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Abstract—Machine learning has been becoming increasingly
popular and widely-used in various industry domains. The
presence of the oracle problem, however, makes it difficult to
ensure the quality of this kind of software. Furthermore, the
popularity of machine learning and its application has attracted
many users who are not experts in this field. In this paper, we
report on using a recently introduced method called metamorphic
exploration where we proposed a set of hypothesized metamorphic
relations for an unsupervised clustering program, Weka, to
enhance understanding of the system and its better use.

Index Terms—metamorphic testing, metamorphic exploration,
machine learning, clustering, K-means, unsupervised machine
learning.

I. INTRODUCTION

With the growing recognition of the application of machine
learning (ML) in natural language processing, image recog-
nition, computer vision and many other domains, ML has
been increasingly looked to for potential solutions to scientific
and engineering problems [1]. Mitchell formally defined ML
as: “A computer program is said to learn from experience E
with respect to some task T and some performance measure
P , if its performance on T , as measured by P , improves
with experience E” [2, p. 2]. ML enables computers to make
decisions and act based on its learned experiences, and can
gradually improve through successive encounters with new
data. ML algorithms are often categorized as supervised or
unsupervised. Supervised ML algorithms aim to construct a
mathematical model enabling prediction of expected outputs
based on the class labels and features of training data [3].
Unsupervised ML algorithms, in contrast, usually take data
without labels or classifications, and attempt to find structure
in the data [4].

Clustering is a general unsupervised ML task, and is also a
common technique in statistical data analysis in many fields.
An operational definition of clustering, according to Jain, is:
“Given a representation of n objects, find K groups based
on a measure of similarity such that the similarities between
objects in the same group are high while the similarities
between objects in different groups are low” [5, p. 652].
Clustering algorithms are often categorized as partitional or

*Dave Towey is the corresponding author.

hierarchical, with the K-means algorithm being one of the
most popular and simplest partitional algorithms. Since its first
appearance [6] in 1967, many improved implementations and
optimized versions based on the standard K-means algorithm
have appeared [7]–[9]. However, in contrast to supervised ML
algorithms, evaluating the quality of clustering algorithms can
be especially challenging: There is no label for validation
and users’ subjective expectations can strongly impact on the
evaluation of clustering performance.

In traditional software testing, verification techniques usu-
ally involve setting up inputs and examining the corresponding
outputs through execution of the software under test (SUT).
If an output is correct, then the test passes. The mechanism
against which testers can decide the correctness of test case
executions is known as a test oracle [10]. When the test oracle
is unavailable, or is available but cannot be practically used,
the tester is said to face the test oracle problem (or just oracle
problem) [11]. Because of the difficulty finding and using a
test oracle for clustering programs (for example to evaluate
the appropriateness of the groupings of data points given
by the SUT), clustering programs may also face the oracle
problem. Although the oracle problem has rendered many tra-
ditional testing approaches ineffective, one approach that has
been identified that very effectively alleviates this problem is
metamorphic testing (MT) [12], [13]. MT alleviates the oracle
problem by examining relations among multiple executions
of the SUT. These relations are called metamorphic relations
(MRs) [14]. MT was originally developed as a verification
technique, with MRs being necessary properties of the SUT.
MT has been used by both professional software developers
and end-user programmers [15], and has been developed into a
framework covering verification, validation, and other types of
software quality assessment [16], with MRs not only defined
by developers, but also by the users. More recently, MRs have
been applied to enhance system understanding and use [17],
where MRs need not be necessary properties for software
correctness, but can instead be properties hypothesized by the
users, who can use such MRs to explore the software system,
enhancing their understanding of the system, and hence using
it in a better way. This approach is called metamorphic
exploration. In this work, we conduct a small-scale case study
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of metamorphic exploration using a clustering program, a type
of unsupervised machine learning program.

The rest of this paper is laid out as follows: Section II
introduces some of the background to this paper, including
explaining the basic K-means clustering algorithm, and Weka,
the SUT. Our hypothesized metamorphic relations are ex-
plained in Section III. Section IV presents our study, including
the experimental setup and results. Section V analyzes and
discusses the results of the study. In Section VI, we discuss
some potential future work. Finally, Section VII concludes the
paper.

II. BACKGROUND

A. K-means Clustering Algorithm

The K-means algorithm [5] attempts to (iteratively) partition
a dataset into K distinct non-overlapping subgroups (clusters)
where each data point belongs to one and only one group. It
tries to make the intra-cluster data points as similar as possible
while also keeping the clusters as different as possible, which
means maximizing the distance between clusters. It assigns
data points to a cluster such that the sum of the squared
distance between the data points and the cluster’s centroid
(arithmetic mean of all the data points that belong to that
cluster) is at a minimum. The less variation within a cluster,
the more homogeneous are the data points within that cluster.

The basic steps of the standard K-means algorithm are as
follows:

1) Choose the number of clusters (parameter K).
2) Initialize centroids by first shuffling the dataset and

then randomly selecting K distinct data points as the
centroids.

3) If a terminating criterion is met (e.g. there has been no
change in the assignment of the data points to clusters
for two consecutive epochs1), then stop, otherwise keep
iterating. The iterated steps are:

a) Compute the sum of the squared distance between
all points and centroids.

b) Assign each data point to the corresponding closest
cluster (centroid).

c) Compute the centroids for the clusters by taking
the average of the all data points belonging to each
cluster.

Fig. 1 [18] illustrates how the K-means algorithm basically
works in 2D. As the figure shows, the best clustering centroids
are found by iteratively assigning data points to the current
cluster centroids and finding new centroids based on the data
points assigned in the previous step.

1An epoch is one complete presentation of the dataset to be learned to a
learning machine.

Fig. 1. Basic steps of K-means algorithm (k = 2) from [18]. (a) Original
dataset. (b) Random initial cluster centroids. (c-f) Illustration of running two
iterations.

B. Weka

In our study, we selected Weka [19] as our SUT. Weka is one
of the most popular data science platforms for ML and data
mining, with an easily-operated graphical user interface, and
built-in implementations of ML algorithms for classification,
regression, clustering, and association rules mining.

III. METAMORPHIC RELATIONS

Based on the six fundamental metamorphic relations pro-
posed by Murphy et al. [20] (additive, multiplicative, per-
mutative, invertive, inclusive, and exclusive), Xie et al. [21]
proposed a set of metamorphic relations for Weka 3.5.7 [19].
Although their work was for classification in supervised ML,
we were inspired to apply their idea and approach to unsuper-
vised ML. In keeping with recent work related to metamorphic
exploration [17], because we do not assume that the MRs
identified in this process have been rigorously evaluated and
confirmed to strictly be MRs [14], in this instance we refer
to them as hypothesized metamorphic relations (HMRs). By
making reference to Xie et al. [21] and Jarman et al. [22], we
list the following HMRs for the K-means clustering algorithm:
• HMR1: Translation of 2D points along a line parallel

to the x- or y-axis should not have an impact on the
clustering results.

• HMR2: Adding a duplicate point should not have an
impact on the clustering results.

• HMR3: Moving an existing point towards the cluster
center should not have an impact on the clustering results.

• HMR4: Adding a dimension in which all points have an
equal value should not have an impact on the clustering
results.

• HMR5: Swapping the x- and y-coordinates of each and
every point (which is essentially conducting a geometric
transformation on the existing points) should not have an
impact on the clustering results.

• HMR6: Using the same set of points while changing their
input order to the SUT should not have an impact on the
clustering results.
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• HMR7: In 2D, flipping the data points along one (x- or y-)
axis should not have an impact on the clustering results.

It should be noted that although the above hypothesized
MRs are explained in the context of a 2D space, the ideas can
be readily extended into higher dimensional spaces.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

Considering the convenience of operation and obtaining
of source test cases for the experiment, we decided to use
Weka 3.8.3 [19] (latest stable version) to conduct metamorphic
testing/exploration. We chose iris.2D.arff as the source test
data sample, which is from the data provided by Weka, and is
a popular dataset for data mining [23]. The iris.2D.arff file has
150 instances, each with two numerical attributes, the petal
length and petal width. It contains three plant classes (Iris
setosa, Iris versicolor and Iris virginica). Our decision to use
2D data was related to the ease of finding the cluster center
and manipulating the data. For every input source test case,
a corresponding follow-up test case was generated using the
hypothesized MRs (Section III). Both test cases were executed,
and the resulting outputs examined to confirm whether or not
the hypothesized MRs were violated.

The parameter configuration used to set up the experiments
was: “weka.clusterers.SimpleKMeans -init 0 -max-candidates
100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -
1.0 -N 5 -A “weka.core. EuclideanDistance -R first-last” -I
500 -num-slots 1 -S 10” 2. This configuration means imple-
mentation of the simple K-means algorithm, using a random
initialization method, Euclidean distance [24] for distance
measurements and a maximum of 500 iterations. Most of
the parameters were set as the default. The most important
parameters in the configuration were: “-N” (the parameter K,
as the initial number of clusters set); and “-S” (the seed used
to initialise the psuedo-random choice of initial K cluster
centriods — arbitrarily chosen to be 10). Although the change
of seed number will influence the clustering results, the reason
why we chose 10 is only to let the program give the same
results for each run. We used the Euclidean distance [24] to
calculate the distances between points.

The K-means algorithm aims to find centre points that
optimize the following cost function, which minimizes the sum
of the squared error over all K clusters, (Equation 1) [5]. Let
X = {xi}, i = 1, ..., n be the set of n d-dimensional points to
be clustered into a set of K clusters, C = {ck}, k = 1, ...,K.
Let µk be the mean of cluster ck.

E =

K∑
k=1

∑
x(i)∈C(k)

‖xi − µk‖2 (1)

The value for K used in our study was 5, which was an
arbitrary selection for this metamorphic exploration.

B. Experiment Results

The clustering results from running the source test case
are shown in Fig. 2. The rest of this section reports on
the satisfaction or violation of our seven hypothesized MRs
(Section III), based on the examination of the output from the
relevant follow-up test cases. Table I summarises the details
of clusters, sum of squared error, and violation or satisfaction
of the hypothesised MRs.

Fig. 2. Clustering results of source test data

1) HMR1: Satisfied: We used the transformation function
f(x) = 2x + 1 to create follow-up test data. As Fig. 3 and
Table I show, the geometric transformation did not impact on
the clustering model, with the calculated sum of squared errors
also being the same.

Fig. 3. Test results for HMR1

2) HMR2: Violated: The hypothesized MR2 says that addi-
tion of a duplicated point should not impact on the clustering

2Extract from Weka command line.
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TABLE I
SUMMARY OF CLUSTERING, SUM OF SQUARED ERROR, AND VIOLATION STATUS FOR HMR1–7.

CI 0 CI 1 CI 2 CI 3 CI 4 Sum of squared error Violation?
Source case 20 (13%) 12 ( 8%) 50 (33%) 50 (33%) 18 (12%) 1.35904121104071
HMR1 20 (13%) 12 ( 8%) 50 (33%) 50 (33%) 18 (12%) 1.35904121104071 Satisfied
HMR2 14 ( 9%) 37 (25%) 27 (18%) 50 (33%) 23 (15%) 1.40253305286367 Violated
HMR3 20 (13%) 12 ( 8%) 50 (33%) 50 (33%) 18 (12%) 1.35831783141108 Satisfied
HMR4 20 (13%) 12 ( 8%) 50 (33%) 50 (33%) 18 (12%) 1.35904121104071 Satisfied
HMR5 20 (13%) 12 ( 8%) 50 (33%) 50 (33%) 18 (12%) 1.35904121104071 Satisfied
HMR6 16 (11%) 11 ( 7%) 50 (33%) 50 (33%) 23 (15%) 1.17581667609006 Violated
HMR7 20 (13%) 12 ( 8%) 50 (33%) 50 (33%) 18 (12%) 1.35904121104071 Satisfied
a. CI refers to Clustering Instance.

results. However, after we added a duplication of an original
point, the clustering result changed as shown in Fig. 4. This
change was also apparent in the details of the clusters and
sums of errors (Table I).

Fig. 4. Test results for HMR2

3) HMR3: Satisfied: The hypothesized MR3 states that
moving an existing point closer to its cluster center should
not change the clustering results. To test this, we examined the
five cluster centers and shifted one data point of each cluster
slightly closer to its cluster center. As shown in Fig. 5 and
Table I, the clustering results did not change, and there is
only a small change in the sum of squared errors.

Fig. 5. Test results for HMR3 (the red arrow shows the shifted data points)

4) HMR4: Satisfied: We manually added one new attribute
(dimension) which is irrelevant to the existing elements and
set the value for all points for this dimension to 1.0. As shown
in Fig. 6 and Table I, the clustering results remained the same.

Fig. 6. Test results for HMR4

5) HMR5: Satisfied: The hypothesized MR5 involved a
geometric transformation of features — simply switching the
position of the two attributes without changing the sequence
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of instances ((x, y) became (y, x) for all points). Although
the distribution of data points in Fig. 7 appears different to
that in Fig. 2, as shown in Table I, the change in the order of
attributes did not change the clusters.

Fig. 7. Test results for HMR5

6) HMR6: Violated: The hypothesized MR6 stated that
changing the input order of the data points should not alter
the identified clusters. To test this, we simply moved the first
50 data points to the end of the input dataset. As shown in
Fig. 8 and Table I, this change in order did impact on the
clustering results.

Fig. 8. Test results for HMR6

7) HMR7: Satisfied: The hypothesized MR7 stated that, in
a 2D space, flipping the points through one axis should not
have an impact on the clustering results. For this, we chose to
move through the y-axes: (x,y) became (-x,y). Although the
distribution of data points in Fig. 9 appears different to that
in Fig. 2, as shown in Table I, the change in the order of
attributes did not change the clusters.

Fig. 9. Test results for HMR7

V. ANALYSIS AND DISCUSSION

In summary, in this case of metamorphic exploration,
we found that five of our hypothesized MRs were satisfied
(HMR1, HMR3, HMR4, HMR5, and HMR7), but two did
appear to have been violated (HMR2 and HMR6).

Theoretically, adding a duplication of a data point should not
affect the clustering results, which should just simply coincide
in the perspective of space. After researching the algorithm
more deeply, the cause of this problem was identified as being
related to the algorithm’s characteristics: Adding a new data
point leads to a new round of calculation of the Euclidean
distance when re-locating the new cluster centroids, and it
will also affect the weight of that point, which may cause a
change in the probability of which cluster that point belongs
to. This can lead to the shift in the clustering centroids. In
summary, this will influence the clustering results. In addition,
it will also influence the selection of initial cluster center points
because of the change of the data sample order. This helps us
to understand that the entry position of data matters, because
the randomness of the initial cluster centroid selection will
have impact on the clustering results.

The violation of HMR6 appears to have a similar cause:
Changing of the data entry order. In consequence, this will
effect the clustering results.

The analysis reflects a characteristic of the K-means cluster-
ing algorithm itself, and is not a defect in the implementation.
In addition, we also tested this part using hierarchical cluster-
ing [25], which does not rely on the selection of parameter K.
It indicates that adding new duplicate data will not influence
the clustering results. This also gives us an idea about how
to choose the clustering algorithm when dealing with data
containing duplicates: If the user needs to add new data which
contains some duplicates to the original dataset, then it is better
to choose a hierarchical clustering algorithm, to keep a stable
clustering performance.

In summary, it appears that the apparent violations were
related to the changed order and relative entry position of
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the data. This has a strong connection with the selection
of initial cluster centroids, which will directly influence the
clustering process and results. In the .arff file, each instance
occupies one line, and the data is stored in order — from top
to bottom. HMR6 reordered the data instances, and HMR2
inserted a new instance into the existing dataset, which not
only changed the number of instances, but also changed the
relative entry positions. An illustration of this is as follows:
For the source input, the input data sequence in the iris.arff
file was: instance 1, instance 2, instance 3, ..., instance 150.
HMR6 generated a follow-up input which is a permutation
of the original input order such as: instance 101, instance 12,
instance 43, .... HMR2 inserted a duplicate into the original
data file, such as: instance 1, instance 2, instance 2, instance
3, ..., instance 150. Therefore, the follow-up inputs of both
HMR6 and HMR2 have changed the relative entry positions
of the data, and the SUT appears to be sensitive to the orders
and therefore produced different outputs.

Compared with our understanding of the SUT before the
experiment, we have gained new knowledge and understanding
of the system. It should be noted that this information was
not documented in the software’s user manual but rather was
revealed through metamorphic exploration.

With this new knowledge, we can better use the software.
For example, if we want to re-generate an earlier test result,
we should keep the original order of the data points when they
are entered into the system.

VI. FUTURE WORK

This case study used Weka 3.8.3. There are still two main
issues that need to be addressed. The source test cases used in
this study came directly from Weka’s attached dataset, but in
real life, the source data are usually random and unpredictable.
Use of such a dataset has the potential defect of insufficient
coverage and sensitivity to prediction. Consequently, it is es-
sential to include some randomly generated source test inputs.
In the future, we plan to also conduct metamorphic exploration
on other popular machine learning platforms, including scikit-
learn [26]. This should provide further experience of the
general applicability of metamorphic relations to help users
use the SUT in a better way.

VII. CONCLUSION

In this paper we have provided a small case study that shows
the usefulness of metamorphic exploration for a clustering
program that is based on unsupervised machine learning. This
approach can not only enhance users’ understanding of the
target software, but can also lead the the user to better use the
algorithm, including choosing suitable data entry formats and
solutions.
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