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ABSTRACT

Structural equation modeling (SEM) is a statistical methodology that is
commonly used to study the relationships between manifest variables and latent
variables. In analysing ordered categorical and dichotomous data, the basic assumption
in SEM that the variables come from a continuous normal distribution is clearly
violated. A rigorous analysis that takes into account the discrete nature of the variables
is therefore necessary. A better approach for assessing these kinds of discrete data is
to treat them as observations that come from a hidden continuous normal distribution
with a threshold specification. A censored normal distribution and truncated normal
distribution, each includes interval, right and left where the later are with known
parameters, are used to handle the problem of ordered categorical and dichotomous
data in Bayesian non-linear SEMs. The truncated normal distribution is used to
handle the problem of non-normal data (ordered categorical and dichotomous) in the
covariates in the structural model. Two types of thresholds (having equal and unequal
spaces) are used in this research. The Bayesian approach (Gibbs sampling method)
is applied to estimate the parameters. SEM treats the latent variables as missing data,
and imputes them as part of Markov chain Monte Carlo (MCMC) simulation results in
the full posterior distribution using data augmentation. An example using simulation
data, case study and bootstrapping method are presented to illustrate these methods.
In addition to Bayesian estimation, this research provide the standard error estimates
(SE), highest posterior density (HPD) intervals and a goodness-of-fit test using the
Deviance Information Criterion (DIC) to compare with the proposed methods. Here, in
terms of parameter estimation and goodness-of-fit statistics, it is found that the results
with a censored normal distribution are better than the results with a truncated normal
distribution, with equal and unequal spaces of thresholds. Furthermore, the results with
unequal spaces of thresholds are less than the results of equal spaces of thresholds in
the interval of the censored and truncated normal distributions, this is including the left
censored and truncated normal distributions. The results of equal spaces of thresholds
are less than the results of unequal spaces of thresholds in right censored and truncated
normal distributions. In other cases, the results of bootstrapping method are better than
the real data results in terms of SE and DIC. The results of convergence showed that
dichotomous data needs more iterations to convergence than ordered categorical data.
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ABSTRAK 

 

Pemodelan persamaan struktur (SEM) adalah suatu kaedah statistik yang 

digunakan untuk mengkaji hubungan antara pembolehubah yang nyata dan 

pembolehubah terpendam. Dalam menganalisis data berkategori turutan dan dikotomi, 

andaian asas dalam SEM bahawa pembolehubah datang daripada taburan normal 

selanjar jelas bercanggah. Oleh itu satu analisis teliti yang mengambil kira sifat 

pembolehubah diskrit oleh itu adalah perlu. Pendekatan yang lebih baik untuk menilai 

jenis data diskret yang seperti ini supaya dapat menanganinya adalah dengan 

menganggapnya sebagai data yang datang daripada taburan normal selanjar  

tersembunyi dengan nilai ambang yang spesifik. Taburan normal ditapis dan taburan 

normal terpangkas dengan selang kanan dan kiri, dimana yang kemudian adalah 

dengan parameter yang diketahui digunakan untuk menangani masalah kategori 

turutan dan dikotomi dalam SEM Bayesan tidak linear. Taburan normal terpangkas 

tersebut digunakan untuk menangani masalah data yang tidak normal (data 

berkategori turutan dan dikotomi) dalam covariates model struktur. Dua jenis nilai 

ambang (mempunyai ruang yang sama dan yang tidak sama) digunakan dalam kajian 

ini. Pendekatan Bayesan (kaedah persampelan Gibbs) digunakan untuk 

menganggarkan parameter. SEM menangani pembolehubah terpendam sebagai data 

hilang, dan ia digunakan bagi melengkapkan keputusan simulasi Monte Carlo rantaian 

Markov (MCMC) untuk taburan posterior penuh dengan menggunakan pembesaran 

data. Satu contoh yang menggunakan data simulasi, kajian kes dan kaedah 

bootstrapping akan dibentangkan untuk menggambarkan kaedah-kaedah ini. Sebagai 

tambahan kepada anggaran Bayesan, kajian ini menyediakan anggaran ralat piawai 

(SE), selang ketumpatan posterior tertinggi (HPD) dan ujian kebagusan penyesuaian 

yang menggunakan Devians Kiteria Maklumat (DIC), digunakan sebagai 

perbandingan dengan kaedah yang dicadangkan. Dari segi anggaran parameter dan 

statistik kebagusan penyesuaian, didapati keputusan taburan normal ditapis adalah 

lebih baik daripada keputusan taburan normal terpangkas, bagi ruang yang sama dan 

tidak sama untuk nilai ambang. Tambahan pula, keputusan dengan ruang yang tidak 

sama bagi nilai ambang adalah kurang daripada keputusan untuk ruang sama bagi 

nilai ambang dalam selang untuk taburan normal ditapis dan dipangkas, ini 

termasuklah taburan normal ditapis kiri dan terpangkas. Keputusan bagi ruang sama 

untuk nilai ambang adalah kurang berbanding keputusan bagi ruang yang tidak sama 

untuk nilai ambang dalam taburan normal ditapis kanan dan terpangkas. Dalam kes 

lain, keputusan bagi kaedah bootstrapping adalah lebih baik daripada data sebenar 

dari segi SE dan DIC. Keputusan penumpuan menunjukkan bahawa data dikotomi 

memerlukan lebih banyak lelaran untuk menumpu berbanding data berkategori 

turutan. 
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CHAPTER 1

INTRODUCTION

This chapter contains a brief introduction to Bayesian structural equation
models (BSEMs) with linear fixed covariates and exogenous latent variables in the
measurement model and non-linear covariates and exogenous latent variables in the
structural model. Ordered categorical and dichotomous data are used in this research.
Analysing data necessitates a determination of the type of data being analysed.
However, there are many types of distributions; the most basic distribution of the
data is the normal distribution. The similarity between the distribution of the data
and the distribution assumed in the analysis can affect the validity of the result.
It is not a good idea to assume the distribution of the dependent variables and
the covariates to be normal when using ordered categorical and dichotomous data.
However, routinely treating these types of data as coming from a normal distribution
may lead to erroneous results. Structural equation models (SEMs) always assume that
the dependent variables are normally distributed. In addition, the ordered categorical
and dichotomous variables and covariates are assumed to be normally distributed
when, in fact, they are discrete variables and covariates. Finally, ordered categorical
and dichotomous variables and covariates often display positive or negative skew, such
that the frequency for low counts is higher than the frequency when the count level
increases, or the frequency for low counts is lower than that for high counts. A more
appropriate analysis includes the specification of a censored normal distribution or
a truncated normal distribution with known parameters and thresholds specification,
rather than a normal distribution.

There are two main types of structural equation models, the first, is classical
structural equation models which include maximum likelihood method (ML) and
weighted least square method (WLS). The second, is Bayesian structural equation
models such as Gibbs sampling method. However, in this thesis, we will focus on
Bayesian SEMs using Gibbs sampling method.
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Ordered categorical data are those with more than two categories, while
dichotomous data are those with only two categories. Two types of distributions that
used in this research, hidden continuous normal distribution are proposed for handling
the problem of non-normal data in variables and covariates (ordered categorical and
dichotomous). The hidden continuous normal distribution considered in this research
are censored normal distribution and truncated normal distribution with known
parameters. The choice between the models depends on the parameter estimation
results and the goodness-of-fit statistics, Deviance Information Criterion (DIC). In
many applications, the ordered categorical and dichotomous response variable data
are from a complete data set. In this research, the focus is on the unobserved data that
are hidden continuous normal data (censored and truncated normal distribution data).
There are many researches that are carried out using structural equation models with
full data. Thus, the likelihood function for a censored or truncated structural equation
model is not the same as the likelihood function of a structural equation model with
full data.

As we have seen, there is a great deal of research about Bayesian structural
equation models; we can also find studies about ordered categorical and dichotomous
data. However, there has been no research on BSEMs with linear fixed covariates
and latent variables in the measurement model and non-linear covariates and latent
variables in the structural model, for ordered categorical and dichotomous variables
and covariates. The response variables in a Bayesian structural equation model for
ordered categorical and dichotomous variables and covariates with unobserved data,
however, there is not sufficient information for the over-dispersion problem in a normal
distribution in the BSEMs. We are interested in discussing models with this kind of
data, since the dependent variables are ordered categorical or dichotomous variables
and covariates. Thresholds (cut points) are used to change the ordered categorical
and dichotomous data to the continuous normal data in the variables and covariates
using underlying continuous normal distribution. Therefore, when talking about
BSEMs with unobserved data, that means a hidden continuous normal distribution
with censoring or truncation.

Real data usually does not completely satisfy the assumptions often made
by researches which result in a dramatic effect on the quality of statistical analysis.
The developement of bootstrap estimation technique has become very competitive for
improvng the efficiency of parameters in structural equation models. Bootstrap is
a method for assigning measures of accuracy to sample estimates. The techniques
are more than 30 years old and were first introduced by Efron (1979). The basic
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idea of bootstrap method is to generate observations that are randomly drawn with
replacement from the original data set. The set of the selected sub-samples are
considered as bootstrap samples and can be used to estimate the parameters of
structural equation models. The bootstrap method obtained from such procedure is
called pair bootstrap. However, these bootstraps are computer intensive method that
can replace the theoretical formulation. The attractive feature of bootstrap method
is that it does not rely on the assumption of normal distribution and is capable of
estimating the standard error of any complicated estimator without any theoretical
calculations. The interesting properties of the bootstrap techniques have to be traded
off with computation cost and time (Rana et al., 2012).

1.1 Problem Statement

Several models and methods have been proposed in the past for analysing
BSEMs with ordered categorical and dichotomous data. For instance, Song and
Lee (2006a) proposed Bayesian structural equation models with non-linear covariates
and latent variables in the structural model, with mixed continuous and dichotomous
data, and they treated the dichotomous data in the covariates as a continuous normal
distribution. A truncated normal distribution with unknown parameters was used
to handle the problem of dichotomous data. The posterior predictive (PP) p-value
was used as a goodness-of-fit statistics for model comparison. Lee (2007) used a
hidden continuous normal distribution (truncated normal distribution) with unknown
parameters to handle the problem of ordered categorical data. Lunn et al. (2009)
and Lunn et al. (2012) mentioned that the truncated normal distribution is to be used
only if there are no unknown parameters or if a censored prior distribution has been
specified for the parameters. However, the truncated normal distribution is used when
the dependent variables contain observed data only or when the dependent variables
contain some unobserved data with no unknown parameters. Lu et al. (2012) used
continuous normal distribution as a proposed method to handle the problem of ordered
categorical variables in BSEMs, with an application to behavioral finance. In this
thesis, the first problem is how to handle the problem of non-normal data (ordered
categorical variables) in Bayesian non-linear SEMs to the measurement model . The
second problem is how to improve the performance of Bayesian non-linear SEMs when
there are non-normal data (dichotomous) in the variables in the measurement model.
The third problem is how to find Bayesian analysis of non-linear structural equation
models when there are (ordered categorical and dichotomous data) in the covariates in
the structural model.
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1.2 Objectives of the Study

A number of studies have presented applications of the analysis of Bayesian
structural equation models with non-normal data. Most of these researches have
considered hidden continuous normal distribution (truncated normal distribution with
unknown parameters) for the data. The aim of this study is to discuss the problems of
ordered categorical and dichotomous data and also covariates in these models, which
means that we are going to discuss Bayesian non-linear structural equation models
(BNSEMs) as a tool for the analysis of ordered categorical and dichotomous data with
unobserved data in variables and covariates. This study embarks on the following
objectives:

1. To handle the problem of ordered categorical variables in the measurement
model, using a hidden continuous normal distribution (interval censored normal
distribution, right and left censoring) and (interval truncated normal distribution,
right and left truncation) with two types of thresholds (with equal and unequal
spaces).

2. To improve the performance of BNSEMs with dichotomous variables using a
hidden continuous normal distribution (interval censored normal distribution,
right and left censoring) and (interval truncated normal distribution, right and
left truncation) with known parameters and one type of thresholds (with equal
spaces).

3. To handle the problem of non-normal data (ordered categorical and
dichotomous) for the covariates in the structural model using an interval
truncated normal distribution, and right truncation and left truncation with two
types of thresholds (with equal and unequal spaces) for ordered categorical data
and one type of thresholds (with equal spaces) for dichotomous data.

4. To evaluate the performance of the proposed methods when dealing with ordered
categorical and dichotomous variables and covariates, through simulation, a case
study and bootstrapping method. Comparisons are made based on goodness-of-
fit statistics using Deviance Information Criterion (DIC).
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1.3 Scope of the Study

In this research, we discuss BNSEMs with non-linear covariates and latent
variables for ordered categorical and dichotomous variables and covariates. The focus
is on hidden continuous normal distribution methods, with both censored normal
distribution (which includes interval, right and left censoring) and truncated normal
distribution (which includes interval, right and left truncation) with known parameters,
to handle the problem of ordered categorical and dichotomous variables. Furthermore,
three different kinds of truncation – interval, right and left truncation with known
parameters are going to handle the problem of discrete data in the covariates. The
Gibbs sampling method is used to perform the parameter estimation for the proposed
models. It will discuss the previous models in the simulation study and apply the
proposed methods to simulated data by using the R-program, and analyse these using
the R2OpenBUGS package in the R-program. First, the simulated data is made up
of SEMs with ordered categorical variables and covariates. The second simulation
involves data with SEMs and dichotomous variables and covariates. One sample size
(n=200), two different initial values and two different types of thresholds (with equal
and unequal spaces) for ordered categorical data and one type of thresholds (with equal
spaces) for dichotomous data will be considered, to investigate the effects of different
sample sizes and different initial values on the proposed methods. The proposed
methods (left censored normal distribution with unequally spaces of thresholds for
ordered categorical data, and left censored normal distribution with equally spaces of
thresholds for dichotomous data) will be applied to a case study and bootstrapping
method (resampling the real data) with SEMs for ordered categorical and dichotomous
variables and covariates with sample size n=200. The non-linear models are selected in
this research using a combination between covariates and exogenous latent variables.
Quadratic and cubic effects are used in the proposed models to explain the non-linear
effects on the endogenous latent variables.

1.4 The Significance of the Research

Analysis of structural equation models is very important since these models
are used in many fields, including scientific, social and behavioral sciences. Many
researchers have proposed methods to obtain accurate estimates of parameters for
different types of variables. This research focuses on the problem of ordered
categorical and dichotomous data in variables and covariates in Bayesian non-linear
structural equation models. The focus is to determine which of the proposed methods
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is the best for estimating the parameters of the models. The best model can be
identified by using the statistical error measurements such as standard error (SE) and
highest posterior density (HPD). The Deviance Information Criterion (DIC) is used
as a goodness-of-fit statistic to compare the performance of the proposed models. To
handle the problems referred to above, we use a hidden continuous normal distribution
(censored and truncated normal distribution) in Bayesian analysis with a Markov chain
Monte Carlo (MCMC) simulation method for analysing non-linear structural equation
models. In this approach, the standard error estimates (SE) can easily be obtained
through simulated observations from the joint posterior distribution by the MCMC
methods, and the Bayesian analysis can be conducted in SEM by using the OpenBUGS
program and R2OpenBUGS package in the R-program. The Gibbs sampler algorithm
is used to implement the Bayesian SEMs. The Bayesian SEM methodology permits
the user to utilize the prior information for updating the current information on the
parameter. This research provides the parameter estimation, standard error (SE),
highest posterior density (HPD) and the goodness-of-fit statistics (DIC) of the proposed
models, and these results can help researchers in determining the appropriate model
with ordered categorical and dichotomous data in variables and covariates.

1.5 The Organization of Thesis

The goal of this research is to introduce some new methods to handle the
problem of ordered categorical and dichotomous data in variables and covariates in
Bayesian non-linear structural equation models. The proposed research work has been
introduced, with an overview, a statement of the problem, objectives, scope and the
significance of the research. The research study deals with the problem of ordered
categorical and dichotomous variables and covariates in Bayesian structural equation
models. To reach this goal, an improved approach was proposed that will enable us to
handle the problem of these types of variables, based on the objectives that have been
defined in this chapter.

The rest of the work is organized as follows: Chapter 2 reviews the relevant
literature, including research related to structural equation models (SEMs), non-linear
SEMs, Bayesian SEMs, classical and Bayesian SEMs with ordered categorical and
dichotomous variables, Bayesian non-linear SEMs, and Bootstrap SEMs. In Chapter
3, we present our methodology, which uses Bayesian structural equation models with
non-linear covariates and latent variables for ordered categorical and dichotomous data
in variables and covariates. We also present some proposed methods. Chapter 4
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through the T(,) construct, whose syntax is the same as that of the I(,) construct in
OpenBUGS. However, the interpretation is different. The I(,) mechanism through
which censored data is dealt with, cannot be used for modeling truncated distribution as
long as they lack unknown parameters. In case there are parameters that are unknown,
then there will be wrong inferences. Hence, the I(,) construct does not work well
for truncated distribution where there are unknown parameters. Nonetheless, the
I(,) construct is necessary for making truncated distribution with known parameters
(Plummer, 2012).

3.11 Data Augmentation

Data augmentation, which occurs as the result of latent or auxiliary variables, is
a method of converting the unobserved variable to more usable form, like usual linear
regression. This allows the Gibbs sampler to be used, and simplifies calculation. One
reason why data augmentation is used, is to ensure that the conjugacy of the prior and
the likelihood will regulate the posterior, allowing it to take a standard form. As a
result, it can be used to simplify sample collection in discrete mixture models, and also
forms the foundation for using the missing data model (Congdon, 2005).

The concept of data augmentation comes from missing value problems, as
demonstrated by its similarity to missing cells in balanced two-way tables. From a
Bayesian perspective, the posterior distribution of the parameter of interest should
be calculated. This can be accomplished through data augmentation, maximising
the likelihood estimate, and computing the posterior distribution. The posterior
distribution of the parameters of interest must be computed at that very moment. In the
event that one is able to use data augmentation in computing for the maximum possible
estimate, it is also then possible to use the same data in computing the posterior
distribution. Accomplishing this will require the use of the observed data z, which
has to be augmented by the unobserved data, or the quantity y. The assumption is that
the computation of the augmented data posterior which p(θ|z,y) represents can be
computed if the values of z and y are known.

However, when figuring the posterior density, the equation p(θ|z) must be
used. It would be more effective, however, if one can generate multiple values of
y from the predictive distribution p(y|z) (i.e., multiple imputations of y). Then
p(θ|z) can be approximately obtained as the average of p(θ|z,y) over the imputed
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2’s. However, p(y|z) must, thereby, turn on p(θ|z). So, p(θ|z) if it is known, in
contrast, then it could be used to calculate p(y|z). Analytically speaking, this analysis
is essentially the method of successive substitution for solving an operator fixed point
equation. This fact is routinely exploited, and yields fact that it is this that proves
convergence, under mild regularity conditions (Tanner and Wong, 1987).

3.12 Model Comparison

The DIC is a goodness of fit or model comparison statistic that takes into
account the number of unknown parameters in the model (see Spiegelhalter et al.

(2002)). This statistic is intended as a generalisation of the Akaike Information
Criterion (AIC; Akaike (1973)). Under a competing model Mk with a vector of
unknown parameters θk of dimension dk, let {θ(t)

k : t = 1, ..., T} be a sample of
observations simulated from the posterior distribution. The DIC for Mk is computed
as follows:

DICk = − 2

T

T∑
t=1

log p(Z |θ(t)
k ,M k) + 2dk (3.29)

where

k = 1, ..., p,

Z: observed ordered categorical or dichotomous data,

dk: dimension of parameters.

The model having the smallest value of DIC is selected in model comparison
(Lee, 2007). When applying DIC practically, it is worth noting that in case the variation
in the DIC is minute, and the inferences being made by the models are very different,
reporting the model having the smallest DIC might be misleading. DIC may also be
applied to non-tested models. As with the AIC and the Bayes factor (Kass and Raftery,
1995), DIC ensures a clear conclusion for supporting the alternative or null hypothesis.
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To illustrate the use of the DIC for model comparison, we analysed the same
data from a non-linear structural equation model with the same measurement model.
Due to the complex model with non-linear fixed covariate and latent variables, and
WinBUGS program doesn’t treat with non-linear models so, the DIC is grey out in
WinBUGS. We developed a WinBUGS program to treat with non-linear models and
find the DIC values of the model. The DIC values corresponding to the non-linear
structural equation models with simulation data and a case study are produced by
OpenBUGS program.

When making comparisons between complex hierarchical models, there is
normally the challenge of some parameters not being defined clearly. With the methods
development Markov chain Monte Carlo (MCMC), an investigator would be able to
fit considerably huge classes of models. Naturally, this ability leads to the wish of
comparing alternative model formulations. This would enable the identification of
a class of concise models that seem to elaborate the data’s information sufficiently.
For instance, an investigator might consider the need of incorporating a random
effect, which would permit overdispersion. Model comparison, as far as the classical
modeling structure is concerned, takes place through the measure of fit definition. It is
all about the deviance statistic (Celeux et al., 2006).
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Figure 3.6: Flow Chart of the Proposed Methods
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