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ABSTRACT

Transmission Control Protocol (TCP) is responsible for reliable communication

of data in high bandwidth long distance networks. TCP is reliable because of its

congestion control technique. Many TCP congestion controltechniques for different

operating systems have been developed previously. TCP Compound and TCP CUBIC

are current congestion control techniques being used in Microsoft Windows and Linux

operating systems respectively. TCP Reno is Standard TCP congestion control technique.

TCP CUBIC does not perform well in high bandwidth long distance networks due to its

exponential growth and less reduction in congestion windowsize. This leads to burst

packet losses, unfair allocation of unused link bandwidth,long convergence time, and poor

TCP friendliness among competing flows. The aim of this research work is to develop

an improved congestion control technique based on TCP CUBICfor high bandwidth long

distance networks. This improved technique is based on three components which are

Congestion Control Technique for Slow Start (CCT-SS), Congestion Control Technique for

Loss Occurrence (CCT-LO), and Enhanced Response Function of TCP CUBIC (ERFC).

CCT-SS is proposed which increases the lower boundary limitof congestion window, which

in turn, decreases the packet loss rate. CCT-LO is proposed which introduces a new

congestion window reduction parameter in order to achieve fairer and quicker allocation of

link bandwidth among the competing flows. ERFC is proposed which reduces the average

congestion window size of TCP CUBIC in order to improve the TCP friendliness. As

a conjunctive result of this research work, an improved congestion control technique is

developed by combining the CCT-SS, CCT-LO and ERFC components. Network Simulator

2 is used to evaluate the performance of the proposed congestion control technique and to

compare it with the current and other congestion control techniques. Results show that

the performance of the proposed congestion control technique outperforms by 8.4% as

compared to current congestion control technique.
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ABSTRAK

Protokol Kawalan Penghantaran (TCP) bertanggungjawab untuk komunikasi data

yang boleh dipercayai dalam rangkaian jalur lebar tinggi jarak jauh. TCP boleh dipercayai

kerana teknik kawalan kesesakannya. Banyak teknik kawalankesesakan TCP untuk sistem

operasi yang berbeza telah dibangunkan sebelum ini. TCP Compound dan TCP CUBIC

adalah teknik kawalan kesesakan semasa yang digunakan dalam Microsoft Windows

dan sistem operasi Linux masing-masing. TCP Reno ialah teknik kawalan kesesakan

bagi Standard TCP. TCP CUBIC tidak beroperasi dengan baik dalam jalur lebar tinggi

rangkaian jarak jauh disebabkan oleh pertumbuhan eksponennya dan kurang pengurangan

saiz tetingkap kesesakan. Ini membawa kepada kerugian paket pecah, peruntukan

yang tidak adil terhadap pautan jalur lebar yang tidak digunakan, masa penumpuan

yang panjang, dan keramahan TCP yang tidak adil dikalangan aliran yang bersaing.

Tujuan penyelidikan ini adalah untuk membangunkan satu teknik kawalan kesesakan yang

dipertingkatkan berdasarkan TCP CUBIC untuk jalur lebar tinggi rangkaian jarak jauh.

Teknik yang dipertingkatkan ini adalah berdasarkan kepadatiga komponen iaitu Teknik

Kawalan Kesesakan untuk Permulaan Perlahan (CCT-SS), Teknik Kawalan Kesesakan

untuk Kerugian Peristiwa (CCT-LO), dan Peningkatan FungsiRespons TCP CUBIC

(ERFC). Cadangan CCT-SS adalah dengan meningkatkan had sempadan bawah tetingkap

kesesakan, yang akan mengakibatkan, menurunnya kadar kehilangan paket. Cadangan CCT-

LO adalah dengan memperkenalkan satu parameter baru tetingkap pengurangan kesesakan

untuk mencapai peruntukan yang lebih adil dan lebih cepat bagi pautan jalur lebar di

kalangan aliran yang bersaing. Cadangan ERFC adalah denganmengurangkan purata saiz

tetingkap kesesakan bagi TCP CUBIC untuk memperbaiki keramahan TCP. Sebagai satu

hasil penghubungan penyelidikan ini, penambah-baikan teknik kawalan kesesakan ini telah

dibangunkan dengan menggabungkan komponen CCT-SS, CCT-LOdan ERFC. Network

Simulator 2 digunakan untuk menilai prestasi teknik kawalan kesesakan yang dicadangkan

dan untuk membandingkannya dengan teknik-teknik kawalan kesesakan semasa yang lain.

Keputusan menunjukkan bahawa prestasi teknik kawalan kesesakan yang dicadangkan

adalah 8.4% lebih baik berbanding teknik kawalan kesesakansemasa.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Transmission Control Protocol (TCP) is responsible for reliable data transmission

among different networks by using its congestion control technique. Inside this technique,

there are four supporting algorithms: slow start, congestion avoidance, fast retransmit and

fast recovery. To control the data transmission, first two algorithms are used whereas, for

retransmission of lost packets and for recovery of packets,last two algorithms are used.

TCP Tahoe, TCP Reno, and TCP Vegas are the legacy congestion control techniques.

TCP Compound is being used in Microsoft Windows and TCP CUBICcongestion control

technique in Linux-based operating systems. The users of Linux-based operating systems

are increasing as it is a free open source operating system that provides relatively better

reliability, security, and consistency than most of other propriety operating systems i.e.

Microsoft Windows. The motivation behind this research work is to address the problems of

TCP CUBIC regarding its performance, which is current congestion control technique inside

Linux-based operating systems. The aim of this research work is to develop an improved

congestion control technique based on TCP CUBIC. This research work specifically targets

the use of aforesaid congestion control technique in high bandwidth long distance networks.

A high bandwidth long distance network is referred to as a network having long Round Trip

Time (RTT) and high bandwidth connections among the source and destination.

1.2 Background of the Problem

TCP was adopted to deal with message flow and error correctionduring data

transmission over the network (Postel, 1981). TCP works on the top of Internet Protocol (IP)

to ensure reliable data transmission. TCP is reliable due toits congestion control technique

which is responsible for controlling congestion in a network and reacting accordingly.

Enormous and rapid development in worldwide network infrastructure is resulting in

expansion of the Internet accompanied by the extensive use of TCP/IP (Abedet al., 2012).

The techniques of TCP congestion control is considered a significant factor in improving
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the performance of TCP. As Internet users are rising at fast pace, Internet congestion

is much anticipated and is one of the core problem in computernetworks (Abedet al.,

2012). Congestion in any network can be defined as, the phase in which the demand of

network resources exceeds the available resources which lead to the loss of information

or data packets. This scenario results in data retransmission (Papadimitriouet al., 2011;

Abed et al., 2011a). TCP congestion control technique is based on packet conversation

principal (Jacobson, 1988). According to this principal, adata packet will not be transmitted

in the network until last transmitted data have been acknowledged or lost. This is an ideal

case for TCP to transmit data. However, changes in network resources and multiple TCP

connections almost always tend to deviate TCP from this ideal situation (Kelly, 1985; Cai

et al., 2005).

Traditional TCP like TCP Reno (also known as Standard TCP) isthe major

congestion control technique used by applications like HTTP and FTP over the Internet

and also the trademark for congestion control techniques (Kushwaha, 2014). With the

passage of time, other congestion control techniques are introduced to cope with new

network scenarios. Such congestion control techniques areTCP Compound (Tanet al.,

2006) and TCP CUBIC (Haet al., 2008). According to Yanget al. (2014) among 30,000

Web servers, 3.31% to 14.47% of web servers are still using TCP Reno congestion control

technique, 46.92 % web servers are using TCP CUBIC and 14.5 % to 25.66 % are using

TCP Compound congestion control technique. These measurements show that very few

TCP flows are controlled by TCP Reno and majority of TCP flows are controlled by TCP

CUBIC. Furthermore, this TCP CUBIC is the recent congestioncontrol technique used in

Linux-based system (Yanget al., 2014).

TCP breaks data into segments and transmits these segments to the receiver over

the network. After receiving these segments, the receiver node creates an acknowledgment

(ACK) and sends back to sender assuring that the segment is received. To avoid congestion,

sender limits the amount of data for data transmission by using a variable called congestion

window (Dukkipatiet al., 2010). This variable decides how much data needs to be sent

by using alpha (α) and beta (β) parameters. Theseα and β are increase and decrease

parameter of congestion window respectively. At the beginning of the connection, the alpha

(α) parameter is used to increase the size of congestion windowfor data transmission and

beta (β) parameter is used to avoid the congestion by decreasing thesize of the congestion

window. The receiver also updates the sender about its buffering size by using a variable

called receiver window. By using these two variables, TCP sender decides to transmit data

that is not more than the minimum size of congestion window and receiver window (Petrov

and Janevski, 2013; Molia and Agrawal, 2014).
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At the start of the connection between sender and receiver, slow start technique is

used to find out the available link bandwidth of the network. Slow Start technique increases

the size of congestion window exponentially to probe the unknown equilibrium state of the

network. The sender side increases the capacity of congestion window by one per ACK.

Then the size of congestion window doubles after receiving each round trip time (RTT).

This process is denoted in Equations 1.1 and 1.2 respectively (Abed et al., 2012; Alrshah

et al., 2014).

ACK : cwnd← cwnd+ 1 (1.1)

RTT : cwnd← cwnd× 2 (1.2)

Figure 1.1 shows the exponential increment in the size of congestion window after each

RTT during the slow start phase. TCP Compound, TCP CUBIC, andTCP Reno, all use

the same exponential increment for the size of the congestion window. After receiving a

successful ACK, the size of congestion window is increased by 1 as denoted in Equation 1.1

and the size of congestion window is doubled after each RTT asdenoted by Equation 1.2.

In high bandwidth long distance networks, the flows having the long RTTs cause big size of

congestion window, even during the early period of the connection. This type of exponential

increment of congestion window size creates congestion, which in turn, cause the very high

rate of packet loss and decrease the performance of network (Ha and Rhee, 2011; Abed

et al., 2011b; Lar and Liao, 2012; Alrshahet al., 2014).

Figure 1.1: Exponential increment in congestion window size during slow start

phase (Welzl and Normann, 2012)
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To control data transmission, slow start threshold (ssthresh) is calculated to decide

whether slow start phase or congestion avoidance phase would be used. Thisssthresh is a

variable that has the estimated value of unused link bandwidth on any given path (Cavendish

et al., 2009). If the value of congestion window is less thanssthresh then slow start phase

is used and if the value of congestion window is greater than or equal tossthresh, then

congestion avoidance phase is used for the growth of congestion window (Jacobson, 1988;

Allman and Falk, 1999; Ha and Rhee, 2011). This process is denoted in Equation 1.3.

After hitting thessthresh during the slow start phase, TCP enters in congestion avoidance

phase. Different congestion control techniques use different methods to calculate the value

of ssthresh, which affects the exit point for the slow start phase. TCP uses this value

to decide whether slow start phase or congestion avoidance phase should be used for the

transmission of data.

CongestionControl :

{

cwnd < ssthresh Slow Start Phase

cwnd ≥ ssthresh CongestionAvoidance Phase

}

(1.3)

Congestion avoidance phase controls the increment in the size of congestion window

because the source has already calculated the stable state of the network. During congestion

avoidance phase, TCP Reno and TCP Compound both, increase the size of congestion

window by 1
cwnd

after receiving each ACK, which enables the source to increase the size

of congestion window gradually by only one packet per RTT. This growth is also called

the linear growth of congestion window (Patel and Rani, 2016). However in TCP CUBIC,

the size of congestion window increases bycwnd + 1 after receiving each ACK, instead

of RTT during the congestion avoidance phase grabbing the unused link bandwidth very

quickly. This growth is also called the exponential growth of congestion window (Haet al.,

2008; Ha and Rhee, 2011). This exponential increment in congestion window size during

the congestion avoidance phase can create congestion in thenetwork and cause the high rate

of packet loss, which in turn create the problem of performance decrement. A comparison

of congestion window growth of TCP Compound, TCP CUBIC, and TCP Reno during the

congestion avoidance phase is shown in Equation 1.4 (Haet al., 2008; Alrshahet al., 2014;

Patel and Rani, 2016).

ACK :











cwnd = cwnd+ 1

cwnd
Linear TCP Reno

cwnd = cwnd+ 1

cwnd
Linear TCP Compound

cwnd = cwnd+ 1 Exponential TCP CUBIC











(1.4)
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Figure 1.2: Functional interference among slow start, congestion avoidance, fast re-transmit
and fast recovery phases (Abedet al., 2012)

Figure 1.2, shows the process flow of the slow start, congestion avoidance, fast

retransmission and fast recovery phases. The switching technique among the phases are

described as follows:

i. In slow start phase, after receiving a new ACK, a duplicateACK, or after registering

a timeout, the connection does not change its phase.

ii. During the slow start phase, if the value of congestion window is greater than

or equal tossthresh (cwnd >= ssthresh), connection switches to congestion

avoidance phase. And then after receiving three duplicate ACKs, it switches to fast

recovery phase.

iii. During the congestion avoidance phase, connection remains in the same phase

after receiving a new or duplicate ACK. After receiving three duplicate ACKs,

connection switches to fast recovery phase and when the timeout occurs, connection

switches to slow start phase.

iv. In the fast recovery phase, dropped packets are retransmitted by fast retransmit

algorithm as shown in Figure 1.3. In this phase if the receiver receives out of

order sequence number of a packet then it will send a duplicate ACK of last ACK

packet. Receiving three duplicate ACKs is the indication ofdropped packets which

is discussed in RFC 2001 (Stevens, 1997). If timeout occurs,connection switches to

slow start phase from fast recovery and remains in same phase(fast recovery) if the

sender receives duplicate ACK. However, after receiving new ACK, the connection

switches to congestion avoidance phase.

For the reliable data transmission between sender and receiver, TCP needs a

technique to detect packet losses and retransmit those lostpackets. After detection of

packet loss by receiving three duplicate ACKs, fast retransmit phase is used to retransmit the

dropped packets as shown in Figure 1.3 and fast recovery technique is used to adjust the rate

of new segments until a non-duplicate ACK is received by the sender. In Equation 1.5, after

detecting each packet loss, TCP Reno and TCP Compound reducethe size of congestion
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window by 50% of its original size, whereas TCP CUBIC reducesonly 20% of its original

size by a reduction parameterβ, because the value of reduction parameterβ has been

adjusted at 0.5 in TCP Reno and TCP Compound and 0.2 in TCP CUBIC. Thus, the current

TCP CUBIC flows do not release sufficient amount of used link bandwidth for the new

incoming flows. As a result, new flows cannot get sufficient amount of link bandwidth for

data transmission. Moreover, due to this insufficient release of link bandwidth, issues of

unfair share of link bandwidth allocation and problem of long convergence time between

competing flows happend (Qureshiet al., 2013; Kozuet al., 2014).

Figure 1.3: Fast retransmission after receiving three ACKs (Welzl andNormann, 2012)

ACK :











cwnd = 1

2
× cwnd 50% reduction in cwnd TCP Reno

cwnd = 1

2
× cwnd 50% reduction in cwnd TCP Compound

cwnd = 4

5
× cwnd 20% reduction in cwnd TCP CUBIC











(1.5)

TCP CUBIC is the recent TCP congestion control technique used in Linux-based

operating systems. It replaces the linear growth function of TCP Reno to cubic growth

function and this congestion window growth is RTT independent. Due to this characteristic,

the increment in congestion window of TCP CUBIC is more aggressive and flows can grab

more unused link bandwidth. However, this behavior also causes the problem of slow

convergence between the competing flows i.e. when the new flowshares the common link

bandwidth with existing flows, the new incoming flow takes a long time to achieve the fair

share of unused link bandwidth due to less reduction of the congestion window size.
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The quick allocation of link bandwidth between competing flows depends on the

convergence time. The behavior of convergence is determined by interaction among the

competing flows. The rate of convergence relies upon two factors; the first factor is the

rate at which the flows gain the unused link bandwidth throughan increase parameter called

(α) of the congestion window. The second factor is the rate at which the flows release

the bandwidth after each packet loss through a decrease parameter called (β) of congestion

window (Leithet al., 2008a; Cao and Zhang, 2013). At the beginning of the connection, the

flows having higher congestion window increase their congestion window more aggressively

as compared to flows having lower congestion window. Therefore, TCP CUBIC reduces its

congestion window only by 20% of its current size after detecting packet loss and does not

release enough bandwidth for other flows during the transmission of data. Because of this

less reduction in the size of congestion window, new incoming flows have a disadvantage

when it comes to gain bandwidth and take more time to get the fair allocation of the link

bandwidth. This slow allocation of unused link bandwidth results in slow convergence

among competing flows and, in turn, causes poor network performance (Leithet al., 2008a;

Kushwaha, 2014).

Increment and decrement in the size of congestion window depend on the phase of

congestion control technique. The rate of increment and decrement depends on the response

function of congestion control technique. Response function depends on theα and β

parameters for the increment and decrement in the size of thecongestion window. Response

function uses Additive Increase Multiplicative Decrease (AIMD) algorithm having the

values ofα = 1 andβ = 0.5 (Jacobson, 1988). TCP Reno uses the AIMD algorithm for

the increment and decrement in the size of the congestion window. General form of AIMD

algorithm is shown in Equation 1.6, where theα = 1 is increase parameter after receiving

ACK and β = 1
2

is decrement parameter at each packet loss. In Figure 1.4 thebehavior

of TCP Reno regarding congestion window is shown, it uses theAIMD algorithm for the

increment and decrement in the size of congestion window, where the size of congestion

window reduces by 50% of its original size after each packet loss. TCP Compound also

uses the sameα andβ values for the congestion window used by TCP Reno.

AIMD :

{

ACK = cwnd← cwnd+ α

cwnd

Loss = cwnd← (1− β)× cwnd

}

(1.6)
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Figure 1.4: Congestion window behaviour of TCP Reno (Ahmadet al., 2015)

TCP CUBIC also uses AIMD algorithm with modified values ofα andβ parameters.

TCP CUBIC usesα = 0.3 andβ = 0.2 for the increment and decrement in the size of

congestion window. Due to its Beta valueβ = 0.2, TCP CUBIC reduces only 20% size

instead of 50% of its original size of congestion window as inTCP Compound and TCP

Reno. TCP CUBIC flows do not release enough link bandwidth after packet loss for new

incoming TCP flows in the same network. Thus, new flows are usually not able to use

sufficient amount of link bandwidth for the data transmission. This lack of link bandwidth

creates congestion in the network, which causes the decrement in the performance of the

network regarding slow convergence time.

The response function of congestion control technique can be defined by the TCP

friendliness behavior of congestion control technique. TCP friendliness is referred to as the

fair share of available link bandwidth among the flows of TCP Reno and the flows of other

congestion control technique (Xuet al., 2004; Masakiet al., 2010). The response function

is a measure of average throughput of a single TCP flow of congestion control technique as

the level of random packet loss is varied (Liet al., 2007). The throughput of a TCP flow

depends on the average congestion window size of congestioncontrol technique. The size

of congestion window of TCP flow depends on the usage of available link bandwidth during

data communication. So, if a TCP CUBIC flow is using more available link bandwidth as

compared to TCP Reno flow, the average congestion window sizeof TCP CUBIC flow is

greater than the TCP Reno flow, means that these both flows are not sharing available link

fairly, which refers as low TCP friendliness of TCP CUBIC. Itimplies that the throughput

of TCP CUBIC flow is higher than the standard congestion control technique, i.e., TCP

Reno flow. A comparison of TCP friendliness (response function) of TCP Compound and

TCP CUBIC with TCP Reno is shown in Figure 1.5. Response function curve of TCP

CUBIC is higher than TCP Reno. As a result, TCP CUBIC flows did not share available

link bandwidth fairly with TCP Reno flows, which, in turn, causes the problem of TCP

friendliness. However, response function curve of TCP Compound is close to TCP Reno.

Thus, TCP Compound flows share available link bandwidth fairly with TCP Reno flows.
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Figure 1.5: The comparison of response functions of TCP CUBIC, TCP Renoand TCP

Compound (Ahmadet al., 2015)

Some major problems related to TCP CUBIC congestion controltechnique are

summarized as follows:

i. In slow start and congestion avoidance phase, the increment in congestion window

size is exponential which causes the high rate of packet loss(Ha and Rhee, 2011;

Alrshahet al., 2014).

ii. After detecting each packet loss, TCP CUBIC reduces its congestion window size

only 20% of its existing congestion window. Which means, TCPCUBIC flows did

not release much bandwidth for new incoming TCP flows. Thus, new incoming

flows of any protocol are not able to grab sufficient amount of link bandwidth

for data transmission; causing unfair share of unused link bandwidth and long

convergence time among the competing flows (Qureshiet al., 2013; Cao and Zhang,

2013; Kozuet al., 2014).

1.3 Research Gap

The increment in the size of congestion window during slow start and congestion

avoidance phase plays a significant role in congestion control techniques. The increment in

the size of congestion window should not be too low that TCP flows cannot be able to use

available link bandwidth properly, and it should not be too fast that it can create congestion

in the network. The growth of congestion window depends on the estimated available link

bandwidth. Each slow start algorithm of congestion window technique has rule or function

to calculate the available link bandwidth by using different techniques and calculates the size

of congestion window accordingly. Today the most commonly used operating systems, such

as Microsoft Windows, Linux operating system, and Android,are still using exponential

increment in the size of congestion window for slow start phase during the data transmission.



10

Therefore, many studies have observed that the performanceof congestion control technique

suffers during slow start phase in high bandwidth long distance networks (Zhanget al.,

2012). The increment in the size of congestion window duringslow start phase affects the

performance of congestion control technique. Thus, the performance of congestion control

technique can be enhanced by controlling the increment of congestion window wisely in

slow start phase during data transmission (Wang and Williamson, 1998; Floyd, 2004; Ha

and Rhee, 2011; Zhanget al., 2012; Alrshahet al., 2014). To avoid congestion in the

network, a number of TCP congestion control technique control the increment in the size of

congestion window during slow start phase (Kozuet al., 2014).

After detecting each packet loss during data transmission,congestion control

technique reduces the size of the congestion window to avoidthe congestion in the network.

This reduction in the size of congestion window is varying indifferent congestion control

techniques. The minimum reduction rate of congestion window after each packet loss is

12.5%, which is used by Scalable TCP (Kelly, 2003). The maximum reduction rate after

each packet loss is 50%, which is the default reduction rate of TCP Reno also known as

Standard TCP congestion control technique. The number of congestion control techniques

are also configured with 50% reduction in the size of congestion window after each packet

loss during data transmission such as TCP Compound (Songet al., 2006), HighSpeed

TCP (Floyd, 2003) and Hamilton TCP (Leith and Shorten, 2004). The reduction in the

size of congestion window after each packet loss affects theperformance of congestion

control technique regarding protocol fairness and convergence time among the TCP flows

during data transmission. According to Qureshiet al. (2013); Alrshahet al. (2014), TCP

CUBIC congestion control technique is still under development, and there is a need for more

evaluation studies for TCP CUBIC. According to their research, TCP CUBIC congestion

control technique does not reduce enough size of congestionwindow after each packet loss

for other incoming TCP flows. This less reduction in the size of congestion window after

each packet loss creates congestion and reduces the overallperformance of the network.

Thus, more research is needed on TCP CUBIC by adaptive adjustment of congestion

window size during the data transmission.

The response function of congestion control technique is defined by the TCP

friendliness behavior of congestion control technique. TCP friendliness behavior can be

calculated between the TCP Reno and other congestion control flows which show the fair

share of available link bandwidth during data transmissionamong the flows (Xuet al., 2004).

If a TCP flow uses more available link bandwidth as compared toTCP Reno flows that

means, its average congestion window size is high.
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1.4 Statement of the Problem

The above background of the problem leads this research to address the problem of

allocation of unused link bandwidth fairly and quickly among the multiple competing flows

of different TCP congestion control techniques transferring data over the same network path,

such that, packet loss rate can be mitigated by achieving themaximum protocol fairness,

convergence time, TCP friendliness, and stability. The above problem statement leads to the

following research questions:

i. How to reduce the packet loss rate during data communication in slow start phase?

ii. How to allocate unused link bandwidth fairly and quicklybetween the TCP CUBIC

flows?

iii. How to allocate the unused link bandwidth fairly between TCP CUBIC and TCP

Reno flows?

1.5 Aim of Research

The aim of this research work is to develop an improved congestion control

technique based on TCP CUBIC for high bandwidth long distance networks.

1.6 Objectives of Research

The objectives of this research work is described as follows:

i. To design and develop a Congestion Control Technique for Slow Start (CCT-SS) to

decrease the packet loss rate.

ii. To design and develop a Congestion Control Technique forLoss Occurrence (CCT-

LO) for fair and quick allocation of unused link bandwidth.

iii. To design and develop a Enhanced Response Function for TCP CUBIC (ERFC) to

increase the friendliness among TCP CUBIC and TCP Reno flows.
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1.7 Scope of Research

The scope of this research work is described as follows:

i. Congestion can be controlled or avoided by two approachescalled end-to-end

congestion control technique or router based congestion control technique. In this

research, end-to-end congestion control approach has beenused, and router based

approach has not been touched as it is not within the scope of this research.

ii. In end-to-end congestion control approach, there are three types of categories for the

indication of congestion during the data transmission. First is based on packet loss,

the second one is delay based and third is the combination of loss and delay (hybrid).

In current research work, loss based approach has been used for the indication of

congestion and other approaches (i.e. delay, hybrid) have not been covered because

of the scope of the present study.

iii. There are different types of networks i.e. wired network and wireless network; this

research work focuses on the performance of congestion control techniques in wired

networks and not wireless networks.

iv. There are four phases inside the congestion control techniques which are the slow

start, congestion avoidance, fast retransmission and fastrecovery. This research

work focuses on the slow start, and congestion avoidance phases and other two

phases (fast retransmission and fast recovery) are hence, out of scope.

1.8 Significance of Research

High bandwidth long distance networks are emerging in several continents rapidly,

and TCP is one of the data transferring protocol in these networks. This research work

positively impacts the field of high bandwidth long distancenetworks. Implementing

the results of present study decrease the congestion in these networks. This is achieved

by improving the current congestion control technique for Linux-based operating systems

(TCP CUBIC). With improved congestion control technique (proposed in this research),

the rate of packet loss of TCP flows could be mitigated, and fair allocation of available link

bandwidth between TCP flows could be improved. This researchwork shows the importance

of decreasing the packet loss rate by developing a techniquefor slow start phase. Moreover,

protocol fairness, TCP friendliness and convergence time of TCP flows is improved by

implementing the technique for packet loss event and response function respectively. These

findings which are the outcome of each proposed technique canhave positive effects on the

future work of research and hence, it contributes to the continued knowledge formation in

the field of high bandwidth long distance networks.
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