑎𝑝𝑝(𝑖, 𝑖) = 𝑘𝑡(1,1)𝑖𝑆𝐿
𝛼𝐿−𝛼𝑆𝑖𝑔𝑒𝑙

𝛼𝑔𝑒𝑙−𝛼𝐿𝑖−𝛼𝑔𝑒𝑙                                      𝑖 ≥ 𝑖𝑆𝐿 (S8) 

Typical values3 are used for the model parameters (mp: mass fraction of the polymer): 

𝛼𝑆 = 0.5 

𝛼𝐿 = 0.15 

𝛼𝑔𝑒𝑙 = 𝑚𝑝 − 0.1 

𝑖𝑆𝐿 = 30 

𝑖𝑔𝑒𝑙 = 3𝑚𝑝
−2 

The apparent termination rate coefficient for termination between a radical of chain length i and 

chain length j, kt,app(i,j), is approximated via:4 

 
𝑘𝑡,𝑎𝑝𝑝(𝑖, 𝑗) = (𝑘𝑡,𝑎𝑝𝑝(𝑖, 𝑖) 𝑘𝑡,𝑎𝑝𝑝(𝑗, 𝑗))

0.5
 (S9) 
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It should be noted that in the kMC model each termination possibility is considered individually, 

i.e. no lumping of all termination possibilities is performed and an average <kt,app> is thus not 

used. Indeed, kt,app(i,j) is calculated for each individual termination possibility based on the 

chain length of the two radicals and the volume and the polymer mass fraction of the reaction 

locus (i.e. the aqueous phase or a specific particle) in which the two radicals of the termination 

possibility are present. 

E.2.2 Calculation of chain length dependent diffusion coefficients for entry and exit of 

macroradicals 

The diffusion coefficient of macroradicals having a chain length i, DR(i), is assessed via:5 

 𝐷𝑅(𝑖) =
𝐷𝑀

𝑖0.664+2.2𝑚𝑝
 (S10) 

with DM the diffusion coefficient of the monomer and mp the mass fraction of polymer. For the 

calculation of the diffusion coefficient in the aqueous phase, mp is taken equal to zero. 
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E.3 Time scales of reactions and mass transfer events 

Table S1. Formulas for the time scales τ in the beginning of a miniemulsion polymerization process 

([𝑀] ≈ [𝑀]0) reported in Table 1 of the main text; only in case 7 there is chain length dependent 

termination so that the formula should be calculated with the average apparent termination rate 

coefficient.  

Event Equation Formula τ 

Reactions in 

particles 
  

Dissociation 𝐼2,𝑝
𝑘𝑑,𝑝
→  2 𝐼𝑝 

1

𝑘𝑑,𝑝
 

Chain initiation 𝐼𝑝 +𝑀𝑝
𝑘𝑖,𝑝
→ 𝑅1,𝑝 

1

𝑘𝑖,𝑝[𝑀]0
 

 𝑀𝑝
∗ +𝑀𝑝

𝑘𝑖,𝑝
→ 𝑅1,𝑝 

1

𝑘𝑖,𝑝[𝑀]0
 

Propagation 𝑅𝑖,𝑝 +𝑀𝑝
𝑘𝑝,𝑝
→  𝑅𝑖+1,𝑝 

1

𝑘𝑝,𝑝[𝑀]0
 

Chain transfer to 

monomer 𝑅𝑖,𝑝 +𝑀𝑝
𝑘𝑡𝑟𝑀,𝑝
→    𝑀𝑝

∗ 
1

𝑘𝑡𝑟𝑀,𝑝[𝑀]0
 

Termination a 𝑅𝑖,𝑝 + 𝑅𝑗,𝑝
𝑘𝑡,𝑎𝑝𝑝,𝑝
→     𝑃𝑖+𝑗,𝑝 

𝜋𝑑𝑝
3𝑁𝐴

6 𝑘𝑡,𝑎𝑝𝑝,𝑝(1,1)
 

Reactions in water   

Dissociation 𝐼2,𝑝
𝑘𝑑,𝑤
→  2 𝐼𝑝 

1

𝑘𝑑,𝑤
 

Chain initiation 𝐼𝑤 +𝑀𝑤
𝑘𝑖,𝑤
→  𝑅1,𝑤 

1

𝑘𝑖,𝑤[𝑀]0
 

 𝑀𝑤
∗ +𝑀𝑤

𝑘𝑖,𝑤
→  𝑅1,𝑤 

1

𝑘𝑖,𝑤[𝑀]0
 

Propagation 𝑅𝑖,𝑤 +𝑀𝑤
𝑘𝑝,𝑤
→  𝑅𝑖+1,𝑤 

1

𝑘𝑝,𝑤[𝑀]0
 

Chain transfer to 

monomer 𝑅𝑖,𝑤 +𝑀𝑤
𝑘𝑡𝑟𝑀,𝑤
→    𝑀𝑤

∗  
1

𝑘𝑡𝑟𝑀,𝑤[𝑀]0
 

Termination a 
𝑅𝑖,𝑤

+ 𝑅𝑗,𝑤
𝑘𝑡,𝑎𝑝𝑝,𝑤
→     𝑃𝑖+𝑗,𝑤 

𝑉𝑤𝑁𝐴
𝑘𝑡,𝑎𝑝𝑝,𝑤(1,1)

 

Transfer of radicals   

Entry of I c 𝐼𝑤
𝑘𝑒𝑛𝑡𝑟𝑦,𝐼
→     𝐼𝑝 

𝑉𝑤
𝐶𝑒𝑛𝑡𝑟𝑦,𝐼𝐷𝐼,𝑤𝑑𝑝

 

Entry of M * c 𝑀𝑤
∗
𝑘𝑒𝑛𝑡𝑟𝑦,𝑀∗

→      𝑀𝑝
∗ 

𝑉𝑤
𝐶𝑒𝑛𝑡𝑟𝑦,𝑀∗𝐷𝑀∗,𝑤𝑑𝑝

 

Entry of Ri c 
𝑅𝑖,𝑤

𝑘𝑒𝑛𝑡𝑟𝑦,𝑅
→     𝑅𝑖,𝑝 

𝑉𝑤
𝐶𝑒𝑛𝑡𝑟𝑦,𝑅𝐷𝑅,𝑤𝑑𝑝

 

Exit of I e 𝐼𝑝
𝑘𝑒𝑥𝑖𝑡,𝐼
→   𝐼𝑤 

𝑑𝑝
2

𝐶𝑒𝑥𝑖𝑡,𝐼𝐷𝐼,𝑝
 

Exit of M * e 𝑀𝑝
∗
𝑘𝑒𝑥𝑖𝑡,𝑀∗
→     𝑀𝑤

∗  
𝑑𝑝
2

𝐶𝑒𝑥𝑖𝑡,𝑀∗𝐷𝑀∗,𝑝
 

Exit of Ri e 
𝑅𝑖,𝑝

𝑘𝑒𝑥𝑖𝑡,𝑅
→    𝑅𝑖,𝑤 

𝑑𝑝
2

𝐶𝑒𝑥𝑖𝑡,𝑅𝐷𝑅,𝑝
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E.4 Conventional Smith-Ewart equations to benchmark the novel kMC modeling 

tool upon its simplification with a single particle size and a constant particle 

monomer concentration; intrinsic case 

The novel kMC modeling tool is benchmarked to a conventional (deterministic) Smith-Ewart 

model for intrinsic miniemulsion FRP kinetics with a water-soluble initiator and a simplified 

reaction scheme. The model assumes a Maxwell-Morrison entry mechanism, i.e. entry is 

irreversible (no exit takes place) and entry only takes place once a radical reaches a certain 

chain length (here 4). In addition, chain transfer to monomer and diffusional limitations are not 

taken into account. More importantly, an average particle size and monomer concentration in 

the particles are considered. Termination by recombination is considered. The differential 

equations for this conventional Smith-Ewart model are discussed below.  

E.4.1 �̅� and monomer conversion vs. time evolution 

For the considered model, the temporal evolution of the number of particles containing k 

radicals, Nk, is expressed by: 

 

𝑑𝑁𝑘
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁𝑘−1 − 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁𝑘

+
𝑘𝑡(1,1)

𝑉𝑝𝑁𝐴

(𝑘 + 2)(𝑘 + 1)

2
𝑁𝑘+2 −

𝑘𝑡(1,1)

𝑉𝑝𝑁𝐴

𝑘(𝑘 − 1)

2
𝑁𝑘 

(S11) 

The temporal evolution of the aqueous phase concentrations in expressed by (note: initiator 

efficient f = 1 here; Np is the total number of particles, which is assumed constant; Vw is the 

volume of the aqueous phase): 

 
𝑑[𝐼2]𝑤
𝑑𝑡

= −𝑘𝑑,𝑤[𝐼2]𝑤 (S12) 

 𝑑[𝐼]𝑤
𝑑𝑡

= 2𝑘𝑑,𝑤[𝐼2]𝑤 − 𝑘𝑖,𝑤[𝐼]𝑤[𝑀]𝑤 (S13) 
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 𝑑[𝑀]𝑤
𝑑𝑡

= −(𝑘𝑖,𝑤[𝐼]𝑤 + 𝑘𝑝,𝑤∑[𝑅𝑖]𝑤

3

𝑖=1

) [𝑀]𝑤 (S14) 

 𝑑[𝑅1]𝑤
𝑑𝑡

= 𝑘𝑖,𝑤[𝐼]𝑤[𝑀]𝑤 − 𝑘𝑝,𝑤[𝑅1]𝑤[𝑀]𝑤 (S15) 

 𝑑[𝑅2]𝑤
𝑑𝑡

= 𝑘𝑝,𝑤[𝑅1]𝑤[𝑀]𝑤 − 𝑘𝑝,𝑤[𝑅2]𝑤[𝑀]𝑤 (S16) 

 𝑑[𝑅3]𝑤
𝑑𝑡

= 𝑘𝑝,𝑤[𝑅2]𝑤[𝑀]𝑤 − 𝑘𝑝,𝑤[𝑅3]𝑤[𝑀]𝑤 (S17) 

 𝑑[𝑅4]𝑤
𝑑𝑡

= 𝑘𝑝,𝑤[𝑅3]𝑤[𝑀]𝑤 − 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤
𝑁𝑝
𝑉𝑤𝑁𝐴

 (S18) 

After numerical integration of Equation (S11)-(S18) the average number of radicals per particle, 

�̅�, can be calculated via: 

 �̅� =
∑ 𝑘𝑁𝑘𝑘≥1

𝑁𝑝
 (S19) 

The temporal evolution of the average monomer concentration in the particles follows from: 

 
𝑑[𝑀]𝑝
𝑑𝑡

= −𝑘𝑝,𝑝[𝑀]𝑝
�̅�

𝑉𝑝𝑁𝐴
 (S20) 

From Equation (S14) and (S20) the evolution of the monomer conversion can be determined 

via: 

 
𝑑𝑋𝑀
𝑑𝑡

= −
1

[𝑀]𝑝,0𝑉𝑜𝑟𝑔 + [𝑀]𝑤,0𝑉𝑤
(𝑉𝑜𝑟𝑔

𝑑[𝑀]𝑝
𝑑𝑡

+ 𝑉𝑤
𝑑[𝑀]𝑤
𝑑𝑡

) (S21) 

 

E.4.2 Moment equations for the calculation of the xn and xm versus time evolutions 

For the calculation of the xn and xm versus time evolutions, the temporal evolution of the first 

and second order moment of the chain length distribution (CLD) of the macroradicals (λi,p; i = 

1, 2) and ‘dead’ polymer molecules (μi,p; i = 1, 2) in the particles needs to be determined. Since 
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no chain length and monomer conversion dependency of the termination rate coefficient is 

taken into account for the benchmark, kt(1,1) is large (109 L mol-1 s-1) and small particles (dp= 

50 nm) are considered, termination in the particles can be assumed to be instantaneous. Hence, 

it can be assumed particles contain either contain zero or one radical. The zeroth moment of the 

macroradical CLD in the particles is equal to: 

 𝜆0,𝑝 = 𝑁𝑝�̅� (S22) 

The temporal evolution of the first moment of the macroradical CLD in the particles, λ1,p, is 

expressed by: 

 
𝑑𝜆1,𝑝
𝑑𝑡

= 𝑘𝑝,𝑝[𝑀]𝑝𝜆0,𝑝 + 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁04 − 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁1
𝜆1,𝑝
𝜆0,𝑝

 (S23) 

The last term of Equation (S23) expresses that upon entry of a radical to a particle containing 

one radical, which on average has a chain length of 
𝜆1,𝑝

𝜆0,𝑝
, termination takes place instantaneously. 

Note that 𝑁1 = 𝑁𝑝�̅� and 𝑁0 = 𝑁𝑝(1 − �̅�). 

Analogously, the temporal evolution of the second order moment of the macroradical CLD 

follows from: 

 

𝑑𝜆2,𝑝
𝑑𝑡

= 𝑘𝑝,𝑝[𝑀]𝑝𝜆0,𝑝 + 2𝑘𝑝,𝑝[𝑀]𝑝𝜆1 + 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁016

− 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁1
𝜆2,𝑝
𝜆0,𝑝

 

(S24) 

As termination takes places instantaneously upon entry of a radical to a particle already 

containing a radical, the temporal evolution of the zeroth order moment of the ‘dead’ polymer 

CLD in the particles is expressed by: 

 
𝑑𝜇0,𝑝
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁1 (S25) 
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From Equation (S23) and (S24) it follows that the temporal evolution of the first and second 

order moment of the ‘dead’ polymer CLD in the particles is given by (neglecting the 

contribution of the radical with chain length 4 to the total chain length): 

 
𝑑𝜇1,𝑝
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁1(
𝜆1,𝑝
𝜆0,𝑝

) (S26) 

 𝑑𝜇2,𝑝
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦,𝑅4[𝑅4]𝑤𝑁1(
𝜆2,𝑝
𝜆0,𝑝

) 
(S27) 

After integration of Equation (S23)-(S27) the temporal evolution of xn and xm is obtained via: 

 𝑥𝑛 =
𝜇1,𝑝
𝜇0,𝑝

 (S28) 

 𝑥𝑚 =
𝜇2,𝑝
𝜇1,𝑝

 
(S29) 
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E.5 Additional simulation results in support of the main text 

E.5.1 kMC simulations results for miniemulsion FRP with a water-soluble initiator accounting 

for monomer fluctuations over the particles, thus a particle dependent monomer concentration 

 

Figure S2. Importance of monomer fluctuations over the particles for the evolution of the monomer 

conversion XM, and the “dead” polymer number and mass average chain length xn and xm. kMC 

simulations results neglecting monomer fluctuations (full green line; same as in Figure 2 of the main 

text) and accounting for monomer fluctuations (full blue line); for completeness, the simulation results 

obtained with the Smith-Ewart model are also included (dashed black line; same as in Figure 2 of the 

main text); conditions and parameters: see caption Figure 2 (main text). As the blue lines deviate from 

the other two lines (that coincide) it is clear that monomer fluctuations need to be accounted for. 

E.5.2 Number of radicals in individual particles for case 1 and case 2 

The evolution of the number of radicals in two individual particles, one with dp,0 = 100 nm and 

one with dp,0 = 200 nm, is shown for 0 ≤ t ≤ 103 s in Figure S3 for case 1 and in Figure S4 for 

case 2 in Table 2 (conditions caption Figure 3 in the main text).  
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Figure S3. Evolution of the number of radicals in two individual particles, one with dp,0 = 100 nm (top) 

and one with dp,0 = 200 nm (bottom) in case 1 (no exit/entry) in Table 2; conditions caption Figure 3. 
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Figure S4. Evolution of the number of radicals in two individual particles, one with dp,0 = 100 nm (top) 

and one with dp,0 = 200 nm (bottom) in case 2 (with exit/entry of I) in Table 2; conditions: caption Figure 

3. 
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Appendix F: Glossary 

β-scission: reaction in which a mid-chain radical is converted into an end-chain radical and a 

macromonomer via the scission of a β C-C bond. 

Apparent rate coefficient: rate coefficient related to the observed kinetics, i.e. rate coefficient 

determined by the intrinsic chemical rate coefficient and transport phenomena. 

Backbiting: also referred to as intramolecular chain transfer; reaction in which the radical 

center of an end-chain radical is transferred a few monomer units from the chain end resulting 

in a mid-chain radical; typically the unit is transferred three units from the chain end via a six 

membered ring transition state, i.e. 1:5-intramolecular chain transfer. 

Chain length of a polymer molecule: the number of repeating units (coming from the 

monomer(s)) in a polymer molecule. 

Chain transfer: reaction leading to transfer of the radical center within a species or between 

two species. 

Dead polymer molecule: polymer molecule without end group functionality. 

Emulsion polymerization: polymerization in which an organic phase is dispersed in an 

aqueous medium in the presence of a surfactant or stabilizer; polymerization can take place in 

the aqueous phase and in polymer nanoparticles (dp = 10-500 nm); types of emulsion 

polymerization are macro-, micro- and mini-emulsion polymerization. 

End-chain radical: radical for which the radical center is located at the end of the chain, i.e. 

on the last repeating unit. 

Dispersity of the molar mass distribution of the polymer: ratio of the mass to number 

average molar mass; measure for the broadness of the molar mass distribution of the polymer. 
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Inflection point: point at which a curve crosses its tangent, i.e. the curve changes from being 

concave to convex; can be identified via the location of the extrema of the curve’s derivative. 

Kinetic Monte Carlo: stochastic modeling technique in which reaction and mass transfer 

events are sampled using random numbers. 

Macro-emulsion: A type of emulsion polymerization in which large monomer droplets (> 1 

μm), (monomer swollen) micelles (5-10 nm), and polymer nanoparticles (dp = 10-500 nm) are 

initially present. 

Micro-emulsion: A type of emulsion polymerization in which only small monomer droplets 

(< 100 nm) and (monomer swollen) micelles (5-10 nm) are initially present. 

Mid-chain radical: radical for which the radical center is located in the middle of the chain. 

Miniemulsion: A type of emulsion polymerization in which only small monomer 

droplets/particles (< 500 nm), as formed under high shear conditions with (co)stabilizer, are 

initially present. 

Monomer conversion: monomer consumed with respect to initial amount. 

Multimodal distribution: a distribution with two or more modes that appear as distinct peaks; 

in case of two peaks, referred to as bimodal. 

Nanogel: crosslinked polymer nanoparticle; typically possesses responsiveness (e.g. 

thermoresponsiveness). 

Number chain length distribution of the polymer: number fraction of polymer molecules as 

a function of chain length. 

Number molar mass distribution of the polymer: number fraction of polymer molecules as 

a function of molar mass. 
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Particle size distribution: fraction of particles based on their number, surface area or volume 

as a function of particle diameter. 

Partition coefficient: ratio of the concentration of a species in two phases which are in contact 

at equilibrium; in emulsion polymerization: ratio of the concentration in the organic and 

aqueous phase.  

Photodissociation quantum yield: fraction of the photoinitiator molecules that are excited via 

photon absorption that result in dissociation. 

Photoinitiator: initiator which dissociates under the influence of light (typically UV light). 

Propagation of a radical: reaction leading to chain growth, i.e, addition to monomer. 

Pulsed laser polymerization: polymerization in which a mixture of monomer, photoinitiator 

and possibly solvent is irradiated by laser pulses with a certain frequency; from the size 

exclusion chromatography trace, rate coefficients can be determined. 

Radical entry: interphase transfer phenomena in which a radical is transferred from a particle 

to the aqueous phase; also referred to as absorption. 

Radical exit: interphase transfer phenomena in which a radical is transferred from the aqueous 

phase to a particle; also referred to as desorption. 

Rate coefficient: the coefficient of proportionality for the calculation of a reaction rate. 

Reversible addition-fragmentation chain transfer polymerization – chain length 

dependent – termination (RAFT-CLD-T): technique to determine the monomer and chain 

length dependence of the apparent termination rate coefficient. 

Size exclusion chromatography trace (SEC trace): distribution obtained via size exclusion 

chromatography, which is an analysis technique that separates polymer molecules based on 

their chain length; typically, a broadened distribution of the molar mass distribution on 

logarithmic scale (i.e. the log-MMD) is obtained. 
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Skewness of the molar mass distribution of the polymer: measure for the molar mass 

distribution of the polymer being symmetric or asymmetric. 

Termination of radicals: reaction leading to the formation of (a) dead polymer molecule(s) 

with the disappearance of two radical reactive centers. 

Thermoresponsivness: the ability to react on a temperature change; e.g. the reversible 

swelling/deswelling of a nanogel. 
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