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ABSTRACT 

 

Metabolic engineering is highly demanded currently for the production of 

various useful compounds such as succinate and lactate that are very useful in food, 

pharmaceutical, fossil fuels, and energy industries. Gene or reaction deletion known 

as knockout is one of the strategies used in in silico metabolic engineering to change 

the metabolism of the chosen microbial cells to obtain the desired phenotypes. 

However, the size and complexity of the metabolic network are a challenge in 

determining the near-optimal set of genes to be knocked out in the metabolism due to 

the presence of competing pathway that interrupts the high production of desired 

metabolite, leading to low production rate and growth rate of the required 

microorganisms. In addition, the inefficiency of existing algorithms in reconstructing 

high growth rate and production rate becomes one of the issues to be solved. 

Therefore, this research proposes Dynamic Flux Variability Analysis (DFVA) 

algorithm to identify the best knockout reaction combination to improve the 

production of desired metabolites in microorganisms. Based on the experimental 

results, DFVA shows an improvement of growth rate of succinate and lactate by 

12.06% and 47.16% respectively in E. coli and by 4.62% and 47.98% respectively in 

S. Cerevisae. Suggested reactions to be knocked out to improve the production of 

succinate and lactate have been identified and validated through the biological 

database.  
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ABSTRAK 

 

 

Kejuruteraan metabolik kini telah menjadi suatu permintaan yang amat tinggi 

untuk menghasilkan sebatian yang berguna seperti suksinat dan laktat yang sangat 

berguna dalam industri pemakanan, farmasi, bahan api fosil dan tenaga. Teknik 

penghapusan gen atau reaksi merupakan salah satu strategi yang digunapakai dalam 

kejuruteraan metabolik silico yang mampu mengubah metabolisma sel mikrobial 

yang dipilih untuk mendapatkan fenotip yang dikehendaki. Walau bagaimanapun, 

saiz dan kerumitan rangkaian metabolik menjadi satu cabaran dalam menentukan set 

reaksi yang hampir optimal untuk dihapuskan dalam metabolisme kerana adanya 

reaksi yang mengganggu penghasilan yang tinggi metabolit yang dikehendaki, yang 

membawa kepada kadar pengeluaran yang rendah dan kadar pertumbuhan 

mikroorganisma yang diperlukan. Di samping itu, ketidakcekapan algoritma sedia 

ada dalam membina semula kadar pertumbuhan dan kadar pengeluaran yang tinggi 

menjadi salah satu isu yang perlu diselesaikan. Oleh itu, kajian ini mencadangkan 

algoritma Dynamic Flux Variability Analysis (DFVA) untuk mengenal pasti set 

reaksi terbaik untuk meningkatkan pengeluaran metabolit yang dikehendaki dalam 

mikroorganisma. Berdasarkan keputusan kajian, DFVA menunjukkan peningkatan 

dari segi kadar pertumbuhan suksinat dan laktat masing-masing sebanyak 12.06% 

dan 47.16% dalam E. coli dan 4.62% dan 47.98% masing-masing di S. Cerevisae. 

Reaksi yang dicadangkan untuk disempurnakan dalam meningkatkan pengeluaran 

suksinat dan laktat telah dikenal pasti dan disahkan melalui pangkalan data biologi. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

 

This chapter introduces the concept of succinate and lactate production in 

Escherichia Coli (E.coli) and Saccharomyces cerevisiae (S.cerevisiae). Prior 

knowledge on this matter is important because this research mainly focused on 

optimizing the production of succinate and lactate from E.coli and S.cerrevisiae. 

Furthermore, this chapter also explains basic knowledge behind the production of 

succinate and lactate, as well as other related information that will give us adequate 

knowledge in order to achieve the goal and objectives of this research.  In addition, 

the aim, objectives, scope are also included to give a clear view of this research. 

1.2 Introduction 

 

Metabolic engineering has shown a big impact and nowadays is getting more 

popular. Metabolic engineering has been used to study and manipulate the biological 

microbial cell metabolism by many researchers in this area. An example of  strategy 
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that has been introduced by metabolic engineering method is by suggesting any 

genes or reactions from its complex metabolic network to be removed from its own 

pathway. (Azhar et.al, 2016). This technique has shown many improvement in 

genome-scale metabolic network model in addressing high yield of by-product 

secretion and cell growth rate.  

 

 To conduct gene knockout experiment in wet laboratories is very time 

consuming and costly because it deals with numerous number of genes and various 

microorganism strain.  Some of the information of the genes within these microbial 

strain such as the function are generally known. However, the problem arise when 

the knockout requires the combination of these genes in order to obtain the optimal 

design.  For that reason, the modelling approaches are required to predict the best set 

of candidate genes from the genome scale model to ensure feasible solution that can 

be obtained in shorter time and avoid the intuitive experiments (Mahalik et al.,2014). 

 

The current technology in metabolic engineering has gained more attention as 

it is able to improve any desired metabolites strain that can be used  by other process 

to become a valuable products to be marketed in industries (Nielsen & 

Keasling.,2016). With such results, there are more improvements of the  models and 

algorithms by using computational approaches are popular in these recent years. 

However, the current production rate achieved by the researchers is still low than its 

theoretical maximum value due to the lack of effective computational method 

developed to modify the metabolic model of the microorganisms. Even the current 

modification of biological network of an organism has become a successful 

technique, constructing a mutant strain of genome model is a big challenge to 

increase the production of the desired metabolites beyond its wild type limit.  
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Metabolic network are very big in size, thus this may lead to the increasing of 

the computational time needed to compute all the networks. Thus, some of the 

computationally pre-process steps are required, which this may matches with the 

biological theory to have more suitable, less complex and compatible data. Other 

than that, the models need to undergo an optimization process in order to prevent the 

solution from being trapped in local optima where it may cause a premature 

convergence. The potential to increase the production of targeted metabolites is 

obscure, and relates to the lack of genome models. On the other hand, the presence of 

competing pathway of non-desirable product may affect the desired metabolite 

production.  

 

The main reason of using current advance computational approach in latest 

research is because it is powerful and very helpful to save costs and time in 

manipulating phenotype to enhance the desired strain model compared to traditional 

laboratory procedures. The goal of metabolic engineering is to develop an effective 

methods which can improve the metabolic environment in order to produce desired 

metabolites in microorganism for industrial purpose, (Gupta et al., 2016). Industries 

nowadays use microbial strains in order to produce a large amount of biochemical 

products, antibiotics, drug targets, therapeutic proteins, food ingredients, vitamins, 

fuels, and other useful chemicals.  

1.2.1 Gene Knockout Strategy 

 

Any genes in the organisms that has been genetically knockout, missing or 

deleted completely from the organism was an explanation of gene knockout 

technique. Some part of the gene from the sequenced gene characteristics can be 

learned by researchers by using this technique. 
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The term knockout refers to knocking out a gene by generating a new mutant 

for specific microorganism. In this technique, there are doubled, tripled and 

quadrupled knockout which indicates the knockout genes is two, three and four.  The 

gene knockout technique is used to test the isolated gene functions. Thus, knockout 

technique does not happen when repeated reaction or function of multiple genes 

appeared. Today this technique has widely used for commercial use for specific 

genes function.  

1.2.2 Overview of Microbial Cell Factory for Metabolites Productions 

 

Microbial cell factory can be defined as microorganism that is assumed as a 

factory that contains of many compartments that can produce certain product. In 

metabolic and genetic engineering field, these microorganism has been utilized not 

only to be used in the production of antibiotics, vitamins, enzymes and other useful 

chemicals, but this helps some of the problems such as energy resources (Azhar et 

al., 2016).  

  

Traditional production is very limited by using the native organism that only 

produced naturally of the desired products and most of the organism are less 

productive for industrial fermentation. With the drastically increasing of genomic 

information resources, metabolic engineering techniques and advanced tools have 

made it possible to construct microbial cell factories using non-native producer 

organism which may help the organism to go beyond its capabilities than the native 

producer. 

 

Biofuels are one of the well-known resources to produce energy. One of the 

methods that produce ethanol is biomass fermentation. Biomass fermentation 

requires a large size of plantation area to plant corn or sugarcane in order to produce 

starch and sugar. Besides, rice bran is also one of the great potential material in 

ethanol production (Michel et al., 2016). Unfortunately, the process of fermentation 

brought up pollution issues such as deforestation for the plantation of sugarcanes or 
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corns. Thus, in order to avoid most of the problems to produce ethanol, metabolic 

engineering on microorganism was introduced to produce ethanol by using microbe. 

This is due to a large number of microbes is easy to be cultivated in the laboratory 

and it is cheap. 

 

Recent studies show that E. coli is very suitable for producing bioethanol 

since it is a gram-negative bacterium and has the ability to convert sugar into ethanol 

in high yield. Lactate has been used in a large area of processed food, cosmetics, oral 

and health care products and industrial applications. Besides, lactate is produced 

commercially by using several microorganisms (John et al., 2007), such as 

Lactobacillus strains. In addition, simple nutritional and host production under 

aerobic and anaerobic conditions are one of the E. coli advantageous characteristics. 

Moreover, E. coli development as a host production of lactate enabled physiology of 

microbe with large knowledge and high established protocols for genetic 

manipulation (Chang et al., 1999). On the other hand, under anaerobic condition, 

lactate, acetate, ethanol, succinate and formarate in E. coli are the yields of glucose 

mixed acid fermentation. Thus, E. coli is highly recommended since it is high 

established and an enormous knowledge explored for the physiology of E. coli 

enables it to use for genetic manipulation. In addition, gene knockout technique 

which made inactivation to the non-functional gene had being applied on the 

microorganism to boost the E. coli production of ethanol and lactate (Chang et al., 

1999). 

 

The present computational study can identify detailed systems biology and 

able to simulate metabolisms of bacteria and other microorganisms about their 

capability in producing metabolites such as H2 and L-Phe in the mutant strain. This 

refers to the extensive search for reaction or gene to be added or deleted in order to 

increase the desired production. The intention of this research is to examine how 

metabolites production in microorganism can be increased using a systematic in 

silico simulation of metabolic engineering strategy, for instance, constraint-based 

modeling algorithms. Therefore, to elucidate interesting features of these 

microorganisms and identify engineering targets to achieve enhanced physiological 

properties of the strain, metabolic engineering which applies modeling simulation 

and optimization with the involvement of reaction deletion strategy is applied. 
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1.3 Background of Problem 

The current technology in metabolic engineering strategies in enhancing cell 

factories become a big issue in this era. However, there are still some limitations of 

the current method that has not been solved yet (Azhar et al., 2017). The challenges 

and problems faced in metabolic engineering are predominantly caused by the 

complexity of the metabolic network. The complexity problems affected the 

production of our desired metabolites where there are many competing reactions that 

present. Hence in order to achieve a desired metabolic product using the genetic 

modification method become more difficult (Rosano and Ceccarelli, 2014). 

According to (Jantama et al., 2015), the production of succinate and lactate from 

wild-type cell is currently low.  This shows that the lack of effective genome models 

which can do prediction and simulation of low production yields is very important 

aspect in order to achieve the highest fitness of objective function.  

 

 

However, previous existing algorithm that had been constructed still have 

limitations and weaknesses. For example, Minimization of Metabolic Adjustment 

(MOMA) (Ye et al., 2015), and Flux Balance Analysis (FBA) (Chapman et al., 

2015), have limitations in terms of flux distribution strategy. FBA gives unrealistic 

flux distribution value (Chapman et al., 2015) and unreliable in predicting the flux 

value by-product. Hence, MOMA on the other side is very weak in predicting the 

final steady state of growth. MOMA also is unable to represent the true metabolite 

state of the organisms (Ye et al., 2015). In the simplest way, the best combination 

can be found by evaluating all possible combination using exhaustive search.  

Although it guarantees to find the near optimal solution, it is very time consuming 

and impractical even for moderate size of solution space (Arieef et al.,2017). 
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Figure 1.1 An example of E. coli metabolism map (Kim et al, 2016). 

 

The aforementioned issues relate to the algorithmic used by previous 

researchers to study in silico metabolic engineering. With regards to the complexity 

of the metabolic network as shown in figure 1.1, this directly results in low 

production yield due to the presence of competing for non-desirable compounds. 

This can relate to the low accuracy of existing algorithms in constructing solutions to 

acquire the best value. There are numbers of developed algorithms used to simulate 

flux distribution of particular metabolites from cell factories of the genome-scale 

model that can directly be applicable for many industrial purposes either by standard 

or hybrid algorithms (Arieef et al.,2017). 

 

These limitations also affect the lack of effective genome model constructed 

in order to generate better value for the objective function. In addition, wild-type 

model can only predict low flux value. Thus, an improved modelling algorithm with 

new modified genome model is important to be highlighted. FVA (Müller and 
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Bockmayr, 2013) outperform MOMA and FBA as it calculates the full range of flux 

distribution value while maintaining high growth rate and optimizing the objective 

function. In addition, FVA explores alternate solution in the optimal flux space but 

there is not only one optimal flux distribution can be found (Hay and Schwender, 

2011). This indicates that FVA methodology is more detailed and demonstrate 

realistic flux value in predicting possible by-product production rates under maximal 

biomass production (Müller and Bockmayr, 2013). 

 

 

 

In order to clarify the potential of metabolites strain production, several 

computational algorithms have been introduced. This is because in silico or 

computational simulation is preferred as less time is required, no labor involved, less 

research expenditure, and eventually, impose cost reduction (Salleh et al., 2015). 

1.4 Problem Statement 

 

To conduct gene knockout experiment in wet laboratories is very time 

consuming and costly because it deals with numerous number of genes and various 

microorganism strain.  The intuitive experiments may also lead to generate 

undesirable results and sometimes the production is lower than the theoretical yield. 

An experiment conducted on a strain cannot be transferred to another strain thus the 

whole process need to be repeated again.  In silico modelling approaches are required 

in order to aid the process of strain improvement so that optimal production of 

desired metabolites can be achieved.  Some of the information of the genes within 

these microbial strain such as the function are generally known however, the problem 

arise when the knockout requires the combination of these genes in order to obtain 

the optimal design.  For that reason, the modelling approaches are required to predict 

the best set of candidate genes from the genome scale model to ensure feasible 

solution can be obtained in shorter time and avoid the intuitive experiments. 
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Previous approaches are limited to cases that the lower-level optimization 

problem is linear (Gomez et al. 2014; Harwood et al. 2016; Hoeffner et al. 2013). For 

nonlinear objective functions, one cannot directly apply the existing approaches. 

Typical nonlinear objective functions include, the minimization of the overall 

intracellular flux and the maximization of ATP yield per flux unit (Mori et al. 2016). 

A solution algorithm for DFBA model with embedded LP has been previously 

proposed (Gomez et al. 2014; Harwood et al. 2016; Hoeffner et al. 2013), in which 

the lower-level optimization problem contains a sequence of LP. This solution 

algorithm is based on the concept of basic feasible points of LP and therefore it 

cannot be straightforwardly adapted to solve DFBA models with NLP embedded. 

Therefore this study proposed DOA and SOA method in FVA to overcome the 

problems. 

1.5 Research Questions 

The main problem of this research is the complex and large metabolic 

network and the challenging to optimize the production of the microbial strains. 

Thus, this research intends to address the aforementioned problems based on the 

following research questions:  

i. How to reduce the metabolic network complexity in order to optimize the succinate 

and lactate production?  

ii. How to analyze the performance of the proposed algorithm in optimizing the 

metabolites production?  

1.6 Objectives 

To achieve the aim of this research, the objectives are specified as follows: 
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1. To enhance the Flux Variability Analysis algorithm by implementing 

Dynamic Optimization Approach and Static Optimization Approach in order 

to optimizing the succinate and lactate production. 

 

2. To improve the accuracy of growth rate and production rate in E. coli and 

S.cerevisae.   

1.7 Scope of Study 

Based on the objectives mentioned above, the overall research only focus on this 

scope of research: 

i. Data that is used are taken from Biochemical Genetic and Genome (BiGG). 

ii. Format: System Biology Markup Languange (SBML) (Hucka,2004). 

iii. Dataset:   E. coli (iJR904) and S.cerevisae (iFF708) 

iv. Software: MATLAB, Constraints Based Reconstructions and Analysis 

(COBRA) Toolbox (Schellenberger et al, 2011). 

1.8 Significance of Study 

This study is conducted to study and improve the production of metabolites 

by implementing a computational framework for simulating metabolites synthesis in 

E. coli and S.cerevisae. The significant of this research is as follows: 

 

i. Investigate the potential improvement of succinate and lactate in E.coli and 

S.cerevisae. 

 

ii. Give a clear insight of metabolites production from E. coli and S.cerevisae by 

using computational modelling and analysis that provide better 

understanding.  
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iii. Development of an in silico modelling and analysis approach that provide a 

prediction of succinate and lactate production in E. coli and S.cerevisae that 

improve the metabolites yield. 

1.9 Thesis Organization 

 

i) Chapter two presents literature reviews retrieved from published 

journals and other available sources on the existing algorithms that are 

used in analyzing the genome-scale metabolic model. Details about 

metabolic engineering that consist of different groups related to it 

such as constraint-based analysis, optimization algorithm, and 

modeling framework are discussed comprehensively.  Reading 

materials that relate to this research topic with beneficial and helpful 

information, such as journals, articles, and conference working papers 

are listed, too. 

ii) Chapter three discusses the research methodology as a planning form 

used to conduct this research.  The detailed descriptions of activities 

involved are presented and divided according to particular phases for 

easy understanding.  The information about the data set is clarified in 

this study. Basic requirements of hardware and software and 

performance measurement that is used for this research are also 

presented in this chapter.  

iii) Chapter four thoroughly discusses the implementation of the proposed 

algorithm, which is DFVA.  Pre-processing step and preparation of 

the chosen data sets were also clarified in this chapter. The steps 

involved in DFVA is also discussed.  
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iv) Chapter five discusses the results of the proposed algorithm 

accompanied with thorough explanation about the list of  reactions 

and genes suggested to be deleted are also included in this 

presentation. The comparison between this method and previous 

works are also presented in this chapter.  

v) Chapter six summarizes the content of previously discussed chapters. 

Conclusion, contributions, and limitations of this research are also 

being discussed. 
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