Stabilizing Red Fluoride Phosphors for White LEDs using Atomic Layer Deposition

<u>Reinert Verstraete</u>^{1,2}, Hannes Rijckaert³, Geert Rampelberg^{2,4}, Elizabeth Coetsee-Hugo⁵, Mart-Mari Duvenhage⁵, Christophe Detavernier^{2,4}, Hendrik Swart⁵, Philippe F. Smet^{1,2} and Dirk Poelman^{1,2}

 LumiLab, Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium.
2 Center for Nano- and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
3 Sol-Gel Centre for Research on Inorganic Powders and Thin Film Synthesis (SCRiPTS), Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
4 Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium

5 Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300, South Africa Corresponding author e-mail address: <u>Reinert.Verstraete@UGent.be</u>

Recently, red fluoride phosphors such as $K_2SiF_6:Mn^{4+} I^{-2}$ gained a lot of attention as the red component of white light-emitting diodes (wLEDs). As the $[MnF_6]^{2-}$ complexes show a narrow luminescence band centered at around 630 nm upon blue LED excitation, they possess distinct advantages over the frequently used Eu²⁺-based nitride phosphors. The latter suffer from reabsorption issues if used in a phosphor blend. Moreover, the attainable luminous efficacy of wLEDs using red Eu²⁺-doped nitrides is limited since a considerable fraction of the nitride emission extends above 650 nm, a spectral region in which the human eye sensitivity is low.

Despite the excellent optical properties of many fluoride phosphors, a remaining hurdle is the moisture sensitivity of these materials. Hence, surface passivation of fluoride phosphors has been an important topic in recent literature³⁻⁸. Conventional passivation methods are based on wet chemical processes, degrading the pristine material. Moreover, in heterogeneous core-shell approaches, the fluorine terminated surface of the core shows a lack of functional sites (e.g. hydroxyl groups) inhibiting efficient bonding with typical shell materials.

In this work, the use of atomic layer deposition (ALD) for growth of Al_2O_3 and TiO_2 seed layers on fluoride phosphor particles is investigated. The coated phosphors have hydroxyl-saturated surfaces that are compatible for further bonding with hydrophobic shells. It was found that Al_2O_3 seed layers suffer from blistering, pore-formation and delamination. In contrast, conformal and uniform layers of TiO_2 could be grown. Unlike the untreated phosphor, the TiO_2 coated phosphor could easily be further treated with a hydrophobic shell.

⁽¹⁾ Sijbom, H. F.; Verstraete, R.; Joos, J. J.; Poelman, D.; Smet, P. F. K₂SiF₆:Mn⁴⁺ as a Red Phosphor for Displays and Warm-white LEDs: a Review of Properties and Perspectives. Opt. Mater. Express 2017, 7, 3332-3365.

⁽²⁾ Verstraete, R.; Sijbom, H. F.; Joos, J. J.; Korthout, K.; Poelman, D.; Detavernier, C.; Smet, P. F. Red Mn⁴⁺-Doped Fluoride Phosphors: Why Purity Matters. ACS Applied Materials & Interfaces 2018, 10, 18845-18856.

⁽³⁾ Nguyen, H. D.; Lin, C. C.; Liu, R. S. Waterproof Alkyl Phosphate Coated Fluoride Phosphors for Optoelectronic Materials. Angewandte Chemie 2015, 54, 10862-10866.

⁽⁴⁾ Murphy, J. E.; Garcia-Santamaria, F.; Setlur, A. A.; Sista, S. PFS, K₂SiF₆:Mn⁴⁺: the Red-line Emitting LED Phosphor behind GE's TriGain Technology[™] Platform. SID Symposium Digest of Technical Papers 2015, 46, 927-930.

⁽⁵⁾ Huang, L.; Liu, Y.; Yu, J.; Zhu, Y.; Pan, F.; Xuan, T.; Brik, M. G.; Wang, C.; Wang, J. Highly stable $K_2SiF_6:Mn^{4+}@K_2SiF_6$ Composite Phosphor with Narrow Red Emission for White LEDs. ACS Applied Materials & Interfaces 2018.

⁽⁶⁾ Zhou, Y. Y.; Song, E. H.; Deng, T. T.; Zhang, Q. Y. Waterproof Narrow-Band Fluoride Red Phosphor K₂TiF₆:Mn⁴⁺ via Facile Superhydrophobic Surface Modification. ACS Applied Materials & Interfaces 2018, 10, 880-889.

⁽⁷⁾ Arunkumar, P.; Kim, Y. H.; Kim, H. J.; Unithrattil, S.; Im, W. B. Hydrophobic Organic Skin as a Protective Shield for Moisture-Sensitive Phosphor-Based Optoelectronic Devices. ACS Applied Materials & Interfaces 2017, 9, 7232-7240.

⁽⁸⁾ Jiang, C.; Brik, M.; Srivastava, R. I.; Li, L.; Peng, M. Significantly Conquering Moisture-induced Luminescence Quenching of Red Line-Emitting Phosphor $Rb_2SnF_6:Mn^{4+}$ through $H_2C_2O_4$ Triggered Particle Surface Reduction for Blue Converted Warm White Light-Emitting Diodes. Journal of Materials Chemistry C 2018.