
THE EFFECTS OF GRAVITATIONAL ACCELERATION ON MICROPOLAR

FLUID MODEL OF BLOOD FLOW IN A BIFURCATED STENOSED ARTERY

TAN YAN BIN

UNIVERSITI TEKNOLOGI MALAYSIA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/228042764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


THE EFFECTS OF GRAVITATIONAL ACCELERATION ON MICROPOLAR

FLUID MODEL OF BLOOD FLOW IN A BIFURCATED STENOSED ARTERY

TAN YAN BIN

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Mathematics)

Faculty of Science 

Universiti Teknologi Malaysia

FEBRUARY 2017



iii

To my beloved family, supervisors and friends - 

Thank you fo r  everything.



iv

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to my only 

supervisor, Dr Norzieha Mustapha, for her encouragement and guidance throughout 

the research period. Also, I sincerely appreciate her patience and confidence in me, 

which support me until the completion of this thesis. Besides, I would also like to 

thank her for recommending me to participate in several conferences, seminars, 

workshops, and study groups, where I have gained priceless experiences from not 

only academic fields but also industries.

Besides, I wish to thank Dr Sarifuddin from Raiganj Surendranath College, 

India. During his stay in UTM, he inspired me and shared a lot with me regarding 

my research area. Also, I would like to thank him for the guidance in constructing 

some computational programming.

Furthermore, I wish to express my appreciation to the Ministry of Education 

(MOE) Malaysia for MyBrain15 scholarship programme.

Last but not least, I would like to thank my family members who have been 

so supportive throughout my study period. Also, thanks to my friends who have 

been involved in one way or another, and giving me so much cheers, motivation and 

supports.



v

ABSTRACT

Gravity is a fundamental force regulating the cardiovascular system in our 

body. However not many previous studies on bio-fluids take into consideration of 

the variation of gravitational acceleration. Besides, the geometry of the bifurcated 

artery is chosen to be investigated since it is significant in human cardiovascular 

networking, where stenoses tend to form around branching junctions. Blood flow in 

the segment of artery is assumed to be axisymmetric, unsteady, laminar, fully 

developed, and two-dimensional. This research investigates the effects of gravity on 

micropolar fluid model of blood flow along a bifurcated artery segment which 

consists of a single stenosis at the parent branch. Meanwhile, to proceed with this 

study, blood is initially modelled as Newtonian fluid and micropolar fluid 

respectively in a straight stenosed artery segment. Then, the effects of gravity on 

Newtonian blood flow in bifurcated artery are explored. Here, a non-dimensional 

parameter G is introduced to describe the condition of gravity, where G is directly 

proportional to gravitational acceleration. The governing equations are solved 

numerically using the explicit finite difference method with prescribed condition of 

pressure and the computational algorithms are developed in Matlab software. 

Generally, with consideration of gravity variation, increment of gravitational 

acceleration causes decrement of axial velocity and increment of wall shear stress. 

Thus the consideration of gravity term in fluid model is necessary so that results 

obtained are closer to realistic conditions. Further, flow abnormalities are noticed at 

the branching junction from graphs of wall shear stress. This can be a crucial cause 

of stenosis overlapping and restenosis, which means that the structures of artery is 

significant in influencing blood flow patterns.
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ABSTRAK

Graviti ialah salah satu daripada daya asas yang mengawal atur sistem 

kardiovaskular dalam badan kita. Tetapi tidak banyak penyelidikan bendalir-bio 

terdahulu yang mempertimbangkan perubahan pecutan graviti. Selain itu, struktur 

dwicabang pada arteri telah dipilih dalam penyelidikan ini sebab struktur ini adalah 

sangat penting dalam rangkaian kardiovaskular badan manusia, di mana stenosis 

sering wujud di bahagian cabang salur darah. Aliran darah dalam arteri diambil kira 

sebagai berpaksi simetri, tak mantap, berlamina, terbentuk sepenuhnya dan dua 

dimensi. Penyelidikan ini menyiasat tentang kesan-kesan daya tarikan graviti ke atas 

pengaliran darah mikropolar melalui arteri dwicabang yang berstenosis di cabang 

utama. Untuk meneruskan kajian tersebut, darah dimodelkan sebagai bendalir 

Newtonan dan bendalir mikropolar yang mengalir melalui arteri lurus berstenosis. 

Selepas itu, kesan daya tarikan graviti terhadap darah yang dimodelkan sebagai 

bendalir Newtonan melalui arteri dwicabang juga diterokai. Di sini, satu parameter 

tak berdimensi, G , telah diperkenalkan untuk menggambarkan keadaan graviti, di 

mana G adalah berkadar langsung dengan pecutan graviti. Persamaan yang 

mengawal diselesaikan dengan kaedah berangka beza terhingga berserta tekanan 

sebagai syarat yang telah ditetapkan; algoritma pengiraan dibangunkan dengan 

menggunakan perisian Matlab. Secara umumnya, dengan mempertimbangkan 

perubahan graviti, penambahan pada pecutan graviti akan menyebabkan penurunan 

pada halaju dan peningkatan pada tegaran ricih dinding. Oleh itu, dalam 

penyelidikan bendalir-bio, graviti perlu diambil kira supaya keputusan yang didapati 

adalah dekat dengan situasi sebenar. Seterusnya, merujuk kepada graf tegaran ricih 

dinding, aliran tidak normal didapati di bahagian cabang. Keadaan ini boleh menjadi 

penyebab utama kepada penindihan mendapan dan stenosis berulangan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Problem

Healthcare problems are apparently concerned by people all over the world. 

For over centuries, cardiovascular diseases have been noticed as one of the major 

illnesses where numerous people suffer from them. The diseases such as stroke and 

atherosclerosis etc. are closely related to abnormality, disorder and malfunction of 

blood flow characteristics in human body. Among the blood vessels, arteries play 

the role to carry oxygenated blood away from the heart to other parts of the body. 

Healthy arteries have smooth inner lining which promote unobstructed streaming 

blood. However, constriction in artery has been noticed to be one of the most 

common conditions which bring several serious illnesses. Arterial plaque, which is 

made up of deposits of fatty substance, cholesterol, calcium, fibrin or other cellular 

waste products, develop in inner lining of arteries and cause segmental narrowing. 

This will lead to abnormal blood flow and forming of blood clots. Also, this kind of 

unhealthy deposition or stenosis in a vessel tends to raise blood pressure and reduce 

vessel elasticity. Due to inadequate blood supplement, infected part of the body 

(especially the limbs) will get numbness. More seriously, a heart attack may occur if 

oxygenated blood supply to the heart is reduced. Also, a stroke may occur if the 

blood supply is cut off to the brain. Furthermore, this abnormality of blood flow 

would probably cause the present stenosis to further get worse by forming additional 

constrictions and coupling effects.
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Hence, numerous medical studies have been carried out since decades to 

obtain more understandings about cardiovascular blood flow and stenosis in blood 

vessels. Furthermore, mathematicians started to model blood flow using knowledge 

such as fluid mechanics. Blood used to be modelled as Newtonian and non- 

Newtonian fluid by adopting several justifiable assumptions. Chakravarty et al. 

(1996) pointed out that blood behaves as Newtonian fluid when it flows through 

wider arteries such as the aorta; and oppositely, non-Newtonian behaviours are 

observed in tinier arteries. Some researchers such as Sankar and Md. Ismail (2009) 

even proposed two-fluid model, whereby blood possesses Newtonian behaviour near 

the vessel wall (namely the peripheral layer) and behaves non-Newtonian at the 

vessel core region. Eringen (1965) introduced a theory of a specialised non- 

Newtonian fluid, namely the micropolar fluid, which considers the involvement of 

micro-structure, to describe some kind of fluid suspensions. These mathematical 

bio-mechanical studies provided remarkable and extensive advancement in the field 

of cardiology. Despite, in current clinical field, constrictions and abnormal 

behaviours of blood in vessel is still commonly observed using various invasive 

methods. Thus, persistency in mathematical modelling of blood flow and stenosis is 

important to give deeper understanding on blood flow rheology, and provide more 

ideas on the hemodynamic. One can even able to speculate the cause of some 

common phenomena such as stenosis overlapping and restenosis by investigating the 

blood flow characteristics.

On the other hand, gravitational force is one of the fundamental forces 

regulating biological and physiological systems. From previous researches, it is 

interesting to find out that gravitational acceleration does not only differ on earth and 

in space. On the earth itself, different altitude and latitude will give different values 

of gravity acceleration. Also, during postural changes, blood assembles at certain 

part of body because of gravity attraction, and this will lead to increment of blood 

pressure at that body part. However, not many of the previous studies included 

gravity as a body force in modelling blood flow in arteries, thus this becomes the 

main motivation to this research. Throughout this research, variation of gravitational 

acceleration is taken into consideration to provide deeper insight about its effects on 

blood flow in constricted arteries.
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Apart from quantitative factors such as gravity force, physical factors such as 

vessel structures are also found to be one of the major factors affecting blood flow 

behaviour in human cardiovascular system. Blood vessels are a series of branches 

expanding throughout the body, therefore bifurcation structure is very common 

among the branching system. This kind of structure has been clinically proven to be 

significant on atherogenesis, which means the augmentation of arterial wall 

deposition. This phenomenon is also clearly remarked where clinical investigations 

point out that arterial stenosis often occurs at bifurcated vessel regions. Due to this, 

branching structures have become one of the interested and important aspects in 

modelling blood flow to find out properties of flow rheology passing through vessel 

bifurcations. In this current research, blood flow through a mildly stenosed artery 

bifurcation is included. Main interest in this study is to model blood as micropolar 

fluid and study its effects when passing through an artery bifurcation under variation 

of gravity acceleration.

Despite researches about blood flow in living body have been carried out 

since decades, characteristics of blood flow in cardiovascular system has not yet been 

developed and interpreted thoroughly. This is because apart from quantitative 

parameters, too many subjective factors are affecting behaviours of human anatomy, 

including environment and even the internal individual emotions. However from the 

angle of mathematical modelling, even though a lot of assumptions need to be made, 

such analyses progressively give larger picture to successfully relate to clinical 

circumstances. Currently, this thesis formulates problems regarding the effects of 

gravitational acceleration, structure of artery segment (straight and bifurcation), 

involvement of single stenosis, and modelling of blood flow in Newtonian and 

micropolar fluids. Besides, problems discussed in this thesis are solved by numerical 

methodologies, which include the Marker and Cell (MAC) method and the finite 

difference method. For the proposed problems, streaming blood is assumed to be 

two-dimensional, laminar, time-dependent, and fully-developed. Further, some 

preliminaries for this research will be introduced in the next subsection. Also, 

problem statements, research objectives, scopes, research significance, and the thesis 

outline are discussed in next few sections.
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1.1.1 Preliminaries of the Research

This research is about investigating blood flow patterns in stenosed artery. So, 

choice of artery geometry is the first concern before proceeding to problem 

formulation. In this research, blood vessels as well as streaming blood are assumed 

to be two-dimensional and axisymmetric. There are two kinds of artery geometry 

involved in this research, which are a finite segment of straight artery (Problems 1 

and 3) and a finite segment of bifurcated artery (Problems 2 and 4). Both kinds of 

artery geometry are presumed to consist of a single constriction (stenosis) occurring 

at the main vessel. The stenosis is said to be ‘single’ since it has only one peak, 

where the tiniest diameter of vessel lumen takes place. Severity of the stenosis can 

be calculated by its percentage of areal occlusion, which will later be shown in 

Chapter 3 - Equation (3.1).

From previous researches, various shapes of stenosis were modelled by 

different researchers, in order to mimic the real circumstances in constricted blood 

vessel. Two main presumed models made to describe conditions of stenosis are 

smooth surface and rough surface (also named as ‘irregular’). Commonly, stenosis 

with smooth surface is modelled by a continuous cosine function; while stenosis with 

rough surface needs to be modelled by a series of discrete data which is likely to be 

obtained from clinical data. In this research, straight artery is assumed to have a 

single rough stenosis with 48% areal occlusion, where the irregular surface data is 

taken from Back et al. (1984); whilst, bifurcated artery is assumed to have a single 

smooth stenosis at the parent branch, also with 48% areal occlusion, where the 

stenosis is modelled by a continuous function established by Chakravarty and 

Mandal (1997).

In this research, for both kinds of artery geometry, the presumed stenosis is 

chosen to be 48% occluded, which is considered as mild. However, any of these 

stenosis geometry profiles can be modified to possess higher percentage of areal 

occlusion, i.e. to become a severe stenosis.
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1.2 Problem Statement

With any choice of blood vessel and stenosis geometry, blood flow problems 

are modelled in various ways in previous researches, by treating blood to have 

different behaviours. Each model of fluid has its own pros and cons, because blood 

is hard to be modelled as it is one of the most complicated basic bio-fluids in living 

bodies. Newtonian models have been widely proposed as it is the simplest and most 

direct way to investigate elementary blood flow patterns. Nonetheless, various non- 

Newtonian models describe blood flow considerably through different points of view. 

Micropolar fluid is one of the non-Newtonian models describing fluid as a 

suspension with rigid microstructures affecting the fluid motion.

There are inadequate studies pointing out influences of gravity force or 

gravitational acceleration on blood flow, despite gravity is the fundamental force 

regulating our body systems. Gravity does not only vary in term of location (for 

example, on earth versus outer space, difference of altitude and latitude on earth, and 

so on), it also varies even when a person changes his posture, for example, when a 

head-up tilt is carried out. Hence, further investigation on the effects of gravity 

should be related to each fluid model.

Another interest in the current study is the structure of the artery vessel. 

Many researchers choose a straight finite segment of vessel with stenosis to study the 

fluid flow patterns. Yet, the branching structure of artery has been noticed to be one 

of the reasons to stenosis forming and restenosis phenomena. Hence from this 

concern, blood flow in the structure of bifurcation of an artery shall gain further 

understandings.

Main problem in this research is to investigate the effects of gravitational 

acceleration on micropolar fluid model of blood flow through a stenosed bifurcated 

artery. However, before proceeding to this study, three related problems are studied 

as anticipations. For all the studies, effects of gravitational acceleration and artery 

structures are main concerns. Firstly, blood is modelled as Newtonian fluid in a 

straight stenosed artery. Then, micropolar fluid model is considered where other
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parameters remain unchanged. After that, the geometry of artery is assumed to be a 

bifurcated vessel with single stenosis located at parent branch, where blood flow 

through the bifurcated artery is modelled as Newtonian fluid. And finally, extended 

from the third problem, micropolar fluid model is considered where other physical 

parameters remain the same.

1.3 Research Objectives

This research aims to investigate and analyse blood flow patterns under 

certain circumstances as stated in the problem statements. The problems are solved 

numerically in Matlab programming software. Solution procedures comprise of 

mathematical models development, choices of vessel and stenosis geometry profiles, 

formulation of the problem, and numerical methods by respective computational 

approaches.

Main objective of this research is to investigate the influence of gravity on 

micropolar fluid model of blood flow in a bifurcated artery that consists of a stenosis 

at the parent branch. This study is carried out computationally using finite difference 

method and the programming code is developed using Matlab software.

Meanwhile, in order to achieve this main objective, the prior objectives are 

considered, which are to study the gravitational effects on Newtonian and micropolar 

fluid models of blood flow through a straight stenosed artery, and also to study the 

effects of gravitational acceleration on micropolar fluid model of blood flow in a 

bifurcated artery that consists of a stenosis at the parent branch. These problems are 

carried out computationally using Matlab programming based on finite difference 

scheme.
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1.4 Research Scopes and Methodology

Scope of this research comprises of four main aspects. Firstly, involvement 

of gravitational acceleration as external force acting on blood flow in stenosed artery 

is studied. For the first three problems, gravity condition is represented by a 

dimensionless parameter namely the Froude number; while for the main problem, a 

dimensionless parameter G is used.

Next, two different structures of constricted artery segment are taken into 

account. The straight stenosed artery profile consists of a single irregular stenosis 

referred from proofed clinical data developed by Back et al. (1984). Then, the 

stenosed bifurcation geometry is introduced by Chakravarty and Mandal (1997), 

which consists of a single stenosis at parent branch. Both geometries of stenosed 

artery are assumed to be two-dimensional, cylindrical and axisymmetric.

The third aspect focused in the research is the fluid model. Streaming blood 

is assumed to be unsteady, two-dimensional, incompressible, fully developed and 

laminar. For the first two problems, blood is modelled as Newtonian fluid; whilst for 

the third and last problems, blood is modelled as micropolar fluid as introduced by 

Eringen (1965).

Last but not least, in this research, the methods of solution comprise of two: 

the Marker and Cell (MAC) method for the first three problems, and the explicit 

finite difference method for the last problem. MAC method grants the obtainability 

of pressure-velocity fields, and it is convincingly converging in similar problems, but 

it involves a comparatively complex solution algorithm. Main difference between 

finite difference method and MAC method is the definition of grids, where the 

explicit finite difference is discretized based on non-staggered grids while MAC 

method is based on staggered grids. Also, a specific pressure condition has to be 

prescribed to perform the finite difference method while MAC method does not need 

to have pressure boundary conditions, because for MAC method, discretization of 

pressure is not taken at boundaries. The algorithm of MAC method involves 

multiple parts for every time loop, includes calculating of time step and combination
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factor, solving the velocity fields, obtaining the pressure field by Successive-Over- 

Relaxation method, and also performing the pressure-velocity corrections (see 

Appendix A). Whilst for the main objective, a complicated problem involving 

micropolar fluid modelling, structure of bifurcation artery with mild stenosis, and the 

additional of gravity force is performed. Hence, here the MAC method algorithm is 

overlooked; while the explicit finite difference method is chosen to access this 

problem, with prescribed pressure gradient and radial velocity component, which 

yields a more direct computation. Both of the numerical calculations are done by 

computational programming in Matlab software.

1.5 Significance of Research

Gravity force differs when approaching to or away from the atmosphere 

around earth, where microgravity or hyper-gravity is experienced. Yet, gravity can 

also be influenced by altitude and latitude. On the other hand, due to the gravity 

attraction, distribution of blood to the body can be influenced by postures. Hence, 

the study provides deeper understandings on effects of gravity on blood flow in 

stenosed artery. Particularly, blood flow patterns and the physical impacts can be 

clearly determined when a person travels to different locations, such as from equator 

tropical to northern pole, from flatlands to mountains; or, during ascending and 

descending of flights. Also, when a patient changes posture such as encountering a 

head-up tilt (which is a test widely used to diagnose dizziness or syncope), the 

physiology of blood flow can be evaluated. Studies which include the gravity term 

are comparably more accurate in describing real-life cases. Gravity is one of the 

fundamental physical forces; hence with deeper exploration on effects of gravity, 

additional precautions and medications can be improved.

Secondly, from the physiological point of view, structure and geometry of a 

blood vessel is important in affecting hemodynamic. Circulatory system in body 

comprises branching network of blood vessels, where bifurcation is a common and 

significant structure. Investigation on blood flow along a bifurcated vessel provides
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further understandings to relate to the phenomena of stenosis overlapping and 

restenosis which often occur at branching junctions.

Last but not least, in medical field nowadays, most diagnoses of blood flow 

problems are invasive. Thus, researches which are done from mathematical points of 

view provide more comprehensive ideas on behaviour of blood flow and stenosis in 

vessel. With appropriate mathematical modelling, diagnoses can be done non- 

invasively. Non-invasive diagnoses and medications are safer, promote faster 

recovery time, and at the same time medical costs can be reduced. Further, 

nowadays, decisions of medications to stenosed arterial diseases are mostly 

considered based on a doctor’s previous experiences. Mathematical modelling and 

computational analyses enable predictions of illness, so that treatments and 

precautions can be done at earlier stage. These effectively reduce the risks for 

diseases to get more severe.

1.6 Thesis Outline

This thesis consists of six chapters investigating hemodynamics of blood flow 

through stenosed artery under the effects of gravity. The first chapter presents 

background of the current research and introduces some preliminaries about stenosis 

in artery. Also, problem statements, research objectives, scope, methodology, and 

significance of the research are clarified.

Then, second chapter presents literature reviews on previous researches 

related to the current study and highlights the research gap, which include blood flow 

in stenosed arteries, stenosis in artery branches, relativity of gravity and blood flow, 

behaviours of blood together with introduction of different fluid models, and finally, 

the numerical or computational methods used to solve blood flow problems.

Next, Chapters 3 presents formulation of the problems, which include 

construction of vessel geometry and derivation of governing equations. In the first 

section, geometry of straight artery with a single irregular stenosis is shown, together
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with the clinical data established by Back et al. (1984) which constructs the stenosis 

surface roughness. Then, geometry of the bifurcated artery with a single stenosis at 

parent branch is also discussed. After that, derivation of the governing equations for 

micropolar fluid model is shown, which include the derivation of continuity equation, 

momentum equations and angular momentum equations for both straight artery and 

bifurcated artery models. Initial and boundary conditions of micropolar fluid models 

for both artery geometries are also discussed.

Chapter 4 shows solution procedures of the main problem in this research - 

micropolar fluid model of blood flow in a bifurcated stenosed artery. Here, radial 

coordinate transformation and derivation of radial velocity component are shown. 

Then, before performing computational algorithm, the involved governing equations 

and boundary conditions are discretized according to finite difference scheme. 

Finally, finite difference algorithm is explained.

Chapter 5 presents results and discussions of the four problems. The results 

are categorised into two main sections by vessel geometry, where the first section 

discusses about blood flow in straight artery with a single stenosis; while another 

section discusses about blood flow in an artery bifurcation with also a single stenosis 

at its parent branch. For all the investigations, a gravity vector is included in the 

momentum equations as an external body force. Results are presented in graphical 

form and discussed accordingly. In the first section, streaming blood is treated as 

Newtonian fluid and micropolar fluid respectively. In this section, both studies are 

done under same physical geometry - the straight artery, which is assumed to be two

dimensional, axisymmetric and each tube is cylindrical. Also, the stenosis profile is 

chosen to be a single irregular stenosis.

Second section in this chapter discusses about blood flow in an arterial 

bifurcation with a single smooth stenosis at parent branch under the influences of 

gravity. Governing equations for this problem are similar to the previous section; 

while the boundary conditions are slightly modified to suit the situation of 

bifurcation geometry. A different radial coordinate transformation is imposed due to 

difference in artery geometry. Similar to the previous section, this section is also 

divided into two part, where in the first part, streaming blood is treated as Newtonian
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