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ABSTRACT 

It is always a challenge to compromise between stability and controllability in 

the design of an aircraft. The challenge is becoming bigger in designing a flight control 

system of a small, light weight and low speed unmanned aerial vehicle (UAV). This 

type of UAV is facing a higher degree of difficulty because of its constraints in 

stability margin due to the limitation of the centre of gravity locations and 

experiencing more problems in control system when flying in air turbulence (severe 

wind gust or crosswind). This research work is focused on analysis, design and 

simulation of a robust flight control system (FCS) for a small UAV to make it capable 

of flying in severe gusty conditions. A combination of the variable stability technique 

along with advanced flying and handling qualities (FHQ) requirements are used to 

reduce the gust effect on the aircraft. A low-speed UTM-UAV is used as a testbed for 

this research. A mathematical model for the aircraft including gust velocity 

components was formulated based on a combination of experimental wind tunnel with 

theoretical and empirical methods to estimate the aerodynamics coefficient, thus 

stability and control derivatives. A linearized longitudinal and lateral-directional 

equations of motion of the aircraft in the state-space form were developed and 

validated against a non-linear model.  Matlab/Simulink simulation algorithm was 

developed to analyse and evaluate the dynamic behaviour of the UAV at different 

speeds and CG locations. The simulation results show that the selection of particular 

stability and control derivatives has a significant influence on the FHQ level of the 

aircraft gust response for a small UAV. The superaugmentation FCS that consisted of 

stability augmentation system (SAS) and command stability augmentation system 

(CSAS) was developed to improve the dynamic characteristics of the longitudinal 

aircraft. A simulation result shows that the superaugmented aircraft is capable of 

operating in severe gust environments than augmented aircraft, and puts less strain on 

the elevator activity in both extreme and calm weather conditions. A comparison of 

superaugmented aircraft to augmented aircraft shows a significant reduction (70-80%) 

in undesirable pitch motion caused by a vertical gust in which, that level 1 flight phase 

Cat.C can be achieved. 

.
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ABSTRAK 

Kompromi antara kestabilan dan kawalan sering menjadi masalah utama 

dalam proses merekabentuk sesebuah pesawat terbang. Masalah ini menjadi lebih 

besar dalam proses rekabentuk sistem kawalan penerbangan pesawat tanpa 

juruterbang (UAV) kategori kecil, ringan dan berkelajuan rendah. Pesawat kategori 

ini akan menghadapi cabaran yang lebih rumit kerana sering mengalami kekangan 

jidar kestabilan yang disebabkan oleh kedudukan pusat graviti yang terhad dan 

menghadapi tambahan masalah kepada sistem kawalan bila diterbangkan dalam 

keadaan udara yang bergelora (badai udara yang kuat atau angin lintang). Kajian 

penyelidikan  ini tertumpu kepada analisis, rekabentuk dan simulasi sistem kawalan 

penerbangan (FCS) yang berdaya tahan untuk pesawat UAV kecil yang mampu 

diterbangkan dalam keadaan badai udara yang kuat. Kombinasi teknik kestabilan 

pembolehubah bersama keperluan kualiti penerbangan dan kawalan (FHQ) termaju 

digunakan untuk mengurangkan kesan badai ke atas pesawat. Pesawat UTM-UAV 

berhalaju rendah telah digunakan sebagai kajian dalam penyelidikan ini. Model 

matematik untuk pesawat termasuk komponen halaju badai telah diformulasikan 

berdasarkan kombinasi hasil ujian terowong angin, teori dan kaedah empirikal untuk 

mendapatkan pekali aerodinamik, seterusnya nilai-nilai terbitan kestabilan dan 

kawalan pesawat. Persamaan gerakan membujur dan melintang lelurus pesawat dalam 

bentuk matriks keadaan ruang telah dibangunkan dan disahkan menggunakan 

pesamaan taklelurus pesawat. Algoritma simulasi telah dibangunkan dalam 

Matlab/Simulink yang digunakan untuk analisis dan penilaian ciri-ciri dinamik 

pesawat pada kelajuan berbeza dan pada pusat graviti yang berlainan. Keputusan 

simulasi menunjukkan pemilihan beberapa terbitan kestabilan akan memberi kesan 

yang tinggi kepada tahap FHQ  terhadap kesan badai untuk pesawat kecil UAV. FCS 

superimbuhan yang merangkumi sistem kestabilan imbuhan (SAS) dan arahan sistem 

kestabilan imbuhan (CSAS) telah dibangunkan untuk memperbaiki ciri-ciri dinamik 

membujur pesawat. Hasil keputusan simulasi menunjukkan pesawat superimbuhan 

mampu beroperasi dalam keadaan situasi badai yang kencang berbanding pesawat 

imbuhan dan memberi kesan pengurangan kepada aktiviti penaik dalam keadaan 

cuaca buruk dan cuaca tenang. Perbandingan antara pesawat superimbuhan dan 

imbuhan menunjukkan pengurangan besar (70-80%) kepada sambutan yang tidak 

diingini dalam pergerakan anggulan yang disebabkan oleh badai udara menegak di 

mana tahap 1 fasa penerbangan Cat.C dapat dicapai. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

This chapter covers  the problem background of gust insensitive UAV, problem 

statement, objectives and scope of the current research. First, an introduction covering 

a brief overview of the topic is presented and followed by the problem background and 

thinking to the solution based on the work’s philosophy. At this point, the scope of the 

study is briefly clarified. With a specific end goal to answer the problem statement, 

objectives are laid down. Then, the outline of the thesis is presented. 

 

 

 

 

1.2 Problem Background 

 

 

Unmanned Aerial Vehicles (UAVs) became widely used in civil and military 

applications due to their versatility and the fact that they represent no risk to their 

operators. The demand for improvement of performance, stability and efficiency of 

the UAV is an important and continuous research topic for the future. Much work has 

been done for improvement of modelling, performance and flight control for the small 

UAVs to increase their safety and reliability during flight (Gavrilets, 2015; Hallberg 

et al., 1999; La Civita, Papageorgiou, Messner, & Kanade, 2002; Paw & Balas, 2011). 

However, the performance of the small UAV in the gusty wind condition is still distant 

to their large aircraft counterpart. 
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Small UAV, are more sensitive to turbulences air. This because it has low 

inertia so that a disruption gust can change its attitude very quickly. Besides that it has 

low velocity comparing to large aircraft, so turbulences and gusts can change its 

airspeed flight condition dramatically over a very short period, resulting in unwanted 

motion. Up to this point, it seems that there is a significant design tradeoff between an 

aircraft's ability to fly in gusty conditions and its size. A small UAV is desirable for 

some reasons such as low cost, safe to fly over urban due to the low probability of 

injury or fatality in case of crash, because of the small amount of kinetic energy that it 

has but is obviously harder to operate in turbulence. This visible compromise strictly 

limits the aircraft that can be used for these types of missions. 

 

 

The attention in aircraft behaviour in turbulence extends back to the earliest 

days of aviation. Gusty wind was a major hurdle to Wright brothers to complete their 

first successful flight. With that problem, they recognised the distinction between gust 

response and stability of their aircraft (Etkin, 1981). Numerous researchers have made 

case studies and improvement the sensitivity of UAV to the gusty wind (Fitzgerald, 

2004; W. J. Pisano, 2009; Poorman, 2014; Stewart, 1976; Thomasson, 1995; Turkoglu, 

2012). From the literature review, it can be classified the techniques that were used to 

suppressing the gust effect from small UAV in two techniques. First one is the passive 

method which they intended to remove gust effect from the airframe by using the idea 

of aerodynamic gust insensitivity (Ifju et al., 2002; W. J. Pisano, 2009). Second 

Methods by responding to gust using robust control system (De Bruin & Jones, 2016; 

González, Boschetti, Cardenas, & Carrero, 2012). For instance, Thomasson (1995) 

was interested in a gust-insensitive aircraft to record smooth-looking video from a 

UAV in calm to moderate conditions and suggested this might be possible by reducing 

or zeroing several aerodynamic derivatives through aircraft design. Thomasson (1995) 

just gave a suggestion without any analysis or further details. W. Pisano and Lawrence 

(2008) adopted one of Thomasson suggestions by developing a UAV model that has 

the derivatives of the rolling moment due to sideslip angle, 
lC


equal to zero. Although 

W. J. Pisano (2009) succeeds to reduced the unwanted motion caused by gusts, he 

increased the drag and weight by adding a fin in the bottom of the vertical tail of the 

UAV. Moreover, W. J. Pisano (2009) was focused on the lateral dynamics of the 

aircraft only.  
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Others reported work attempts to design a robust flight control system to reject 

the gust and turbulences (Cárdenas, Boschetti, & Celi, 2012; De Bruin & Jones, 2016). 

However, most of small UAV systems make use of low-cost commercial-off-the-shelf 

flight control system. Most of these flight control system use classical Proportional-

integral-derivative (PID) controllers where ad-hoc methods are used to tune the 

controller gains in flight. This methodology is time-consuming and high-risk (Chao, 

Cao, & Chen, 2007). Besides that little attention has been spent on the assessment of 

flying and handling quality standards. Although awareness of UAV design 

requirements, elaboration of flying and handling qualities is one of the major steps 

which will enable the designer to go to the flight test phase confidently. Moreover, 

develop a reliable, robust flight control system, depending on the accuracy of the UAV 

mathematical modelling. Three standard approaches to flight dynamic model 

development are analytical, wind-tunnel and flight test technique (Cook, 2013). Each 

method can be used to complement one another during the different phase of model 

development. To reduce cost and time to market, most small UAV used only the 

analytical methods, which considered less accurate method and may lead to developing 

weak and dangerous flight control system. 

 

 

As mentioned before Thomasson (1995) suggested it might be possible to 

develop gust-insensitive aircraft by reducing or zeroing several aerodynamic 

derivatives through aircraft design. One of his suggestion was zeroing the pitching 

moment due to the angle of attack, Cmα and as knowing reducing the value of Cmα may 

lead to decreasing the stability of the aircraft in the longitudinal motion. To overcome 

this instability issue, the superaugmented flight control system may be a solution. The 

term superaugmented flight control system is not new; it was used by other researchers 

such as (Gibson, 1995; Myers, McRuer, & Johnston, 1984; Rogers, 1989). It appears 

to have been coined by Myers et al. (1984) to denote a major class with specific 

characteristics: the aircraft are statically unstable without augmentation.  

 

 

Keeping the value of Cmα small or even positive all the time is not a practical 

issue, so the technique of variable stability aircraft or varying CG locations seems to 

be a good idea. This technique is not new, and it was used in various types of aircraft, 

such as CONCORDE, Airbus A310-300 and A300-600R, to improve the aircraft 
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performance by extending the range capability (Huber, 1988; Zhang, Yang, & Shen, 

2009). Although, the method of varying CG locations used for large aircraft and for 

the purpose of extending the range capability by management fuel transfer among the 

plurality of fuel tanks during flight and adjust the CG. However, it may help to improve 

the sensitivity of the UAV to the gust. 

 

 

 

 

1.3 Problem Statement 

 

 

By understanding the problem background which has been discussed in the 

previous section, it can be concluded that issues in the field of sensitivity of the small 

UAV to gust still need more investigation. Besides developing new ideas for 

improvement the limitations and gaps left by past research work such as designing a 

gust insensitive configurations and devices. Furthermore, conventional stability 

augmentation system to comply the classical flying and handling qualities has a 

limitation and not robust enough to reduce gust sensitivity especially for small UAV 

under severe gust conditions. By studying the reasons for inadequate response of small 

UAV to the gust, improvement can be made by applying robust flight control system 

and advance flying and handling qualities. 

 

 

This research will use the benefits of the combination of the superaugmented 

flight control system along with advanced flying and handling qualities requirements 

to remove the gust effect on the airframe. Moreover, the proposed control should be 

able to cater the wide range of aircraft stability margin including unstable 

configurations. 
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1.4 Research Objectives 

 

 

The objectives of this study are defined as: 

 

1. To develop and validate an unaugmented mathematical model for UTM-UAV 

with control and gust inputs. 

 

2. To simulate and evaluate a variable stability of unaugmented and augmented 

UAV (i.e., a variation of CG locations) flying and handling qualities 

assessment. 

 

3. To develop a flight control system for augmented and superaugmented aircraft 

to satisfy an advanced flying and handling qualities and robustness with control 

and gust inputs. 

 

 

 

 

1.5 Scope of Study 

 

 

The scope of this research is to study and reduce the effect of gust on UAV 

longitudinal motion. To achieve this, the wind tunnel static test, UTM-UAV and gust 

modelling and the robust flight control system is required. The UTM-UAV 

mathematical modelling will be achieved based on a combination of experimental 

wind tunnel and theoretical/empirical data. The superaugmented flight control system 

design will be accomplished through the flying handling qualities to design a Stability 

Augmentation System (SAS) and Command Stability Augmentation System (CSAS). 

The experimental test will conduct at Universiti Teknologi Malaysia Low-Speed 

Tunnel (UTM-LST). MATLAB and Simulink software tools are used to accomplish 

the design and performance analysis of the proposed systems. 
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1.6 Significance of the Study 

 

 

An unmanned aerial vehicle (UAV) is an aircraft without a pilot on board. It is 

flying either autonomously or remotely controlled by the pilot. UAVs are currently 

used for some missions, including observation and attack roles. The application for 

UAV is increasing dramatically due to their unique capabilities. Developing a small 

UAV that capable of operating in a gusty wind condition will allow to extending the 

range of potential uses of a small UAV. All of which underlines the importance of 

establishing an accurate mathematical model of a UAV to be able to develop new 

innovative ideas successfully. One of the potential outcomes of this research will be 

the development of a mathematical modelling of a UTM-UAV with control and gust 

input. This shows precisely which parameters of aircraft design affect the gust 

sensitivity of the aircraft and how. This differs from most classical aircraft dynamic 

texts in that gust effects are typically ignored for simplicity within a linearized 

formulation. It is hoped that the proposed superaugmentation system will overcome 

the challenges of operating small UAV in severe gusty conditions. The 

superaugmented aircraft may do so by reducing unwanted aircraft motion due to severe 

gust, minimise the elevator activity in extream weather, and guarantee that the aircraft 

will be on the boundary of level 1 flying and handling qualities requirements under all 

circumstances. In light of the issues mentioned above, results of this research will 

contribute to what is currently known about gust insensitive UAV. Nonetheless, the 

significance of this study is not only limited to knowledge enrichment. 

 

 

 

 

1.7 Thesis Organization 

 

 

This thesis comprises of six chapters. Each of the following paragraphs 

explains the contents of each chapter. 

 

 

The introduction, background of the research work, problem statement, 

objectives, scope of the research and significant of the study are presented in Chapter 

1. 
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In Chapter 2, The literature review related to this work is presented. Flying and 

handling qualities requirements, most outstanding flying and handling qualities criteria 

that used by other researchers for evaluation and also as design rules for flight control 

system design are presented in this chapter. Then the Overview of mathematical 

modelling for the aircraft and wind gust was introduced. Finally, this chapter also 

covers the significant findings of previous studies which are most related to this work. 

A general background and inspiration from current research that is relevant to the 

development of a gust insensitive aircraft are provided. 

 

 

In Chapter 3, the research methodology that used to carry out this research 

work was explained in detail. 

 

 

In Chapter 4, the results and discussion of mathematical modelling, wind 

tunnel test and dynamic analysis are provided. 

 

 

Chapter 5, provide the results and discussion of superaugmentation flight 

control system and assessment the UAV with the proposed flight control system with 

different types of the gust.  

 

 

In Chapter 6, Conclusions, contributions and recommendations for further 

work is presented. 
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