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F: X3 — X is said to be

@ associative if for all x1, x2, x3, x4, x5 € X

F(F(x1,x2,x3), X4, X5)
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= F(X]_,XQ, F(X37 X4, XS))

e symmetric if F(x1,x2,x3) is invariant under any permutation
of X1, X2, X3

Example. F(x,y,z)=x+y+z on X=R
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We say that F: X3 — X is ultrabisymmetric if
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Ultrabisymmetry
Definition.
We say that F: X3 — X is ultrabisymmetric if
F(F(x11, x12, x13), F(x21, X22, X23), F(X31, X32, X33))

is invariant when replacing xjj by xi for all i,j, k, /1 € {1,2,3}

X11 X12  Xi3 X111 X12 X13

X1 X2 o3| = | xa3 x2 xe3 | € X33

X31 X32 X33 X31 X322 X21
Example. F(x,y,z)=x+y+z on X =R

Fact. ultrabisymmetry =—  bisymmetry
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Quasitriviality

Definition

F: X3 — X is said to be

@ quasitrivial (or conservative) if

F(x,y,z) € {x,y,z}  (x,y,z€X)

@ idempotent if

F(x,x,x) = x (x € X)

Fact. quasitriviality = idempotency
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Associativity and bisymmetry

bisymmetry + symmetry = ultrabisymmetry

Proposition

quasitriviality 4+ ultrabisymmetry =  associativity + symmetry
—>  bisymmetry

quasitriviality + symmetry

4

associativity <= bisymmetry




Part Il: Idempotent n-ary uninorms



Uninorm

Definition
e € X is said to be a neutral element of F: X3 — X if

F(x,e,e) = F(e,x,e) = F(e,e,x) = x x e X

Definition. (Kiss et al., 2018)

A ternary uninorm on (X, <) is an operation F: X3 — X that
@ has a neutral element e € X

and is
@ associative
@ symmetric

@ <-nondecreasing



First characterization

Proposition

F: X> — X is an idempotent ternary uninorm if and only if there exists an
idempotent binary uninorm U: X? — X such that

F(x,y,z) = U(min(x,y,z),max(x,y,z))  x,y,z€ X.




Single-peaked orderings

Definition. (Black, 1948)
Let < and =< be total orderings on X.
Then < is said to be single-peaked for < if for all a, b,c € X

a<b<c — b<a or b=<c



Single-peaked orderings

Definition. (Black, 1948)
Let < and =< be total orderings on X.
Then < is said to be single-peaked for < if for all a, b,c € X

a<b<c — b<a or b=<c

Example. On X = {1,2,3,4} consider < and =< defined by

1<2<3<4 and 2<3<1<4

B = WO

1 2 3 4



Alternative characterization

Theorem

Let F: X3 — X be an operation. The following assertions are equivalent.
(i) F is associative, quasitrivial, symmetric, and <-nondecreasing.
(i) F is bisymmetric, quasitrivial, symmetric, and <-nondecreasing.
(iii) F = maxx for some total ordering =< on X that is single-peaked for <
If F has a neutral element, then (i)—(iii) are equivalent to

(iv) F is an idempotent ternary uninorm.
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1<2<3<4

Example

2<3<1<4

A=W N

1 2 3 4
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