

A Comparison Between Conventional Earth Observation Satellites and CubeSats: Requirements, Capabilities and Data Quality

Dietmar Backes¹, Saif Alislam Hassani¹, Guy Schumann^{2,3} and Felix Norman Teferle¹

Geodesy and Geospatial Engineering, RUES, University of Luxembourg, Luxembourg RSS-Hydro Sarl-S, Dudelange, Luxembourg School of Geographical Sciences, University of Bristol, United Kingdom

Content:

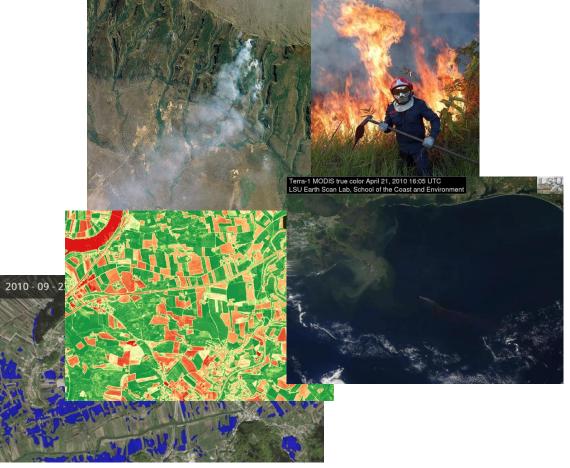
- Optical Earth Observations (EO) from Lower Earth Orbit (LEO)
- Some Principles of Optical Spaceborne Imaging
- Conventional Satellites vs. CubeSats
- Practical Examples
- Summary and Outlook

Earth Observation Applications

Disasters:

- Volcano and wild fire
- Flooding
- Monitoring geo hazards
- Deformation monitoring

Environmental Monitoring:

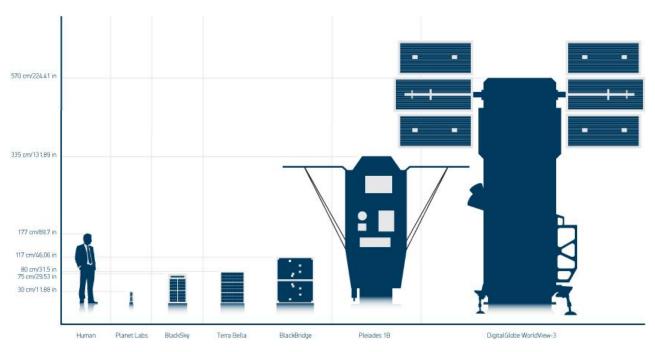

- Water quality
- Pollution, oil spills etc.

Farming and agriculture:

- Crop monitoring
- Forest monitoring

Mapping

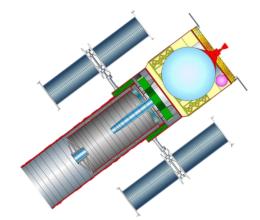
Topographic mapping


Credit: Sentinel-hub

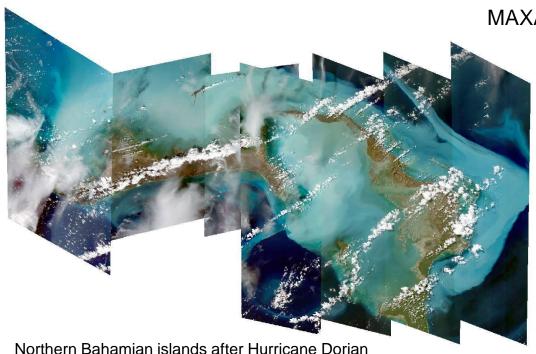
etc.

Conventional EO Satellites vs. CubeSats

Credit: Digital Globe 12/2016


...so where are the differences?

Pictures from Space



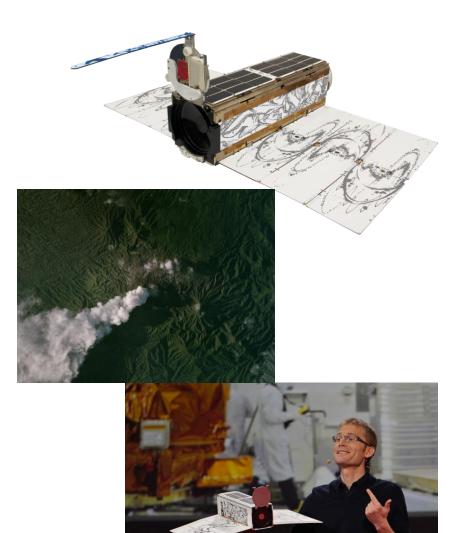
Spaceflight now 30/08/2019, Images of Semnan launch site Credit: Planet, Maxar and @realDonaldTrump

- Left: captured by Planet approx. 3m resolution (Dove, RapidEye or Skysat)
- Centre: Maxar/Digital Globe WorldView2 Satellite approx. 0.3m resolution
- Right: US intelligence image https://twitter.com/realDonaldTrump/status/1167493371973255170
 suspected KH11 type satellite (USA-244)

Very High-resolution Images by WorldView

WorldView 2 Satellite

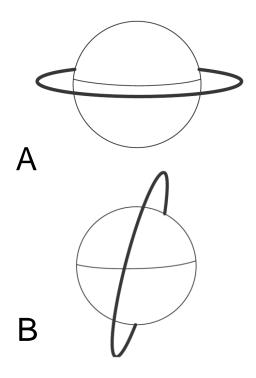
- Multispectral images captured from a single orbit
- 29,900 km2 in 7 separate scenes
- Highly agile: body-pointing range of $\pm 40^{\circ}$ correspondent to 1355km FOR cross-track
- Pointing accuracy <500 m at image start and stop
- Large 2.2 TB on-board storage;
- Imagery is downlinked in X-band at 800 Mbit/s
- Theoretical 1.1 day revisit time

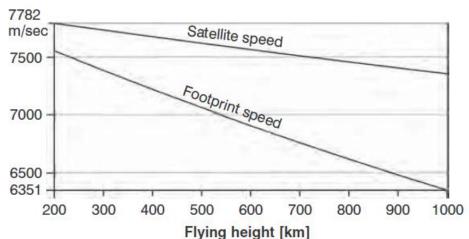


High-resolution Optical Images from CubeSats

Table 2
Preliminary assessment of the feasibility of Cubesat-based missions carrying different remote sensing technologies.

Technology	Feasibility assessment (feasible/problematic/ infeasible)	Justification		
Atmospheric chemistry instruments	Problematic	Low sensitivity in SWIR-MIR because of limited cooling capability		
Atmospheric temperature and humidity sounders	Feasible	e.g., GNSS radio occultation, hyperspectral millimeter-wave sounding		
Cloud profile and rain radars	Infeasible	Dimensions, power		
Earth radiation budget radiometers	Feasible	[63]		
Gravity instruments	Feasible	[64]		
High resolution optical imagers	Infeasible	Not enough resolution-swath, because limited space for optics and detectors		
Imaging microwave radars	Infeasible	Limited power		
Imaging multi-spectral radiometers (vis/IR)	Problematic	Limited imaging capability		
Imaging multi-spectral radiometers (passive microwave)	Problematic	Limited imaging capability		
Lidars	Infeasible	Limited power		
Lightning imagers	Feasible	[30]		
Magnetic field instruments	Feasible	[65]		
Multiple direction/polarization radiometers	Problematic	Limited dimensions for receiver electronics		
Ocean color instruments	Feasible	[4]		
Precision orbit	Feasible	[66]		
Radar altimeters	Infeasible	Dimensions		
Scatterometers	Infeasible	Dimensions		


Selva, D., Krejci, D., 2012. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut. 74, 50–68. https://doi.org/10.1016/j.actaastro.2011.12.014

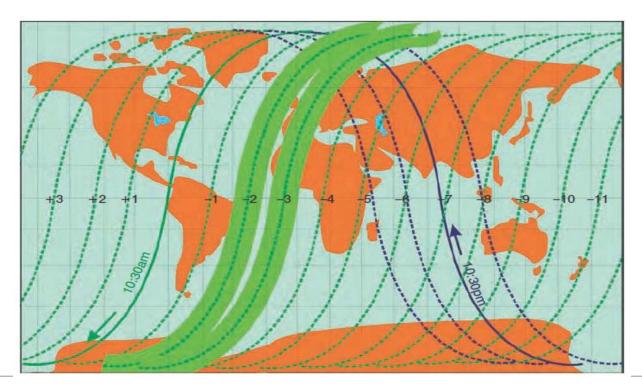


Low Earth Orbits (LEO)

- Basic principle:
 - a) Equatorial obit
 - Uncommon for conventional EO
 - b) Sun-synchronous, near-polar orbit with 98° inclination
 - most common orbit for optical EO satellites
 - orbit period approx. 90 min at 700-800km
- Satellite Speed as a function of flying height in a circular orbit:
 - Approx. 7 km/s for EO satellites
 - t_{dwell} (1m GSD) ~ 0.14msec
 - $t_{int} < t_{dwell}$

Low Earth Orbits (LEO)

Example Ikonos2 (typical for EO satellites)


o Inclination: 98.1°

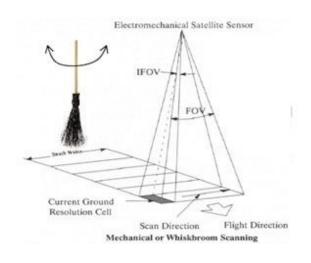
Period: 97 min

Equatorial crossing: 10:30 am solar time

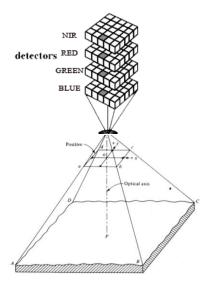
Altitude: 681km

Satellite speed: 7.613 km/s Footprint speed: 6.878 km/s

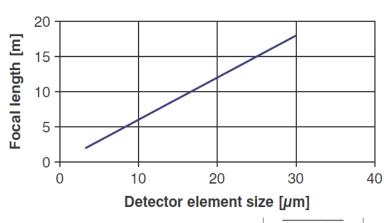
Low Earth Orbits (LEO)


Revisit time:


- is a function of swath width, spacecraft agility/pointability and the number of space crafts
- Often called 'temporal resolution'



Principles of Imaging Sensors



Staring, frame Geometry

Relationship between detector element, focal length, orbit height and GSD:

$$f = \frac{H_{Orbit}}{GSD} \cdot x$$

The figure shows the relationship between required focal length and detector size for a orbit altitude of 600km at 1m GSD.

Important Requirements for Spaceborne Imaging Systems:

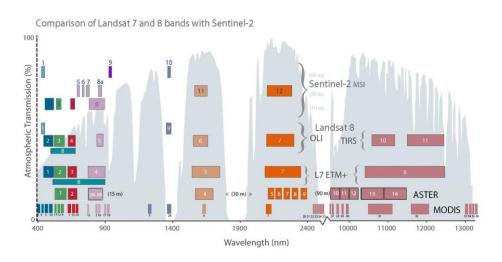
Spatial resolutions and quality:

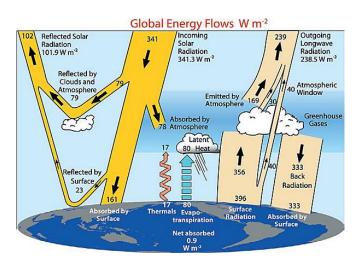
$$MTF_{SR} = MTF_{Optics} \cdot MTF_D \cdot MTF_{PS}$$

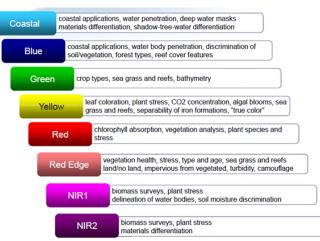
- Radiometric aspects:
 - Higher resolution means smaller amounts of energy from smaller ground pixels
 - Time related factor: dwell time (t_{dwell}) and geometry related factor (IFOV)
 - E.g. the reduction of 10m to 1m GSD reduce the amount of energy at the detector by approx.
 1000.
- Pointing accuracy:
 - Start and stop pointing: < 500m
 - Geolocation accuracy: 6.5m

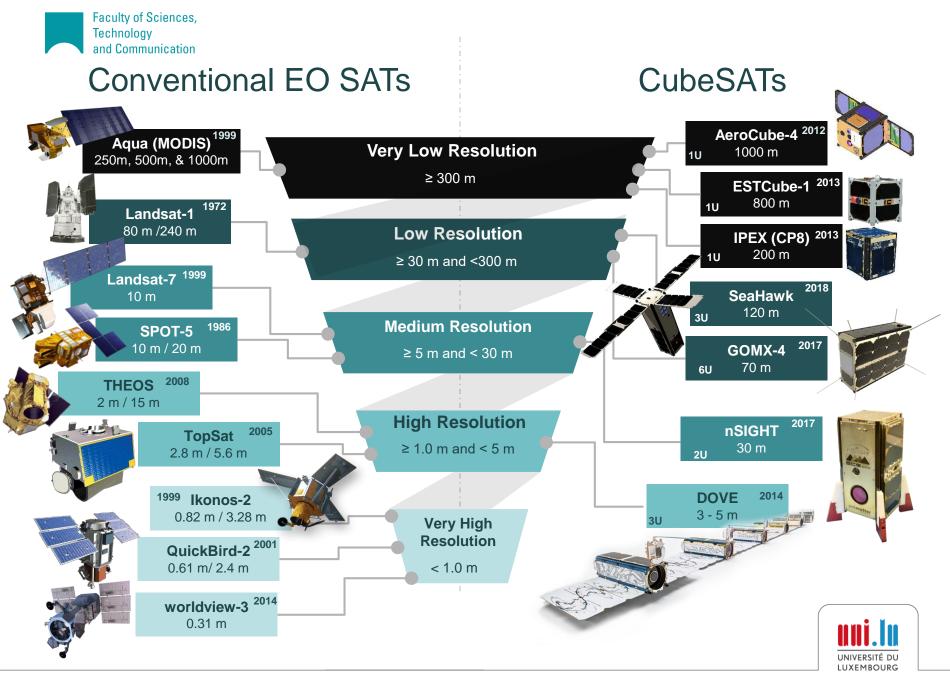
Common specification for high-resolutions EO systems

Platform stability:


$$MTF_{PS} = MTF_{LM} \cdot MTF_{J} \cdot MTF_{sin}$$






Resolutions

- Temporal resolution/revisit time
- Geometric or spatial resolution
- Spectral resolution:
 - Multispectral, Hyperspectral
 - Visual, NIR, SWIR and TIR
- Radiometric resolution
 - 10 -11 bit

Evolution of Optical EO Satellites:

WorldView-4 Launch Mass 2,485kg

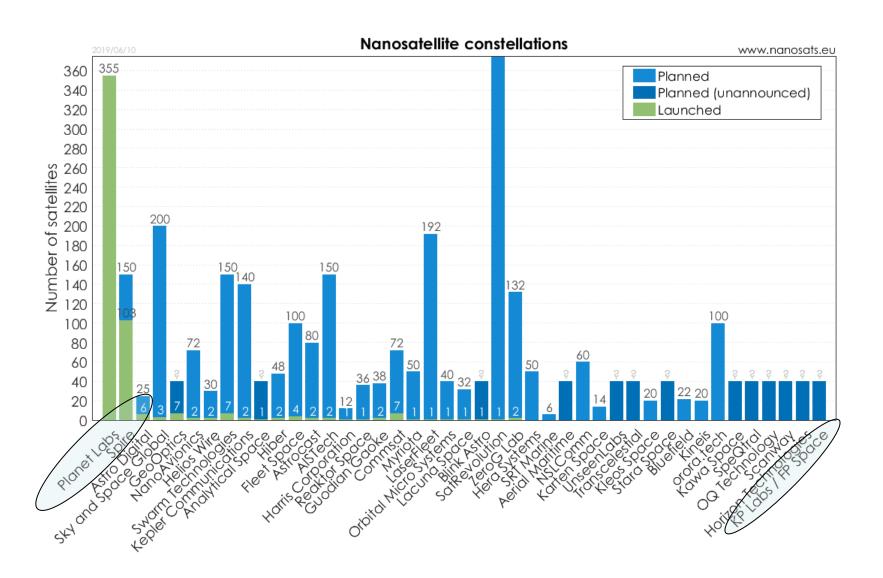
Pleiades Launch Mass 970kg

Planetscope (Dove)

Launch Mass 4kg

Sentinel-2 Launch Mass 1,130

Landsat-8 Launch Mass 2,780kg


Aqua (MODIS) Launch Mass 2,934kg

Launch Date	Organisation			Orbit	GSD		Pointing capability/Agilit	
1972 - 2013	NASA	Landsat	Landsat 1-3	907 to 915 km, 99°	80m	Multi spectral Scanner (MSS)	Up to 10.3° off nadi	
			Landsat 4-5	705 km, 98.2°	30m	Thematic Mapper (TM)		
			Landsat 7		30m	Enhanced Thematic Mapper Plus (ETM+) 8-band whiskbroom scanning radiometer	Up to 7.5° off nadir	
			Landsat 8		30m	Operational Land Imager (OLI) similar spectral bands to the ETM+	Up to 7.5° off nadir	
1998-03-24	CNES (Centre national d'études spatiales)	Spot 1- 4		832 km, 98.8°	10 PAN / 20 MS	High-Resolution Visible and Infrared sensor (HRV IR)	± 27°	
1999-09-24	Space Imaging/ GeoEye Inc.	Ikonos-2		681 to 709 km, 98.1°	1 m PAN (0.82 m at nadir), 4 m MS (3.2 m at nadir)	Kodak Optical Sensor Assembly (OSA) Pushbroom detector	±30°	
1999-12-18			ASTER	705 km	15 m VNIR 30 m SWIR 90 m TIR 15 m Stereo	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 14 bands	0° /27°	
2002-05-04	NASA		Terra	MODIS	705 km	250 m (bands 1–2) 500 m (bands 3–7) 1000 m (bands 8–36)	Moderate Resolution Imaging Spectroradiometer (MODIS) Medium-resolution, multi-spectral, cross-track scanning radiometer 36 spectral bands	
2001-10-18	DigitalGlobe Inc	QuickBird-2		450 km, 97.2°	0.61 m (PAN) and at 2.4 m (MS)	Ball Global Imaging System 2000 (BGIS 2000) Pushbroom array	±30°	
2002-05-04	CNES (Centre national d'études spatiales)	Spot-5		832 km, 98.7°	5m (single) 3.5m (double) PAN / 10m MS	High Resolution Geometric (HRG) High Resolution Stereo (HRS)	± 27° HRG ± 20° HRS	
2008-08-29	RapidEye/Planet	RapidEye		630 km, 98°	6.5 m	Jena-Optronik RapidEye Earth Imaging System (REIS) Multispectral pushbroom sensor 5 spectral bands	±20°	
2013-11-21	Skybox/Terra Bella/Planet	SkySat		600 km, 97.8°	90 cm PAN / 2.0 m MS	CMOS frame detectors (30f/s video from space)		
2014-08-13	DigitalGlobe Inc/MAXAR	WorldView-3		617 km	0.31 m PAN 1.24 m MS 3.7 m SWIR	Panchromatic, 8 Multispectral and 8 SWIR bands	±40º (nominal in any direction)	
2015-06-23	ESA and EU (European Commission - Copernicus)	Sentinel-2 (a, b)		786 km, 98.5°	10 m: (VNIR) B2, B3, B4, B8 (4 bands) 20 m: B5, B6, B7, B8a, B11, B12 (6 bands) 60 m: B1, B9, B10 (3 bands)	Multispectral Imager (MSI) 13 bands VNIR + SWIR		

information: eo Portal Directory

Some Planned and Launched CubeSat Missions

CubeSat Missions

3-Axis gyroscope sensors, -Axis magnetometers and 3- Axis accelerometers a semi-active attitude control system based on permanent magnets, hysteresis naterials and electromagnets (2-axis)
a field of view of 46 × 35 degrees
af

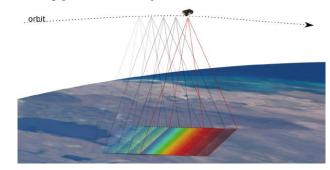
UNIVERSITÉ DU LUXEMBOURG

CubeSat Missions

	Launch Date	Organisation		Orbit	GSD			Agility and Positioning
30	2014 - 20XX	Planet Labs	Dove (Flock-xx xx)	400, 500, 600 (most are 500km)	3 - 5m	?		
	2015-12-16	Microspace Rapid Pte Ltd.	Athenoxat-1	540 km, 15 deg	Global view resolution: 1km Wide Angle resolution: 50m to 300m Narrow Beam Resolution: 1m to 20m	?	hyperspectral Spectrum up to 30Hz Video Refresh	ACS air-coil magnetorquers primarily for stabilization ADS sensors: coarse sun sensors, magnetometer & gyroscopes CDH & ADCS software including Nadir vector determination & payloads drivers
	2016-09-26	UK Space Agency	ALSAT-Nano	680 km, 98.2 deg, SSO		XCAM C3D2 (CMOS)	1200 x 1080 pixels Focal length: 45 cm	
	2018-12-03	University of North Carolina Wilmington	SeaHawk	580 km, 97.8 deg	120 m	push-broom design, with 4 linear array CCDs, each containing 3 rows of detectors	1800x 6000 pixels 8 bands deep	
N9	2017-08-14	NASA Jet Propulsion Laboratory	ASTERIA	400 km, 51.6 deg, ISS	30 m	Fairchild CIS2521 (CMOS)	2592 pixels x 2192 pixels Focal length: 85 mm Aperture diameter: 60.7 mm (f/1.4) Pixel size 6.5 µm x 6.5 µm Plate scale: 15.8 arcseconds per pixel Field of view: 11.2° x 9.6°	
	2018-02-02	GomSpace	GOMX-4	500 km	70 m	HyperScout camera from Cosine for hyperspectral images	4096 x 1850 pixels Spectral range: 400 - 1000 nm Spectral resolution: 15 nm Dynamic range: 12 bit SNR: 50-100	
	2019-09-05	ESA	Phi-Sat-1	450-550 km	VNIR 75 / TIR 390 (590km)	HyperScout-2, two spectral channels, each with 2D sensors operating in pushbroom mode.	FoV: VNIR 31 x 16 / TIR 31 x 16 Swath: VNIR 310 x 150 / TIR 310 x 150 Spectral bands: VNIR 45 / TIR 4 Spectral range [µm]VNIR 0.4 —1.0 TIR 8.0 - 14	
	2022-12-31	KP Labs (FP Space)	intuition-1	?	?	hyperspectral instrument	Spectral resolution in the range of visible and near- infrared light The band is divided into 150 channels	THUMBERT DI

UNIVERSITÉ DU LUXEMBOURG

Example: GomX4, Technology Demonstrator


GOMX-4A camera (GomSpaceNanoCam):

Sjælland(DK)

Credit: GomSpace and Cosine; MarcoEsposito

GOMX-4B Hyperspectral Imager (Cosine Hyperscout I):



Figure 6: First light of HyperScout. False colour single image of the Scottish landscape between Glasgow and Edinburgh. Image acquired on the 20th of March 2018

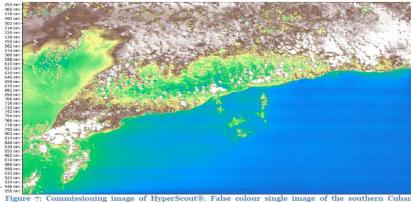
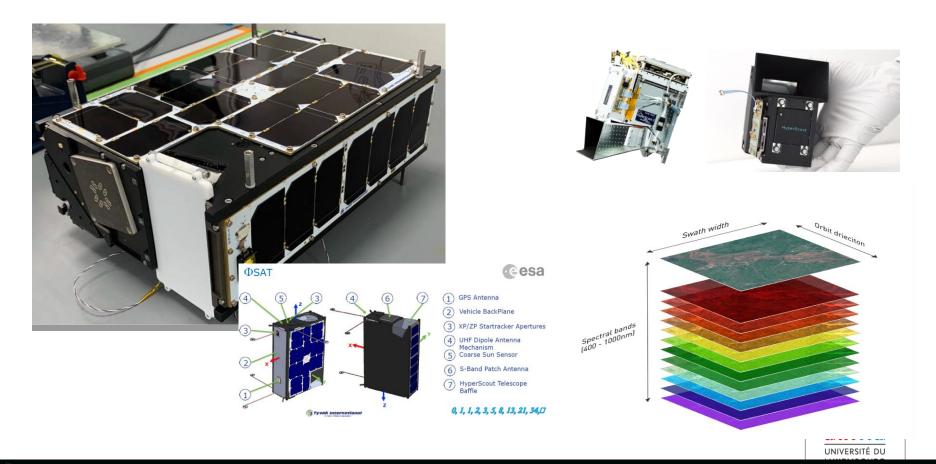
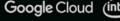



Figure 7: Commissioning image of HyperScout®. False colour single image of the southern Cuban coastline. Image acquired on the 26th of March 2018

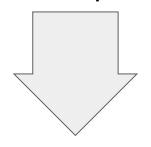


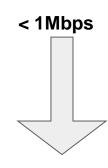
Example: PhiSAT-1 On-board Processing

- FSSCat/PhiSat-1 technology demonstrator twin sat mission;
- Hyperspectral Sensor: Cosine Hyperscout II

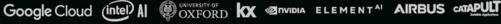
Example: PhiSAT-1

- Limited downlink capabilities
- Al processing on-board



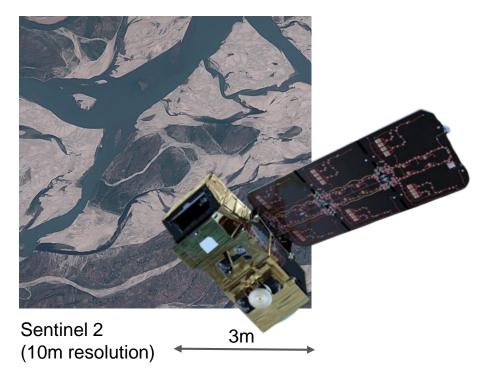


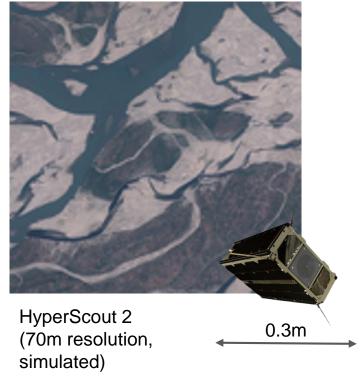
ESA Maspalomas, Spain



COTS ground station (ISIS)

UNIVERSITÉ DU

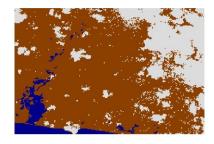


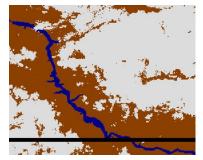

Example: PhiSAT-1

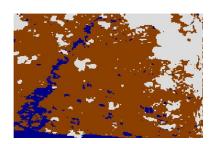
Difference in Image Quality

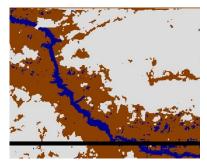
- Geometric, spectral, radiometric resolution,
- S/N ratio, motion blur etc.

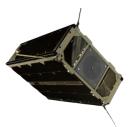
Antti Lipponen (Twitter @anttilip)

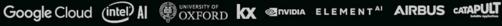

Example: PhiSAT-1: 'Flood and Cloud Detection in Orbit'

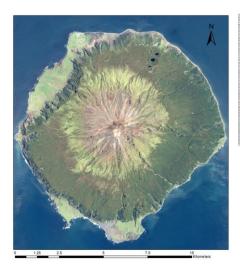

Development of a 'lean' deep learning algorithm to be deployed directly on the satellite Results on Satellite Hardware:

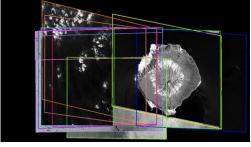

- Performance drop < 1%
- Deep learning NN: Model size < 0.5 MB
- 12MP image mapped in < 1 minute









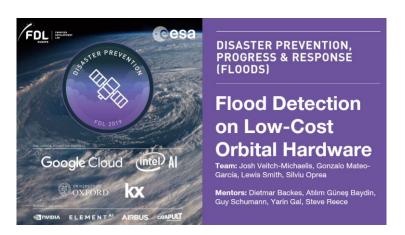


Example Worldview 2: Trista da Cunha

- 3D topographic Mapping using WorldView2 archive data
- High resolution 3D DEMS and pointclouds where derived with 2m sample distance
- Geo positioning accuracy after spaceborne triangulation:
 RMSE of 0.48 pixels and a shift of 0.17 m in X, 0.05 m in Y and 0.04 m in Z

Conclusions and Outlook

- Image resolution quality of conventional EO Satellites will remain superior for the foreseeable future:
 - High and Very High resolution EO imaging
 - EO applications which require high accuracy requirements
- CubeSat technology will mature rapidly; technology demonstrators will soon become operational systems:
 - With low requirements on spatial resolutions and accuracy,
 - EO application which require high temporal resolution
 - Large constellations of 'small' EO satellites will provide higher temporal resolution and faster response or data acquisition times
- Al on small CubeSats satellites is expected to be a game changer
 - Onboard processing capabilities for a range of applications



Thanks for listening!

Many thanks to our teams at Uni.lu, RSS-Hydro Sarl-S and FDL-Europe

