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ABSTRACT 

During the past several decades, a considerable amount of studies has been 

carried out on finding the highest accurate forecast model. Recently, it has been 

demonstrated that combining forecasts of individual models can improve forecast 

performance. Nevertheless, in practice, selecting individual forecast for model 

combination based on forecast accuracy evaluation might not have extracted all the 

significant information for the actual output forecast values. Hence, it is advocated to 

select the optimal individual model from theoretical and experimental aspects that 

may be able to offer more information to provide a better prediction of combination 

forecast model. Thus, the mutual information algorithm scaling proposed (MI-S-P) 

approach is proposed in this study to select the optimal individual model as an input 

for combination forecast model. Seven individual models and three linear 

combination methods are applied in this study to evaluate the effectiveness of the 

MI-S-P approach. The data used in this study is a short term 12 months ahead 

forecast which includes the monthly data on the top five international tourists arrival 

entering into Malaysia from the year 2000 to 2013.  The results from this study is 

divided into two main parts, namely in-sample data (fitted model) and out-sample 

data (forecast model).  The analyses show that the in-sample and out-sample values 

using MI-S-P model has successfully improve forecast accuracy on average by 2% 

compared to using all of individual forecast combination models. This study 

concludes that MI-S-P approach can be an alternative way in identifying the right 

optimal individual model for modelling combination forecast model. 
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ABSTRAK 

Dalam beberapa dekad yang lalu, sejumlah besar kajian telah dijalankan 

untuk mencari model peramalan yang paling tepat. Baru-baru ini, menggabungkan 

model peramalan daripada beberapa model individu menunjukkan bahawa ianya 

boleh meningkatkan prestasi model peramalan. Walaubagaimanapun, secara 

praktikalnya, pemilihan model peramalan individu untuk membuat model gabungan 

berdasarkan penilaian ketepatan ramalan sahaja tidak mencukupi untuk mendapatkan  

maklumat penting bagi nilai data peramalan sebenar. Oleh itu, ianya adalah amat 

penting untuk memilih sub model individu yang optimum dari aspek teori dan 

eksperimen yang dapat memastikan lebih banyak informasi untuk menghasilkan 

model gabungan peramalan yang lebih baik.  Oleh itu, pendekatan algoritma teori 

skala maklumat (MI-S-P) adalah dicadangkan dalam kajian ini untuk memilih sub 

model individu yang optimum sebagai input untuk menghasilkan model peramalan 

gabungan. Tujuh model individu dan tiga  kaedah kombinasi model yang digunakan 

dalam kajian ini untuk menilai kecekapan model MI-S-P yang dicadangkan. Data 

yang digunakan dalam kajian ini adalah data bulanan jangka pendek 12 bulan 

ramalan ke hadapan iaitu daripada 5 negara pelancong terbanyak antarabangsa yang 

melawat Malaysia mulai tahun 2000 sehingga 2013. Hasil keputusan kajian ini 

dibahagikan kepada dua bahagian iaitu sampel data dalaman (sampel ujian) dan 

sampel data luaran (sampel ramalan). Analisis menunjukkan, pendekatan model   

MI-S-P  bagi sampel ujian dan sampel ramalan berjaya memperbaiki ketepatan 

ramalan sebanyak 2% secara purata adalah lebih tepat berbanding menggabungkan 

semua model individu peramalan. Kesimpulannya, kajian ini menunjukkan bahawa 

pendekatan MI-S-P boleh menjadi pendekatan alternatif bagi mengenalpasti model 

individu optimum yang terbaik untuk menghasilkan model peramalan gabungan yang 

lebih tepat. 
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INTRODUCTION 

1.1 Introduction 

This chapter provides an introduction of this study. The flow of this chapter 

starts with a background of the problem, statement of problem, research question, 

objective and scope of the study, research contribution, research data and research 

hypothesis. The organization of thesis plan in this study is includes at the end of the 

chapter as well.  

1.2 Background of Problem 

In forecasting fields, researchers continually explore for the most accurate 

individual model to generate a forecast. Much exertion has been committed in the 

course of recent decades to the advancement and evolution of forecasting models. 

Tourism forecasting model for time series data can be separated into two classes’ 

namely linear method and nonlinear method. The most widely recognized of the time 

series linear forecasting model are naive I and naive II methods, the exponential 

smoothing (ES) and winter multiplicative exponential smoothing (WMES) model, the 

regression model, autoregressive integrated moving average model (ARIMA) and 

seasonal ARIMA (SARIMA). Among them, ARIMA and SARIMA models are the 

most developed gauging model that has been effectively tried in numerous practical 

applications. 
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Although linear model have been widely used in tourism studies, if the linear 

models neglected to perform well in both in-sample fitted model and out-sample 

forecasting model, more intricate nonlinear models ought to be considered. In light of 

this perspective, numerous researchers have additionally plough to nonlinear methods 

such as neural network (NN) model, genetic algorithm (GA) and support vector 

regression models (SVR) as an alternative to the development of tourism forecasting 

model. Indeed, even there are as yet a couple of questions about NN, GA, and SVR 

based tourism demand forecasting performance, it is for the most segment trusted that 

the nonlinear models (NN, SVR, GA and etc.) in modelling economic behaviour and 

efficiently helping wise decision making.  

 

Some stationary phenomena practically speaking can be enamoured or if 

nothing else be approximated by linear and nonlinear models. Be that as it may, 

numerous nonstationary phenomena cannot be enamoured satisfactorily by these two 

linear and nonlinear models. For tourism contextual research, combination model is 

more precise to capture the tourism data for modelling forecast model. For this reason, 

an important motive to combine forecasts from different models is the fundamental 

assumption that one cannot identify the true process exactly, but different models may 

play a complementary role in the approximation of the data generating process. 

 

Thus, more researchers focus on combination method either linear combination 

or nonlinear combination. The idea of consolidating combining model began with the 

original work 45 years back of Bates and Granger(Bates.J.M and Granger.C.W.J, 

1969). Given two individual forecasts of a time series, they exhibit that a reasonable 

linear combination of the two forecasts may bring about a superior forecast results than 

the two original ones, in the feeling of a little error variance. . Previous studies have 

reported combination technique are likely to generate the best results which is higher 

than that of the individual models and leads to an improved forecast accuracy.  

 

Hence in recent years, several studies have revealed that combination 

forecasting has been ended up being a profoundly effective in determining accurate 

forecasting model in numerous fields, which has been exhibited by observational 

studies(Song, Gao and Lin, 2013), (Andrawis, Atiya and El-Shishiny, 2011), (Kuan-
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Yu and Chen, 2011), ,(Andrawis, Atiya and El-Shishiny, 2011; Li, Shi and Zhou, 

2011), (Freitas and Rodrigues, 2006), (Shen, Li and Song, 2011).  

However, the study of individual model process selection for combination 

forecast model is rarely studied in the literature. Much of the time, all available linear 

and nonlinear models are used as inputs for the combination model totally based on 

the result of the most accurate single model. This may lead to a wrong model selection 

in modelling combination forecast model. There is no comprehensive selection process 

in determining the optimum individual linear and nonlinear model in the sense of 

experimental and statistical theory perspective.  

In view of this, while many researchers had studied combination forecasting 

between linear and nonlinear individual model, new process selection using 

information theory approach for modelling combination forecast model has received 

less attention among the researchers. Thus, this research will study a new algorithm 

model selection process for modelling combination forecast model using mutual 

information theory algorithm in the development of tourism forecasting model in 

Malaysia.  

1.3 Statement of Problem 

Numerous researchers demonstrate that combination model is showing greatly 

improved than individual model in terms of robustness and accuracy. Regularly, the 

best individual linear or nonlinear model is chosen from a few individual models that 

has higher accuracy. At that point, this best individual model will be combined with 

other best model in order to produce higher precision forecast model based on forecast 

error evaluation.  

A noteworthy issue with this sort of combination model procedure is the point 

at which the total number of individual linear or nonlinear forecasting model is large. 

On the off chance that attempting every conceivable mix would include concentrated 

calculation and is to a great degree tedious. Shannon's information theory(Mackay 
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David, 2003) also argues that this procedure might not have extracted all the significant 

information for the actual output forecast values.   

Thus, this study will investigate and develop a new procedure selection using 

improve mutual information theory algorithm to select the optimal individual linear or 

nonlinear model for a combination forecast model that could contains enough 

information to forecast the actual outputs.  

1.4 Research Question 

Questions arise when developing mutual information theory algorithm in 

modelling combination forecast model using optimal individual model from output of 

individual forecast model. It can be summarized as follows: 

1. How to identify data pattern of time series data for modelling combination 

forecast model 

2. How to design and develop forecast output value matrix using time series 

model including winter's multiplicative exponential smoothing method, 

support vector regression-neural network (SVR-NN), ARIMA and 

Seasonal ARIMA  

3. How to select the optimal individual model using information theory for 

constructing a linear combination forecast model? 

4. Is the accuracy and robustness of the information theory algorithm for 

modelling linear combination model produce a better prediction model 

compared to individual model? 
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1.5 Objective of the Study 

The main objective of this study can be categorized into 4 parts. The objectives 

are stated as follows: 

1. To determine data patterns of tourist arrival time series data using unit roots 

and stationary test 

2. To generate forecast output values matrix of individual model for tourist 

arrival time series data 

3. To identify the best optimal individual model of all individual models using 

information theory for linear combination model 

4. To measure the robustness and effectiveness of the proposed model of 

information theory for short term forecast data. 

1.6 Limitation of the Study 

The limits of this study are: 

i. This study focuses on modeling linear combination model (simple average, 

Variance-Covariance, and Discounted mean square forecast error), 

individual time series model (ARIMA,SARIMA and Exponential 

smoothing), non-linear combination model ( support vector regression -

neural network). 

ii. Forecast accuracy in this study will be defined  by measuring the lowest 

error in term of mean absolute scale error (MASE) and mean absolute 

percentage error (MAPE). 

iii. Mutual information theory is applied to choose the optimal individual 

model as an input for linear combination model. 

iv. The data used is the secondary data of tourist arrival to Malaysia from the 

period of year 1999 to 2013 as a case study to assess the adequacy of the 

proposed forecast model. 
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v. The econometric forecast model using gross domestic product (GDP) and 

consumer price index (CPI) variable is not covered in this study because 

this study focus on developing tourism forecast model not on the impact of 

tourism analysis . 

vi. The forecast horizon of this study is limited to short term forecast for 12 

months data ahead only. 

1.7 Research Contribution 

Although many researchers in previous literatures such as research conducted 

by Bates and Granger (1969), Zhang ( 2003), Lessmann et al (2012) and Wang and Hu 

(2015) had been studied in many mathematical combinations forecast model 

development in finding the accurate one, there are as yet still no accurate combination 

forecast model which are able to determine time series data for modelling tourist 

arrival forecast model. This study attempts to determine the significant procedure in 

finding the best combination forecast model for forecasting tourist arrival time series 

data to Malaysia. The expected contribution of this study is five. 

First, the guidelines and procedures for identifying the data pattern analysis 

before model development is identified are presented. This guidelines will be useful 

for the purpose of this current research as well as for those who conducting similar 

study. This guideline also presents the method and ways to determine the data pattern 

characteristics of time series data. The details of it can be found in Chapter 3 and 4. 

Second, this study presents how to develop a linear and nonlinear fitted and 

forecast model in modelling accurate individual model using seasonal and nonseasonal 

time series data. Chapter 5 shows the details on developing fitted and forecast model 

for linear and nonlinear model. The fitted and forecast output of individual model is a 

foundation study for the development of combination forecast model. 

Third, this study attempts to develop a new procedure for modelling 

combination forecast model using mutual information theory algorithm as the 



7 

 

selection tools. This study presents an evidence to prove an individual forecasting 

model is not always best in all cases in developing accurate forecast model. Chapter 6 

shows the theoretical and experimental work of the development mutual information 

theory algorithm gives higher accuracy than the individual forecast model itself. 

Fourth, the modified selection procedure of using mutual information theory 

algorithm gives higher forecast accuracy as this study compares with the existing 

methodology using the same data input. This is due to the new algorithm may be able 

to offer more information to provide a better prediction model. The details of 

theoretical framework and results analysis of the selection procedure of using mutual 

information theory algorithm can be found in Chapter 3 and 6. 

Last but not least, the contribution of this study is the development of a system 

for selecting individual model procedure for modelling combination forecast model. 

This procedure has been develop the coding and VBA interface and it is not available 

in any of the current statistical packages. The development of this coding is vital not 

only for the tourism forecast model only, but it can also be applied for any forecasting 

model development in any sector. The programs of this system user can automatically 

choose the parameter and calculate the output. User do not have to know the algorithm 

behind the program as well. The development of the coding can be found in  Appendix 

C. 

1.8 Research Data 

Five different types of data are used in this work. The time series data are top 

5 countries (Singapore, Indonesia, Brunei, Thailand, and China) monthly tourist 

arrival to Malaysia from year 2000 until 2013. The data is secondary data provided by 

Malaysian Tourism Promotion Board.  
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