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ARTICLE INFO ABSTRACT

Seasonal influenza is a worldwide public health concern. Forecasting its dynamics can improve the management
of public health regulations, resources and infrastructure, and eventually reduce mortality and the costs induced
by influenza-related absenteism. In Belgium, a network of Sentinel General Practitioners (SGPs) is in place for
the early detection of the seasonal influenza epidemic. This surveillance network reports the weekly incidence of
influenza-like illness (ILI) cases, which makes it possible to detect the epidemic onset, as well as other char-
acteristics of the epidemic season. In this paper, we present an approach for predicting the weekly ILI incidence
in real-time by resorting to a dynamically calibrated compartmental model, which furthermore takes into ac-
count the dynamics of other influenza seasons. In order to validate the proposed approach, we used data col-
lected by the Belgian SGPs for the influenza seasons 2010-2016. In spite of the great variability among different
epidemic seasons, providing weekly predictions makes it possible to capture variations in the ILI incidence. The
confidence region becomes more representative of the epidemic behavior as ILI data from more seasons become
available. Since the SIR model is then calibrated dynamically every week, the predicted ILI curve gets rapidly
tuned to the dynamics of the ongoing season. The results show that the proposed method can be used to
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characterize the overall behavior of an epidemic.

1. Introduction

According to the World Health Organization (WHO) (WHO, 2016),
seasonal influenza is a worldwide public health concern and one of the
leading causes of death in the human population. The annual influenza
epidemics result in 3 to 5 million severe cases, and about 250,000 to
500,000 deaths (WHO, 2016; WIV-ISP, 2017). In countries with a
temperate climate, the seasonal influenza is more frequent during the
winter, but in tropical regions the outbreaks are irregular and can occur
year round. Monitoring campaigns of influenza epidemics include an
assessment of their intensity, duration, peaks and the timing of epi-
demic outbreaks. The definition of the onset of an epidemic is a crucial
point for the management of public health policies and infrastructure,
involving for instance alerts for hospitals and the implementation of
other health protocols (Nsoesie et al., 2014).

In Belgium, the Unit of Epidemiology and Public Health and the
National Influenza Centre (NIC) of Sciensano are responsible for the
influenza surveillance system (WIV-ISP, 2017). Since 2007 there exists
a network of so-called Sentinel General Practitioners (SGPs) whose

main goal is the early detection of an influenza epidemic, and an as-
sessment of its intensity and duration. The SGPs network includes about
1.5% of all Belgian GPs and is representative of them in terms of age,
sex and geographical spread. On a weekly basis the GPs provide stan-
dardized reports on the number of patients with an influenza-like illness
(ILI). High fever, respiratory and systemic symptoms are among the
general criteria for ILI (WIV-ISP, 2017).

In spite of the seasonality of influenza epidemics in temperate re-
gions, predicting the onset is still challenging due to differences in
meteorological conditions, virus types and human population dy-
namics. Indeed, across consecutive seasons there is much variability for
what concerns the onset, peak and duration. The epidemic of
2014-2015 in Belgium, for instance, was an intense one and had a long
duration. Influenza A(H3N2) was the predominant virus type during
this season in Europe and North America. There was a higher number of
hospitalizations with laboratory-confirmed influenza as compared to
the past seasons. In addition, as reported by the European system for
monitoring excess mortality for public health action, there was an ex-
cess all-cause mortality among elder people (more than 65 years old)
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during the season 2014-2015 in most of the reporting countries (ECDC
Summary, 2015; WHO Review, 2015). This illustrates the importance of
public health tools that are capable of real-time monitoring and fore-
casting the incidence of ILI cases.

Different modelling approaches for forecasting influenza can be
found in literature, such as time series, agent-based, metapopulation
and compartmental models (Brauer, 2008; Kane et al., 2014;
Soebiyanto et al., 2010). In recent reviews (Nsoesie et al., 2014;
Chretien et al., 2014), authors highlight the importance of a clear de-
finition of what is to be predicted, the scope and the limitations of the
proposed approach, as well as a clear description of the global eva-
luation measures that ease the comparison of different approaches.
Quantifying the performance of real-time approaches remains a chal-
lenge (Nsoesie et al., 2014), and is further complicated by the fact that
they use different data sources. In the last decade, digital data sources
have been used, such as Google Flu Trends (GFT) (Dugas et al., 2013;
GFT, 2017; Nsoesie et al., 2013; Shaman and Karspeck, 2012), Wiki-
pedia logs (Generous et al., 2014; Mclver and Brownstein, 2014),
Twitter (Paul et al., 2014), and others (Ginsberg et al., 2009). For in-
stance, a recent study using GFT data concludes that such data can be
used to forecast the week with the highest ILI incidence when these
data allow to infer trends, but not to forecast the highest ILI incidence
(Nsoesie et al., 2013). Although Google stopped publishing real-time
estimates on-line in 2015, the data is still available for researchers.

In contrast to retrospective approaches, their real-time counterparts
usually involve a dynamic adjustment of the underlying model para-
meters as additional data become available. Shaman and Karspeck
(2012) propose a method to identify the onset of an epidemic through
the use of a data assimilation method (the ensemble adjustment Kalman
filter), which combines data observations with an ensemble of simula-
tions obtained from a model in order to provide a posterior estimate of
the model parameters. Using a retrospective approach, the authors
show that it is possible to predict the weekly incidence of ILI cases.
Nsoesie et al. (2013) also present an approach for influenza forecasting
that combines an individual-based model and an optimization proce-
dure for finding the optimal parameter set based on GFT data.

In a recent study, Won et al. (2017) present a framework for the
early detection of influenza using data from three different sources: the
European Influenza Surveillance Network (EISN), GFT and Satde 24
(Servico Nacional de Satide, 2017). The authors show that a combina-
tion of data from different sources improves the model accuracy for
what concerns the identification of the onset of seasonal influenza.
Besides, another study shows the predictive potential of GFT data using
generalized linear models and generalized linear autoregressive moving
average models, claiming that GFT can be used to underpin a tool for an
early identification of the epidemics (Dugas et al., 2013).

In this paper, we propose an approach for the real-time prediction of
the weekly incidence of ILI cases of an ongoing epidemic up to its end.
It involves two steps, being the construction of a confidence region
based on the ILI data of previous seasons and a dynamic calibration of a
compartment model. The confidence region accounts for the variability
of the weekly ILI incidence among the seasons and the time of occur-
rence of a specific number of ILI cases. The compartment model is the
so-called SIR epidemic model (Kermack and McKendrick, 1927), and is
used to predict weekly incidence of ILI cases throughout the remainder
of an ongoing season from a given week on. For the dynamic calibra-
tion, an optimization algorithm is used to find the parameter set that
minimizes the difference between the simulated and the observed
weekly ILI incidence up to a given week. We evaluated the proposed
approach using Belgian SGP data for the influenza seasons 2010-2011
to 2015-2016.
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Fig. 1. Normalized weekly incidence of influenza-like illness (ILI) cases in
Belgium for the seasons 2010-2011 to 2015-2016. The normalized ILI data are
shown from week 35 of year i to week 34 of year i + 1.

2. Methods
2.1. Data

Fig. 1 shows the weekly ILI incidence in Belgium throughout the
seasons 2010-2011 to 2015-2016. These data were obtained from
Sciensano which supports health-policy-making in Belgium through
research (Sciensano, 2017). The reported values are normalized with
respect to the catchment population of the 43 Belgian districts, which
are administrative regions of that country. The catchment population
represents the average number of patients that visits the SGP network
per district. This normalization is carried out for each district as fol-
lows: the weekly ILI number is divided by the catchment population of
the corresponding district, and, then multiplied by its total population.
It was performed in order to extrapolate the ILI cases in the catchment
population of each district to the district's total population. We will
refer to the resulting data as the normalized ILI data.

In this paper, week 35 is considered as the first week of a new
season. Therefore, a season runs from week 35 of year i to week 34 of
year i + 1. We can observe the seasonality of the weekly ILI incidence
during the last six seasons in Fig. 1. Yet, there is considerable variability
among the epidemic seasons for what concerns the peak of the ILI
curve, the duration of the season and the week in which the highest
weekly ILI incidence is reported.

The highest ILI incidence was observed in seasons 2012-2013 and
2014-2015. Accordingly the epidemics during these seasons were
classified by Sciensano as seasons of high intensity with an ILI con-
sultation rate of about 1000 per 100,000 inhabitants (WIV-ISP, 2017).
The duration of these epidemics was also longer as compared to other
seasons. Season 2015-2016 may also be considered as a high intensity
epidemic, but with a lower ILI peak than in seasons 2012-2013 and
2014-2015. Seasons 2010-2011 and 2011-2012 have a similar beha-
vior, except for what concerns their onset, which occurred much later
for the latter. Still, both were characterized by moderate epidemics.
Season 2013-2014 is unique among the analyzed seasons because the
corresponding influenza epidemic was mild and of short duration.
Table 1 summarizes the main characteristics of the epidemics during
the studied seasons in terms of their onset, duration, the week of the
highest ILI incidence, the consultation rate (the number of consultations
per 100,000 inhabitants), the epidemic threshold calculated by the
European Centre for Disease Prevention and Control (ECDC) using the
MEM (Moving Epidemic Method) (Vega et al., 2013, 2015) method and
their intensity. The epidemic threshold accounts for the weekly ILI in-
cidence per 100,000 inhabitants.



G.H.B. Miranda, et al.

Table 1
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Characteristics of the Belgian influenza seasons 2010-2011 to 2015-2016. The onset is the first week at which the epidemic threshold was exceeded. This threshold is

provided by ECDC and calculated using the MEM method.

Season Onset (week/ ILI peak (week/ Duration (weeks) Consult. rate (consult/10° Epidemic threshold (ILI/10° Epidemic intensity
year) year) inhabitants) inhabitants)
2010-2011 50/2010 01-04/2011 12 500 148 Moderate
2011-2012 05/2012 07/2012 6 531 138 Moderate
2012-2013 52/2012 06/2013 12 1000 139 High
2013-2014 06/2014 09/2014 6 311 141 Mild
2014-2015 02/2015 06/2015 10 979 140 High
2015-2016 04/2016 09/2016 10 734 143.9 Moderate
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Fig. 2. Normalized weekly incidence of ILI cases (norm. ILI cases) and the SIR
model solution representing the simulated counterpart (sim. ILI cases) for the
season 2010-2011. Week 0 of the plot corresponds to week 50 of 2010, which is
the onset of the corresponding season.
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Fig. 3. Normalized weekly incidence of ILI cases for every season starting from
the onsets (week 0) given in Table 1.

2.2. The SIR model

The SIR model is an established compartmental model that can be
used to describe infectious disease dynamics (Kermack and
McKendrick, 1927). It assumes that the individuals of a population can
be placed in 3 compartments, namely Susceptible (S) individuals, those
able to contract the infection; Infected (I) individuals, those able to
propagate the infection, and Recovered or Removed (R) individuals,
who recovered from the infection or died. There are many variations of
this model (Allen, 1994; Anderson and Robert, 1991; Hethcote, 2000).
In such models, the total population is typically fixed, and hence they
neglect processes such as migration and birth. This is, however, not an
issue because an epidemic usually evolves much faster than birth-death
processes (Hethcote, 2000). The SIR model can be described by the

derived from a single infection.

The SIR and related models have been used by others to describe the
dynamics of influenza, and other infectious diseases such as measles
(Grenfell, 1992; Grenfell et al., 2002) and whooping cough (Lavine
et al., 2011). In order to show that the SIR model is able to capture the
dynamics of the Belgian influenza epidemics, we calibrated parameters
B and vy in Egs. (1)—(3) for each season separately using all available ILI
data for that particular season by means of the Nelder-Mead method
(Nelder and Mead, 1965) for minimizing the sum of squared differences
between the normalized and the simulated weekly incidence of ILI
cases. Fig. 2 presents the normalized and simulated weekly ILI in-
cidence for season 2010-2011. For this season, the simulated period
started in week 50 of 2010 in accordance with the onset reported in
Table 1. Therefore, week O corresponds to week 50 of this season. We
note that the normalized and simulated ILI dynamics are in very close
agreement, while also the peak of the weekly ILI incidence is accurately
described.

2.3. Real-time prediction of ILI incidence

2.3.1. The confidence region

Despite the variability regarding the epidemic onset, the seasonality
of influenza epidemics is one of their most distinctive features. For that
reason, time series are often used in the analysis of ILI incidence due to
its periodic behavior (Kane et al., 2014; Soebiyanto et al., 2010; Held
and Paul, 2012; Viboud et al., 2003). In this paper, we have at our
disposal a time series of ILI incidence for every epidemic season, which
can be shifted in such a way that week 0 corresponds to the onset, as
such allowing for the mutual comparison of different seasons on a
common basis, as shown in Fig. 3. This on its turn allows to characterize
the similarities among the seasons, model previous epidemics, and
underpin predictions for upcoming seasons. We will refer to the onset of
an epidemic season as week 0. The onsets of the investigated seasons
are shown in Table 1.

In order to obtain a single construct that captures the variability
among the studied seasons, we first account for the variability among
the weekly ILI incidence, denoted by n, at a given week across the
seasons. For this purpose, we calculate the mean weekly ILI incidence,
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Fig. 4. Construction of the confidence region. (a) Average weekly incidence of ILI cases, y,, and the corresponding standard deviation (sd), 0,,. (b) Boundary of the
confidence region along the vertical axis defined by y, + 0,,. (c) Average time of occurrence per ILI incidence value, i, and the corresponding standard deviation (sd),
0. (d) Boundary of the confidence region along the horizontal axis defined by p, + 0. (¢) Union of the envelopes defined in (b) and (d). (f) Final confidence region.

denoted by p, and the corresponding standard deviation o,. Then,
U, + 0, is used to define the boundaries of the so-called confidence
region along the vertical axis (Fig. 4(a) and (b)). Similarly, we analyze
the variability in time regarding the week in which a specific n was
observed. For that purpose, the interval between the minimum and the
maximum weekly ILI incidence (n) among the seasons was sampled to
obtain equally spaced ILI incidence values along the vertical axis. Then,
for every season separately, linear interpolation was used to retrieve the
time of occurrence, denoted by t, of every such ILI incidence value.
Subsequently, the resulting weeks were averaged per ILI incidence
value across the seasons, as such leading to y, and o, after which y, + o,
was used to define the boundaries of the confidence region along the
horizontal axis (Fig. 4(c) and (d)).

In a final step (Fig. 4(e)), the two regions are merged to a single
region that accounts for the variability among both the weekly ILI in-
cidence in a certain week and the time of occurrence of a certain weekly
ILI incidence. This was achieved by taking the union of the envelopes

shown in Fig. 4(b) and (d). The final confidence region on the basis of
the ILI data collected throughout all studied seasons is shown in
Fig. 4(f). Note that both o, and o, can be scaled in order to account for
less or more variability in the magnitude of the weekly incidence of ILI
cases and the time at which these occur.

2.4. Prediction of ILI incidence

Once the confidence region is constructed, it can be used together
with the calibrated SIR model to predict the weekly ILI incidence from
week i on, given data up to week i — 1 for the current season.

Let us denote the epidemic onset of season j as w¢, then in week w{
ILI data of season j up to that week are available, so the reported weekly
ILI incidence from some week w’,, up to week w{ can be used for
predicting the weekly ILI incidence from week w; on. This is achieved
by using data from weeks w/,, up to w{ to calibrate the parameters of

Egs. (1)-(3) using the Nelder-Mead optimization algorithm (Nelder and
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Fig. 5. Selection of acceptable model parameters. (a) ILI incidence curves obtained for 30 runs of the optimization algorithm starting from 30 initial guesses of 8 and
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Fig. 6. Predicted weekly ILI incidence (gray) throughout season 2010-2011 for different starting weeks of the simulated period, together with the normalized ILI data
(black). The epidemic onset and the start of the simulated period, the current week (curr. week), are shown in blue and red, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Mead, 1965). Given the heuristic nature of this optimization algorithm,
initial guesses are needed for the parameters 3 and y to initialize the
search. Yet, these affect the values of the calibrated parameters, with
consequent effects on the predicted weekly ILI incidence. In order to
account for this issue, the confidence region is used to select meaningful
parameter sets. More specifically, for each initial guesses of f and y and
given ILI data up to week i, it is verified whether the predicted ILI in-
cidence for week i + 1 that is obtained using the resulting calibrated

model falls within the confidence region. If so, the corresponding
parameter set is added to the set of acceptable parameters sets.

Fig. 5(a) shows all ILI curves for season 2014-2015 corresponding
to 30 random initial guesses of 3 between 0 and 12.5, and y between 0
and f, therefore, each curve corresponds to a single run of the opti-
mization algorithm. The simulated periods start one week before the
onset (week 0). In Fig. 5(b), we see only those curves whose prediction
for the subsequent week in relation to the current week (red dot) falls
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Table 2

Estimated model parameters  and y, mean absolute error (MAE), root mean
squared error (RMSE) and Pearson correlation coefficient between the nor-
malized and simulated weekly ILI incidence for seasons 2010-2011 to
2015-2016.

Season 5 b2 MAE RMSE Corr.
2010-2011 4.635539 4.280132 2091.08 3035.25 0.985
2011-2012 8.376870 7.657043 1825.54 2722.60 0.989
2012-2013 4.231897 3.722846 2072.34 3448.29 0.994
2013-2014 8.607093 8.152276 860.92 1252.99 0.993
2014-2015 6.068778 5.288085 2609.47 3982.24 0.994
2015-2016 4.714837 4.207067 2676.26 4479.31 0.986

within the confidence region constructed on the basis of the ILI data of
the other seasons. The parameter values corresponding to the latter
curves are averaged (3 and 7) and the resulting ILI incidence curve forB
and 7 is plotted (Fig. 5(c)).

Fig. 6 depicts the predicted weekly ILI incidence for season
2010-2011 when increasingly more ILI data become available for that
season and after 300 runs of the optimization algorithm for each plot.
The shaded area corresponds to the confidence region that was con-
structed on the basis of the other seasons. In the first plot of Fig. 6, for
instance, the simulated period starts at the onset of the 2010-2011
epidemic (Table 1) and only ILI data from weeks 0 and —1 were used
for calibrating the model parameters. As ILI data of more weeks become
available, these can then be used for model recalibration. The re-
maining plots of Fig. 6 present similar results for different starting
weeks of the simulated period.

3. Results
3.1. Analysis of the SIR model for the Belgium epidemic seasons

Table 2 lists for every season the calibrated SIR model parameters,
together with the mean absolute error (MAE) and root mean squared
error (RMSE) quantifying the discrepancies between the normalized
and simulated weekly ILI incidence, and the Pearson correlation be-
tween those. From this table it is clear that the SIR model accurately
describes the dynamics of the seasonal influenza epidemics in Belgium,
but also that the values of the calibrated parameters § and y vary
considerably across the seasons. Still, the MAE and RMSE are relatively
small compared to the total Belgian population size during the studied
seasons. Besides, the Pearson correlation coefficients are always very
high, indicating a distinct linear relationship between the normalized
and simulated weekly ILI incidence.

As explained before, the epidemic onsets of the consecutive seasons
are identified with the first week in which the epidemic threshold, as
defined by Sciensano, was exceeded. This is an important point because
a more accurate description of an epidemic can be obtained as the start
of the simulated period approaches the true onset. Therefore, knowing
the epidemic onset is a prerequisite for reliably simulating influenza
dynamics. Moreover, it gives a common ground to mutually compare
seasonal influenza epidemics by shifting the outbreak curves in such a
way that week zero corresponds to the onset given in Table 1. From
Fig. 3 it is once more clear that there exists a considerable variability
among the studied seasons in terms of both the weekly ILI incidence
and the week in which, for instance, the highest ILI incidence was ob-
served.

3.2. Accuracy of the proposed approach

Our dataset consists of time series of ILI incidence during the sea-
sons 2010-2011 to 2015-2016. We evaluated the accuracy of the
proposed approach in predicting the weekly ILI incidence using cross-
validation where each season was considered once as the “current”
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season, i.e., the validation season, while the remaining seasons were
used for constructing the confidence region and hence made up the
calibration set. The final model parameters are the averages of those
obtained at the end of 300 runs of the optimization algorithm, ex-
cluding the parameter sets that led to ILI incidence curves not enclosed
by the confidence region. We adopted the average population size in
Belgium from 2010 up to 2016" as the value of N in Egs. (1)-(3). Fig. 7
presents the predicted weekly ILI incidence during season 2010-2011
using data from season 2011-2012 up to 2015-2016 for different
starting weeks of the simulated period. In this case, the confidence
region was generated using ILI data from the latter seasons. From now
on, we will denote as simulated period the time lapse between the first
week of which ILI data are used and the last week for which the weekly
ILI incidence is predicted.

Each plot in Fig. 7 demonstrates the agreement between the nor-
malized and predicted weekly ILI incidence. As an example, consider
Fig. 7(a), where only ILI data up to the epidemic onset are available.
The start of the simulated period is initially set to —1, i.e., one week
before the onset and the predictions are obtained from week 1 on. As ILI
data for a next week arrive, the model can be recalibrated, which is
visualized by the plot sequence in Fig. 7(a). Similar results are pre-
sented in Fig. 7(b) and (c), but for a simulated period starting in weeks
—2 and —3, respectively. From Fig. 7 we infer that the start of the
simulation period does not significantly impact the obtained results.
Yet, using data up to week 3, the best agreement between the simulated
and the normalized weekly ILI incidence was obtained if the simulated
period started one week before the epidemic onset (Fig. 7(a)).

Fig. 8 presents similar outputs, but now for season 2014-2015,
which was of high intensity (Fig. 1). Together with 2012-2013, these
two seasons have a great influence on the shape of the upper boundary
of the confidence region. For season 2014-2015, the predictions ob-
tained using data up to the peak (weeks 4 and 5) are not influenced by
the choice of the start of the simulated period (Fig. 8(a)-(c)), but the
number of weeks used before the onset has a greater influence.

One issue that was observed for season 2014-2015 was the low
number of sets of model parameters leading to curves falling within the
confidence region. When starting three weeks before the onset there
was no parameter set leading to predictions up to week 4 (Fig. 8(c)),
and, the success rate is less than 3% when using data up to weeks 2 and
3. Moreover, when using data up to five or more weeks, more than 96%
of sets of model parameters passed the check. This is due to the fact that
season 2014-2015 has one of the highest peaks of ILI cases among the
six seasons (Fig. 3), and, therefore, since it is left out of the calibration
set for the construction of the confidence region (generated with the
remaining seasons), the latter may not cover any predictions for some
weeks of this season. However, since there is another season (season
2012-2013) with a similar peak, although with a different onset, and
which was used to construct the confidence region, it was possible to
obtain predictions for the majority of the weeks in season 2014-2015.
However, when considering season 2012-2013 as the validation set, we
could obtain predictions for all the weeks. This can be explained by the
fact that the peak of this season was observed a few weeks later when
compared to the peak of season 2014-2015, and, there is much more
variability of the ILI incidence among the seasons after the peak
(Fig. 3). Therefore, the descending part of the confidence region gen-
erated for season 2012-2013 covers predictions for all the weeks.

An overview of the predicted weekly ILI incidence for the other
seasons can be seen in Fig. 9. Fig. 9(a) presents the normalized ILI cases
for season 2011-2012 starting from week —1, while Fig. 9(b)-(d)
present the same number for seasons 2012-2013 up to 2015-2016,
respectively, starting from week —2. In general, moderate and mild
seasons lead to ILI incidence curves that are enclosed by the confidence

! Source: Directorate-general Statistics - Statistics Belgium (https://statbel.
fgov.be/en).
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region, since the high intensity seasons are the ones that determine the
boundaries of the confidence region.

3.3. Error analysis

Fig. 10 shows the mean absolute error (MAE) and the root mean
square error (RMSE) between the normalized and the simulated weekly
ILI incidence, as well as the cross-correlation considering different time
lags. Each row in this figure corresponds to a different season and each
column to a different starting week. Each dot in the plots corresponds to
the average error over 10 predicted ILI incidence values (weeks 0-9),
together with the corresponding standard deviation.

As expected, the smallest errors were obtained for a zero time lag for
the majority of the seasons and starting weeks, which indicates that
there is no shift between the time series of the normalized and the
predicted values. In addition, the highest correlation was also observed
for time lag zero. Yet, when comparing the errors across the consecutive
seasons we see that the largest errors were obtained for season
2014-2015. This corroborates the results shown in Fig. 8, since this
season defines the upper boundary of the confidence region. The error
analysis also shows that the best agreement between the normalized
and predicted weekly ILI incidence was obtained for season 2013-2014.
Moreover, in general, the start of the simulated period did not affect the
error indices and correlation coefficients.

4. Discussion

The epidemic threshold is provided by ECDC and used by several
European countries in order to increase international comparability.
This way, in a weekly-reporting system of ILI cases, as in Belgium, the
epidemic onset can be rapidly tracked. However, there is a great
variability among different epidemic seasons for what concerns the
behavior of the epidemic after its onset. This variability concerns for
instance the time to reach the peak and the duration of the epidemic.
Providing weekly predictions makes it possible to capture variations in
the ILI incidence, on the basis of which public health strategies can be
updated and or revised. Many related studies discuss how purely me-
chanistic models, such as the SIR model, can be improved in order to
arrive at more accurate and more reliable predictions. Among the
proposed methods, some rely on filtering or data assimilation methods,
which make use of recursive approaches so that the evolving char-
acteristics of the epidemic can also be modeled and the model para-
meters can be dynamically updated (Yang et al., 2014; Ray and Reich,
2018). This is the case, for instance, of methods relying on the Ensemble
Kalman Filter (EnKF) or the Ensemble Adjustment Kalman Filter (EAFK)
(Shaman and Karspeck, 2012) and particle filtering (Huang and Provan,
2016). However, the optimal method also depends on the final appli-
cation (Reich et al., 2018).

In comparison, the method presented in this paper makes use of a
confidence region generated from data of other epidemic seasons that is
used as a filter for the weekly SIR predictions. Therefore, it accounts for
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Fig. 10. MAE (mean absolute error), RMSE (root mean square error) and correlation between the normalized and the predicted weekly ILI incidence per season
(rows) and per starting week of the simulated period (columns) for different time lags.

the statistical properties of the epidemic data. The proposed approach
can be used for the real-time prediction of the weekly ILI incidence,
where the model parameters could be updated as new counts of the
number of ILI cases become available. We demonstrated the applic-
ability of the proposed method for what concerns the seasonal influenza

10

epidemics in Belgium during seasons 2010-2011 to 2015-2016. It takes
into account the records of seasonal influenza epidemics in Belgium
using a confidence region, and in this way allows to incorporate the
variability existing among the consecutive influenza seasons. Clearly, as
ILI data from more seasons become available, the more representative
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this confidence region becomes. Still, if the ILI incidence curve of a new
season lies close to and above the one(s) that define(s) the boundaries
of the confidence region, then the predicted weekly ILI incidence for
that particular season might be underestimated. Likewise, seasons
characterized by a steep ILI incidence curve can also be hard to predict.
This problem can, however, be partially overcome by scaling the
standard deviations o,, and o, by accounting for the amount of varia-
bility in the magnitude of the weekly ILI incidence and the time at
which these occur. Moreover, the SIR model is calibrated dynamically
every week as new ILI data from the SGP becomes available, such that
the predicted ILI curve gets rapidly tuned to the dynamics of the on-
going season.

The proposed approach can be used as a decision-supporting tool for
medical centers and health-care services, as it yields scientifically un-
derpinned predictions of the weekly ILI incidence throughout the on-
going epidemic season. Its implementation is straightforward, few
computational resources are needed and it is based on an established
modeling framework. This implies that it could as well be used for
predicting the weekly ILI incidence in other countries that suffer from
seasonal influenza outbreaks, provided that the confidence region is
constructed on the basis of ILI data of those countries. For what con-
cerns the shift of the seasons to their onset, we have demonstrated that
this procedure allows to characterize the behavior of the epidemics
despite the temporal displacement of the beginning of the epidemic
observed for the different seasons. Therefore, the confidence region
accounts only for the epidemic period. As a future analysis, when es-
timating the parameters, it would be useful to take into account the
circulating strains and their match (or mismatch) with the vaccine of a
specific influenza season, since this may have a contribution to the
dynamics of the epidemic.
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