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Magnetoencephalography (MEG) in the field of epilepsy has multiple advantages; just like

electroencephalography (EEG), MEG is able to measure the epilepsy specific information

(i.e., the brain activity reflecting seizures and/or interictal epileptiform discharges) directly,

non-invasively and with a very high temporal resolution (millisecond-range). In addition

MEG has a unique sensitivity for tangential sources, resulting in a full picture of the brain

activity when combined with EEG. It accurately allows to perform source imaging of focal

epileptic activity and functional cortex and shows a specific high sensitivity for a source in

the neocortex. In this paper the current evidence and practice for using magnetic source

imaging of focal interictal and ictal epileptic activity during the presurgical evaluation of

drug resistant patients is being reviewed.

Keywords: magnetic source imaging, refractory epilepsy, presurgical evaluation, equivalent current dipole

modeling, magnetoencephalagraphy (MEG)

Since the first MEG recordings in 1968 performed by Dr. Cohen using a single channel, the MEG
technique has been optimized. The increase in the number of channels toward the whole head
dewars with more than 300 sensors we use today, resulted in a breakthrough of MEG in the
presurgical evaluation of patients with drug resistant epilepsy.

Using MEG in the work-up of epilepsy patients holds many advantages which are clear and
multiple; just like EEG,MEG is able tomeasure the brain activity, and therefore the epilepsy specific
information, directly (independent of blood flow), non-invasively and with a very high temporal
resolution in the order of milliseconds. Thanks to its unique sensitivity to tangential sources it gives
the full picture when combined with EEG, it allows accurate source imaging and shows a specific
sensitivity for neocortical sources.

Typically patients with epilepsy who undergo MEG are in supine position during the recording
session lasting in European centers about 90min (range 60–420min) and are encouraged to fall
asleep or are even sleep deprivated (1).

In the MEG data recorded different features are being used to study the disease
and more specifically to localize the epileptogenic zone (EZ) as precise as possible to
plan surgical procedures in drug resistant epilepsy patients. Like stated in the position
statement paper by the American Clinical MEG Society (AMEGS) MEG should be
used as a non-redundant method to localize the EZ in people with drug resistant
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localization related epilepsy, especially if those cases were the
standard and established presurgical evaluation modalities fail in
providing sufficient information (2).

EQUIVALENT CURRENT DIPOLE
MODELING—PRACTICAL GUIDELINES

In this review mainly source localization obtained by equivalent
current dipoles (ECD) is being discussed. This inverse solution
localizes a point source assuming that all recorded magnetic
signal is explained by a single dipole source. To check the
reliability of this dipole several indicators are calculated for
example the goodness of fit or the correlation coefficient.

ECD modeling is widely used for clinical source localization
of interictal epileptiform discharges and today the only solution
approved by clinical guidelines (2).

In contrast, when distributed methods are being used to
perform magnetic source imaging, maps of the location and the
extent of the generators are being displayed, however the yield of
this inverse method has not been clinically validated yet and is
therefore beyond the scope of this paper.

Today the proposed and accepted MSI pipeline to perform
ECD modeling is illustrated in Figure 1. Based on the guideline
provided by the American MEG Society (2) some elaboration
on the following important steps in the pipeline should
be mentioned:

- Visual identification of well-defined IED’s is of major
importance and this can include spikes and sharp waves.

FIGURE 1 | MSIAQ pipeline.

Research on the value of modeling slow-wave and/or fast
activity is ongoing.

- The importance and difficulty of selecting a specific or several
time-points in the IEDwaveform for source analysis. Typically,
the peak of a spike-wave is being chosen as this time-point can
guarantee a good signal-to-noise ratio (SNR) however might
not represent the origin of the spike. Alternatively, a point on
the rising phase of the IED should be checked and if SNR allows
also the onset of the discharge. As described in the guideline, it
is possible to trust the modeled spike-peak if the dipolar field
pattern is stable (no rotation) over the whole spike-course. In
case rotation of the field is evident, it is being suggested to
look for an earlier source throughout the whole time-course
of the spike to check for propagation. As SNR will be lower
in this case, results need to be interpreted with more caution.
Averaging might of course increase SNR (see lower).

- Evaluation of reliability of the ECD using solution parameters
like goodness of fit, total error, coefficient of correlation
or confidence interval are used however cannot guarantee
appropriateness of the model. In case of ECD it is important
to understand (1) the pro’s and con’s of the dipole model, (2)
the character of the cortical spike sources, and (3) the current
recommendations on MSI.

- Averaging of IED is not common or standard practice for MSI.
It holds the advantage that SNR increases and therefore allows
to model earlier phases of the IED time-course which might
hold benefits (3), however it might blur differences in location
or time course if similar IED are taken together nevertheless
they arise from different and separated sources.
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THE VALUE OF INTERICTAL MSI

Spike Yield and Sensitivity
Given the acquisition circumstances, the most common feature
measured withMEG is the interictal epileptiform discharge (IED)
rather than a seizure. Depending on the localization of the so-
called “irritative zone” sensitivity to detect IEDs with MEG differ.
The average reported sensitivity to detect clinically significant
IEDs is about 75% (3–5).

Studies on simultaneously recorded scalp EEG and MEG
comparing IED’s, show a complementarity between both
techniques. This complementarity is a result of the difference in
sensitivity of EEG and MEG for radial and tangential sources in
the brain. This difference is caused by the different orientation
of the apical dendrites of the pyramidal cells in the gyri or
sulci. MEG is selectively sensitive for sources that are tangentially
orientated corresponding to the neurons on the banks of the
sulci, whereas EEG on the otherhand is mainly sensitive for
radially orientated sources corresponding to the neurons on
the top of the gyri (and in a lesser extend also for tangential
sources). This explains why both techniques, EEG and MEG
should be considered complementary (6). Illustratively Ebersole
and Ebersole state in their paper “that the brain without sulci, but
with major fissures, is a simplified but reasonable, model of the
cortical generator for scalp EEG and the brain “seen” by MEG
appears to have no gyral crowns over the convexity but rather
erode sulci and fissures” (7). Therefore, it is clear that the full
image can only be “seen” by combining both techniques.

In literature investigating the sensitivity of EEG and MEG, it
is being described that in more than half of patients IEDs can
be identified both on scalp EEG and MEG, in 7% of patients
only EEG show IED and in 18% only MEG show IED. In 21% of
patients no IEDs can be recorded with any of the two modalities.
Interestingly they additionally showed that 47% of patients who
did not show IEDs on scalp EEG did had spikes during 1 h of
MEG recording, supporting the performance of MEG in EEG
negative patients (8–11). Duez et al. compered the number of
epileptiform discharge (ED) clusters between MEG and (high-
density) EEG (64–80 electrodes) and found that 72% of ED
clusters were visible both in MEG and EEG, in 15% only on EEG
and in 13% only inMEG.More than 1/4 of ED clusters was visible
in only 1 modality showing the importance of simultaneous EEG
and MEG recording (12). In the recent study by Plummer et al.
comparing simultaneous recorded MEG and HD-EEG report
IED only in HD-EEG in 42%, only in MEG in 16% and seen in
bothmodalities in 42%. This somewhat different result compared
to earlier studies (high number of IED reported only for HD-
EEG) might be a result of the additional 12 electrodes that were
placed inferior temporal which is not standard practice (13).

In addition, Ebersole and Wagner recently reported on the
importance of taking into account “the number of spike “types”
recorded by EEG and MEG in addition to the spike frequency.”
They explain that this can only be done by combing EEG and
MEG both for the recording and for the source modeling. They
conclude that the absolute number of spikes can have some
clinical significance, but that in the context of epilepsy surgery
it is more important to identify the number of foci the spikes

arise from. They showed that using only MEG would have let to
missing at least 1 spike “type,” clear and evident in EEG, in almost
50% of the patients (14).

Studies have compared subdural recordings with
simultaneous MEG recordings and showed that all MEG
spikes had subdural counterparts, whereas 56% of the subdural
recorded spikes were shown on MEG. However for lateral
neocortical, insular, intra-sylvian, and (frontal) interhemispheric
foci this percentage rose to 75–90% of spikes (5, 9, 15, 16).

With similar studies it was shown that in neocortical epilepsy
MEG picks up IED that extend nomore than 3–4 cm2 of activated
lateral frontal neocortex on the subdural electrodes, up to 6 cm2

for more basal frontal and temporal neocortex whereas other
studies showed that scalp EEG only detects IED when >10 cm2

of the neocortex is activated (17, 18). However, these studies did
not use the HD-EEG set-ups available today.

Ideal is the combination of EEG and MEG to increase spike-
yield (19). Indeed Heers et al. compared the spike yield in EEG,
MEG and EEG/MEG following sleep deprivation and reported,
respectively, 51, 60, and 71% IED detection (10).

Due to this high sensitivity for the cortical convexity, MEG has
recently been claimed complementary with SEEG and subdural
invasive EEG recording. Vadera and colleagues performed
simultaneous MEG and SEEG. They showed that MEG was able
to fill the gaps in-between the recorded brain activity from the
depth electrodes and allowed a more tailored resection of only a
small amount of brain tissue (20).

Diagnostic Accuracy and Added Value
Patient Type
In epilepsy surgery the best outcomes are described for patients
with mesial temporal lobe epilepsy (Engel I in up to 90%). This
is not the case for patients with neocortical epilepsy. In these
patients the current presurgical evaluation is not sufficient. The
inclusion of MEGmight be an important step as literature agrees
on the fact that MEG is more sensitive for neocortical sources
compared to deep sources.

Different studies have focused on the difficulties known in
frontal lobe epilepsy (FLE) where scalp EEG is often not able
to detect interictal or ictal activity due to fast propagation,
muscle activity and source orientation whereas MEG could
(21). They found that the resection of monofocal clusters in
FLE and the tailoring of the resection by including clusters
adjacent to the lesion correlated both significantly with good
postsurgical outcome (22). Wu et al. retrospectively evaluated the
correlation between semiology and MEG in seven patients with
FLE and found in FLE that MEG non-invasively complemented
the localization hypotheses obtained by ictal semiology (23).
Ossenblok et al. optimized the procedures for localizing IED
in FLE. Their conclusion was that MEG can be used as a
“fast screening method for identifying the distinct categories of
spikes and brain areas responsible for these spikes.” Moreover,
the simultaneous recording of EEG and MEG allowed them to
compare both modalities directly for FLE and showed superiority
of the MEG spike yield and localization over EEG (16).

The insular cortex is a second region that often causes
difficulties in the current conventional presurgical work-up.
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Mohamed et al. retrospectively looked into their 14 insular
cases and compared the MEG, FDG-PET and ictal SPECT
result to the resection margin. They described three different
patterns of MEG spike sources, (1) posterior operculo-insular
cluster, (2) anterior operculo-insular cluster or (3) no cluster
but rather diffuse perisylvian distribution. In the patient group
that underwent surgery and had an anterior operculo-insular
cluster, MEG provided superior information to ictal SPECT in
4/6 patients and to interictal PET in 5/6 patients (24). Park and
colleagues described an interesting case with insular epilepsy
in whom the IEDs simultaneously recorded on EEG and MEG
were best explained by ECD in the anterior temporal lobe as
seen in patients with TLE. However, the IEDs that were only
measured by MEG and not seen simultaneously on EEG were
best explained by ECDs adjacent to the insular lesion. This case
report shows the potential of MEG to detect insular activity that
is undetectable by scalp EEG (25). Different studies confirmed
the role of MEG in the identification of the epileptogenic zone
(EZ) in insular cases by confirming results with intracranial
monitoring or following resective surgery (26, 27). In addition
Yin et al. report on the importance of non-invasively recorded
HFO (rippels associated with spikes) with MEG which show to
be valuable for the localization of the EZ in insular epilepsy. They
showed that resection of insular tissue generating ripples during
IED’s was more successful then when tissue was resected that
only generated IED, however this difference was not statistical
significant (28).

Comparable reports are available for sources in the fronto-
parietal operculum (29) andmedial occipital region (30).

Nevertheless, MEG seems more sensitive for neocortical
sources, studies did confirm that mesial temporal spikes can be
detected by MEG and in these patients too MEG can add crucial
information to the presurgical work-up. Kaiboriboon evaluated
the ability of MEG to detect mesial temporal spikes and found a
sensitivity of 86%. In 60% of patients with non-localizing ictal
video-EEG monitoring (VEM) and 67% of patients with non-
localizing MRI, MEG showed well-localized IEDs ipsi-lateral to
the side of surgery (31).

Non-lesional neocortical patients form the most difficult group
of patients for the planning of resective surgery. Only 35% of
the non-lesional extra-temporal lobe cases are rendered seizure
free following epilepsy-surgery (32). MEG has shown to be useful
as a guide to identify very subtle lesions with and without
post-processing techniques (see infra) or high-resolution (surface
coil) imaging (33–35) or to implant patients with intracranial
electrodes (36). Definitely when focal MEG clusters are observed,
this is very valuable in the presurgical decision-making and
shown to be a positive predictive factors for successful resective
surgery (27, 36, 37). In this complex patient group, Jeong
et al. compared MEG with other presurgical investigations and
compared all to the intracranial golden standard. It was shown
that in 86% of patients MEG lateralizes correctly. For ictal VEM
this is the case for 78%, for PET 70%, and 57% for ictal SPECT.
On a lobar level, MEG and ictal VEM correctly identified the
involved lobe in 65% of cases, PET in 57% of cases and ictal
SPECT in 52% of cases (38). In the study by Itabashi including
patients with very subtle (initially missed) focal cortical dysplasia

(FCD), it was suggested that “MEG-guided a posteriori review
of MRI” should become a routine part of a clinical practice and
definitely in the preparation for a multidisciplinary presurgical
meeting. In this role MEG could contribute to avoiding invasive
evaluations and lead to improved surgical outcome (33, 39).
Aydin et al. suggest in their paper to combine EEG/MEG source
analysis with high resolution zoomed MR imaging, limited to
small areas centered at the EMEGS source location as a new
diagnosis strategy (35).

Besides the important role of MEG in non-lesional cases, it
also has an important value in lesional cases. Kim et al. showed
that the number of MEG dipole clusters and the proportion of
dipoles in the resection cavity was not associated with seizure
free outcome for the whole group of children however for cases
with localized neocortical MRI lesions MEG source localization
successfully localized the peri-lesional epileptogenic zone (40). A
few important epileptogenic lesions are Focal Cortical Dysplasias
(FCD), cavernoma’s and tubers in Tuberous Sclerosis. These will
be discussed in more detail below.

A FCD is a highly and intrinsically epileptogenic lesion.
Over 76% of patients with these lesions become intractable to
AED however studies have shown that 50–70% of patients can
be rendered seizure free following epilepsy surgery. Presurgical
evaluation of these patients is therefore mandatory and MRI is as
always important as it identifies these lesions by showing blurring
of the gray-white matter, cortical thickening, and abnormal
signs in the white matter (41). However, these abnormalities
might also be microscopic and not visible or only subtle on
optimal imaging. Many studies focus on the role of MEG in
the identification of these subtle but highly epileptogenic lesions
(27, 39, 42). Due to the intrinsic epileptogenicity of the lesion
neurophysiology, and also MEG, plays an important role in
the delineation of the extent of a FCD in the cortex (often
beyond what is visible on MRI) and to predict the outcome
following the removal of FCD lesions (41, 43, 44). Therefore
the estimation of the spiking volume might be important like
shown by Bouet et al. and classical equivalent current dipole
models might fail to provide this estimation (45). FCD often
generate (spike-independent) discharges in the beta-frequency-
band. Heers et al. localized these discharges using Dynamic
Imaging of Coherent Sources and found coherence between
simultaneous MEG and intracranial EEG. The sources of the
beta band activity localized within <2 cm of the epileptogenic
FCD (46). In patients with FCD and MEG dipole clusters,
the complete removal of the clusters is associated with good
postsurgical outcome (38). Wilenius et al. described that in
patients with MEG dipole clusters and Engel class I or II 49% of
the clusters on average was removed, whereas the corresponding
value in patients with Engel class III or IV was only 5.5% (42).
Especially for FCD type II related epilepsy MEG showed to
be a very strong tool. In the study by Kasper et al. MEG was
combined with MRI post-processing techniques like for example
MRI acquisition and morphometric analysis (MAP) and showed
excellent surgical outcomes with 81% reaching Engel I compared
to published series. The MEG sensitivity in this cohort was 95%
in FCDII, compared to 70% reported from unselected epilepsy
series (47).
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Besides the associated refractory epilepsy, the high risk for
bleedingmakes cavernoma a clear indication for epilepsy surgery.
Epilepsy is caused by the associated mass effect, gliosis and
hemosiderine and therefore, in contrast to FCD, the tissue
adjacent to the cavernoma, rather than the lesion, exhibits
hyperexcitability. Studies in patients with cavernoma have shown
that it might be important to perform more than a pure
lesionectomy and for the delineation of the extent of resection
needed, MEG might play an important role as you are able
to map the epileptic activity on the structural image (48, 49).
In case of multiple cavernoma MEG will mainly reveal the
complexity but will contribute to the decision-making whether
or not further invasive work-up is useful (48). Unfortunately in
20–40% of patients with cavernoma, multiple of these lesions can
be identified.

Besides for cavernoma and FCD, MEG might play an
important role in the presurgical evaluation of patients with
tuberous sclerosis and brain tumors or in patients who need a
second or third surgery when earlier procedures failed to control
epilepsy. In post-operative situations MEG is superior over EEG
because the magnetic field is not distorted by the skull defects.
El Tahry and colleagues focused on the value of MEG in this
patient population and compared MEG with ictal SPECT. They
showed that MEG alone was successful in these patients after
failed resective surgery. Only ictal SPECT with an early injection
(<20 s) also had a good localization value (50).

Localizing Accuracy
In 2008 Lau et al. performed a systematic review of the
available literature based on the DARE scientific quality criteria
and concluded that “there was insufficient evidence in the
current literature to support the relationship between the use
of MEG in surgical planning and seizure-free outcome after
epilepsy surgery” (51). However, this review received a lot of
methodological critics.

Today the number of these specific studies comparing MSI
result with the resection and postoperative outcome has only
increased and therefore the evidence for its value in the
presurgical evaluation became only more established. Very
recently Mouthaan et al. performed an extensive meta-analysis
on “the diagnostic accuracy and quality of evidence of interictal
high resolution electric and magnetic source imaging (ESI and
MSI) to localize the epileptogenic regions in the presurgical
epilepsy evaluation.” The quality appraisal was based in a
modified QUADAS-2 framework. Based on database searches
they found almost 2000 abstracts that they screened and kept
about 100 abstracts to do a full text assessment of which they
excluded 47 articles for various quality reasons (no full text
available, no study, different aim/objective, different index test,
not the outcome of interest, . . . ). For the other 51 articles they
performed a full data extraction and quality appraisal. Only
from 11 studies enough data could be captured to draw the
anticipated conclusions [eight on MSI (236 patients) and three
on ESI (127 patients)] as only studies without zero values in the
2 × 2 contingency tables were included. The study quality was
however generally assessed as “poor” and no study was free of
bias (selection of operated patients only, interference of source

localization with surgical plan/decision, . . . ) however they could
conclude that the diagnostic accuracy analysis reveals for MSI
and ESI a good surgical outcome in, respectively, 130/236 patients
(54%) and 86/127 patients (67%). They additionally showed that
the number of patients with a good surgical outcome is higher
in the concordant group (76%) than in the non-concordant
group (28%). There overall conclusion was that “both source
localization techniques have a relatively high sensitivity (82%)
and low specificity (53%) for the identification of the EZ. The
diagnostic accuracy of MSI and HR-ESI to localize the EZ is
strongly affected by poor study quality and likely biased toward
overestimation therefore the results need to be interpreted with
caution and independent support from other diagnostic tools is
required to proceed to surgery. Higher quality studies, allowing
unbiased MSI and ESI evaluation, are needed to judge results in
light of source estimate size and resection size” (52).

Over the last 20 years, many studies investigated the role of
MEG within the presurgical evaluation and confronted the MEG
results with the golden standard available i.e., seizure outcome
following resection and/or invasive recording and a few are
described below.

Stefan et al. performed a retrospective study including 455
cases and concluded that MEG identified the correct lobe in 89%
of cases and added information in 33% and crucial information in
10% (3). Papanicolaou et al. evaluated 41 patients that underwent
MEG, IVEM, and resection. The seizure outcome was correlated
to the overlap with the resection cavity and it was shown that
IVEM was correct in 54% of cases and MEG in 56%. When
groups were analyzed separately it was shown that MEGmight be
less beneficial relative to IVEM in ETLE compared to TLE (53).
Knowlton et al. showed “a positive predictive value of MSI for
seizure localization of 82–90% depending on whether computed
against ICEEG alone or in combination with surgical outcome”
(54). Knowlton et al. showed that a highly localized MSI result
was significantly associated with seizure–free outcome for the
entire surgical population (55). Kim and colleagues showed that
the number of MEG dipole clusters and the proportion of dipoles
in the resection cavity was not associated with seizure free
outcome for the whole group however for cases with localized
MRI lesions MEG source localization successfully localized the
perilesional epileptogenic zone (40). Based on the retrospective
analysis of the value of MEG performed at Cleveland between
2009 and 2012, Vadera et al. found that when preoperative
MEG studies were fused with postoperative MRI, for 30/65
patients the MEG cluster was located within the resection cavity,
for 28/65 completely outside the cavity and for 7/65 partially
within. When postoperative outcome was analyzed they found
that 74% of patients was seizure free at 1 year follow-up and
60% at 2 year follow-up. Correlation with the MEG result
showed significantly improved likelihood of seizure freedom
with complete clusterectomy in patients with localization outside
the temporal lobe (56). Englot et al. reported on 132 surgical
cases with at least 1 year post-operative follow-up of whom 70%
had Engel I outcome. In 78% of cases MEG revealed IED and
this result was compared with the (sub)lobe of resection, ECoG
result and/or MRI lesion. They concluded that a concordant
and specific MEG result predicted seizure freedom with an OR
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of 5.11 (57). The recent study by Duez et al. concluded that
analyzing their combined dataset of MEG and EEG yielded
significantly higher OR than separate analysis of both datasets,
emphasizing the clinical importance of recording MEG and EEG
simultaneously (12).

Nevertheless the recent paper by Plummer et al. focusses
on the comparison between MSI, HD-EEG source imaging
(EEG recording with coverage of the inferior temporal
region with 12 additional electrodes) and simultaneous
MEG and HD-EEG SI. In this paper they did not use
the ECD model but used averaged data and distributed
source modeling (sLORETA) and concluded, in contrast
with their hypothesis, that independent source MEG
and HD-EEG source imaging is superior to combined
modeling (13).

In conclusion; based on different studies the clinical utility
of MEG is ranging from 20 to 100% sensitivity and (3, 4, 51,
58, 59) from <10 to 100% specificity (51, 58–60). The positive
predictive value is reported to be as high as 90% when compared
to intracranial findings and association with surgical outcome
(54, 60–63).

Therapeutic Impact and Added Value
The cornerstone investigation in the presurgical evaluation is
scalp video-EEG monitoring (VEM). Despite the cheap cost of
EEG, VEM is a rather expensive investigation, as it requires
long-term admission at the hospital. In addition, MEG is a fast
and more patient-friendly screening tool. Paulini and colleagues
compared MEG with VEM and found that when long-term
VEM gives insufficient localizing information, a (short) MEG
session does in about half of patients (5). In 2004 Pataraia et al.
investigated the added value of MEG compared to interictal and
ictal VEM and used the surgery to confirm the results. In over
30% of casesMEG and VEM provided equivalent results however
in 40% of patients additional information was available. When
EEG was non-localizing MEG contributed to the localization of
the region that was subsequently resected in 59% and when EEG
was only partially localizing, MEG contributed significantly in
73% (4).

Different studies evaluated how the inclusion of MEG in the
decision-making process changed or would have changed the
patient management (Table 1). Overall studies reach a consensus
that adding MEG to the presurgical evaluation protocol will
change the management of about 1/5 up to 2/3 patients
(depending on the inclusion level) (55, 62, 64–66). Very recently
Duez et al. evaluated the effect of simultaneous EEG and MEG
source imaging and revealed changed management in 34% of
patients and these changes were useful in 80% (12). The type
of patients included in the different studies can explain this
broad difference in added value. Like mentioned in the study
by Mohamed et al. mixing lesional and non-lesional cases for
example just like combining the straight forward and “difficult”
cases in one study like in the study by De Tiege et al. results
in an underestimation of the added benefit of MSI. In contrary
the study by Duez et al. only included the more complex cases
which might lead to an overestimation (12). Overall the value of

MEG (and EEG) source imaging is clearly large in especially the
non-lesional cases.

The study by Mohamed et al. could, due to their inability
to provide reliable MEG results in a timely matter, assess the
presumed impact of MEG retrospectively and in this way provide
more clear evidence of the impact of MEG. They saw via this
unique set-up that in 68% the management would have been
different if the MEG results would have been available in time.
In the subgroup of patients who in the meanwhile underwent
surgery the inclusion of MEG in the work-up would have
modified the resection in ∼20% of patients possibly preventing
negative outcomes and in another subgroup the unavailability
of MEG led to a set of unnecessary/complicated intracranial
recordings, surgical failures, and reoperations (66).

Guidance of Invasive Video-EEG Monitoring
The most important role of MEG today is the optimal guidance
of invasive video-EEG monitoring (IVEM). IVEM is an invasive
and expensive procedure associated with medical risks. However,
for many patients it is their ultimate chance to be considered
an eligible epilepsy surgery candidate. The planning of the
implantation scheme is crucial andMEG has shown to be an ideal
non-invasive investigation to guide this implantation especially
in non-lesional cases (12, 36, 55, 66). Knowlton showed this
elegantly in his study mentioned above (Table 1), including all
patients planned for intracranial implantation. In this group in
23% MEG resulted in extra electrode coverage and in 39% of
these cases these extra electrode-contacts involved the seizure
onset (55). Also in the study by Mohamed it became clear
that MEG is very important to optimally plan an intracranial
implantation. Not only to make sure to end up with clinically
relevant coverage of the seizure onset zone but also to minimize
procedural risks to patients by allowing direct surgery without
intracranial implantation, by reducing the number of contacts
or excluding patients with a diffuse or inoperable epileptic area.
This important role of source imaging within the presurgical
evaluation, namely the optimal planning of the location of the
intracranial electrodes, was confirmed in the recent study by
Duez et al. showing changes in the location of the electrodes
in 16.5% and offering the ability to implant electrodes in an
additional 7% of patients that would not have been investigated
without. In this study the source imaging allowed to skip
intracranial recordings in 9.4% of patients and direct them
to surgery immediately and withheld 1% of patients from
undergoing surgical procedures (12).

The potential of MEG to identify the “primary irritative
zone” via time-course analysis of the whole spike when interictal
activity is complex (for example due to deep source) might
be crucial in the planning of the IVEM, namely by predicting
the patterns of spikes on ECoG or SEEG (67–70). Agirre-
Arrizubieta compared 12 consecutive patients who underwent
MEG before their implantation with electrodes with a control
group that underwent an IVEM without MEG and were
matched for implantation type. The groups were however not
comparable when considering the complexity of the cases,
as the MEG group consisted of more complex patients (and
therefore underwent MEG). However no differences in number
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TABLE 1 | This table summarizes the outcome of studies focussing on the added value/effect of MSI on the decision making and/or management of patients in the

presurgical evaluation.

Study Inclusion level N◦ PT Change Relevance Remark

Sutherling et al. (62) All consecutive surgical candidates

with neocortical epilepsy*

69 23 (33%) 6/29 (20%) of patients who

eventually underwent

resective surgery

*All pt meeting the criteria for

direct temporal lobectomy or

lesionectomy are excluded

Knowlton et al. (55) All patients planned for intracranial

work-up

77 18 (23%)

(extra electrode coverage)

7/18 (39%)

(seizure onset on the extra

electrodes)

De Tiège et al. (64) All consecutive surgical candidates* 70 15 (21%)

(44% of eTL-cases)

9/11 (82%) *Including the straight forward

cases

Ito et al. (65) pt studied for clinical diagnosis and

preoperative evaluation*

73 17 (23%) *Only pt with IED were included

Mohamed et al. (66) Consecutive non-lesional surgical

candidates*

31 21 (68%) 12? (could be an

overestimation)

*All patients underwent MEG but

this was not taken into account

at the time of the decision

making. Retrospectively the lack

of this information was assessed

Duez et al. (12) Consecutive included patients in

whom electromagnetic* source

imaging was part of the

decision-making process (i.e., MRI

negative or discordant other results)**

85 29 34%) 16/20 (with available results)

80%

*Simultaneous EEG and MEG

source imaging

**Potential overrepresentation of

the more complex cases

of successful implantations could be found between both groups
suggesting that MEG can contribute to identify the ideal
implantation site when standard methods fail (71). Still, a
randomized study would be the only way to proof this with more
certainty, however the value of MEG in the work-up is already to
established, making randomization unethical.

THE VALUE OF ICTAL MSI

Besides by IEDs, epilepsy is characterized by the occurrence
of seizures and until today the seizure onset zone (SOZ) has
always been considered the closest approximation of the EZ.
During MEG acquisitions the recording of seizures is difficult
because the sessions are generally rather short (mean of 90min
according to a recent European survey) (1) and movement can
cause problems recording good signal quality. Moreover no
consensus concerning the best way to process magnetic ictal data
has been reached because of the low signal-to-noise ratio during
ictal activity, the different ictal discharge presentations and the
evolvement of these patterns over time (72). Nevertheless the
value of magnetic seizure activity has been described by different
authors using different ways to analyze the data.

Sometimes the recording of ictal activity is rather a
coincidence but in some centers it is being planned or anticipated.
In a recent retrospective study including 377 patients who
underwent a standard 1 h MEG, ictal MEG by coincidence (or
by using known triggers like sensory or music) was found in 11%
of patients (72).

First ictal MEG studies were performed with only a limited
number of channels (73) or with multichannel hemispherical
MEG recordings in combination with foramen ovale electrodes
(74). Further ictal MEG studies showed that signal-to-noise ratio
(SNR) at seizure onset the may be to low for dipole analysis.

Often the typical movement related artifacts will obscure the
seizure onset, however occasionally it was demonstrated that
the ictal source localization was superior to interictal MEG
correlating very nicely to invasively recognized seizure onset (75,
76). Later in time continuous ictal head movement measurement
allows movement correction artifacts (77). Here instead of
dipole analysis short time Fourier transformation (STFT) rhythm
analysis was performed. In 63% concordant lobar interictal and
ictal source localizations existed, again it was shown that ictal
source localization was closer than the interictal source when
compared to the seizure onset zone defined by invasive recording.
In addition ictal MEG provided clear source localizations even if
interictalMEG spikes were bilateral ormissing. If interictal spikes
were recorded bilateral than ictal recordings showed unilateral
seizure activity.

In the recent retrospective paper it was shown that the
resection of areas containing a minimum-norm estimate of a
narrow band at onset, rather than a single equivalent current
dipole, was associated with sustained seizure freedom. They
also showed that ictal MEG patterns were clear when this was
not the case with EEG showing also here a complementarity
(comparable to the interictal situation). Moreover in patients in
whom intracranial data were available the SOZ identified by ictal
MEG recording correlated with the lobe of onset as identified via
intracranial data in 88% (72).

Another group introduced gradient magnetic-field
topography (GMFT) for the analysis of ictal discharges in
patients with neocortical epilepsy after finding a higher spatial
resolution in this patient group compared to the standard
equivalent current dipole method (78).

Badier et al. compared SEEG epileptogenicity index, source
localization using dipoles, and linearly constrained minimum
variance (LCMC) (a beamformer technique). They showed
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that source imaging methods performed on rhythmic patterns
were able to localize the EZ as validated by SEEG, but
that LCMV was superior to ECD when concordance was
compared (79).

The interictal MEG has a high sensitivity (0.95) and moderate
specificity (0.75), ictal MEG has high sensitivity (0.96), and
specificity (0.9) in predicting SOZ localization (80).

Finally it was shown that based on ictal-MEG, it was
possible to change the management of patients initially
considered unsuitable for surgery or planned for intracranial
monitoring into candidates directly suitable for surgery with
good postsurgical outcomes in those who were operated (81).
A survey of comparisons of localizing accuracy using interictal
and ictal MEG source localizations is provided by Stefan and
Rampp (82).

OTHER FEATURES RECORDED WITH MEG
AND OF VALUE IN THE PRESURGICAL
EVALUATION

Because not all patients show seizures or even IED during an
MEG acquisition, alternative “features” are more and more often
being studied. Not only slow activity (83) but also fast activity
(84–87) has recently gained attention as well as network-analysis.
Based on the current results it has been shown that it is possible to
non-invasively identify regional interictal epileptic networks and
their pattern of connectivity with MEG (70).

CONCLUSION

Based on the review of the available literature patients who
definitely need to be referred for magnetic source imaging
are patients in whom a frontal, intrasylvian or insular focus

is suspected, because MEG might be superior than EEG in
localizing the irritative zone. Normal scalp EEG should not

prevent patients from being referred for MSI and on the other
hand neither should clear lesions on MRI prevent patients from
being referred as MSI might help in the delineation of the
resection needed beyond what is visible on imaging. It is clear
that patients planned for an invasive video-EEG monitoring
might benefit from MSI as it has been clearly shown that the
implantation scheme can be optimized using the MSI-result.

In addition, in case of a focal MEG results in patients with
normal imaging, MRI results need to be re-evaluated for subtle
lesions guided by the focal MEG result. In case of patients
with high seizure frequency it might be interesting to try to
perform an ictal MEG as this can result in additional and accurate
localizing information.

Besides these advantages specific limitations should be
considered: Metal implants might cause problems, however
specific filtering software might enable the interpretation of the
signals. On the other hand the lack of IED (or seizures) during the
MEG recording causes an inconclusive MEG result in up to 25%
of patients undergoing MEG. Network-analysis like for example
spike independent resting-state analysis might solve this problem
in the future.

Just like all results within the presurgical evaluation, MEG
should always be combined with the results of the other
investigations and all results need to be interpreted with caution
before the team can decide upon a next step. Today no unique
presurgical tool is available to guide surgery and/or intracranial
implantation on its own.
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