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ABSTRACT 

The excellent ionic conductivity at temperature ranges from 400-700 °C has 

made cerium gadolinium oxide (CGO) as one of promising alternative solid 

electrolyte materials for intermediate temperature solid oxide fuel cell (IT-SOFC) 

application. However, the requirement of high sintering temperature up to 1550 °C 

for densification of CGO electrolyte complicates the cell fabrication process as it 

reduces the porosity in the electrode layers, particularly in the co-sintering step of 

anode/electrolyte dual-layer hollow fiber (DLHF). Hence, the fabrication of the 

DLHF is challenging due to the different sintering behaviors of the each layer. The 

main objective of this study is to develop anode/electrolyte DLHFs with improved 

electrolyte properties with reduced co-sintering temperature for IT-SOFCs via a 

single-step phase inversion-based co-extrusion/co-sintering technique. The sintering 

properties of electrolyte flat sheet was studied by comparing two approaches, (i) 

using mix particle size electrolyte and (ii) addition of lithium oxide as sintering 

additive in the electrolyte. The DLHF with modified electrolyte was later fabricated 

by phase inversion based co-extrusion and co-sintered at temperature ranging from 

1400 to 1500 °C. The DLHF was evaluated in term of the morphology, mechanical 

strength and gas-tightness as well as electrical conductivity, porosity and 

permeability of the anode layer. This study showed that a dense CGO flat sheet layer 

sintered at 1450 °C with the addition of 30% nano size CGO particles were obtained. 

Meanwhile, the doping of 2 mol% of lithium nitrate into CGO was found to reduce 

the sintering temperature to 1400 °C. When the co-sintering temperature increased, 

the mechanical strength, gas-tightness and electrical conductivity were increased,  

whereas the porosity and permeability of the anode layer were decreased. The DLHF 

that was co-sintered at 1450 °C showed sufficient properties and therefore, it was 

chosen for the construction of micro-tubular SOFC (MT-SOFC). When comparing 

the maximum power density of MT-SOFC namely nickel (Ni)-CGO/CGO 

(unmodified), Ni-CGO/30%nano-70%micron CGO (first approach) and Ni-

CGO/lithium (Li)-CGO (second approach); it was found that the Ni-CGO/30%nano-

70%micron CGO cell performed the best. At 500 °C, the cell produced the highest 

maximum power density, which was 275 Wm
-2

 as compared to Ni-CGO/Li-CGO 

cell (60 Wm
-2

) and Ni-CGO/CGO cell (200 Wm
-2

). Porous anode in Ni-

CGO/30%nano-70%micron CGO DLHF provided active reaction site, while dense 

electrolyte layer resulted from pore filling caused by the introduction of 30% nano 

sized CGO particles improved the gas-tightness of the electrolyte. Meanwhile, the 

closed pore caused by the migration of Li ions in anode sponge–like region of Ni-

CGO/Li-CGO hindered the triple phase boundary region that impaired the cell 

performance. This limited the inclusion of Li in DLHF design. Nevertheless, the 

results from this study has proven the feasibilities to accelerate the densification of 

electrolyte as well as presented an advanced electrolyte material for MT-SOFC. 
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ABSTRAK 

Kekonduksian ionik yang sangat baik pada julat suhu antara 400-700 °C telah 

menjadikan cerium gadolinium oksida (CGO) sebagai bahan alternatif elektrolit 

pepejal untuk penggunaan sel bahan api pepejal teroksida (IT-SOFC). Walau 

bagaimanapun, keperluan suhu pensinteran yang tinggi sehingga 1550 °C untuk 

pemadatan CGO telah merumitkan proses fabrikasi sel kerana mengurangkan 

keliangan dalam lapisan elektrod terutamanya dalam langkah pensinteran bersama 

anod/elektrolit gentian geronggang dwi lapisan (DLHF). Oleh itu, fabrikasi DLHF 

adalah mencabar berikutan perbezaan kelakuan pensinteran dalam setiap lapisan. 

Objektif utama kajian ini adalah untuk membangunkan anod/elektrolit DLHF dengan 

ciri elektrolit yang lebih baik dan mengurangkan suhu pensinteran untuk IT-SOFCs 

melalui teknik langkah tunggal songsangan fasa bersama penyemperitan dan 

pensinteran. Sifat pensinteran kepingan rata elektrolit telah dikaji dengan 

membandingkan dua pendekatan; (i) menggunakan elektrolit dengan saiz partikel 

bercampur dan (ii) penambahan litium oksida sebagai bahan tambahan pensinteran 

dalam elektrolit. DLHF dengan elektrolit yang diubahsuai kemudiannya dihasilkan 

dengan teknik songsangan fasa bersama penyemperitan dan pensinteran pada suhu 

antara 1400-1500 °C. DLHF ini dinilai dari segi morfologi, kekuatan mekanikal dan 

keketatan gas serta kekonduksian elektrik, keliangan dan kebolehtelapan lapisan 

anod. Didapati lapisan kepingan rata CGO padat yang disinter pada 1450 °C dengan 

tambahan 30% zarah CGO saiz nano dapat diperoleh. Sementara itu, pengedopan 2 

mol% litium nitrat ke dalam CGO telah menurunkan suhu pensinteran kepada 1400 

°C. Apabila suhu pensinteran bersama meningkat, kekuatan mekanikal, keketatan gas 

dan kekonduksian elektrik meningkat manakala keliangan dan kebolehtelapan 

lapisan anod berkurangan. DLHF yang telah disinter bersama pada suhu 1450 °C 

menunjukkan ciri yang mencukupi dan oleh itu, telah dipilih untuk pembinaan tiub 

mikro SOFC (MT-SOFC). Dengan membandingkan ketumpatan kuasa maksimum 

MT-SOFC iaitu nikel (Ni)-CGO/CGO (tidak diubahsuai), Ni-CGO/30%nano-

70%mikron CGO (pendekatan pertama) dan Ni-CGO/litium (Li)-CGO (pendekatan 

kedua); didapati sel Ni-CGO/30%nano-70%mikron CGO menunjukkan prestasi 

terbaik. Pada 500 °C, sel tersebut menghasilkan ketumpatan kuasa maksimum yang 

paling tinggi iaitu 275 Wm
-2

 berbanding sel Ni-CGO/Li-CGO (60 Wm
-2

) dan Ni-

CGO/CGO (200 Wm
-2

). Anod berliang dalam sel Ni-CGO/30%nano-70%mikron 

CGO menyediakan tapak tindakbalas aktif manakala lapisan elektrolit padat terhasil 

daripada pengisian liang dengan pengenalan 30% zarah CGO bersaiz nano telah 

meningkatkan keketatan gas elektrolit. Manakala liang tertutup disebabkan oleh 

perpindahan ion Li dalam kawasan anod bagi sel Ni-CGO/Li-CGO telah menghalang 

rantau sempadan tiga fasa yang menjejaskan prestasi sel. Ini telah menghadkan 

penglibatan Li dalam reka bentuk DLHF. Walau bagaimanapun, hasil kajian ini telah 

membuktikan kebolehlaksanaan untuk mempercepatkan pemadatan elektrolit dan 

juga mengemukakan bahan elektrolit termaju untuk MT-SOFC. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

 Currently, the world is still dependent on fossil fuels as its major energy 

source.  Nevertheless, the world today confronted with the issues of concern such as 

increasing energy consumption, energy security concerns, global warming and acid 

rain.  Thus, using renewable energy and developing more efficient energy conversion 

devices have emerged as significant research and development (R&D) trends.  Fuel 

cell is one of energy-conversion device that converts chemical energy directly to the 

electrical energy via electrochemical process.  Hydrogen is the most common fuel, 

but hydrocarbons such as natural gas and alcohols like methanol are sometimes used.  

Unlike batteries, fuel cells need a constant source of fuel and oxygen/air to sustain 

the chemical reaction.  Thus, as long as the input is supplied, fuel cells can produce 

electricity continuously. 

 

 

 There are six common types of fuel cells as shown in Table 1.1.  Primarily, 

their electrolyte classifies the fuel cells.  This classification determines the chemical 

reactions that take place in the cell, the catalysts required, the temperature range in 

which the cell operates and the fuel required.  These features typically affect the 

applications for which these cells are most suitable.  In recent years, solid oxide fuel 

cells (SOFCs) have received tremendous attention due to their high-energy 

conversion efficiency, low emissions and excellent fuel flexibility. 
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Table 1.1 : Fuel Cell Types (U.S Department of Energy) [1] 

Name Electrolyte 
Anode 

gas (fuel) 

Cathode 

gas 

(oxidant) 

Operating 

temperature 

Development 

Status 

AFC 

(Alkaline 

Fuel Cell) 

Potash Hydrogen Oxygen Below 80 °C Commercial 

PEMFC 

(Proton 

Exchange 

Membrane 

Fuel Cell) 

Polymer 

Membrane 
Hydrogen 

Oxygen or 

Atmospheric 

Oxygen 

to 120 °C 
Being 

developed 

DMFC 

(Direct 

Methanol 

Fuel Cell) 

Polymer 

Membrane 
Methanol 

Atmospheric 

Oxygen 
90 – 120 °C 

Being 

developed 

PAFC 

(Phosphoric 

Acid Fuel 

Cell) 

Phosphorus Hydrogen 
Atmospheric 

Oxygen 
200 °C Commercial 

MCFC 

(Molten 

Carbonated 

Fuel Cell) 

Alkali-

carbonates 

Hydrogen 

Methane 

Atmospheric 

Oxygen 
650 °C 

Being 

developed 

SOFC 

(Solid 

Oxide Fuel 

Cell) 

Ceramic 

Oxide 

Hydrogen 

Methane 

Atmospheric 

Oxygen 

500 – 1000 

°C 

Being 

developed 

 

 

 Since 1960s, many studies conducted on solid oxide fuel cells (SOFCs) have 

been focusing on compact design and cell performance enhancement. Most of the 

developments focus on planar and tubular designs as shown in Figure 1.1.  Typically, 

fabrication of planar SOFCs is cheaper due to its simpler techniques such as tape 
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casting and screen printing [2].  Furthermore, the planar SOFCs offer higher power 

densities production due to inherently shorter path lengths for electrons to travel 

from anode to cathode sides.  However, the design has certain disadvantages 

including inherently lower thermal stability and larger areas that require high 

temperature for gas sealing.  On the other hand, the tubular type is relatively well-

established in terms of design and manufacturing technology [3].  It offers better 

thermo-cycling behavior and easier sealing around the circumference of the tubes 

[4].  However, its difficulty in designing complete interconnects axially and 

circumferentially because it creates longer current paths which often increase the 

ohmic loss.  It also decreases the power densities as compared with its planar 

counterpart. 

 

 

 

  (a) Planar SOFC [5]     (b) Tubular SOFC [6] 

Figure 1.1 Typical SOFC Designs 

 

 

 Started in early 1990s, Kendall and co-workers initiated an advanced cell 

design namely micro-tubular SOFCs [2].  This invention was driven from the effort 

to improve the performance of tubular SOFCs by reducing the cell size, from 

centimeter to the micron scale.  It is remarkable that various potential benefits appear 

when the diameter gets smaller.  The micro-tubular SOFC offers a greater tolerance 

to thermal cycling, quicker start-up capability, higher volumetric output density and 

portable characteristics compared to the conventional planar and tubular SOFCs [7].  

These characters have promoted the research in micro-tubular SOFCs.  Figure 1.2 

(A) shows the analyze result from ‘Scopus’ search which reveals the increase in the 

number of articles published on micro-tubular SOFC over the last one decade (2006–

2016).  Besides, the reported electric current output from the micro-tubular SOFCs 
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has also increased greatly over the recent years.  Figure 1.2 (B) shows the country-

wise distribution of micro-tubular SOFC researchers, the data that was also drawn 

from ‘Scopus’.  It is noticeable that the attraction in micro-tubular SOFC research is 

worldwide with increasing number of researchers from different countries. 

 

 

 
Figure 1.2 (A) The number of articles on micro-tubular SOFCs. The data is 

based on the number of articles mentioning micro-tubular SOFCs in the citation 

database Scopus in August 2016. (B) The country-wise distribution in micro-tubular 

SOFC research. The data is based on the number of articles mentioning micro-

tubular SOFC in the citation database Scopus in August 2016. 
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 Generally, the design of SOFC can be configured into two geometries; self-

supporting and supported concept [8].  As depicted in Figure 1.3, self-supporting 

refers to the electrolyte with thickness around 80-250 µm forms as structural element 

of the design while for the supported concept, the electrolyte is deposited as a thin 

layer <50 µm on porous electrode either cathode or anode.  

 

 

 

Figure 1.3 Geometries of SOFC [9] 

 

 

 The micro-tubular SOFCs can be constructed into the anode supported, the 

cathode supported or the electrolyte supported configurations depending on the 

component providing the mechanical strength to the micro-tubularcells.  The use of 

anode-supported design allows for a thinner electrolyte layer, which reduces 

electrolytic resistance losses and yields better conductance at lower temperatures 

compared to an electrolyte supported [10].  This configuration is generally 

recognized to increase the performance, but additional caution is needed to avoid the 

formation of microcracks and to ensure the electrolyte layer is entirely gas tight.  

Nevertheless, it should be addressed that majority of recent works on micro-tubular 

SOFCs uses the anode-supported design. 
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 Recently, there is a trend to move to lower temperature operation, which is 

intermediate (500-700 °C) or low (<500 °C) operating temperature.  High operating 

temperature system possesses several disadvantages on commercialization for 

instance, long-term stability of the cell components, materials as well as high 

manufacturing cost.  Moreover, high operating temperature limits the range of 

material selection.  In comparison to lower temperature operation, it affords more 

rapid start-up, improved durability, and higher robustness as well as simplified 

system requirements and wider choice of selecting materials. 

 

 

 Consequently, the electrolytes with high oxygen-ion conductivity at low 

temperatures have received tremendous attractions.  Cerium gadolinium oxide 

(CGO) is an attractive electrolyte alternative to yttria stabilized zirconia (YSZ), 

owing to its superior oxygen ion conductivity at low temperatures [11].  Like 

zirconia, ceria-based electrolytes have a cubic, fluorite-type crystal structure.  This 

structure affords the large oxygen ions with high mobility.  However, at low oxygen 

partial pressures and at higher temperatures ceria is partially reduced and the material 

becomes an electronic conductor, which can cause short circuit [12].  Although the 

stability of ceria in low oxygen partial pressures is inferior to that of zirconia, the 

chemical stability of ceria with cathode materials is superior to that of zirconia.  

CGO has been shown to be stable with a wide variety of electrodes, including 

lantahnum strontium manganate (LSM), lanthanum strontium cobalt (LSC), 

lanthanum strontium ferrite (LSF), lantahnum strontium cobalt ferrite (LSCF) and 

lantahnum nickel ferrite (LNF) [13].  

 

 

 Indeed, the general requirements for an electrolyte are high ionic 

conductivity, low electronic conductivity, and stable in both oxidizing and reducing 

environments with good mechanical properties [12–15].  Thus, the electrolyte 

structure must be dense because it acts as membrane that separates the air and fuel 

compartments and must be an oxygen ion conductor.  Henceforth, electrolyte is the 

heart of the fuel cell whereby it determines the performance of the cell.  Literature 

studies shows that two electrolyte systems specifically YSZ and CGO have been 

widely explored for SOFCs [13][15].  Each electrolyte system offers advantages 
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along with a number of drawbacks.  Table 1.2 shows the general comparison 

between YSZ and CGO systems.  

 

 

Table 1.2 : Comparison between YSZ and CGO systems 

Electrolyte 

system 
YSZ CGO 

Operating 

Temp 

High Temp 

(800 – 1000 °C) 

Intermediate Temp 

(500-700 °C) 

Material Cost Relatively less expensive Relatively expensive 

TEC 10.5 x 10
-6

 K
-1

 12.5 x 10
-6

 K
-1

 

Conductivity Ionic conductivity 

Mixed ionic electronic 

conductivity at high 

temperature and low oxygen 

partial pressure 

Mechanical 

strength 
Sufficient mechanical strength 

Ceria electrolytes are unstable 

mechanically at temperatures 

above 700 °C 

Reaction with 

electrodes 

material 

Chemical reaction with the 

cathode material 

Unreactive towards potential 

electrode materials 

Advantages 

Provide high quality exhaust 

heat for cogeneration, and when 

pressurized, can be integrated 

with a gas turbine to further 

increase the overall efficiency of 

the power system. 

Improved durability, wider 

choice for interconnecting 

material selection, and lower 

costs can be achieved by 

reducing the operating 

temperature below 700 °C 

 

 

 As shown in Table 1.2, YSZ fulfills the electrical requirements at high 

temperatures (800 - 1000 °C) and has good high temperature mechanical properties. 

However, one of its drawbacks is its reactivity with perovskite oxide electrodes such 

as LSM.  At high temperatures, they react and forming pyrochlore, La2Zr2O7, the 

perovskite SrZrO3 or both [12].  Unless, the YSZ layer is protected with CGO layer 

[15].  Alternatively, CGO has received great attention as an electrolyte material and 
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it has the highest conductivity at lower temperature and lower polarization resistance 

[34].  Besides, doped ceria is more stable and relatively unreactive towards potential 

electrode materials. 

 

 

 Besides the progress in SOFC designs, development in the fabrication 

process is critically important to ensure the success of the cell.  Previously, the 

fabrication of micro-tubularSOFC, which consists of three main components (i.e. 

anode, electrolyte and cathode), can only be achieved through multiple steps [17].  

There are two common techniques that have been employed to fabricate the support 

of the cell which are plastic mass ram extrusion and dry-jet wet extrusion.  For the 

ram extrusion technique, the support materials are mixed with binder and solvent to 

form a viscous paste.  The paste is then extruded through a custom-made die using a 

ram extruder to obtain the support tubes.  The support tubes are dried and cut to the 

desired length prior being subjected to the sintering process.  The fabricated support 

tubes are usually of a symmetrical structure with large wall thicknesses, which 

results in a large resistance for the diffusion of fuel into the anode (in the case of 

anode-supported design). 

 

 

 In contrast, the dry-jet wet extrusion technique offers greater control over the 

morphology of hollow fiber (common terminology for the tubes prepared using this 

technique).  The dry-jet wet extrusion is similar to the ram extrusion process.  The 

main difference is that the spinning suspension or dope for the dry-jet wet extrusion 

is in suspension form and the ram extrusion is in paste or plastic mass form.  Another 

major difference is the solidification process of the tube (or hollow fiber).  In dry-jet 

wet extrusion, the solidification of the hollow fiber occurs via phase inversion 

process initiated by the solvent/non-solvent exchange.  While in ram extrusion 

process, the tube is dried straight away after the extrusion prior to being subjected to 

the sintering process.  

 

 

 However, both techniques are only used to fabricate a single-layer of support, 

and thus, still require a multi-step in order to develop a complete fuel cell.  By using 

dry-jet wet or ram extrusions, a support layer for example anode tube is first 

prepared and pre-sintered to provide mechanical strength to the fuel cell.  The 
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electrolyte layer is then deposited and sintered prior to the final coating of cathode 

layer.  Each step involves at least one high temperature heat treatment, making the 

cell fabrication time-consuming and costly with unstable control over cell quality. 

 

 

 For a more economical fabrication of micro-tubular SOFC with reliability 

and flexibility in quality control, an advanced dry-jet wet extrusion technique, i.e. a 

phase inversion-based co-extrusion process, is recently employed to fabricate a dual-

layer hollow fiber, which consists of electrolyte and anode  for intermediate 

temperature SOFC (IT-SOFC)[18].  Co-extrusion technique in developing an 

electrolyte/anode dual-layer hollow fiber for micro-tubular SOFC pioneered by Li 

and co-workers [19] and the cell from the prepared hollow fiber showed a very 

outstanding power output, approximately 2.32 Wcm
-2

, which is almost double than 

the one prepared from conventional multi-step technique [20][21].  In comparison 

with conventional extrusion processes, the co-extrusion is more attractive due to the 

following reasons: (i) saving the production cost and time as it combines a number of 

processes into one; (ii) decreasing the risk of inducing defect; (iii) producing a great 

adhesion between layers. 

1.2 Problem Statement 

 To date, IT-SOFC is more promising compared to HT-SOFC ones due to 

their better long-term durability and cost effectiveness.  It has been reported that 

CGO possesses 4 to 5 times higher conductivity at lower operating temperatures [22–

28], and thus, make it more suitable to be used as the electrolyte for IT-SOFC.  

However, sintering temperatures as high as 1550 °C are typically needed to densify 

CGO electrolyte [29] which increasing cost and difficulty in the cell fabrication 

process.  Moreover, sintering of the layers at too high temperatures to obtain full 

densification of the electrolyte layer would cause an interfacial interdiffusion 

between the electrolyte and electrodes material which eventually generate a highly 

resistive interface that can diminish the ionic conductivity [30].  It should be note 

that high sintering temperature might reduce the porosity in the electrodes layers as 

well [31] particularly in the co-sintering step [18] of dual-layer hollow fiber (HF).  
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 Keeping in mind that the anode component; usually nickel oxide (NiO), are 

normally sintered at 1400 °C, steps would be taken to lower the sintering temperature 

of electrolyte material so that it can be co-sintered together with the anode at lower 

temperature. Thus, modification of the electrolyte sintering properties is needed to 

establish an appropriate sintering profile that allows the production defect-free 

micro-tubular SOFC hollow fiber precursor with the desired microstructure and low 

energy consumption. 

 

 

 Currently, it has been reported that introducing metal oxides as the sintering 

additive can effectively reduce the sintering temperature of CGO up to 900-1200 °C 

[32–34] by liquid phase sintering mechanism.  On the other hand, successful 

attempts of CGO sintered at 1250 - 1400 °C has been reported by introducing nano 

size particle of CGO as the starting powder [35–40].  As the small particles size 

exhibiting as high driving force [41], it is hypothesized that nano size powders 

enhance the densification at lower temperature.  Nevertheless, the previous works 

only reported on CGO button cells prepared by pressing method.  To the best of 

author’s knowledge, study on the effect of sintering additive and nano size particles 

on electrolytes densification prepared by phase inversion technique, has yet been 

reported.  The feasibility of these approaches on phase inversion based co-

extrusion/co-sintering technique is still unclear.  

 

 

 Realising the huge potential that is offered by phase inversion based co-

extrusion/co-sintering technique, it is relevant to implement these two approaches in 

reducing the sintering temperature of CGO and understanding how it affects the 

microstructure, densification temperature, mechanical strength, gas tightness 

properties as well as the micro-tubular SOFC performance.  This study is expected 

will produce a good quality micro-tubular SOFC with shorter fabrication time and 

thus the outcome is very novel and beneficial to the researchers in this area. 
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1.3 Objectives and Scopes 

 The main objective of this study is to develop anode/electrolyte dual-layer 

hollow fibres with improved electrolyte properties and reduced sintering temperature 

for intermediate temperature micro-tubular solid oxide fuel cells (SOFCs) via a 

single-step phase inversion-based co-extrusion/co-sintering technique.  This 

objective has been achieved by accomplishing the following specific objectives:  

 

a) To design the experiment in modifying the sintering properties of CGO 

electrolyte flat sheet via two approaches i.e; mix particle size CGO and sintering 

additive. 

b) To fabricate an anode/electrolyte of both modified dual-layer hollow fiber solid 

oxide fuel cell by using a promising phase inversion-based co-extrusion/co-

sintering technique. 

c) To study the properties of both modified dual-layer hollow fiber in terms of its 

morphology, conductivity, electrolyte tightness, anode permeability and 

mechanical strength. 

d) To conduct the current-voltage performance of both modified dual-layer hollow 

fiber as a complete SOFC. 

 

In order to achieve the objectives, four scopes have been identified in this research. 

The scopes are: 

 

a) Modifying the sintering properties of electrolyte via two approaches. 

b) Fabricating anode/electrolyte of both modified dual-layer hollow fiber via co-

extrusion/co-sintering technique. 

c) Characterizing the physical and chemical properties of both modified dual-layer 

hollow fiber in terms of its morphology, crystal structure, mechanical strength, 

gas-tightness properties and gas permeability. 

d) Performing micro-tubular SOFC test by potentiostat/galvanostat at temperature 

500 
o
C. 
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1.4 Significance of Study 

 This study is expected to provide a better understanding on the fundamental 

principle for the fabrication of dual-layer hollow fiber for micro-tubular SOFC, 

which consists of the modifications of electrolyte layer by considering the 

morphological, mechanical strength and gas tightness of the precursors.  It is 

acknowledged that nano size particles and sintering additive has been used in various 

fabrication techniques to reduce the sintering temperature of CGO, however little 

attention has been given on their application in phase-inversion technique.  

Therefore, attempts are made to investigate the potential of nano size CGO and Li2O 

as sintering additive in this technique.  By identifying the ideal characteristics of the 

nano size loadings and behaviors of the sintering additive, high performance micro-

tubular SOFCs can be fabricated.  

 

 

 Up to now, no study has been conducted to implement these two approaches 

in preparing dual-layer hollow fiber via phase-inversion technique.  This study could 

be beneficial to the researchers in this area regarding to the knowledge generation on 

fabricating modified dual-layer hollow fiber using a single-step technique.  In 

addition, with the utilization of low sintered electrolyte, an improved quality of 

SOFCs component can be produced.  This study has proven the possibility to 

accelerate the densification by incorporating nano size CGO and sintering additives 

as well as presented an advanced new material to reduce the sintering temperature of 

CGO.  Thus, it would lead to the development of low cost micro-tubular solid oxide 

fuel cell, in order to make fuel cell technology able to compete economically with 

traditional energy technologies. 

1.5 Thesis Organisation 

This thesis consists of 8 Chapters and its organization is shown in Figure 1.4.  

Chapter 1 briefly introduces the research background of fuel cells particularly the 

micro tubular solid oxide fuel cell, the objectives and scopes of the study and 

overview of the thesis.  Chapter 2 describes the literature review on conventional and 
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recent introduced phase inversion-based extrusion techniques, their characteristics 

and performances.  It also provides a review on recent approaches to reduce the 

densification temperature of CGO.  Other than that, the future direction is presented 

as well.  Chapter 3 presents a detailed methodology of this research work in order to 

achieve the targeted objectives.  

 

 

 

Figure 1.4 Overall Thesis Structure 

 

 

Chapter 4 reports the potential of the first approach which is introducing mix 

particle size of CGO to reduce the densification temperature.  The first part focuses 

on the particles behavior particularly the shrinkage rate of the mix particle size CGO.  

The second part clarifies the effect of nano size loading to the characteristics of the 

dope suspension and flat sheet.  While the last part reports the development of dual-

layer hollow fibers using the modified electrolyte.  This includes the study on the 

Chapter 1 and Chapter 2

Introduction and Literature Review

Chapter 3

Methodolgy

Chapter 4

Electrolyte Modification using Mix

Particle Size

Chapter 5

Electrolyte Modification by Addition

of Lithium Oxide as Sintering Additive

Chapter 6

Dual-layer Hollow Fiber Fabrication

with Addition of Sintering Additive

Chapter 7

Micro-tubular Solid Oxide Fuel

Cell Development

Chapter 8

Conclusions and Recommendations
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