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Abstract 
Bovine viral diarrhoea virus (BVDV) is one of the most important infectious disease agents of 

cattle, causing significant reproductive and economic losses in the cattle industry worldwide. 

This is also emphasized by the intensity of control programmes in many countries to curtail the 

virus. BVDV is a single-stranded positive sense RNA virus of the genus Pestivirus and the 

family Flaviviridae. Infection of susceptible cattle with BVDV has been associated with poor 

fertility as a result of decreased conception/pregnancy and calving rates, prolonged time to first 

calving and calving interval and increased risk of late return to service. Although BVDV 

infection is known to cause poor fertility in cattle, a greater part of the underlying mechanisms 

particularly associated with early reproductive losses have not been clearly understood. 

Previous studies have reported viral compromise of testicular function, semen and sperm 

quality, and lowered conception rates with infected bulls. BVDV infections may also induce 

immunosuppression, and predispose cattle to other diseases that cause poor health and reduced 

fertility. In females, BVDV infection is thought capable of killing the oocyte, embryo or fetus 

directly, or to induce lesions that result in fetal abortion, mummification, teratogenesis and the 

birth of malformed calves. Other observations also suggested BVDV-induced disruption of the 

reproductive endocrine system, and a disruption of leucocyte and cytokine functions in the 

reproductive organs. More recent studies have provided evidence of viral-induced suppression 

of endometrial innate immunity that may predispose to uterine disease. Furthermore, there is 

new evidence that BVDV may potentially disrupt the maternal recognition of pregnancy or the 

immune protection of the conceptus. This review highlights the previous reports on the effects 

of BVDV infection on reproduction in cattle, together with more recent findings that attempt to 

explain some of the mechanisms linking this important virus to infertility in cattle. 
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Introduction 
Bovine viral diarrhoea virus (BVDV) is one of the most important infectious disease agents of 

cattle worldwide (Lanyon et al., 2014; Givens and Newcomer, 2015; Richter et al., 2017). It 

was identified in 1957 as the causative agent for bovine viral diarrhoea or BVD (Lee and 

Gillespie, 1957). BVDV is a single-stranded positive sense RNA virus classified in the genus 

Pestivirus of the family Flaviviridae. BVDV strains of each distinct genotype (BVDV1 and 

BVDV2) are further classified as one of two biotypes: cytopathic (cp) and non-cytopathic (ncp) 

as defined by the lytic activity of the virus in cell culture (Ridpath, 2010b; Gamlen et al., 2010). 

Cp BVDV strains are not common and are mainly involved in outbreaks of mucosal disease 
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whereas ncp BVDV strains are more common in nature and are often associated with the most 

clinically severe form of acute infection (Ridpath, 2010b). 

 

Cattle are the natural host for BVDV (Walz et al., 2010) and infections with the virus are 

endemic in cattle populations in many different parts of the world (Yesilbag et al., 2017; 

Velasova et al., 2017; Chernick and van der Meer, 2017; Scharnbock et al., 2018; Han et al., 

2018; Aragaw et al., 2018). The prevalence of BVDV infection based on serological surveys in 

different geographic regions range from 40-90% in individual cattle and 28-66% in cattle herds, 

while 0.5-2.5% of cattle were persistently infected (PI) with the virus (Walz et al., 2010; 

Velasova et al., 2017; Scharnbock et al., 2018).  

 

Although cattle with transient BVDV infection are important sources of virus, PI cattle play a 

substantially larger role in the infection of susceptible cattle and maintenance of BVDV in cattle 

populations (Lindberg and Houe, 2005). The most common route of BVDV transmission is 

direct contact between animals (Laureyns et al., 2010). Infected cattle shed BVDV in body 

fluids and excretions including nasal discharge, saliva, semen, urine, faeces, tears, milk and 

uterine flushing (Thurmond, 2005; Lanyon et al., 2014). BVDV can also be transmitted during 

rectal examination (Lang-Ree et al., 1994), as well as during natural breeding or artificial 

insemination (AI) of cows with semen from infected bulls (Rikula et al., 2008; Newcomer et 

al., 2014).  

 

The outcome of BVDV infection depends on viral characteristics such as biotype, genotype and 

antigenic diversity, and host factors such as species of host, immune status, pregnancy status 

and concurrent infections with other pathogens (Brownlie, 1991; Walz et al., 2010). Transient 

or acute infection is said to occur when postnatal immunocompetent cattle are infected with 

BVDV. Cattle with acute infection usually recover and eliminate the virus within two weeks 

post-infection although the clinical manifestations with acute BVDV infection may range from 

subclinical infection, clinical disease to fatal disease (Baker, 1995; Hansen et al., 2010). 

Vertical transmission of BVDV occurs when the virus is transmitted from the infected dam to 

her offspring (Kennedy, 2005). Infection of susceptible pregnant cows with the ncp virus before 

the development of fetal immunocompetence results in the birth of PI cattle (Lanyon et al., 

2014). Apart from BVDV presence in PI cattle, there is evidence that following apparent 

recovery from transient infection, BVDV may maintain prolonged or chronic infections within 

immunoprivileged sites such as in tissues of the ovary, testes, central nervous system, and in 

circulating white blood cells (Givens and Marley, 2013). These apparently recovered animals 

can remain infectious for BVDV-naïve cattle for months post-infection (Collins et al., 2009) 

although it is not clear if such chronic infections may reactivate future outbreaks of BVDV 

infections or predispose the reproductive organs to invasion by other pathogens including 

bacteria. 

 

Reproductive and economic losses associated with BVDV infection in cattle 
Reproductive losses in cattle due to BVDV infection were first described in 1946 (Olafson et 

al., 1946). Although BVDV is recognised as a major component of respiratory disease, 

particularly in calves, it is the invasion of reproductive tissues by the virus that have pronounced 

delayed effects (Brownlie et al., 1998). BVDV can utilise the reproductive system to maintain 

and spread itself in cattle populations (Grooms, 2004).  

 

Infection with BVDV has been associated with a decline in the fertility of affected cattle 

(McGowan and Kirkland, 1995; Fray et al., 2000; Robert et al., 2004; Burgstaller et al., 2016). 

BVDV infection was associated with increased incidence of embryonic and fetal losses, calf 
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losses and retained placenta postpartum (Larsson et al., 1994). Other observations include 

decreased conception and pregnancy rates (Virakul et al., 1988; McGowan et al., 1993b; 

McGowan et al., 1993a; Houe et al., 1993; Burgstaller et al., 2016), prolonged calving interval 

(CI) (Niskanen et al., 1995; Burgstaller et al., 2016), prolonged time to first calving (Valle et 

al., 2001) and increased risk of late return to service (Robert et al., 2004). Munoz-Zanzi et al. 

(2004) considered the overall impact of endemic BVDV infection on fertility of dairy heifers 

to depend on the type and timing of infection relative to reproductive development. Infection 

with BVDV during the first 45 days of gestation had no effect on the rate of return to oestrus 

but was associated with increased mid-gestation abortion rates (7%) in dairy cows (Rufenacht 

et al., 2001). A decrease in calving rate and fertility was also reported in cows PI with BVDV 

(Kale et al., 2006). Moreover, fertility was lowered in apparently healthy heifers that had 

detectable BVDV antibodies, BVDV antigen or both (Kale et al., 2011). The presence of BVDV 

antigen but not BVDV antibody in the blood of cows was associated with a decrease from 71% 

to 28% in first service conception rate (Yavru et al., 2013). A meta-analysis of 41 studies from 

different geographic regions revealed that, compared to unvaccinated cattle, BVDV vaccination 

was associated with a 45% decrease in abortion rate, 85% decrease in fetal infection rate and a 

5% increase in pregnancy risk (Newcomer et al., 2015).  

 

Reproductive losses contribute to the significant economic damage associated with BVDV 

infection. These reproductive losses vary from insidious reduction in reproductive performance 

at the herd level to devastating abortion storms (Grooms, 2004). BVDV infection may cause no 

obvious clinical signs or a broad range of signs in association with other disease complexes, 

thereby making assessment of its economic impact difficult and likely to be underestimated 

(Laureyns et al., 2010). A review of the studies carried out in different countries showed 

estimated losses in individual dairy herd outbreaks varied from a few thousand up to a hundred 

thousand US $ while losses at national level ranged between 10 and 40 million $ per million 

calvings (Houe, 2003). Losses in Scottish beef suckler herds were estimated at £37 mean loss 

per cow per annum (Gunn et al., 2004). In addition, a 10-year BVD eradication programme 

increased milk yield per cow for all herd sizes, and generated around £47 million in discounted 

economic gain for Scotland (Weldegebriel et al., 2009). In New Zealand, the rate of financial 

return when BVDV was controlled compared with the cost of uncontrolled BVDV infection, 

was as high as 123% over a 10-year term (Reichel et al., 2008). The analysis of a 6-year 

eradication programme revealed that the annualised benefits of BVDV eradication in Ireland 

exceeded the costs by a factor of five in the beef suckler sector and a factor of 14 in the dairy 

sector (Stott et al., 2012). Estimated annual financial losses in BVDV-infected herds ranged 

from CHF 85–89 per dairy cow and CHF 1337–2535 for an average farm (Thomann et al., 

2017). A recent global review revealed that direct financial losses due to BVDV infection in 

cattle in 15 countries were dependent on several factors but ranged from 0.50–688 US $ per 

animal, with naïve dairy cows having 25 USD more direct losses per animal than beef cows 

(Richter et al., 2017).  

 

Mechanisms linking BVDV infection with infertility in cattle 
BVDV is known to invade most organs of the reproductive tract in infected cattle. BVDV or 

the viral-specific antigen was present in testicular tissue (Givens et al., 2003), oviductal cells 

(Booth et al., 1995), in macrophage-like cells in the endometrial stroma (Firat et al., 2002), in 

vaginal mucus and uterine flush fluid (Brock et al., 1991) and in both epithelial and non-

epithelial cells of the endometrium, myometrium and placenta (Fredriksen et al., 1999a). 

BVDV has also been demonstrated in the epithelial, luteal, granulosa and macrophage-like cells 

of the ovary and in follicular fluid (Bielanski et al., 1993; Booth et al., 1995; Grooms et al., 

1996; Firat et al., 2002; Fredriksen et al., 1999a; Gonzalez Altamiranda et al., 2013). Moreover, 
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viral antigens have been detected in the oocytes of infected cows (Brownlie et al., 1997; Fray 

et al., 1998), in embryos (Gonzalez Altamiranda et al., 2013) and in fetuses (Harding et al., 

2002). 

 

Previous studies have suggested various mechanisms through which BVDV infection can 

impact fertility. These include viral effects on reproductive organs, gametes, embryo and the 

fetus. Many of the underlying mechanisms, particularly those associated with early pregnancy 

losses have however not yet been described clearly. Viral infection is also thought to predispose 

cattle to other diseases. More recent studies have also provided evidence of viral interference 

with endometrial functions during exposure to infection and also in the period of early 

pregnancy. These observations are discussed further below. 

 

Viral disruption of reproductive function in bulls 

There is evidence that BVDV can infect tissues of the male reproductive tract although there 

are varying reports on the consequence of viral infection on testicular function and male 

fertility. BVDV replicates in the seminal vesicles and the prostate gland and can be shed in the 

semen of bulls following both acute and persistent infection (Meyling and Mikél Jensen, 1988; 

Kirkland et al., 1991; Kommisrud et al., 1996; Rikula et al., 2008). BVDV can also localise in 

the testes of infected bulls to cause a persistent testicular infection (PTI) for several weeks, 

forming potential sources of infection via semen (Voges et al., 1998; Givens et al., 2003; 

Newcomer et al., 2014). Some studies reported that neither acutely-infected nor PI bulls showed 

any obvious abnormalities in semen or sperm quality (Kirkland et al., 1991; Kirkland et al., 

1994). In contrast, other studies reported abnormalities including poor semen volume, 

decreased sperm concentration and motility, and increased sperm abnormalities (Revell et al., 

1988; Kommisrud et al., 1996). A lower conception rate of 38% was also recorded in cows bred 

with semen from a PI bull when compared with a rate of 66% in those bred with semen from 

an uninfected bull (Kirkland et al., 1994). Therefore, BVDV infection has the potential to 

disrupt testicular function to cause abnormalities of spermatozoa. Semen from these infected 

bulls may also constitute a potential source of infection to susceptible cows, in addition to 

impacting negatively on conception rates and fertility in cows following natural breeding or AI. 

 

Viral disruption of reproductive physiology and endocrine functions in cows 

Regulation of the reproductive cycle and ovarian activity in cows is mainly under the control 

of hormones secreted by the hypothalamic-pituitary-ovarian axis via important negative and 

positive feedback control mechanisms (Noakes, 2001a). A previous review (Fray et al., 2000) 

highlighted that BVDV may persist in the ovary of cows for several weeks following infection 

and was likely to impede ovarian function and fertility by disrupting the physiologic and 

endocrine functions of reproductive organs. BVDV infection has been associated with 

oophoritis (Ssentongo et al., 1980; Grooms et al., 1998b), ovarian cyclic inactivity (Grooms et 

al., 1996), retarded follicular growth (Grooms et al., 1998a; Gonzalez Altamiranda et al., 2013) 

and reduced ovulation rate in response to superovulation (Kafi et al., 1997). It is not clear how 

BVDV infection affects fertility by influencing ovarian function. BVDV infection caused 

necrosis of ovarian granulosa cells (McGowan et al., 2003) that may lead to a reduction in 

ovarian oestradiol secretion in infected cows (Fray et al., 1999; McGowan et al., 2003). 

Suppression of oestradiol secretion may impair oestrus and ovulation by negatively affecting 

the magnitude and /or timing of the pre-ovulatory LH surge (McGowan et al., 2003). Whereas 

acute infection with ncp BVDV was not found to alter serum concentrations of progesterone or 

oestradiol (Grooms et al., 1998a; Fray et al., 1999), another study reported a decrease in the 

post-ovulatory plasma progesterone concentration in infected cows (Fray et al., 2002). 

Although a previous study observed decreased thyroid hormone levels associated with pituitary 
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gland infection with the related Border disease virus (Anderson et al., 1987), it is unknown if 

BVDV can invade the hypothalamus and pituitary gland to induce alterations in the secretion 

of gonadotrophin-releasing hormones or the gonadotrophins.  

 

Leucocytes including macrophages are present in the ovary, and their distribution varied with 

the stage of the cycle suggesting important roles in ovarian activities (Wu et al., 2004). 

Leucocytes are known to secrete cytokines and other inflammatory mediators in a tightly 

regulated manner to regulate critical ovarian processes such as follicular growth, ovulation, 

luteinisation and luteolysis (Richards et al., 2008; Jabbour et al., 2009; Wu et al., 2004). It is 

likely that a massive depletion of leucocytes during acute BVDV infections may impede the 

deployment of leucocytes to the ovary thereby compromising these reproductive processes 

(Kelling et al., 2002).  

 

The oviducts have important functions in bovine fertility including the transport, storage and 

capacitation of spermatozoa, the pick-up of the newly ovulated oocyte by the infundibulum and 

the transport, maturation and fertilization of the oocyte. The secretory products of the oviducts 

should also provide an optimum environment for the sustenance of the spermatozoa, oocytes 

and the early embryo that is undergoing cleavage (Senger, 2003; Rodriguez-Martinez, 2007). 

BVDV infection was associated with salpingitis in infected non-pregnant cows (Archbald et 

al., 1973). Inflammation of the oviducts can interfere with the secretive and other physiologic 

functions of the oviducts, thereby compromising the ideal environment required for oocyte and 

sperm transport, and for fertilization.  

 

Viral degradation of the oocyte, embryo and fetus 

BVDV infection may cause infertility by adversely affecting the viability of the oocyte or the 

conceptus at the embryonic or fetal stages, although this depends on several factors including 

the viral genotype, biotype (ncp versus cp) and the stage of reproductive events during which 

infection occurred. Unlike ncp BVDV, cp biotypes express non-structural protein 3 (NS3) 

which induces apoptosis in infected cells (Gamlen et al., 2010). 

 

Infection prior to the time of breeding or conception is followed by viral invasion of the ovary, 

cumulus cell population, and the oocytes maturing in primordial, primary, and secondary 

follicles (Fray et al., 1998). There was evidence of necrosis of oocytes in the follicles of cows 

infected with ncp BVDV (McGowan et al., 2003). A recent study also reported that oocytes 

from PI heifers in an in vitro fertilization (IVF) procedure showed a decrease in both the 

cleavage and embryo production rates (Gonzalez Altamiranda et al., 2013). Infection with 

BVDV may also have harmful effects on sperm-oocyte integrity and interaction at the time of 

fertilization.  An in vitro study observed that infection with cp and ncp BVDV induced 

detrimental effects on sperm attachment to the zona pellucida (ZP) of bovine oocytes and on 

fertilization rate during bovine IVF (Garoussi and Mehrzad, 2011). 

 

Following fertilization, BVDV infection can also affect the developing embryo, although viral 

invasiveness and the effects on viability and quality of embryos at different stages of 

development have been controversial. The ZP is an extracellular glycoprotein matrix 

surrounding the oocyte and the early embryo that exerts several important functions during 

fertilization and early embryonic development (Sinowatz et al., 2001). BVDV-like particles 

were detected in the ZP of embryos from BVDV-infected uterine horns (Archbald et al., 1979) 

or in association with un-hatched in vitro-infected embryos (Givens et al., 2000). Virus released 

from washed embryos can also be infective to cell culture in vitro (Givens et al., 2000). Over 

50% of recipient cows that received embryos exposed to BVDV type 2 became infected after 
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embryo transfer, and a large proportion of the pregnancies in these cows were lost (Bielanski 

et al., 2009). On the other hand, embryos recovered from PI donor cows (Brock et al., 1997) or 

from cows inseminated with BVDV-infected semen (Bielanski et al., 2013) when washed 

remained un-infective to the recipient cow or the produced calf. The failure of infection was 

attributed to the washing process significantly reducing virus copies associated with the 

embryos (Gard et al., 2009). In addition, both cp and ncp BVDV infection did not affect in vitro 

oocyte fertilization or embryo development in the presence of the complete ZP (Tsuboi and 

Imada, 1996; Stringfellow et al., 1997). In contrast, both cp and ncp BVDV invade and replicate 

in ZP-free embryos or in hatched blastocysts but not in ZP-intact embryos, in vitro (Vanroose 

et al., 1998). Therefore the consensus is that the ZP protects the oocyte and the unhatched 

embryo from infection by BVDV.  

 

Viral-induced damage to embryos was previously linked to infection with the cp biotype. 

Infection with cp but not ncp BVDV was observed to cause embryonic cell death (Brock and 

Stringfellow, 1993) or inhibited embryonic development (Vanroose et al., 1998). In other 

studies on ncp BVDV, Booth et al. (1998) observed a reduction in the initial cleavage of zygotes 

but an increased blastocyst yield whereas Stringfellow et al. (2000) reported reduced cleavage 

in zygotes, embryos beyond the 4-cell stage and blastocyst yield. There was variation in 

cleavage, blastocyst development and hatching among cultures contaminated with different 

strains of ncp virus but none of these effects was considered prominent (Givens et al., 

2000). Recently, infection with ncp BVDV was also observed to cause early embryonic death 

and marked decline in serum progesterone levels in experimentally infected cows (Tsuboi et 

al., 2013). Both BVDV-1 and -2 were present in 100% of degenerate embryos produced in vitro 

from infected oocytes while 20-100 % of viable embryos carried the virus but appeared to 

develop normally (da Silva Cardoso Pinto et al., 2017).  

 

BVDV infection of the fetus via the placenta depends on the fetal age at the time of infection, 

the immunocompetence of the developing fetus, and the biotype and virulence of the infecting 

BVDV (Brownlie et al., 1998; Grooms, 2004; Lanyon et al., 2014). BVDV can invade the 

placentome and access the fetus following acute (Fredriksen et al., 1999b) and persistent 

infections (Fredriksen et al., 1999a). Infection of fetuses of seropositive cows is rare due to the 

presence of maternal antibodies that can prevent viral invasion of the placentome (Brownlie et 

al., 1998). Infection with BVDV can result in fetal death (Done et al., 1980; Sprecher et al., 

1991; Lanyon et al., 2014).  Depending on the time of infection, fetal death is followed by fetal 

reabsorption, mummification or expulsion usually within the first trimester of pregnancy 

(Sprecher et al., 1991; Grooms, 2004). The mechanisms of viral-induced fetal death and 

abortion are not clear but may be due to cytopathic effects in fetal and placental tissues, 

degeneration and separation of the feto-maternal unit and/or a viral-induced inflammatory 

environment that is unfavourable for fetal survival and development. Some of the lesions 

observed were considered to be non-specific as the primary cause of abortion and included 

inflammatory cell infiltration of the fetal eyelid, lung, myocardium and peribronchiolar and 

inter-alveolar tissues and placental vasculitis, degeneration and necrosis (Murray, 1991). 

 

Apart from causing fetal death, BVDV infection can also lead to persistent fetal infection if 

dams are infected during the period of development of fetal immunocompetence. Infection of 

susceptible pregnant cows within days 18-125 of pregnancy with the ncp virus biotype has been 

associated with transplacental and persistent fetal infection (Brownlie et al., 1998; Harding et 

al., 2002; Grooms, 2004; Lanyon et al., 2014). The mechanism of persistent infection is related 

to the ability of the ncp virus biotype to inhibit fetal induction of type I interferon (IFN) response 

to the virus (Charleston et al., 2001; Peterhans and Schweizer, 2013) thereby permitting fetal 
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immunotolerance to BVDV and the birth of PI calves. Although some PI cattle may appear 

clinically normal, there are reports of poor growth, poor milk production, poor survivability and 

increased susceptibility to other diseases as well as mucosal disease in PI cattle (Houe, 1993; 

Baker, 1995; Voges et al., 2006). Moreover, BVDV infection can also result in fetal 

malformations in dams infected during the period of fetal organ formation, most probably due 

to viral-induced lesions and disruption of embryogenesis. As previously described, 

transplacental BVDV infection of the fetus within 80-150 days of pregnancy can lead to the 

development of congenital defects of several organ systems including cerebellar hypoplasia, 

hydrocephalus, ocular degeneration, thymic hypoplasia, pulmonary hypoplasia, 

brachygnathism, arthrogryposis and growth retardation (Baker, 1995; Blanchard et al., 2010; 

Lanyon et al., 2014). These congenital deformities invariably lead to significant reproductive 

losses in the form of fetal losses, decreased calf yield, decreased availability of replacement 

heifers, dystocia that may be associated with increased maternal mortality, and cows culled for 

reproductive problems. 

 

Viral-induced immunosuppression and susceptibility to diseases  

There is no doubt that both male and female cattle that readily succumb to prevalent diseases 

will have compromised reproductive efficiency. Males with clinical or subclinical disease will 

have poor libido and mating capacity. Moreover, the reproductive process imposes significant 

biological demands on the female; therefore, it should not be surprising that the reproductive 

activities are often the first to be arrested when the health of the female is compromised (Pineda, 

2003).  

 

There is evidence that infection with BVDV can render host cattle more susceptible to 

secondary infection with other pathogens. The presence of BVDV infection is known to 

increase the severity of respiratory disease in calves infected with bovine herpes virus 1, bovine 

respiratory syncytial virus, and the bacteria Mannheimia haemolytica and Histophilus somni 

(Edwards et al., 1986; Potgieter, 1997; Brodersen and Kelling, 1998; Ridpath, 2010a). 

Infection with BVDV also increased the severity of enteric diseases in cattle infected with 

bovine rotavirus (de Verdier Klingenberg, 2000) and Salmonella typhimurium (Wray and 

Roeder, 1987; Penny et al., 1996). Calves predisposed to other systemic diseases are prone to 

be unthrifty with poor reproductive development and delayed onset of puberty. 

 

Immunosuppression following BVDV infection in heifers and cows may also increase the 

severity of reproductive tract disease by facilitating placental invasion by specific and 

opportunistic pathogens or by exacerbating fetal lesions. Intercurrent infections of BVDV with 

some bacteria such as Trueperella pyogenes and Bacillus spp., or other fungi have been 

demonstrated in some aborted fetuses (Kirkbride, 1992). Other studies also reported increased 

severity of abortions or fetal lesions when BVDV infection coexisted with other bacteria such 

as Leptospira hardjo and Coxiella burnetii (Pritchard et al., 1989) or Campylobacter fetus 

(Jeffrey and Hogg, 1988). Co-infection of BVDV with the protozoan parasite Neospora 

caninum (Bjorkman et al., 2000) or the bacteria Histophilus somni (Headley et al., 2015) were 

also associated with abortions in dairy cows. Increased susceptibility of the dam to specific and 

opportunistic pathogens of the reproductive tract can result in reproductive abnormalities such 

as puerperal metritis, endometritis, pyometra, embryonic and fetal death, abortion and retained 

fetal membranes. 

 

Pathogenic organisms can invade the reproductive tract of the cow during breeding (Newcomer 

et al., 2014), during parturition or the postpartum period (Bondurant, 1999; Bicalho et al., 

2017b) or through the blood circulation following a systemic microbial infection (Jeon et al., 
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2017). For instance, the uteri of almost all cows are contaminated within a few days postpartum 

with a variety of both specific and non-specific bacteria including Escherichia coli, T. pyogenes 

and other anaerobes such as Fusobacterium, Prevotella and Bacteroides species (Huszenicza 

et al., 1999; Williams et al., 2005; Bicalho et al., 2017a). In most normal cows, the reproductive 

tract is protected by the innate immune system which acts immediately and within hours to 

prevent infection. Much later, usually after a few days, the adaptive immune response sets in 

for weeks or months to provide a sustained protection.  

 

Innate immune response involves the recognition of microbial patterns by  resident cells and 

migrant immune cells of the reproductive tract which leads to increased expression of 

inflammatory products and innate immune mediators such as antimicrobial peptides (AMPs), 

mucins, pro-inflammatory cytokines, acute phase proteins (APPs), type I IFNs and 

prostaglandins (Oguejiofor et al., 2017b). This activation of an early inflammatory cascade is 

critical in mobilizing specialized innate immune cells such as granulocytes and macrophages 

from the blood circulation towards the endometrium to phagocytize and eliminate the pathogens 

(Butt et al., 1991; Singh et al., 2008; Oguejiofor et al., 2017b). Subsequently, the innate 

immune response stimulates the adaptive immunity resulting in the generation of pathogen-

specific B and T lymphocytes that drive the antibody and cell-mediated immune response 

(Turvey and Broide, 2010; Hickey et al., 2011). When innate immune response fails, 

reproductive tract infection occurs and may persist until cleared by the adaptive immunity often 

resulting in subsequent decrease or absence of fertility in affected cows. However, uterine 

immune function may become compromised resulting in bacterial persistence and uterine 

diseases such as metritis, endometritis or cervicitis in up to 50% of postpartum cows (Sheldon 

et al., 2009; LeBlanc, 2014). 

 

The mechanisms via which BVDV-induced immunosuppression may predispose the cow’s 

reproductive tract to infection and infertility are not clearly understood but may include viral-

induced leucocyte depletion (leucopenia), viral interference with the functions of immune cells 

in affected animals and/or viral interference with innate functions of endometrial cells. 

 

Viral-induced leucocyte depletion (leucopenia) 

A massive depletion of leucocytes occurs in the systemic circulation in cattle acutely infected 

(Kelling et al., 2002) or PI (Piccinini et al., 2006) with BVDV. Immunosuppression associated 

with BVDV infection may be a consequence of the marked tropism of the virus for antigen-

presenting cells (APCs) (Brackenbury et al., 2003). BVDV is lymphotrophic, with acute 

infection resulting in lymphoid depletion in the thymus, spleen, lymph nodes and Peyer’s 

patches depending on the virus strain (Walz et al., 2001). The leucopenia is mainly due to 

lymphopenia and neutropenia as a result of removal of BVDV-infected leucocytes by the 

immune system, destruction of immune cells by BVDV, and increased trafficking of immune 

cells into tissue sites of viral replication (Walz et al., 2010). It is possible that a significant 

depletion of circulating leucocytes may decrease the number of leucocytes mobilized to the 

cow’s reproductive tract during infection. This can compromise immune response to infection 

thereby leading to the development of reproductive tract disease and infertility.  

 

Viral interference with the functions of immune cells 

There is abundant evidence that BVDV infects immune cells and significantly alters their 

immune mechanisms and functions that have critical roles in both innate and adaptive immune 

response to infection. The reader is referred to previous reviews on the subject (Brackenbury et 

al., 2003; Chase et al., 2004; Peterhans and Schweizer, 2010; Chase, 2013).  
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Immune cells possess pattern recognition receptors (PRRs) including Toll-like receptors 

(TLRs) 3, 7 and 8 that recognize viral RNA in endolysosomal compartments and retinoic acid 

inducible gene I (RIG-I)-like receptors (RLRs), RIG-I and melanoma differentiation-associated 

protein 5 (MDA5) that recognise viral RNA in the cytoplasm (Berke et al., 2013). Viral 

recognition induces host immune response by activating signalling pathways that lead to the 

expression of pro-inflammatory cytokines, type I IFNs and antimicrobial proteins to eliminate 

the virus (Kumar et al., 2009). However, BVDV has evolved different means of evading the 

host immune response in order to survive either by avoiding detection by host cells or by 

disabling the antiviral response of the host. Autophagy is a critical cellular process during innate 

and adaptive immune response to pathogens including viruses and bacteria (Deretic and Levine, 

2009). Both cp and ncp BVDV infection induces autophagy, which may impair the innate 

immune response in bovine cells and facilitate BVDV replication (Zhou et al., 2017). 

Depending on the virus biotype, infection with BVDV can interfere with several innate and 

adaptive immune mechanisms including IFN response, phagocytic activity, antigen-presenting 

functions, and humoral and cell-mediated functions of immune cells.  

 

Type I IFNs are important cytokines secreted by innate immune cells to protect uninfected cells 

and prevent viral replication by activating macrophages, DCs and other cells involved in the 

innate and adaptive immune interphase (Randall and Goodbourn, 2008). These cytokines also 

serve as a key link to the adaptive immune response by enhancing the differentiation of virus-

specific cytotoxic T cells (Stetson and Medzhitov, 2006). Type I IFNs induce the expression of 

a large number of IFN-stimulated genes (ISGs), which are responsible for the antiviral and 

immunomodulatory properties of IFNs (Hertzog and Williams, 2013). Infection with ncp 

BVDV is known to inhibit the synthesis of IFN suggesting an important mechanism by which 

ncp BVDV establishes a persistent infection (Schweizer and Peterhans, 2001; Charleston et al., 

2001; Baigent et al., 2002). This virus survival strategy involves the production of the viral 

protein Npro which degrades the transcription factor IFN regulatory factor (IRF) 3, thereby 

preventing downstream signalling and the activation of an IFN response (Chen et al., 2007; 

Peterhans and Schweizer, 2010). A recent study also provided evidence that BVDV Npro may 

suppress the activity of S100 calcium binding protein A9 (S100A9, a cell protein that stimulates 

innate immunity), resulting in reduced type-I IFN production (Darweesh et al., 2018). Although 

the type I IFNs are typically considered to be most important in the host antiviral immune 

response, they are also induced by almost all bacterial pathogens (Perry et al., 2005; Monroe et 

al., 2010). These suggest mechanisms through which ncp BVDV inhibition of IFN response 

can escalate other viral and bacterial infections in affected cows.  

 

Professional phagocytes are effector cells that have important roles in the innate immune 

clearance of intracellular and extracellular pathogens. Macrophages and neutrophils produce 

several enzymes and reactive oxygen species such as superoxide anion, hydrogen peroxide and 

nitric oxide that have critical roles in the killing of invading pathogens (Dale et al., 2008). A 

suppression of these crucial functions can therefore predispose affected cows to other diseases. 

There are several reports of various forms of viral interference with the phagocytic and 

inflammatory functions of phagocytes following infection with BVDV. Neutrophils from cattle 

PI with BVDV were characterised by a significant decrease in random migration, bacterial 

ingestion, oxidant production and antibody-independent cell-mediated cytotoxicity (Brown et 

al., 1991). There was also a significant decrease in polymorphonuclear leukocytes (PMN) 

respiratory burst and cellular enzymes NAGase and lysozyme in PI heifers (Piccinini et al., 

2006). In macrophages infected with BVDV in vitro, there was reduced production of 

superoxide anion (Adler et al., 1994) and the pro-inflammatory cytokine tumour necrosis factor 

alpha, TNF-α (Adler et al., 1996) following LPS treatment. Fc receptor (FcR) and complement 
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factors have important roles in the opsonisation and cytotoxic killing of bacteria by effector 

cells (Ravetch and Clynes, 1998). FcR and complement receptor (C3R) expression, 

phagocytosis and microbicidal activity and the production of neutrophil chemotactic factors 

were all reduced in macrophages recovered from BVDV infected calves (Welsh et al., 1995). 

In bovine monocytes, ncp BVDV infection suppressed gene expression of pro-inflammatory 

cytokines TNF-α, IL1-β and IL6 and co-stimulatory molecules CD80 and CD86 (Lee et al., 

2008). Prostaglandins and leukotrienes are lipid mediators that can regulate immunity. 

Leukotrienes have immune modulatory and pro-inflammatory properties (Di Gennaro and 

Haeggstrom, 2012). In general, PGE2 suppresses acute inflammatory mediators and is 

predominant at the late or chronic stages of immunity (Kalinski, 2012), although its 

immunomodulatory effect may vary during other physiologic processes such as in the uterus. 

Infection with BVDV stimulates the production of PGE2 in bovine macrophages (Van Reeth 

and Adair, 1997) and inhibits the synthesis of leukotriene B4 in bovine mononuclear cells 

(Atluru et al., 1992). The alteration of these lipid mediators suggests another mechanism 

through which BVDV may disrupt immune response in infected cattle.  

 

Classical antigen-presenting cells (APCs) include macrophages, dendritic cells and B cells that 

process antigens and present them together with major histocompatibility complex II (MHC II) 

to T cells thereby facilitating antibody-mediated and cell-mediated immune response. In 

addition, cytokines produced by APCs serve as an important link between the innate and 

adaptive immune response (Parkin and Cohen, 2001). Infection with both cp and ncp BVDV 

compromised antigen uptake in bovine monocytes (Boyd et al., 2004). Monocytes infected with 

ncp BVDV were compromised in their ability to stimulate T cell responses (Glew et al., 2003). 

Ncp BVDV infection diminished the expression of CD80/CD86 and MHC II antigen 

presentation molecules on the surface of peripheral blood mononuclear cells (Archambault et 

al., 2000). Infection of monocytes with cp BVDV altered the expression of multiple proteins 

involved in immune function of APCs including cell adhesion, apoptosis, antigen uptake 

processing and presentation, acute phase proteins and MHC molecules (Lee et al., 2009). The 

depression of T and B lymphocytes in lymphatic tissues and in peripheral circulation (Ellis et 

al., 1988; Brodersen and Kelling, 1999) can inhibit cell-mediated and humoral immune 

response in affected cows.   

 

Taken together, BVDV alters the different aspects of innate immunity including IFN and 

inflammatory pathways, and phagocytosis. BVDV also influences adaptive immunity by 

altering the earliest phase of innate response involving pattern recognition, antigen presentation, 

co-stimulatory signalling and lymphocyte recruitment, and by inducing apoptosis of lymphoid 

tissues and altered B and T cellular response (Chase, 2013). BVDV has evolved this 

interference with the host’s immune mechanisms as a means of survival by evading immune 

elimination by the host. However, viral suppression of immune response can predispose 

affected cows to other systemic secondary infections that can inhibit fertility. Compromised 

migrant immune cells may also fail to protect the cow from other secondary infections of the 

reproductive tract following coitus, parturition or postpartum thereby leading to reproductive 

tract infection and infertility. 

 

Viral interference with innate immune functions of endometrial cells  

The epithelial cells and the underlying stromal cells are the majority cell types that constitute 

the endometrium. The epithelial cells comprise the first line of cells in contact with microbes 

that contaminate the uterine lumen, but erosion of the maternal caruncles following placental 

separation postpartum can also expose both cell types to the contents of the uterine lumen 

(Noakes, 2001b). The innate immune response of the endometrium constitutes an important 
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barrier to infection by pathogens that contaminate the uterus following breeding, at parturition 

and during the postpartum period (Singh et al., 2008; Oguejiofor et al., 2017b). During early 

pregnancy, genes of the innate immune response may function to protect the uterus against 

infection (Walker et al., 2010). Endometrial epithelial cells and stromal cells express the extra-

cytosolic receptors TLRs 1-10 (Davies et al., 2008; Swangchan-Uthai et al., 2012; Oguejiofor 

et al., 2015b; Oguejiofor et al., 2017a), as well as the cytosolic receptors: IFN-induced with 

helicase C domain 1 (IFIH1 also known as MDA5), DExD/H-box helicase 58 (DDX58, also 

known as RIG-I) and leucine-rich repeat (in FLII) interacting protein 1, LRRFIP1 (Oguejiofor 

et al., 2015b; Oguejiofor et al., 2017a; Cheng et al., 2017). These receptors are known to detect 

extracellular and intracellular pathogen-associated molecular patterns (PAMPs) during innate 

immunity (Kumar et al., 2011). 

 

Bovine endometrial cells respond to either E. coli or LPS stimulation by increased expression 

of gene transcripts and proteins of pro-inflammatory cytokines, type I IFNs, AMPs, mucins, 

APPs and the prostaglandins PGF2α and PGE2 (Davies et al., 2008; Swangchan-Uthai et al., 

2012; Fu et al., 2013; Chapwanya et al., 2013; Oguejiofor et al., 2015b). Bacterial LPS also 

induced increased expression of many genes that may be involved in innate defence against 

uterine bacterial infection including several ISGs, IFN-regulatory factors (IRFs), type I IFN 

receptors, immunoproteasomes, complement factors, guanylate-binding proteins, cell adhesion 

molecules, matrix metalloproteinases (MMPs), growth factors and genes involved in the 

intracellular recognition of pathogens (Oguejiofor et al., 2015b). 

 

Recently, ncp BVDV was established to readily infect both epithelial and stromal cells of the 

bovine endometrium in vitro, and to suppress the ability of these cells to mount an innate 

immune response to bacterial LPS (Oguejiofor et al., 2015a). Viral infection inhibited many 

genes that are typically up-regulated in response to bacterial presence including genes involved 

in pathogen recognition, IFN response, inflammatory response, chemokine activity, 

transcription regulation, tissue remodelling and cell migration, and cell death/survival 

(Oguejiofor et al., 2015a). In the bovine endometrial cells, Type I IFN stimulated expression of 

many IGSs which play important roles in various immune, especially antiviral pathways. 

However, in the cells infected with ncp BVDV, the stimulatory effect was significantly 

inhibited or neutralized (Cheng et al., 2017). Viral proteins produced by BVDV are thought to 

interfere with TLR4 and myeloid differentiation primary response 88 (MyD88) signalling 

pathways thereby subverting cellular response to bacterial LPS (Schaut et al., 2015). 

Consequently, viral suppression of endometrial innate immune response may be another 

mechanism through which ncp BVDV infection can compromise endometrial signalling, 

cytokine activity and the mobilization of leucocytes towards the uterine lumen to clear 

microbial contaminants.  

 

Moreover, infection of endometrial cells with ncp BVDV increased the mRNA expression of 

prostaglandin-endoperoxide synthase 1 (PTGS1) and microsomal prostaglandin E synthase-1 

(mPGES1) and attenuated aldo-keto reductase family 1, member B1 (AKR1B1) expression, 

leading to increased PGE2 and decreased PGF2α concentrations and an increase in PGE2:PGF2α 

ratios in bovine uterine endometrium (Cheng et al., 2016). Prostaglandins are known to 

modulate immune response in the endometrium. PGF2α enhances immune response whereas 

PGE2 is an immune suppressor (Lewis, 2003; Herath et al., 2009). In addition, PGE2 also 

inhibits luteal regression due to its luteotrophic effect on the corpus luteum (Arosh et al., 2004), 

and persistent corpora lutea and over production of progesterone in cases of uterine disease, can 

disrupt the reproductive cycle and inhibit uterine immunity to cause subfertility (Opsomer et 

al., 2000).  Hence this switch in prostaglandin secretion may comprise another mechanism 
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whereby BVDV infection can predispose affected cows to uterine infection. Inadequate 

endometrial innate immune response leads to microbial persistence and endometritis (LeBlanc, 

2014). In addition, direct effects of bacterial LPS or indirect effects of inflammatory mediators 

such as cytokines, prostaglandins and oxidative stress can disrupt sperm, ovarian, uterine and 

embryonic function leading to decreased fertility (Gilbert, 2012). 

 

Potential viral effects on maternal early pregnancy recognition  

Infection of susceptible heifers and cows with BVDV a few days before or after breeding was 

observed to cause significant decline in conception rates. In BVDV-infected cows, animals bred 

before they seroconverted had a 22% first-service conception rate compared to a 79% rate in 

cows seropositive at the time of breeding (Virakul et al., 1988). Moreover, the conception rates 

of 60% in naturally-infected cows and 44% in experimentally-infected cows were both lower 

than the 79% observed in non-infected cows at 21 days following insemination (McGowan et 

al., 1993a). Hence, ncp BVDV infection of susceptible cows has been associated with failure 

of early pregnancy (McGowan and Kirkland, 1995; Tsuboi et al., 2013) but the mechanisms 

have remained largely undefined. Interestingly, recent in vitro studies have provided new 

evidence that may link BVDV infection with early pregnancy losses in cows.  

 

Following conception, the bovine embryo enters the uterus on days 4-6 after breeding and must 

signal its presence for effective maternal recognition and hence maintenance of pregnancy prior 

to implantation. Interferon-τ (IFNT) is a member of the type I IFNs that have the same 

functional receptors in bovine endometrium (Li and Roberts, 1994; Roberts et al., 2003). The 

bovine conceptus trophectoderm begins IFNT secretion into the uterine lumen on around day 8 

of gestation, with secretion increasing significantly during the period of trophectoderm 

elongation (Kimura et al., 2004; Robinson et al., 2006). Following sufficient IFNT stimulation 

of the endometrium (around day 16 of gestation), there is inhibition of the development of 

oxytocin receptors which prevents luteolysis and ensures the continued production of 

progesterone needed for maintenance of pregnancy (Mann et al., 1999; Forde et al., 2011; 

Lonergan and Forde, 2014). Failure of pregnancy recognition results in luteolysis and loss of 

progesterone, a significant risk factor for embryonic death (Diskin et al., 2011). In addition to 

inhibition of luteolysis, IFNT is thought to stimulate a receptive endometrium for implantation 

by modulating maternal endometrial activity of hormones and their receptors, type I IFNs, 

cytokines, prostaglandins and nutrient transporters (Forde et al., 2011; Bazer, 2013; Lonergan 

and Forde, 2014).  

 

One mechanism through which ncp BVDV infection may disrupt early pregnancy is by 

alteration of endometrial prostaglandin production and signalling during pregnancy recognition 

in cows. In previous reports from bovine studies, IFNT stimulated increased expression of 

prostaglandin-endoperoxide synthase 2 (PTGS2), the rate-limiting enzyme in PG synthesis, in 

the endometrium during the peri-implantation period (Arosh et al., 2004; Emond et al., 2004). 

Increased biosynthesis of PGE2 was cell specific and temporal in endometrium, myometrium 

and corpus luteum, suggesting important roles of PGE2 in endometrial receptivity, myometrial 

quiescence, and luteal maintenance during MRP (Arosh et al., 2004). Evidence from studies in 

small ruminants (sheep) showed the importance of interaction between prostaglandins produced 

by the conceptus and endometrial epithelial and stromal cells and IFNT in the regulation of 

endometrial gene expression and functions that promote conceptus elongation, development 

and implantation (Simmons et al., 2010; Dorniak et al., 2012; Bazer, 2013). Therefore PGs play 

crucial roles in early pregnancy in ruminants. The intra-uterine inhibition of PTGS2 suppressed 

uterine PG production and led to failure of elongation of ovine conceptuses (Dorniak et al., 

2011) and decreased pregnancy rate (Erdem and Guzeloglu, 2010). IFNT stimulates PGE2 
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production by ovine endometrial cells (Dorniak et al., 2011). In a recent in vitro study, IFNT 

treatment also increased PGE2 secretion, and in addition up-regulated the expression of PTGS1 

and the PGE2 receptor PTGER3 in bovine endometrial epithelial and stromal cells, suggesting 

that IFNT activates the PGE2 signalling pathway (Cheng et al., 2016). However, ncp BVDV 

infection suppressed the IFNT-induced production of PGE2 and the expression of its receptor 

PTGER3 in infected endometrial cells (Cheng et al., 2016). Furthermore, whereas IFNT inhibits 

the oxytocin-stimulated pulsatile release of PGF2α by the ruminant endometrium, the basal 

secretion of PGE2 and PGF2α is known to increase during early pregnancy (Ulbrich et al., 2009; 

Dorniak et al., 2011). However, ncp BVDV infection also suppressed basal PGF2α secretion 

and the expression of AKR1B1, the predominant isoform for PGF2α production (Cheng et al., 

2016). These new observations therefore suggest that ncp BVDV infection may disrupt the 

recognition or maintenance of pregnancy by suppressing IFNT-induced PG production and 

signalling in the endometrium during early pregnancy. 

 

Interestingly,  another mechanism through which ncp BVDV infection may disrupt early 

pregnancy is by alteration of the activities of ISGs in the endometrium during pregnancy 

recognition in cows. During the period of MRP, IFNT is known to differentially regulate the 

endometrial expression of many genes of which the most upregulated genes were ISGs. These 

include MX dynamin like GTPase 2 (MX2), bone marrow stromal cell antigen 2 (BST2), radical 

S-adenosyl methionine domain containing 2 (RSAD2), ISG15 ubiquitin-like modifier (ISG15), 

2',5'-oligoadenylate synthetase 1 (OAS1), ubiquitin specific peptidase 18 (USP18), IFN-induced 

protein 44 (IFI44), IFN-stimulated exonuclease gene 20  (ISG20), sterile alpha motif domain 

containing 9 (SAMD9), eukaryotic translation initiation factor 4E (EIF4E), and IFN-induced 

protein with tetratricopeptide repeats 2 (IFIT2) (Mansouri-Attia et al., 2009; Forde et al., 2011; 

Lonergan and Forde, 2014). ISGylation and the up-regulation of ISG15 is an important maternal 

response to the developing conceptus that is conserved across mammalian pregnancy (Hansen 

and Pru, 2014). These ISGs are thought to have important roles in ruminants during early 

pregnancy in the regulation of uterine immunity, endometrial stromal remodelling, and the 

development of endometrial glands and uterine vasculature (Hansen, 2011; Bazer, 2013). 

Infection of endometrial cells with ncp BVDV significantly inhibited IFNT-stimulated 

expression of many tested ISGs including ISG15, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, 

MX1, MX2, RSAD2, OAS1Y, and SAMD9), in addition to ISG15 secreted protein (Cheng et al., 

2017). Our recent studies demonstrated that BVDV interfered with the ISG regulatory pathway 

of IRF-STAT1 and 2 to inhibit IFNT-induced ISG expression in the bovine endometrium. In 

the bovine endometrial cells, IFNT treatment significantly stimulated the expression of many 

important genes in this pathway, including STAT1, STAT2, IRF9 and TYK2, etc. However, in 

the cells infected with ncp BVDV, the IFNT induced expression of those genes was 

significantly suppressed (Cheng et al., 2018). This suggests yet another mechanism through 

which ncp BVDV infection may disrupt MRP and early pregnancy by suppressing the functions 

of ISGs in endometrial immunity and development in early pregnancy. 

 

Summary  
Reproductive diseases can have damaging consequences on fertility in both dairy and beef 

cattle. Reproductive losses associated with BVDV infection contribute to significant economic 

damage. Although infection with BVDV is known to cause poor fertility in cows, a greater part 

of the underlying mechanisms are still being investigated. Several mechanisms have been 

suggested through which BVDV infection may cause decreased fertility in cattle (Fig. 1). 

BVDV infections induce immunosuppression, and predispose cows to other diseases that cause 

poor health and reduced fertility. Viral infection may also kill the oocyte, embryo or fetus 

directly, or induce lesions that result in fetal abortion, mummification, teratogenesis and the 
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birth of malformed calves. BVDV infection is also thought to disrupt the reproductive endocrine 

system and leucocyte and cytokine functions in the reproductive organs. Recent studies 

provided evidence of viral-induced suppression of endometrial innate immunity that may 

predispose to uterine disease. Furthermore, there is new evidence that BVDV may potentially 

disrupt the maternal recognition of pregnancy (MRP) or the immune protection of the 

conceptus. To better describe how BVDV infection causes losses in early pregnancy, it is 

recommended that more investigation be done to further understand the interaction between 

BVDV and the bovine conceptus and endometrium during MRP and early pregnancy. 

Nevertheless, progress has been made in some regions of the world towards to control of BVDV 

for instance through elimination of PI animals in cattle herds (Wernike et al., 2017). However, 

even in countries where BVDV has been intensively controlled there is significant risk of 

reintroduction of BVDV (Santman-Berends et al., 2017) to a large number of naïve and 

susceptible cattle, underscoring the importance of continual testing and vigilance of cattle 

movement and trade.  
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Figure Legend 

 

Figure 1. Mechanisms linking bovine viral diarrhoea virus (BVDV) infection with infertility 

in cattle. 
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