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ABSTRACT

The signalling interaction between tumor cells and macrophages will form
spontaneous aggregation that causes tumor spreading. Tumor cells and macrophages
interchange their respective signals which results a paracrine and autocrine signalling
loop. This interaction process can be represented by mathematical model in the form
of chemotaxis and reaction diffusion equations. The existing models that consider
paracrine signalling loop alone or with the inclusion of paracrine and autocrine
signalling loop had been developed by assuming linear signals production. However,
this assumption does not give a better representation on the signal dynamics where it is
supposed to be in nonlinear form that saturate with increasing cell densities. Therefore,
in this research, two existing interaction models are improved by considering the
nonlinear form of signals production. Besides, another new interaction model is also
developed based on the facts that tumor cells release enzyme during the signaling
interaction to penetrate the surrounding tissues. The stability analysis is conducted
on three separated models to investigate the condition for spontaneous aggregation.
Each of these conditions then are validated using numerical simulations. Stability
analysis shows that for all models, the formation of aggregation could be determined
by the parameter that represents the secretion and degradation rates of signals together
with chemotaxis rates towards signals. However, the inclusion of autocrine signalling
loop in the second model increase the possibility of the aggregation. While in the
third model, an additional parameter that represents the secretion and degradation
rates of enzyme as well as chemotaxis rates towards them could also determine the
formation of the aggregation. By numerical simulations, the results are in agreement
with the stability analysis obtained for each of the interaction models. Besides, cell
clusters that result from the aggregation will be merged to the other cells cluster due
to the “effective attraction” between them. Reducing the production rates of signal or
chemotaxis rates towards signals or increasing degradation rates of signal is required to
prevent aggregation. The same changes towards enzymes will give the same result on
preventing the aggregation. These valuable suggestions are crucial for medical experts
during treatments.
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ABSTRAK 
 
 
 
 
 

Interaksi secara isyarat di antara sel tumor dan makrofaj akan membentuk aggregasi 

secara  spontan  yang  mengakibatkan  tumor  merebak. Sel  tumor  dan makrofaj saling bertukar-

tukar isyarat yang kemudiannya menghasilkan gelung isyarat parakrin dan gelung isyarat 

autokrin. Model matematik bagi proses interaksi ini boleh dibentuk menggunakan 

kemotaksis dan persamaan reaksi serapan. Model sedia ada yang melibatkan gelung isyarat 

parakrin sahaja atau bersama gelung isyararat autokrin telah dibentuk dengan andaian bahawa 

penghasilan isyarat adalah secara linear. Walaubagaimanapun, andaian ini tidak 

menggambarkan dinamik isyarat yang baik kerana penghasilan isyarat seharusnya dalam 

bentuk tidak linear yang mana tepu apabila ketumpatan sel bertambah.  Oleh itu, dalam 

kajian ini, kedua-dua model yang sedia ada diperbaiki dengan mempertimbangkan bentuk tidak 

linear untuk penghasilan isyarat. Selain itu, satu interaksi model baharu yang lain telah 

dibentuk juga berdasarkan fakta bahawa sel tumor merembeskan enzim ketika interaksi secara 

isyarat itu berlaku untuk menembus tisu sekeliling. Analisis kestabilan dijalankan pada ketiga-

tiga model tersebut untuk mengkaji syarat pembentukan aggregasi secara spontan. Setiap syarat 

tersebut kemudiannya disahkan menggunakan simulasi secara berangka. Analisis kestabilan 

untuk kesemua model menunjukkan bahawa pembentukan aggregasi boleh ditentukan oleh 

parameter yang mewakili kadar penghasilan dan penguraian isyarat-isyarat bersama dengan 

kecenderungan sel terhadap isyarat-isyarat tersebut. Walaubagaimanapun, penglibatan gelung 

isyarat autokrin dalam model kedua meningkatkan kebarangkalian untuk aggregasi berlaku. 

Manakala model ketiga menunjukkan pertambahan parameter yang mewakili kadar 

penghasilan dan penguraian enzim beserta kecenderungan sel terhadapnya juga boleh 

menentukan pembentukan aggregasi. Simulasi secara berangka telah mengesahkan keputusan 

yang telah diperolehi daripada analisis kestabilan bagi setiap interaksi model. Selain itu, 

pembentukan sel kluster hasil daripada aggregasi akan bergabung dengan sel kluster yang lain 

disebabkan “penarikan berkesan” di antara mereka. Mengurangkan kadar penghasilan atau 

kecenderungan terhadap isyarat-isyarat yang terlibat atau menambah kadar penguraiannya 

diperlukan dalam mencegah aggregasi. Perubahan yang sama juga perlu dilakukan kepada 

enzim untuk mencegah aggregasi. Cadangan yang sangat berguna ini penting kepada pakar 

perubatan semasa merancang perawatan. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Cancer continues to be an enormous global health problem, accounting for an
estimate of 8.9 million deaths worldwide in 2016. The number is expected to increase
significantly over 10 years if there is lack of effort to improve existing treatments.
This issue arises due to the challenges faced by experts to deal with the heterogeneity
of cancer itself. Cancer shows distinct characteristics and profiles within a patient’s
tumor and among tumors from different patients which can complicate diagnosis and
therapy. The best way to overcome this challenges is to understand the characteristic
and behaviour of cancer.

In general, there are more than 100 types of cancer that affect human. Breast
cancer is the most common diagnosed cancer types and a leading killer among women
across the globe [1–3]. It is also possible to occur in men and children, however this
is rare. Breast cancer can begin in many different areas of the breast such as ductal
(passage for milk) and lobule (stores milk) which can be non-invasive, invasive and
metastatic. Non-invasive cancer do not spread to nearby tissue while invasive cancer
can move out and spread from nearby breast tissues. If the cancer cells break free from
the primary site and migrate to other parts of the body, it is considered as metastatic
and can lead to death. Most previous studies aim to prevent metastatic event to reduce
the death risks of breast cancer patients.

For human survival, the immune system plays an imperative role against cancer
[4–6]. Macrophage is one of its division, and it stands out as the most multifunctional
among other types of innate immune system [7–12]. It can perform different functions
depending on the environmental cues. Tumor cells taking this advantage, manipulate
the macrophages to escape themselves from being detected as foreign cells by creating
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a signalling interaction with macrophages. This will induce the motility of tumor cells
that results a spontaneous aggregation with macrophages which results in a migration
to nearby tissues and form cancer in new sites. This situation often relates with a poor
prognosis in several types of cancer including breast cancer [7–12].

The existence of interaction between marophages and tumor cells is considered
the most crucial event [10–13]. Both tumor cells and macrophages can interact by
interchange their respective signals that results spontaneous aggregation for migration
[10, 13–15]. During migration, tumor cells also try to break down the extracellular
matrix (ECM) using mediators called matrix degradative enzymes. This method of
invasion by tumor cells are the hallmarks of metastasis which causes death among
breast cancer patients. Thus, the main focus in this research is to model the interaction
and invasion process between macrophages and tumor cells using mathematical
knowledge, known as a system of partial differential equations.

1.2 Background of the Study

Macrophage is derived from circulating precursor called monocytes in the
blood vessels which comprises an approximate 2-10% populations of white blood cells.
Generally, macrophages are essential component for host defense mechanism against
pathogens [16–19]. They are also responsible to stimulate the growth of tissues, secrete
molecules for angiogenesis (formation of blood vessels), engulfment of the dead cells
and matrix remodeling (tissues compartment that defines shape, characteristic and
dimensions of organs) [10, 15, 20].

Based on the diverse role of macrophages, it may act as a promoting or
suppressing role in their immunity behaviour during immune response depending on
the environmental cues. This fact further suggests that they may undergo classical M1
activation or alternative M2 activation [21–27]. M1 macrophages are pro-inflammatory
that have the ability to kill pathogens while M2 macrophages are anti-inflammatory
that downregulate the inflammatory response, promote angiogenesis and remodelling
of tissues. In tumor environment, M1 macrophage are tumoricidal compared to M2
macrophage which have a weak tumoricidal capability.

In tumor microenvironment, macrophages are often referred as tumor
associated macrophages, TAMs [28]. These macrophages are closely related to M2
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type macrophages which tends to perform trophic and immunosuppressive rather
than immunity behavior. TAMs are recruited by tumor cells using variety of growth
factors and cytokines such as monocyte/macrophage chemoattractant protein-1, MCP-
1/CCL2 [29]. MCP-1 possess chemotaxic activity for monocytes and T lymphocytes
via its receptor called CCR2. Several cancer including mammary, ovarian, pancreatic,
prostate and renal cancer have been shown that there is correlation between the
concentration of MCP-1 with the leukocytes [30].

In breast cancer, the infiltration of macrophages result in a poor prognosis of
the disease [9, 10, 12, 28]. The infiltration trigger the interaction to exist between
tumor cells and macrophages. Qian and Pollard [11] have reviewed several studies
on interaction between tumor cells and macrophages. The interaction initiated by
tumor cells which secrete colony stimulating factor-1, CSF-1 that received by CSF-1
receptor, CSF-1R on macrophages. This will trigger macrophages to secrete Epidermal
Growth Factor, EGF that can be received by its receptor, EGFR on the tumor cells.
Each cell type responds to the signal from the other type by chemotacting towards a
higher concentration gradient. This interaction will create a paracrine signaling loop
which will results a spontaneous aggregation and leads to cooperative migration for
metastasis. Recent studies also reveal that tumor cells have their own receptor for their
own signal which then create another loop called autocrine signaling loop.

Figure 1.1: Signalling communication between macrophage and tumor cell.

During the interaction, there is another crucial event that need to be highlighted.
As previously mentioned, tumor cells migrate in the sense of EGF released by
macrophage. In order to move towards the concentration gradient, tumor cells need
to pass through the surrounding tissue or extracellular matrix (ECM) [10,14,31]. This
invasion process is facilitated by matrix degrading enzymes (MDEs), such as Matrix
Metalloproteinases (MMPs) released by tumor cells. Since ECM components are made
up of many macromolecules that have different physical and biochemical properties,
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the MDEs are required to break down the component in order for tumor cells to invade
the surrounding tissue.

Figure 1.2: Signalling communication between macrophage and tumor cell in
extracellular environment.

Based on the interaction, the movement of tumor cell and macrophages in
response to chemical gradient can be referred as chemotaxis. It has great significant
as proven in previous studies due to its critical role in a wide range of biological
phenomena. Keller and Segel [32] first used partial differential equations to model
the interactions of chemotactic cells (slime molds) and its secreted attractant (cAMP).
Many researchers utilized their model since it is able to capture key phenomena, is easy
to understand and analyzed analytically and numerically. For example, Lauffenburger
and others [33, 34] motivated by the KS model to describe the inflammatory response
of leukocytes to bacterial infection. Luca et al. [35] also investigated whether
the chemotactic aggregation of microglia may contribute to senile plaques during
development of Alzheimers diseases.

The earliest work that study the interaction between macrophages and tumor
cells in breast cancer was done by Knutsdottir et al. [36]. They used a system of partial
differential equations that consists of chemotaxis and reaction-diffusion equations to
model the signalling interactions between both cells. Elitas and Zeinali [37] then,
inspired by this work, developed another mathematical model in different sites. They
developed a mathematical model of movement and binding between macrophage and
glioma cells in the brain. Both models use the same type of signalling molecules,
namely colony stimulating factor-1 (CSF-1) and epidermal growth factor (EGF).

In Knutsdottir et al. [36] works, they considered the secretion terms for both
signals have linear relationship with the density of cells. In other words, the production
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of both chemical signals are increases when the density of cells increases. However,
this assumption is too simplistic and does not capture the true signal dynamics. Hillen
and Painter [38] suggest that the production of chemical signals are supposed to
saturate with increasing cells density which can be represented mathematically in the
form of nonlinear functions. A number of chemotactic models also used this term that
can be found in Maini et al. [39] and Myerscough et al. [40].

Besides, the model proposed by Knutsdottir and their co-workers does not
consider the interaction involving ECM. In real situation, the interaction involved
is not only between tumor cells and macrophage, but also ECM. This inclusion
is motivated from pioneering work carried out by Anderson et al. [41]. They are
among the earlier researchers who have developed a mathematical modelling using
continuum and discrete model that describe the invasion of host tisue by tumor cells
through ECM which is facilitated by MDEs. Afterwards, the model is improved by
other researcher considering various assumptions to enhance understanding about the
interaction involving tumor cell and ECM. Chaplain and Lolas [42] are one of them,
focused on continuum model that consider chemotaxis and haptotaxis mechanism by
tumor cells and remodelling of ECM after degrading process. Their work was then
extended by Tao and Cui [43] where they assume nonlinear density-dependent term
for chemotaxis and haptotaxis in tumor cells. Ramis-Conde et al. [44] take different
approach by proposing a hybrid discrete-continuum two-scale model to study the early
stage of tumor cell and its ability to invade the surrounding ECM.

1.3 Statement of the Problem

In breast cancer, the infiltration of macrophages lead to motility of tumor
cells. Tumor cells and macrophages communicate by signalling to each other to
form aggregation that results in migration. Previous researcher have proposed model
using chemotaxis and reaction diffusion equations to illustrate the interaction between
macrophages and tumor cells with their production of signalling molecules, EGF
and CSF-1 respectively. The model assume each production of signals have linear
relationship with the density of each cells. However, this assumption does not give a
better representation about the true dynamics of signals. The production of chemical
signals are supposed to saturate with increasing cells density. This term is in the form
of nonlinear functions which have been widely used in a several number of chemotactic
models.
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Besides that, the existing model published does not consider the involvement
of ECM and MDE during the interaction between macrophages and tumor cells.
In real situation, tumor cells need to penetrate ECM for migration towards higher
concentration gradients of EGF using MDE. This interaction also can be known as
invasion process by tumor cells. Many mathematical models have been developed
to illustrate this invasion process. Thus, this could help this research to develop
new interaction model to study the effect of the inclusion of ECM and MDE in the
interaction between tumor cells and macrophages.

1.4 Objectives of the Study

The objectives of this research are as follows:

1. To modify the mathematical model of interaction between macrophage and
tumor cell by considering nonlinear functions for signals production in each
cases:

• Paracrine signalling loop.

• Paracrine and autocrine signalling loop.

2. To modify the mathematical model of interactions between macrophages and
tumor cells with the inclusion of extracellular matrix (ECM) and matrix
degrading enzyme (MDE) by considering linear functions for signals production
in paracrine signalling loop cases.

3. To determine the conditions for cell aggregation by performing stability analysis
of the interaction models.

4. To validate the stability analysis of the interaction models and observe the
behaviour of the aggregation by performing numerical simulations.

1.5 Scope of the Study

System of one dimensional partial differential equation that consists of
chemotaxis and reaction-diffusion equation is used to develop a mathematical model
for interaction between macrophage and tumor cells in breast cancer. In this research,
the environmental cues involved in the interaction are epidermal growth factor, EGF,
colony stimulating factor-1, CSF-1 and matrix degrading enzyme, MDE.
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There are two methods to achieve the objectives which are stability analysis and
numerical simulations. In stability analysis, the perturbation method is use to linearize
the interaction models. In this research, small perturbation is introduced to the models
which it is in the form of exponential type. While in numerical simulations, a built in
PDE solver called pdepe in MATLAB software is used to solve the interaction models
to observe the aggregation behaviour. This solver is designed to solve parabolic and
elliptic systems with the constraints that there must be at least one parabolic equation
given.

There are limitation to validate the interaction models with the real data. Since
the human breast cancer data are not possible to obtain in local medical laboratory,
the results obtained are only compared with the previous researcher. In previous
researcher, the results obtained are validate with the experimental findings in the
literature that conducted on mice. Although it compared with mice, their results are
still relevant. This is because in clinical research, it is not suitable to experiment or
test directly on human being. Since mice is the most suitable animal that share almost
the same biological characteristics with human, thus the findings are practical to be
applied in human.

1.6 Significance of the Study

Macrophage is one of the earliest immune response that reaches the tumor
site to prevent tumor progression. However, the experimental studies reveal that
macrophages are able to promote the progression of tumor in certain types of cancer.
In the mathematics field, various mathematical models were developed based on
the tumoricidal capability of immune system. This research should inspire other
mathematical researchers to keep update about the new biological findings related to
tumor immunology obtained from experimental studies. Thus, they can contribute
either in developing new mathematical model or improve the existing model.

Besides, this research highlights the interactions between macrophages and
tumor cells results in spontaneous aggregation that leads to tumor spreading. Through
mathematical model, it is possible to determine the condition for aggregation so that
several actions can be proposed to medical experts during drug treatments. This effort
is aim to prevent tumor progression thus can reduce the death risk among cancer
patients.
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