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ABSTRACT

Transmission Control Protocol (TCP) is responsible foratde communication
of data in high bandwidth long distance networks. TCP isald# because of its
congestion control techniqgue. Many TCP congestion cortegohniques for different
operating systems have been developed previously. TCP Qamipand TCP CUBIC
are current congestion control techniques being used irrdgadt Windows and Linux
operating systems respectively. TCP Reno is Standard T@gestion control technique.
TCP CUBIC does not perform well in high bandwidth long disametworks due to its
exponential growth and less reduction in congestion windg@e. This leads to burst
packet losses, unfair allocation of unused link bandwildthg convergence time, and poor
TCP friendliness among competing flows. The aim of this neteavork is to develop
an improved congestion control technique based on TCP CU&1Gigh bandwidth long
distance networks. This improved technique is based oretbognponents which are
Congestion Control Technique for Slow Start (CCT-SS), @&stign Control Technique for
Loss Occurrence (CCT-LO), and Enhanced Response Fundtio@® CUBIC (ERFC).
CCT-SS is proposed which increases the lower boundarydiheibngestion window, which
in turn, decreases the packet loss rate. CCT-LO is propogedhwntroduces a new
congestion window reduction parameter in order to achiairerfand quicker allocation of
link bandwidth among the competing flows. ERFC is proposeithvieduces the average
congestion window size of TCP CUBIC in order to improve thePTfiendliness. As
a conjunctive result of this research work, an improved estign control technique is
developed by combining the CCT-SS, CCT-LO and ERFC compsnéletwork Simulator
2 is used to evaluate the performance of the proposed comgesintrol technique and to
compare it with the current and other congestion contrdhnepies. Results show that
the performance of the proposed congestion control tedenayutperforms by 8.4% as
compared to current congestion control technique.
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ABSTRAK

Protokol Kawalan Penghantaran (TCP) bertanggungjawalkukdamunikasi data
yang boleh dipercayai dalam rangkaian jalur lebar tinggijgauh. TCP boleh dipercayai
kerana teknik kawalan kesesakannya. Banyak teknik kavk@s@sakan TCP untuk sistem
operasi yang berbeza telah dibangunkan sebelum ini. TCPpGamid dan TCP CUBIC
adalah teknik kawalan kesesakan semasa yang digunakam ddilerosoft Windows
dan sistem operasi Linux masing-masing. TCP Reno ialahikdkawalan kesesakan
bagi Standard TCP. TCP CUBIC tidak beroperasi dengan bd&ndgalur lebar tinggi
rangkaian jarak jauh disebabkan oleh pertumbuhan ekspgaatan kurang pengurangan
saiz tetingkap kesesakan. Ini membawa kepada kerugiant gedcah, peruntukan
yang tidak adil terhadap pautan jalur lebar yang tidak diggan, masa penumpuan
yang panjang, dan keramahan TCP yang tidak adil dikalandjeam ayang bersaing.
Tujuan penyelidikan ini adalah untuk membangunkan satuikekawalan kesesakan yang
dipertingkatkan berdasarkan TCP CUBIC untuk jalur lebagdi rangkaian jarak jauh.
Teknik yang dipertingkatkan ini adalah berdasarkan kepm@gakomponen iaitu Teknik
Kawalan Kesesakan untuk Permulaan Perlahan (CCT-SS),iKTé&awalan Kesesakan
untuk Kerugian Peristiwva (CCT-LO), dan Peningkatan Furigespons TCP CUBIC
(ERFC). Cadangan CCT-SS adalah dengan meningkatkan hgshdambawah tetingkap
kesesakan, yang akan mengakibatkan, menurunnya kadkarigdm paket. Cadangan CCT-
LO adalah dengan memperkenalkan satu parameter barukigbipgngurangan kesesakan
untuk mencapai peruntukan yang lebih adil dan lebih cepgt pautan jalur lebar di
kalangan aliran yang bersaing. Cadangan ERFC adalah demgagurangkan purata saiz
tetingkap kesesakan bagi TCP CUBIC untuk memperbaiki kaham TCP. Sebagai satu
hasil penghubungan penyelidikan ini, penambah-baikamkééawalan kesesakan ini telah
dibangunkan dengan menggabungkan komponen CCT-SS, CQlabhERFC. Network
Simulator 2 digunakan untuk menilai prestasi teknik kawdasesakan yang dicadangkan
dan untuk membandingkannya dengan teknik-teknik kawad@edakan semasa yang lain.
Keputusan menunjukkan bahawa prestasi teknik kawalansékae yang dicadangkan
adalah 8.4% lebih baik berbanding teknik kawalan kesessdémarasa.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Transmission Control Protocol (TCP) is responsible foraldé data transmission
among different networks by using its congestion controhtéque. Inside this technique,
there are four supporting algorithms: slow start, congeséivoidance, fast retransmit and
fast recovery. To control the data transmission, first tvgpathms are used whereas, for
retransmission of lost packets and for recovery of packasdt,two algorithms are used.
TCP Tahoe, TCP Reno, and TCP Vegas are the legacy congesimrolctechniques.
TCP Compound is being used in Microsoft Windows and TCP CU&d6gestion control
technique in Linux-based operating systems. The usersmixtbased operating systems
are increasing as it is a free open source operating systanhptbvides relatively better
reliability, security, and consistency than most of othesppiety operating systems i.e.
Microsoft Windows. The motivation behind this researchkusrto address the problems of
TCP CUBIC regarding its performance, which is current catiga control technique inside
Linux-based operating systems. The aim of this researck wdio develop an improved
congestion control technique based on TCP CUBIC. This reBe@ork specifically targets
the use of aforesaid congestion control technique in higlchwédth long distance networks.
A high bandwidth long distance network is referred to as avagk having long Round Trip
Time (RTT) and high bandwidth connections among the sourdedastination.

1.2 Background of the Problem

TCP was adopted to deal with message flow and error correclisimg data
transmission over the network (Postel, 1981). TCP work$endp of Internet Protocol (IP)
to ensure reliable data transmission. TCP is reliable dits tiongestion control technique
which is responsible for controlling congestion in a netwwand reacting accordingly.
Enormous and rapid development in worldwide network irfredure is resulting in
expansion of the Internet accompanied by the extensivefuEERY/IP (Abedet al., 2012).
The techniques of TCP congestion control is considered rafgignt factor in improving
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the performance of TCP. As Internet users are rising at fastplinternet congestion
is much anticipated and is one of the core problem in computéwvorks (Abedet al,
2012). Congestion in any network can be defined as, the phas&ich the demand of
network resources exceeds the available resources wrachtéethe loss of information
or data packets. This scenario results in data retransmigBapadimitriowet al, 2011,
Abed et al, 2011a). TCP congestion control technique is based on packeersation
principal (Jacobson, 1988). According to this principalata packet will not be transmitted
in the network until last transmitted data have been ackedgéd or lost. This is an ideal
case for TCP to transmit data. However, changes in netwadurees and multiple TCP
connections almost always tend to deviate TCP from thidl isiazation (Kelly, 1985; Cai
et al, 2005).

Traditional TCP like TCP Reno (also known as Standard TCP)he major
congestion control technique used by applications like ATahd FTP over the Internet
and also the trademark for congestion control techniquesifi¢aha, 2014). With the
passage of time, other congestion control techniques aredurced to cope with new
network scenarios. Such congestion control technique§ @ Compound (Tart al,
2006) and TCP CUBIC (Hat al,, 2008). According to Yangt al. (2014) among 30,000
Web servers, 3.31% to 14.47% of web servers are still using R€no congestion control
technique, 46.92 % web servers are using TCP CUBIC and 145 25.66 % are using
TCP Compound congestion control technique. These measutershow that very few
TCP flows are controlled by TCP Reno and majority of TCP floves@mtrolled by TCP
CUBIC. Furthermore, this TCP CUBIC is the recent congestiontrol technique used in
Linux-based system (Yanrgf al., 2014).

TCP breaks data into segments and transmits these segroéhts rteceiver over
the network. After receiving these segments, the receiwdertreates an acknowledgment
(ACK) and sends back to sender assuring that the segmeeised. To avoid congestion,
sender limits the amount of data for data transmission hygusivariable called congestion
window (Dukkipatiet al., 2010). This variable decides how much data needs to be sent
by using alpha4) and beta f) parameters. These and  are increase and decrease
parameter of congestion window respectively. At the begigof the connection, the alpha
(o) parameter is used to increase the size of congestion wifdlodata transmission and
beta (3) parameter is used to avoid the congestion by decreasingzé®f the congestion
window. The receiver also updates the sender about itsringfsize by using a variable
called receiver window. By using these two variables, TORIse decides to transmit data
that is not more than the minimum size of congestion windodvraceiver window (Petrov
and Janevski, 2013; Molia and Agrawal, 2014).
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At the start of the connection between sender and receilsy, fart technique is
used to find out the available link bandwidth of the networdkwSStart technique increases
the size of congestion window exponentially to probe thenamkn equilibrium state of the
network. The sender side increases the capacity of congesindow by one per ACK.
Then the size of congestion window doubles after receiveatheound trip time (RTT).
This process is denoted in Equations 1.1 and 1.2 respec(ifekd et al, 2012; Alrshah
et al, 2014).

ACK : cund < cund + 1 (1.2)

RTT : cwnd < cwnd x 2 (1.2)

Figure 1.1 shows the exponential increment in the size ofestion window after each
RTT during the slow start phase. TCP Compound, TCP CUBIC,T&8@E Reno, all use
the same exponential increment for the size of the congestindow. After receiving a
successful ACK, the size of congestion window is increaseti &s denoted in Equation 1.1
and the size of congestion window is doubled after each RTdeasted by Equation 1.2.
In high bandwidth long distance networks, the flows havirgltmg RTTs cause big size of
congestion window, even during the early period of the cohae. This type of exponential
increment of congestion window size creates congestiorghwh turn, cause the very high
rate of packet loss and decrease the performance of netiarlkaid Rhee, 2011; Abed
et al, 2011b; Lar and Liao, 2012; Alrshadt al., 2014).

Sender Receiver
= P IR Se
cwnd=1 E[ . ACK 9-'3'9;"“
o~
cwnd=2 £
4
©
cwnd=4 £
4
ACK: Acknowledgment °
cwnd: Congestion window
RTT: Round trip time
Time Time

Figure 1.1 Exponential increment in congestion window size duringwslstart
phase (Welzl and Normann, 2012)
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To control data transmission, slow start threshekd/resh) is calculated to decide
whether slow start phase or congestion avoidance phase\weulsed. Thissthresh is a
variable that has the estimated value of unused link bartthwid any given path (Cavendish
et al, 2009). If the value of congestion window is less thathresh then slow start phase
is used and if the value of congestion window is greater thramagqoial tossthresh, then
congestion avoidance phase is used for the growth of cangesindow (Jacobson, 1988;
Allman and Falk, 1999; Ha and Rhee, 2011). This process istddnn Equation 1.3.
After hitting thessthresh during the slow start phase, TCP enters in congestion anogla
phase. Different congestion control techniques use eiffiemethods to calculate the value
of ssthresh, which affects the exit point for the slow start phase. TCPBsuihis value
to decide whether slow start phase or congestion avoidamasepshould be used for the
transmission of data.

d thresh Slow Start Ph
CongestionC’ontrol:{ cund < ssthres oworar ase } (1.3)

cwnd > ssthresh Congestion Avoidance Phase

Congestion avoidance phase controls the increment in tree ¢fi congestion window
because the source has already calculated the stablefdta¢enetwork. During congestion
avoidance phase, TCP Reno and TCP Compound both, increasszth of congestion
window by ﬁ after receiving each ACK, which enables the source to irsar¢he size
of congestion window gradually by only one packet per RTTisTdrowth is also called
the linear growth of congestion window (Patel and Rani, 20Hbwever in TCP CUBIC,
the size of congestion window increasesdaynd + 1 after receiving each ACK, instead
of RTT during the congestion avoidance phase grabbing tlhisadlink bandwidth very
quickly. This growth is also called the exponential growtltengestion window (Hat al,,
2008; Ha and Rhee, 2011). This exponential increment in esti@n window size during
the congestion avoidance phase can create congestionnetinerk and cause the high rate
of packet loss, which in turn create the problem of perforoeagiecrement. A comparison
of congestion window growth of TCP Compound, TCP CUBIC, a@PTReno during the
congestion avoidance phase is shown in Equation 1.4(tah, 2008; Alrshatet al,, 2014;
Patel and Rani, 2016).

cwnd = cwnd+ —— Linear TCP Reno

cwnd

ACK : { cwnd = cwnd+ =2 Linear TCP Compound (1.4)

cwnd

cund = cwnd+1 FExponential TCP CUBIC




Start

dupACK newACK

(1 [

timeout timeout dupACK=3

ewnd >= ssthresh

dupACK dupACK

newACK

Fast
Recovery

Congestion
Avoidance

dupACK=3

Figure 1.2 Functional interference among slow start, congestioimae, fast re-transmit
and fast recovery phases (Abetal., 2012)

Figure 1.2, shows the process flow of the slow start, congestvoidance, fast

retransmission and fast recovery phases. The switchirgigee among the phases are
described as follows:

In slow start phase, after receiving a new ACK, a dupliee@¥, or after registering
a timeout, the connection does not change its phase.

During the slow start phase, if the value of congestiomdaw is greater than
or equal tossthresh (cwnd >= ssthresh), connection switches to congestion
avoidance phase. And then after receiving three duplic@i€s\ it switches to fast
recovery phase.

During the congestion avoidance phase, connectionaresin the same phase
after receiving a new or duplicate ACK. After receiving thrduplicate ACKs,
connection switches to fast recovery phase and when thetinoecurs, connection
switches to slow start phase.

In the fast recovery phase, dropped packets are retitesinby fast retransmit
algorithm as shown in Figure 1.3. In this phase if the recereeeives out of
order sequence number of a packet then it will send a duplis@K of last ACK
packet. Receiving three duplicate ACKs is the indicatiodroipped packets which
is discussed in RFC 2001 (Stevens, 1997). If timeout occorgection switches to
slow start phase from fast recovery and remains in same (fasseecovery) if the
sender receives duplicate ACK. However, after receiving AEK, the connection
switches to congestion avoidance phase.

For the reliable data transmission between sender andveecelCP needs a

technique to detect packet losses and retransmit thosepéusiets. After detection of
packet loss by receiving three duplicate ACKs, fast retranghase is used to retransmit the
dropped packets as shown in Figure 1.3 and fast recovergitpahis used to adjust the rate
of new segments until a non-duplicate ACK is received by #redsr. In Equation 1.5, after
detecting each packet loss, TCP Reno and TCP Compound réueiséze of congestion
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window by 50% of its original size, whereas TCP CUBIC reduaely 20% of its original
size by a reduction parametér because the value of reduction parametenas been
adjusted at 0.5 in TCP Reno and TCP Compound and 0.2 in TCP CUBIus, the current
TCP CUBIC flows do not release sufficient amount of used linkdvéadth for the new
incoming flows. As a result, new flows cannot get sufficient ami@f link bandwidth for
data transmission. Moreover, due to this insufficient ideaf link bandwidth, issues of
unfair share of link bandwidth allocation and problem ofdaconvergence time between
competing flows happend (Qurestial,, 2013; Kozuet al,, 2014).

Sender Receiver

cwnd=1

cwnd=2

ACK: Acknowledgment

3 duplicate ACKs{
3
»s\
Fast Re-transmit

Time Time

Figure 1.3 Fast retransmission after receiving three ACKs (Welzl lodnann, 2012)

cwnd = % x cwnd 50% reductionincwnd TCP Reno
ACK : { cwnd = % x cwnd 50% reductionincwund TCP Compound (1.5)
cwnd = % x cwnd 20% reductionincwnd TCP CUBIC

TCP CUBIC is the recent TCP congestion control techniquel usé.inux-based
operating systems. It replaces the linear growth functib©@P Reno to cubic growth
function and this congestion window growth is RTT indepetidBue to this characteristic,
the increment in congestion window of TCP CUBIC is more aggikee and flows can grab
more unused link bandwidth. However, this behavior alsoseauhe problem of slow
convergence between the competing flows i.e. when the newsthanes the common link
bandwidth with existing flows, the new incoming flow takes mgdime to achieve the fair
share of unused link bandwidth due to less reduction of tingestion window size.
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The quick allocation of link bandwidth between competingvBodepends on the
convergence time. The behavior of convergence is detedrbgenteraction among the
competing flows. The rate of convergence relies upon twafarthe first factor is the
rate at which the flows gain the unused link bandwidth throargincrease parameter called
(«) of the congestion window. The second factor is the rate athvthe flows release
the bandwidth after each packet loss through a decreasmpiacalled §) of congestion
window (Leithet al, 2008a; Cao and Zhang, 2013). At the beginning of the corored¢he
flows having higher congestion window increase their cotgresvindow more aggressively
as compared to flows having lower congestion window. TheeefbCP CUBIC reduces its
congestion window only by 20% of its current size after detecpacket loss and does not
release enough bandwidth for other flows during the trarsomsof data. Because of this
less reduction in the size of congestion window, new incanfiows have a disadvantage
when it comes to gain bandwidth and take more time to get tin@flacation of the link
bandwidth. This slow allocation of unused link bandwidtlsuks in slow convergence
among competing flows and, in turn, causes poor network pedoce (Leithet al,, 2008a;
Kushwaha, 2014).

Increment and decrement in the size of congestion windowntpn the phase of
congestion control technique. The rate of increment ancedeent depends on the response
function of congestion control technique. Response fonctiepends on the and
parameters for the increment and decrement in the size obiigestion window. Response
function uses Additive Increase Multiplicative DecreagdMD) algorithm having the
values ofa = 1 andg = 0.5 (Jacobson, 1988). TCP Reno uses the AIMD algorithm for
the increment and decrement in the size of the congestiodanminGeneral form of AIMD
algorithm is shown in Equation 1.6, where the= 1 is increase parameter after receiving
ACK and g = % is decrement parameter at each packet loss. In Figure 1 Hetevior
of TCP Reno regarding congestion window is shown, it useAtMD algorithm for the
increment and decrement in the size of congestion windoveravthe size of congestion
window reduces by 50% of its original size after each paoes.| TCP Compound also
uses the same andg values for the congestion window used by TCP Reno.

AIMD - ACK = cwnd + cund + —>— (1.6)
Loss = cwnd <+ (1 —f) X cwnd



Packet Loss

Wi/2

[ ¥
Congestion Avoidance W= cwnd
Slow Start Wi2= cwnd/2

Time

Congestion Window (cwnd)

Figure 1.4 Congestion window behaviour of TCP Reno (Ahnecl, 2015)

TCP CUBIC also uses AIMD algorithm with modified valuessodnd s parameters.
TCP CUBIC usesy = 0.3 and = 0.2 for the increment and decrement in the size of
congestion window. Due to its Beta valle= 0.2, TCP CUBIC reduces only 20% size
instead of 50% of its original size of congestion window a§@P Compound and TCP
Reno. TCP CUBIC flows do not release enough link bandwidtkr gfacket loss for new
incoming TCP flows in the same network. Thus, new flows are llysnat able to use
sufficient amount of link bandwidth for the data transmissi®his lack of link bandwidth
creates congestion in the network, which causes the deotaméhe performance of the
network regarding slow convergence time.

The response function of congestion control technique eaddined by the TCP
friendliness behavior of congestion control techniquePT@endliness is referred to as the
fair share of available link bandwidth among the flows of TGEh&and the flows of other
congestion control technique (>at al, 2004; Masaket al,, 2010). The response function
is a measure of average throughput of a single TCP flow of cimmyecontrol technique as
the level of random packet loss is varied @tial, 2007). The throughput of a TCP flow
depends on the average congestion window size of congesdidrol technique. The size
of congestion window of TCP flow depends on the usage of dailank bandwidth during
data communication. So, if a TCP CUBIC flow is using more aldé link bandwidth as
compared to TCP Reno flow, the average congestion windowo$iZ€P CUBIC flow is
greater than the TCP Reno flow, means that these both flowsoasharing available link
fairly, which refers as low TCP friendliness of TCP CUBICirttplies that the throughput
of TCP CUBIC flow is higher than the standard congestion abrtechnique, i.e., TCP
Reno flow. A comparison of TCP friendliness (response faamgtof TCP Compound and
TCP CUBIC with TCP Reno is shown in Figure 1.5. Response fanaturve of TCP
CUBIC is higher than TCP Reno. As a result, TCP CUBIC flows ditl share available
link bandwidth fairly with TCP Reno flows, which, in turn, cses the problem of TCP
friendliness. However, response function curve of TCP Caunp is close to TCP Reno.
Thus, TCP Compound flows share available link bandwidttyfarth TCP Reno flows.



A TCP CUBIC _—
TCP Compound ========
TCP Reno —_—

cwnd (pkts)

>

Time (s)

Figure 1.5 The comparison of response functions of TCP CUBIC, TCP RembTCP
Compound (Ahmaet al., 2015)

Some major problems related to TCP CUBIC congestion con&adhnique are
summarized as follows:

I. In slow start and congestion avoidance phase, the inareime&ongestion window
size is exponential which causes the high rate of packet(léasand Rhee, 2011,
Alrshahet al,, 2014).

. After detecting each packet loss, TCP CUBIC reducesatsgestion window size
only 20% of its existing congestion window. Which means, T@FBIC flows did
not release much bandwidth for new incoming TCP flows. Thesy mcoming
flows of any protocol are not able to grab sufficient amountik bandwidth
for data transmission; causing unfair share of unused lakdlvidth and long
convergence time among the competing flows (Quresail, 2013; Cao and Zhang,
2013; Kozuet al., 2014).

1.3 Research Gap

The increment in the size of congestion window during sloartsind congestion
avoidance phase plays a significant role in congestion altetthniques. The increment in
the size of congestion window should not be too low that TCRdloannot be able to use
available link bandwidth properly, and it should not be tastfthat it can create congestion
in the network. The growth of congestion window depends enestimated available link
bandwidth. Each slow start algorithm of congestion windeehnique has rule or function
to calculate the available link bandwidth by using diffdrexchniques and calculates the size
of congestion window accordingly. Today the most commoskydioperating systems, such
as Microsoft Windows, Linux operating system, and Andraick still using exponential
increment in the size of congestion window for slow startgghduring the data transmission.
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Therefore, many studies have observed that the perforntdicomgestion control technique
suffers during slow start phase in high bandwidth long distanetworks (Zhangt al.,,
2012). The increment in the size of congestion window dusliogv start phase affects the
performance of congestion control technique. Thus, thiopaance of congestion control
technigue can be enhanced by controlling the increment nge&stion window wisely in
slow start phase during data transmission (Wang and Widam1998; Floyd, 2004; Ha
and Rhee, 2011; Zhanet al, 2012; Alrshahet al, 2014). To avoid congestion in the
network, a number of TCP congestion control technique obttie increment in the size of
congestion window during slow start phase (Kezal., 2014).

After detecting each packet loss during data transmissgamgestion control
technique reduces the size of the congestion window to dlieidongestion in the network.
This reduction in the size of congestion window is varyinglifierent congestion control
technigues. The minimum reduction rate of congestion windéier each packet loss is
12.5%, which is used by Scalable TCP (Kelly, 2003). The maxmreduction rate after
each packet loss is 50%, which is the default reduction rafleC# Reno also known as
Standard TCP congestion control technique. The numberrgfesiion control techniques
are also configured with 50% reduction in the size of congastiindow after each packet
loss during data transmission such as TCP Compound (8brad, 2006), HighSpeed
TCP (Floyd, 2003) and Hamilton TCP (Leith and Shorten, 200Bhe reduction in the
size of congestion window after each packet loss affectgpr@rmance of congestion
control technique regarding protocol fairness and corerrg time among the TCP flows
during data transmission. According to Qureshal. (2013); Alrshahet al. (2014), TCP
CUBIC congestion control technique is still under develepimand there is a need for more
evaluation studies for TCP CUBIC. According to their resealTCP CUBIC congestion
control technique does not reduce enough size of congestratow after each packet loss
for other incoming TCP flows. This less reduction in the sizeangestion window after
each packet loss creates congestion and reduces the guenfalimance of the network.
Thus, more research is needed on TCP CUBIC by adaptive atgustof congestion
window size during the data transmission.

The response function of congestion control technique fnel@ by the TCP
friendliness behavior of congestion control technique.PTi@endliness behavior can be
calculated between the TCP Reno and other congestion tdintus which show the fair
share of available link bandwidth during data transmisaimong the flows (Xet al., 2004).

If a TCP flow uses more available link bandwidth as compare@@® Reno flows that
means, its average congestion window size is high.
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1.4 Statement of the Problem

The above background of the problem leads this researchdresslthe problem of
allocation of unused link bandwidth fairly and quickly angathe multiple competing flows
of different TCP congestion control techniques transfgrdata over the same network path,
such that, packet loss rate can be mitigated by achievingnid@mum protocol fairness,
convergence time, TCP friendliness, and stability. Thevalproblem statement leads to the
following research questions:

I. How to reduce the packet loss rate during data commupicati slow start phase?

. How to allocate unused link bandwidth fairly and quickigtween the TCP CUBIC
flows?

ii. How to allocate the unused link bandwidth fairly betwe€CP CUBIC and TCP
Reno flows?

1.5 Aim of Research

The aim of this research work is to develop an improved camgesontrol
technique based on TCP CUBIC for high bandwidth long distaretworks.

1.6 Objectives of Research

The objectives of this research work is described as follows

I To design and develop a Congestion Control Techniquelfiw Start (CCT-SS) to
decrease the packet loss rate.

. To design and develop a Congestion Control Techniquédss Occurrence (CCT-
LO) for fair and quick allocation of unused link bandwidth.

ii. To design and develop a Enhanced Response Function@& CUBIC (ERFC) to
increase the friendliness among TCP CUBIC and TCP Reno flows.
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1.7 Scope of Research

The scope of this research work is described as follows:

I Congestion can be controlled or avoided by two approadadied end-to-end
congestion control technique or router based congestiotradechnique. In this
research, end-to-end congestion control approach hasuseeh and router based
approach has not been touched as it is not within the scopesaftsearch.

il. In end-to-end congestion control approach, there aesettypes of categories for the
indication of congestion during the data transmissiorsthsbased on packet loss,
the second one is delay based and third is the combinatios®&ind delay (hybrid).
In current research work, loss based approach has beenarseet findication of
congestion and other approaches (i.e. delay, hybrid) hatleeen covered because
of the scope of the present study.

ii. There are different types of networks i.e. wired netlvand wireless network; this
research work focuses on the performance of congestionadéethniques in wired
networks and not wireless networks.

iv. There are four phases inside the congestion controhigals which are the slow
start, congestion avoidance, fast retransmission andéastery. This research
work focuses on the slow start, and congestion avoidanceegshand other two
phases (fast retransmission and fast recovery) are heutef scope.

1.8  Significance of Research

High bandwidth long distance networks are emerging in st\wemtinents rapidly,
and TCP is one of the data transferring protocol in these orvétsv This research work
positively impacts the field of high bandwidth long distanoetworks. Implementing
the results of present study decrease the congestion ie tiets/orks. This is achieved
by improving the current congestion control technique forux-based operating systems
(TCP CUBIC). With improved congestion control techniqueofsed in this research),
the rate of packet loss of TCP flows could be mitigated, andafication of available link
bandwidth between TCP flows could be improved. This resaaock shows the importance
of decreasing the packet loss rate by developing a techiogstow start phase. Moreover,
protocol fairness, TCP friendliness and convergence tim&GP flows is improved by
implementing the technique for packet loss event and resgpfumction respectively. These
findings which are the outcome of each proposed techniquaaanpositive effects on the
future work of research and hence, it contributes to theicoat knowledge formation in
the field of high bandwidth long distance networks.
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