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Abstract 
Amazonia harbors the greatest biological diversity on Earth. One trend that spans Amazonian taxa is that most 
taxonomic groups either exhibit broad geographic ranges or small restricted ranges. This is likely because many 
traits that determine a species range size, such as dispersal ability or body size, are autocorrelated. As such, it is 
rare to find groups that exhibit both large and small ranges. Once identified, however, these groups provide a 
powerful system for isolating specific traits that influence species distributions. One group of terrestrial 
vertebrates, gecko lizards, tends to exhibit small geographic ranges. Despite one exception, this applies to the 
Neotropical dwarf geckos of the genus Gonatodes. This exception, Gonatodes humeralis, has a 
geographic distribution almost 1,000,000 km2 larger than the combined ranges of its 30 congeners. As the 
smallest member of its genus and a gecko lizard more generally, G. humeralis is an unlikely candidate to be a 
wide-ranged Amazonian taxon. To test whether or not G. humeralis is one or more species, we generated 
molecular genetic data using restriction-site associated sequencing (RADseq) and traditional Sanger methods for 
samples from across its range and conducted a phylogeographic study. We conclude that G. humeralis is, in 
fact, a single species across its contiguous range in South America. Thus, Gonatodes is a unique clade among 
Neotropical taxa, containing both wide-ranged and range-restricted taxa, which provides empiricists with a 
powerful model system to correlate complex species traits and distributions. Additionally, we provide evidence 
to support species-level divergence of the allopatric population from Trinidad and we resurrect the 
name Gonatodes ferrugineus from synonymy for this population. 

Graphical abstract 
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1. Introduction 
The use of genetic data to study variation among populations and delimit species has provided unprecedented 
insight into the patterns and processes of speciation (Casillas and Barbadilla, 2017, Domingos et al., 
2017, Gratton et al., 2015, Harvey et al., 2017, Lemmon et al., 2012, McKay et al., 2013, Nazareno et al., 
2017a, Nazareno et al., 2017b, Weir et al., 2015). Genetic data have been particularly useful in the investigation 
of poorly-studied taxa from Neotropical regions, such as Amazonia (Angulo and Icochea, 2010, Antonelli et al., 
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2011). Employing large genetic datasets to Neotropical biogeographic studies can vastly increase their accuracy 
and resolution relative to previous analyses. Most Neotropical work to date, however, has been conducted using 
a single type of data (largely mitochondrial data), and has likely led to the oversimplification in our 
understanding of this biogeographic system (Beheregaray, 2008; Turchetto-Zolet et al., 2013). Thus, in order to 
elucidate the complex historical scenarios across the Neotropics that have resulted in the immense biodiversity 
harbored there, studies utilizing larger datasets are needed for a diversity of animal groups. 
 
Several hypotheses have been proposed to explain the historical and spatial patterns of range-limited 
Amazonian species (see Antonelli et al., 2011, Turchetto-Zolet et al., 2013 for thorough review), nearly all of 
which depend on the emergence of physical barriers to gene flow that result in allopatric speciation (Haffer, 
1969, Haffer, 1997, Endler, 1977, Vanzolini and Williams, 1981, Wallace, 1852). Although there has been 
considerable debate as to the timing of Amazonian speciation, it now seems clear that cladogenesis has been 
happening, continually, for tens of millions of years. For instance, many invertebrate, mammal, and bird groups 
display interspecific divergence between sister species during the Quaternary (<2.6 million years ago [mya]), 
whereas many amphibians and reptiles exhibit earlier divergence times during the Neogene (>2.6 mya) (Gamble 
et al., 2008, Antonelli et al., 2011, Fouquet et al., 2015, Turchetto-Zolet et al., 2013). Thus, determining the 
complex patterns that have generated Amazonian biodiversity may require testing several competing 
hypotheses and searching for patterns between large- and small-scale studies, across a variety of taxonomic 
groups. Indeed, and as datasets for Neotropical taxa increase in size, complex historical scenarios have been 
uncovered that were previously unidentifiable and/or untestable (Alexander et al., 2017, Avila-Pires et al., 
2012, Fouquet et al., 2015, Lessa et al., 2003, Nazareno et al., 2017a, Nazareno et al., 2017b, Prates et al., 
2016, Werneck et al., 2012). 
 
One trend that molecular genetic data have revealed is that many widely distributed tropical taxa are composed 
of multiple, often cryptic, species (Funk et al., 2012). These species are usually of smaller body size, with low 
vagility, and/or those that occupy narrow ecological niches (Camargo et al., 2006, Fouquet et al., 2007b, Wynn 
and Heyer, 2001). Indeed, even prior to the advent of molecular genetic data, it was predicted that very few 
widespread nominal taxa in the Neotropics would remain intact upon closer investigation (Lynch, 1979). 
Subsequently, phylogeographic studies of multiple populations have found that most widespread, non-
volant, vertebrate taxa are in fact ‘species-complexes’ (i.e. composed of multiple undescribed and/or cryptic 
species). This pattern extends across many terrestrial vertebrate groups including, but not limited to: 
anole lizards (D’angiolella et al., 2011, Glor et al., 2001), frogs (Camargo et al., 2006, Caminer et al., 2017, Chek 
et al., 2001, Fouquet et al., 2007a, Fouquet et al., 2014, Funk et al., 2012, Gehara et al., 2014, Guayasamin et al., 
2017, Wynn and Heyer, 2001), gecko lizards (Bergmann and Russell, 2007, Gamble et al., 2011a, Geurgas and 
Rodrigues, 2010, Kronauer et al., 2005), salamanders (Hervas et al., 2016), toads (Fouquet et al., 2007a, Funk et 
al., 2012, Murphy et al., 2017b), and other herpetofauna (Nunes et al., 2012, De Oliveira et al., 2016). 
Furthermore, identifying concordant patterns in species’ ranges is an important step in the testing of complex 
biogeographical scenarios that underpin the origins of biodiversity (Clarke et al., 2017a, Clarke et al., 
2017b, Costello et al., 2013, Da Silva and Patton, 1993, Díaz-Nieto et al., 2016, Ditchfield, 2000, Gazoni et al., 
2018, Gehara et al., 2014, Miralles and Carranza, 2010, Stroud et al., 2017, Turchetto-Zolet et al., 2013). 
 
Whereas many widespread Neotropical taxa appear to be composed of multiple, undescribed species, there are 
exceptions to this pattern and widely distributed Neotropical taxa do exist. However, these widespread taxa are 
less frequent than once thought and are typically species that exhibit traits that facilitate high vagility (e.g. being 
volant, having a large body size, and/or occupying broad ecological niches). Some notable examples of these 
widespread taxa include: the Amazon Tree Boa (Corallus hortulanus), Andersen's Fruit-eating Bat 
(Artibeus anderseni), the Bushmaster (Lachesis muta), capybaras (Hydrochoerus hydrochaeris), jaguars (Panthera 
onca), the Green Anaconda (Eunectes murinus), the Green Iguana(Iguana iguana), and the 
Lesser Treefrog (Dendropsophus minutus) (Colston et al., 2013, Ditchfield, 2000, Eizirik et al., 2001, Gehara et al., 
2014, Zamudio and Greene, 1997). These examples suggest that range size and abundance of Neotropical 
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species are likely attributable to intrinsic factors such as body size, dispersal ability, and niche breadth, among 
other traits that have a strong phylogenetic component (Dexter and Chave, 2016, Meiri et al., 2017, Wynn and 
Heyer, 2001). Thus, some clades are composed mostly of wide-ranging species (large and volant animals), while 
others are composed mainly of range-limited species (small and dispersal-limited animals). Studying differences 
in ecological traits and range distribution among these taxa can provide important insights into the patterns and 
processes responsible for Neotropical biodiversity. However, it is difficult to deduce the relative contribution of 
individual traits to range size disparities between species, because many traits are autocorrelated at the 
macroevolutionary scale (Beck and Kitching, 2007, Dexter and Chave, 2016, Hurlbert and White, 2007). 
Investigating clades that include both geographically widespread and restricted species may provide important 
insights into how phenotypic differences can influence species distributions (Gehara et al., 2014). 
 
In line with these observations, most Neotropical lizard species have small distributions. However, there are a 
few notable exceptions, such as the dwarf gecko, Gonatodes humeralis, the geographic distribution of which 
(∼7,600,000 km2) is larger than that of all its congeners combined, by nearly 1,000,000 km2 (∼6,700,000 km2) 
(Roll et al., 2017). Gonatodes humeralis occurs across Amazonia and the Guiana Shield, as well as in forested 
enclaves and gallery forests in the adjacent Cerrado and Caatinga biomes, and on the island of Trinidad (Avila-
Pires, 1995, Murphy, 1997, Ribeiro-Júnior, 2015, Roberto et al., 2014, Vanzolini, 1955). Overall, its current 
distribution occupies a geographic area marginally smaller than that of the continental United States and 
overlaps with 13 currently described congeneric species (Supplemental Fig. 1). Gonatodes humeralis also 
exhibits a broad niche breadth, occurring in a variety of habitat types including: primary and secondary forest, 
riparian forest, gallery forest, forest edges, bamboo forest, and human dwellings (Carvalho et al., 2008, Dixon 
and Soini, 1986, Higham et al., 2017, Hoogmoed, 1973, Vanzolini and Williams, 1981, Vitt and Zani, 1996, Vitt et 
al., 1997, Vitt et al., 2000). Its massive distribution and extensive niche breadth contrast with those of its 
congeners, most of which occupy specialized niches with small, distributions in Central and South America and 
several islands of the Lesser Antilles (Supplemental Fig. 1). In the context of recent discoveries suggesting that 
widespread Neotropical taxa are uncommon, the diminutive G. humeralis (maximum 41.5 mm snout-vent 
length; Avila-Pires, 1995) is an unlikely candidate for being a single species. However, if G. humeralis is, in fact, 
one widespread species, then Gonatodes harbors both widespread and geographically restricted taxa, providing 
a powerful model system for identifying traits that may influence species distributions. 
 
Previous investigations on G. humeralis have revealed evidence for genetic, ecological, and morphological 
variation between populations across its range (Avila-Pires, 1995, Avila-Pires et al., 2012, Rivero-Blanco, 
1979, Vitt et al., 1997), and early hypotheses suggested that populations should exhibit relatively shallow 
divergence times, within the Pleistocene (Vanzolini and Williams, 1981, Vitt et al., 1997). Supporting this, the 
first multi-locus phylogenetic analysis of Gonatodes revealed that G. humeralis samples from eastern and 
western Amazonia likely shared a common ancestor in the late Pliocene or early/mid Pleistocene, approximately 
1.9 (1.1–2.7) mya (Gamble et al., 2008). Later, the most comprehensive phylogeographic analysis to date 
investigated the history of G. humeralis populations in eastern Amazonia using two mitochondrial markers (Cytb 
& 16S) from 56 individuals (Avila-Pires et al., 2012). The authors found little phylogenetic resolution among 
sampled populations and no evidence that Amazonian rivers (namely, the Amazon and Tocantins) have acted as 
isolating mechanisms between sampled populations in eastern Amazonia. The authors concluded that range-
wide sampling and the addition of nuclear markers would be necessary to obtain sufficient resolution of any 
phylogeographic hypothesis relating to this species. 
 
We herein investigate the geographically widespread gecko, G. humeralis,across its range in northern South 
America and Trinidad. Specifically, we test two alternative hypotheses: (i) if G. humeralis is typical of most small, 
non-volant Neotropical vertebrates, we expect to uncover a species-complex composed of multiple cryptic, or 
morphologically similar, species; (ii) conversely, if G. humeralis is an atypical taxon, then we expect it to be a 
single, widespread species across its contiguous Amazonian range, and potentially also on the island of Trinidad. 
To test this, we generated restriction-site associated DNA sequencing (RADseq) data, and a multi-locus Sanger-
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sequenced dataset using traditionally informative nuclear and mitochondrial markers. We began by 
investigating the population genetic structure of G. humeralis across its range, then reconstructed the 
relationships of those alleles between populations, and used these relationships to generate specific species 
delimitation hypotheses for further testing. Indeed, we predicted that G. humeraliswould consist of multiple, 
cryptic species with distributions comparable in size to those of other species of Gonatodes. However, we found 
that G. humeralis is a single, widespread species across Amazonia, whereas the population on the island of 
Trinidad appears to be highly divergent and independently-evolving. We discuss these results in a comparative 
context with other Neotropical species and posit that this genus of geckos (Gonatodes) may yield 
unprecedented insights into the origins and maintenance of Neotropical biodiversity. 

2. Materials and methods 
2.1. Sampling 
We sampled 31 individuals of G. humeralis from 13 localities across its range (Fig. 1). Three individuals of G. 
antillensis were included as an outgroup (Russell et al., 2015). We extracted genomic DNA for downstream 
genetic sequencing from tail clips or liver, using the Qiagen® DNeasy Blood and Tissue extraction kit. 

 

 
Fig. 1. (A) Maximum-likelihood tree computed using 22,486 unlinked SNPs executed in RAxML, bootstrap values 
≥70 reported (bootstrap values of 100 = black circles, bootstrap values from 70 to 99 = gray circles). Bolded 
numbers correlate individual or clade with sampling locality depicted on map. (B) Distruct plot depicting 
proportions of shared alleles present in the G. humeralis lineage determined by STRUCTURE analysis, K = 3 
(Supplemental Fig. 2). (C) Map indicating sampling localities, within the geographic range of G. humeralis, in 
relation to cluster assignments (Trinidad = circle, west Amazonia = solid square, east Amazonia = patterned 
square) in relation to their geographic locality (Supplemental Table 1). Further, locality 8 (represented by 
CHUNB47049) is absent from the RADseq tree in panel A (see Methods). 
 

2.2. RADseq data 
We generated a reduced-representation genomic dataset for all G. humeralis individuals using restriction-
site associated DNA sequencing(RADseq). RADseq libraries were constructed following a protocol modified 
from Etter et al. (2011), as described by Gamble et al. (2015). Briefly, genomic DNA was digested using high-
fidelity SbfI restriction enzyme (New England Biolabs). We ligated individually barcoded P1 adapters onto 
the SbfI cut site for each sample. Samples were pooled into multiple libraries, sonicated, and size selected into 
200- to 500-basepair (bp) fragments using magnetic beads in a PEG/NaCl buffer (Rohland and Reich, 2012). 
Libraries were blunt-end-repaired and dA tailed. To each of the pooled libraries, we ligated a P2 adapter 
containing unique Illumina barcodes. Libraries were amplified using 16 PCR cycles with Phusion high-fidelity DNA 
polymerase (New England Biolabs), and were size-selected a second time into 250- to 600 bp fragments using 
magnetic beads in PEG/NaCl buffer. Libraries were sequenced using paired-end 125 bp reads on the Illumina® 
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HiSeq2500 at the Institute for Integrative Genome Biology, University of California, Riverside. RADseq data for 
the 10 individuals from Trinidad were previously published (Gamble et al., 2018). 
 
We trimmed and demultiplexed raw single-end Illumina sequencingreads by their individual-specific barcodes 
using the process_radtags command in STACKS [v1.23]; (Catchen et al., 2011). After the removal of low-quality 
reads, restriction site overhangs, and barcodes, the 3′ ends of the 125 bp reads were trimmed to 100 bp. 
Cleaned reads were imported into the PyRAD pipeline [v3.0.63] for de novo assembly [steps 2–7] (Eaton, 2014). 
One individual, CHUNB47049, was removed from the RADseq dataset prior to filtering, due to low-quality reads 
(adjusting our RADseq dataset, N = 30). This removed locality #8 (Fig. 1c) from all RADseq data analyses. We 
assayed various filtering criteria configurations, including varying the minimum read depth per locus from 4 to 
12; maximum number of “N”s per locus from 4 to 6; within- and across-sample clustering threshold from 80 to 
98%; and the minimum number of individuals with sequence data for a locus needed from 10 to 28. To obtain a 
dataset with >10,000 and <50,000-unlinked markers incorporating ≤10% missing data, we set the final filtering 
criteria for exclusion of any locus with a read depth of less than 8 reads, and missing data (“N” characters) to ≥5. 
We set the within- and across-sample clustering threshold to 95% sequence identity, and the minimum number 
of individuals required for data to be included in a final locus was set to 25 of the 30 individuals. All other PyRAD 
parameters used default settings. The final dataset consisted of 35,260 informative loci with 67,173 total single-
nucleotide polymorphisms (SNPs), 26,486 of which were unlinked (sampling only one SNP per RAD locus). We 
subsampled and reformatted this final dataset for all downstream RADseq data analyses; further data specifics 
for each analysis are provided below. 
 

2.3. Sanger sequence data 
We also produced sequence data from fragments of six molecular markers using Sanger sequencing of 
PCR amplicons. This consisted of four nuclear genes: microtubule-associated protein 1b – exon 5 
(MAP1b), recombination-activating gene 1 (RAG1), oocyte-maturation factor MOS (CMOS), and protein tyrosine 
phosphatase nonreceptor type 12 (PTPN12); and two mitochondrial genes: NADH dehydrogenase subunit 2 
(ND2) and 16S ribosomal subunit (16S). PCR conditions and primer sequences are described elsewhere: MAP1b 
(Werneck et al., 2012), RAG1, CMOS, PTPN12 (Gamble et al., 2011b), ND2 (Jackman et al., 2008), and 16S 
(Gamble et al., 2008). We Sanger-sequenced PCR amplicons using GeneWiz® single-pass sequencing, then 
assembled and quality-trimmed raw sequences using Geneious® [v9.1.5] (Kearse et al., 2012). GenBankaccession 
numbers for all sequences are listed in Supplemental Table 1. Sequences were aligned using MUSCLE [v3.8.425] 
(Edgar, 2004) and alignments refined by eye, if necessary. Models of molecular evolutionwere chosen based on 
AICc and BIC criteria, computed using MEGA7 (Kumar et al., 2016). 
 

2.4. Population genetic analyses 
We visualized the population-level genetic diversity within G. humeralis sensu lato and estimated the number 
of genetic populations in Hardy-Weinberg equilibrium present in our RADseq data using STRUCTURE [v2.3.4] 
(Pritchard et al., 2007). We investigated possible values of K (where K is equal to the number of populations of 
alleles) between 1 and 6 with a subset of the unlinked SNP data, using only the first 16,382 SNPs, for 
computational efficiency, with the admixture model (starting alpha = 1.0), with correlated allele 
frequencies (fixed lambda = 1.0), and all other priors set to default. We tested K values by repeating five 
independent MCMC chains of 150,000 replicates, each with a 10% burnin. STRUCTURE output was parsed and 
visualized using the Evanno method in Structure Harvester (Earl and vonHoldt, 2011, Evanno et al., 2005) and 
the CLUMPAK server (Kopelman et al., 2015). 
 
To further characterize the population genetic structure of mainland G. humeralis and how this structure might 
confound our species delimitation methodologies (see Species Delimitation below), we tested for (i) isolation-by-
distance (IBD), (ii) deviations from neutral expectations, and (iii) calculated metrics of genetic diversity. (i) We 
tested for isolation-by-distance (IBD) using Mantel’s test (Diniz-Filho et al., 2013, Mantel, 1967). We generated a 
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geographic distance matrix from locality information using the Geographic Distance Matrix Generator software 
(Ersts, 2006) and a pairwise Fst distance matrix for our unlinked SNP (26,486) dataset using Arlequin [v3.5.2.2] 
(Excoffier and Lischer, 2010). We converted the geographic distance into a Euclidean distance matrix with 
the quasieuclid function in the ade4 package [v1.7.4] (Dray and Dufour, 2007) in R (R Core Team, 2016). We 
conducted Mantel’s test, also using ade4, with the mantel.randtest function, creating 999 randomized 
permutations to calculate p-values. (ii) We tested whether sampled populations deviated from expectations 
under a neutral model by calculating Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) statistics for two datasets, 
our concatenated mitochondrial loci (mtDNA) and RADseq SNPs. Neutrality test statistics for the mitochondrial 
data were estimated using DNAsp [v5.0]; (Librado and Rozas, 2009) and for genotypic SNP data we used 
PopGenome [v2.1.6] package (Pfeifer et al., 2014) in R (R Core Team, 2016). (iii) We 
calculated nucleotide diversity (π) and within- and between-group genetic distances for ND2 for all three 
populations and their sister group, G. antillensis, in DNAsp [v5.0] (Librado and Rozas, 2009) and MEGA7 (Kumar 
et al., 2016), respectively. In addition, we calculated net between-group distances (Nei and Li, 1979) between G. 
humeralis clusters, as identified by STRUCTURE, using MEGA7, for 16S and ND2 separately, using uncorrected p-
distances (Edwards and Beerli, 2000). Standard error estimates were calculated using 500 bootstrap replicates. 
 

2.5. Phylogenetic inference 
We estimated the phylogenetic relationships among sampled G. humeralis using maximum-likelihood (ML) and 
Bayesian methods. To analyze our data in an ML framework, we formatted the 26,486 unlinked RADseq SNPs 
using the shinyPhrynomics package [v1.3] (Leaché et al., 2015) based in R (R Core Team, 2016). We generated a 
ML tree using RAxML [HPC–v8.2.9] under a GTR + Γ model with 1000 rapid bootstrap replicates, using the 
automatic bootstopping function (Stamatakis, 2014), implemented on the CIPRES cluster (Miller et al., 2010). 
We corrected for SNP-only data biases by estimating ML branch lengths from SNP-only data using the 
Stamatakis correction, which focuses on minimizing branch length overestimation due to acquisition bias, as 
described for use with SNP data by Leaché et al. (2015). 
 
We also produced a rooted mitochondrial gene tree in a Bayesian framework, to compare with the nuclear SNP 
data tree, using BEAST2 [v2.5.1] under a strict clock (Bouckaert et al., 2014) on the CIPRES cluster (Miller et al., 
2010). The concatenated mitochondrial (mtDNA) data (ND2 and 16S) consisted of 34 samples, including three G. 
antillensis, for a total of 1484 bp. We used the GTR + Γ model and a Yule tree prior with 5 × 108MCMC iterations 
with a 10% burnin. Bayesian analyses were replicated three times and examined by eye using Tracer [v1.6.1] to 
ensure convergence. Post-burnin trees from all three runs were combined to estimate final tree parameters 
using Log Combiner and Tree Annotator, respectively. 
 
Next, we estimated divergence time among G. humeralis populations using the StarBEAST2 [v0.15.1] (Ogilvie et 
al., 2017) module of BEAST2 (Bouckaert et al., 2014). We used the multi-locus Sanger sequence data, sampling 
15 Gonatodes species using a secondary calibration at the root following Higham et al. (2017) and individuals of 
three G. humeralisphylogeographic clusters identified by STRUCTURE: Trinidad, eastern, and western Amazonia, 
based on the (see Population Genetic Analyses). The final dataset used in this analysis included seven loci: 
ACM4, CMOS, mtDNA (ND2 + 16S), PDC (phosducin), PTPN12, RAG1, and RAG2; nuclear loci were phased using 
DNAsp [v5.0] (Librado and Rozas, 2009, Stephens et al., 2001). Loci used in this analysis were chosen specifically 
to minimize the amount of missing data per taxon while combining newly generated and previously published 
sequence data (Supplemental Table 2). Indeed, each locus was provided its own best-fit as calculated in MEGA7 
(and has an available model in StarBEAST2), this was HKY + Γ for all nuclear loci and GTR + Γ for our concatenated 
mtDNA genes. We used an uncorrelated lognormal clock model, with secondary calibration from a previously 
published fossil-calibrated phylogenetic reconstruction, to provide a prior on the root age 
between Gonatodes and its sister clade Lepidoblepharis at approximately 72.5 (±7.5) mya, with a uniform 
distribution to reflect confidence intervals (Gamble et al., 2015). 
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To corroborate these findings, we utilized the published rate of molecular evolution for the mitochondrial ND2 
gene in geckos. We estimated the divergence time between the mainland and Trinidad using p-distances 
assuming a strict molecular clock. We calculated p-distances in MEGA7 (Kumar et al., 2016) and calculated the 
divergence time according to the previously published rate of molecular evolution for the ND2 locus in geckos, 
at 0.57% (per lineage rate) per million years (Macey et al., 1999), i.e. (p-distance/2 * 100) * 0.57 = lineage-
divergence in millions of years. 
 

2.6. Species delimitation 
We assessed whether G. humeralis consists of one, two, or three putative species using our phylogenetic and 
STRUCTURE results to guide assignment of individuals into putative species-level lineages using three species 
delimitation methods: Poisson Tree Processes (PTP), STACEY, and Bayes Factor Delimitation (BFD). 
 
First, we analyzed species boundaries using our Bayesian mitochondrial gene tree with the single-rate PTP test, 
using the PTP web service (http://mptp.h-its.org/#/tree), with the p-value set at 0.001 (Kapli et al., 2017). 
 
Second, we used STACEY [v1.2.4] (Jones, 2017) with our Sanger sequenced dataset (CMOS, MAP1b, PTPN12, 
RAG1, and mtDNA), including G. antillensis and G. concinnatus as outgroups. In accordance with program 
documentation and additional specifications outlined by Barley et al. (2018), we provided an exponential 
distribution with a mean of 0.1 for the “popPriorScale” parameter, a lognormal distribution with a mean of 5 
and a standard deviation of 2 to the “bdcGrowthRate” prior, and the “collapseWeight” was provided a uniform 
distribution with the lower and upper bounds set at 0 and 1, respectively (Barley et al., 2018). In addition, each 
gene partition was provided the best-fit model of molecular evolution used by the STACEY package (CMOS and 
PTPN12 – JC; MAP1b and RAG1 – HKY; mtDNA – TN93), an independent strict molecular clock, with rate priors 
calculated from a log-normal distribution that were given a mean of 0 and standard deviation of 1 (Barley et al., 
2018). We ran three independent chains of 5.0 × 107 MCMC repetitions, sampling every 5000 trees, and 
compared trace files using Tracer [v1.7] (Rambaut et al., 2018). We combined tree files using LogCombiner, 
visualized them using DensiTree, and analyzed the resulting 30,000 trees using the SpeciesDelimitationAnalyzer 
[v1.8], herein STACEY and SpeciesDelimitationAnalyzer are referred to as SSDA. We used a burnin of 5000 trees 
and a collapse-height of 0.0001 to calculate our final species delimitation posterior. 
 
Third, we compared two alternative species models, the 2-taxon (PTP: Trinidad/mainland) and 3-taxon models 
(SSDA: Trinidad/east Amazonia/west Amazonia), using BFD with the RADseq SNP dataset (Leaché et al., 2014). 
BFD utilizes the path-sampling analysis of the SNAPP package (Bryant et al., 2012) in BEAST2 (Bouckaert et al., 
2014) to infer species boundaries directly from biallelic SNP data by comparing the likelihood of two differing 
species models using Bayes factors (Leaché et al., 2014). We used 48 path sampler steps with 100,000 MCMC 
repetitions and a 10% burnin to sample from 500,000 MCMC SNAPP replications. We systematically compared 
models using Bayes factors, calculated using BF = 2 * (|model 1| − |model 2|), where the “model” represents 
the marginal-likelihood estimate from the specific model being compared against (Ogilvie and Leaché, 2016). 
We ensured that each model was better than random by estimating the marginal-likelihood for a 3-taxon model, 
where all individuals were randomly assigned to a “species” to ascertain that both models were better than an 
unrealistic “null” model (Burbrink et al., 2011). 
 
Lastly, we conducted topology tests to assess whether we could reject the hypothesis that eastern and western 
Amazonia were reciprocally monophyletic, potentially providing support for the hypothesis that each cluster is a 
distinct lineage. We constructed two sets of ML trees using RAxML [HPC2–v8.2.10] under a GTR + Γ model, with 
RAxML’s automatic bootstopping function (Stamatakis, 2014), also implemented on the CIPRES cluster (Miller et 
al., 2010) for our RADseq SNP dataset (described above) and for our mtDNA (ND2 and 16S). We constructed an 
unconstrained tree and a tree for which we enforced a reciprocal monophyletic constraint between eastern and 
western Amazonia. We conducted topology tests between both trees using the Shimodaira-Hasegawa (SH) test 
(Shimodaira and Hasegawa, 1999) and Shimodaira’s Approximately Unbiased (AU) test (Shimodaira, 2002) in a 
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likelihood framework under a GTR model with an estimated rate matrix. Topology tests were conducted in 
Phylogenetic Analysis Using Parsimony (PAUP*) [v 4.0a157] (Swofford, 2002). We calculated significance using 
10,000 RELL bootstrap replications. 

3. Results 
3.1. Population genetic STRUCTURE 
The best-fit model for the STRUCTURE analysis was for three populations of alleles in Hardy-Weinberg 
equilibrium (K = 3). These STRUCTURE results in light of phylogenetic reconstruction indicated that, Trinidadian 
individuals are distinct from the mainland, but most alleles are shared across the mainland. However, there is a 
small proportion of unique alleles specific to eastern Amazonia (Fig. 1, Supplemental Fig. 2), which could be due 
to a variety of factors (see Discussion). Alleles belonging to the allopatric Trinidad population were distinct from 
those of the mainland (‘orange’) (Fig. 1, Table 1), so we excluded Trinidadian individuals from certain 
subsequent population-level analyses (i.e. neutrality tests and testing for IBD). Further investigation into 
the population structure and demographic history of mainland G. humeralis involved three analyses. (i) we 
tested against a neutral model of molecular evolution for evidence of rapid population expansion across the 
mainland, and we looked for concordance between two test statistics, Tajima’s D and Fu’s Fs. Neither test 
showed a deviation from neutrality for either the mitochondrial or RADseq SNP data (Table 3). (ii) we tested for 
the presence of IBD across the mainland using Mantel’s test (Table 1, Table 2) by correlaing a matrix of 
pairwise genetic distances and a matrix of geographic distances. This analysis revealed strong evidence for IBD 
across mainland South America (Table 2, R2 = 0.637, p-value = 0.001). (iii) we estimated within-population 
genetic distance (p-distance) and within-population nucleotide diversity (π) for each population and the 
outgroup, G. antillensis, for mtDNA (Supplemental Table 3). These measurements showed that G. humeralisfrom 
eastern Amazonia exhibits more genetic diversity than western populations, and that Trinidadian G. 
humeralis display very little genetic diversity overall when compared to mainland populations. 
 
Table 1. Pairwise uncorrected net between-group mean p-distances for mitochondrial data: ND2 (below 
diagonal) and 16S (above diagonal). Distances and confidence intervals calculated via 500 bootstrap replicates 
using MEGA7 software (Kumar et al., 2016). 

Population East West Trinidad Outgroup 
East 0 0.012 ± 0.003 0.02 ± 0.006 0.25 ± 0.021 
West 0.05 ± 0.01 0 0.023 ± 0.006 0.249 ± 0.021 
Trinidad 0.1 ± 0.01 0.09 ± 0.01 0 0.253 ± 0.021 
Outgroup 0.56 ± 0.01 0.56 ± 0.02 0.56 ± 0.01 0 

 
Table 2. Summary of test results sectioned by phylogeographic cluster. Mantel test reports indicate within and 
across cluster presence of isolation by distance (*** indicates significant correlation). Test statistics reported 
within and across clusters indicate divergence from a neutral model (no tests reported as being significant); 
“mtDNA” tests were conducted in DNAsp [v5.0]; (Librado and Rozas, 2009), whereas “RADseq” tests were 
conducted in R (R Core Team, 2016) using the PopGenome [v2.1.6] package (Pfeifer et al., 2014). Species 
delimitation method results are reported by geographic cluster; (✓) indicates the delimitation of that cluster as a 
separate species via the method listed, whereas (–) indicates a failure to delimit a geographic cluster as a species 
(PTP – Poisson Tree Processes; SSDA – STACEY and SpeciesDelimitationAnalyzer; BFD – Bayes Factor 
Delimitation). 

Geographic 
Cluster 

Mantel's 
Test 

 Neutrality 
Test 

  Species 
Delimitation 

  
 

R-square P-
value 

Data Tajima's 
D 

Fu's Fs PTP SSDA BFD 

Trinidad −0.504 0.794 mtDNA −0.036 −1.910 ✓ ✓ ✓    
RADseq −1.439 −0.905 
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Mainland 0.637 0.001*** mtDNA −0.942 0.579 ✓ ✓ ✓    
RADseq −1.972 −0.978 

   

Mainland (East) 0.045 0.386 mtDNA −0.796 −0.241 – ✓ ✓    
RADseq −1.314 1.192 

   

Mainland (West) 0.594 0.162 mtDNA 0.148 4.142 – ✓ ✓    
RADseq −0.469 0.143 

   

 
Table 3. Species delimitation models compared using Bayes factors with BFD, ranked by marginal likelihood 
estimate (MLE). Bayes factors reported as pairwise comparisons of a randomized 3-taxon model versus being 
listed by each model [Bayes factor = 2 * (|MLE model 1| − |MLE model 2|)]. Pairwise ln(BF) calculations select 
both the 2-taxon (10.4) and 3-taxon (10.8) models as being significantly better than random species assignments 
using the Kass and Raftery (1995) scale; where ln(BF) ≥ 5 there is strong support for the model with the higher 
MLE. Pairwise comparison between 2-taxon and 3-taxon models results in a ln(BF) = 9.5, providing decisive 
support in favor of the 3-taxon model. 

Taxon Statement Model Tested MLE Rank Bayes Factor 
Randomized 3-taxon Statement |−104081.08| 3 – 
2-taxa (Trinidad & Mainland) |−87439.54| 2 16645.86 
3-taxa (Trinidad, East, & West) |−80789.26| 1 6645.96 

 

3.2. Phylogenetic inference 
Phylogenetic relationships at well-resolved nodes was largely concordant across the methodologies and data 
sets used (Fig. 1, Fig. 2b). ML and Bayesian methods recovered reciprocally monophyletic Trinidadian and 
mainland populations using RADseq and Sanger sequenced mitochondrial and nuclear datasets (Fig. 1, Fig. 
2, Supplemental Figs. 3, 4, and 5). Indeed, overall relationships among mainland populations were concordant at 
well-supported nodes, with a broader Amazonian clade containing a nested monophyletic group from western 
Amazonia. Between-group mean genetic distances among G. humeralisphylogeographic clusters ranged from 
0.05–0.1 and 0.012–0.023 for ND2 and 16S, respectively (Table 1). Divergence times between Trinidad and 
mainland G. humeralis lineages were estimated to occur in the early Pleistocene: 1.89 mya [0.90–2.42, 95% 
HPD] (Fig. 2; Supplemental Fig. 5) using a secondary calibration and 2.7 mya [2.45–2.91] assuming a strict clock 
using the published ND2 rate calibration in geckos [p-distance = 0.094 ± 0.008]. There was more consensus on 
the estimated divergence time between populations in eastern and western Amazonia, where mean values 
varied from 1.59 [0.13–3.0] (calibration) to 1.60 [1.48–1.71] mya (ND2 rate) [p-distance = 0.056 ± 0.004]. 
 

 
Fig. 2. Phylogenetic inference using two Bayesian inference methods. (A) Time-calibrated StarBEAST2 multi-locus 
phylogenetic inference (trimmed from Supplemental Fig. 5). Red dots at nodes indicate nodal support ≥0.95 
posterior probability. Scale in millions of years before present (mya) and geological era indicated via shaded 
boxes (Plio = Pliocene, Ple = Pleistocene). (B) Mitochondrial gene tree generated with ND2 and 16S on zoomed 
in region from part A. Numeric values indicate posterior probability support for the adjacent node. Shallow, 
haplotype-level support values are removed for clarity. Precise posterior support for all nodes, however, are 
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reported in cladogram format in Supplemental Fig. 3. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
 

3.3. Species delimitation 
We utilized three well-documented statistical species delimitation methods (PTP, STACEY, BFD) to examine 
species limits between the three phylogeographic clusters previously identified by STRUCTURE (Fig. 1). Analysis 
of our mtDNA gene tree using PTP revealed significant species-level divergence between Trinidad and mainland 
clades (p-value = 0.001), but not between eastern and western Amazonia (Supplemental Fig. 3). Analysis of 
the multi-locus Sanger sequenced dataset with STACEY and SpeciesDA (SSDA) supported the Trinidad and 
mainland South American clades as being distinct, species-level lineages (pp = 0.999) (Table 
2, Supplemental Fig. 4). SSDA analyses also yielded an additional species delimitation hypothesis within the 
mainland, identifying populations from eastern Amazonia and western Amazonia as separate species (Table 
2, Supplemental Fig. 6). We used BFD to compare the two-species (Trinidad + mainland) model, favored by 
PTP, and the three-species (Trinidad + eastern Amazonia + western Amazonia) model, favored by SSDA, using 
our RADseq data in a coalescent framework. Pairwise Bayes Factors (BF) calculations selected both the 2-taxa 
[ln(BF) = 10.4] and 3-taxa [ln(BF) = 10.8] models as being significantly better than random species assignments 
using the Kass and Raftery (1995) scale; if ln(BF) ≥ 5 there is strong support for the model with the higher 
MLE. The pairwise comparison between 2-taxon (PTP) and 3-taxon (SSDA) models provided stronger support for 
the 3-taxon model [ln(BF) = 9.5] (Table 3, Supplemental Fig. 4). To further examine the feasibility that G. 
humeralis from eastern and western Amazonia belong to distinct species, we tested whether our data 
supported reciprocal monophyly between the populations using topology tests by generating constraint trees 
for each dataset (trees not shown). Indeed, both SH and AU tests rejected the hypothesis that eastern and 
western Amazonian populations are reciprocally monophyletic, using the RADseq SNP data (SH p-value <0.0001, 
AU p-value ∼0) and mtDNA data (SH p-value = 0.0055, AU p-value = 0.0006). 

4. Discussion 
Phylogenetic analyses recovered G. humeralis populations from Trinidad as sister to mainland populations, with 
a western Amazonian cladenested within populations from eastern Amazonia (Fig. 1, Fig. 2b). Furthermore, 
STRUCTURE analysis inferred three populations of alleles in Hardy-Weinberg equilibrium (K = 3), with no 
individuals belonging purely to the third “ghost” population (‘purple’). This STRUCTURE pattern can be the result 
from two scenarios (Lawson et al., 2018): (1) admixture with an extinct/unsampled population or (2) genetic 
diversityin eastern Amazonia that did not establish in western populations, potentially through isolation-by-
distance (IBD) mediated gene flow or a population bottleneck during stepwise westward range expansion. 
Distinguishing between scenarios (1) and (2) is difficult and they are not mutually exclusive. At present, testing 
for admixture, scenario 1, is not possible with our current sampling as individuals from the putative “ghost” 
population are also needed. It’s possible that increased sampling across the Guiana Shield could identify G. 
humeralis populations that harbor an increased frequency of these “ghost alleles”. Indeed, population 
differentiation in this region has been noted previously for other taxa (Noonan and Gaucher, 2005). However, 
we posit (2) is a more likely scenario, i.e. extensive genetic diversity specific to eastern Amazonian populations, 
for three reasons: (i) we found much greater genetic diversity in eastern Amazonia (Supplemental Table 3) and 
little evidence for shared mtDNA haplotypes between localities, as did Avila-Pires et al (2012), which would be 
expected under this scenario; (ii) we recovered a signal of IBD across the mainland, which could account for the 
eastern specificity of these alleles via dropout; and (iii) western Amazonian populations are monophyletic, which 
would be expected if there were a population bottleneck during westward colonization. However, apart from 
weighing these lines of evidence, the current state of knowledge and our current sampling provide no definitive 
way of differentiating them. Thus, future work may warrant further examination of these possibilities. 
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Our phylogenetic and STRUCTURE results informed the possibility that Trinidadian divergence from the 
mainland is sufficient to warrant taxonomic reevaluation. Examining species limits using multiple methods and 
data types consistently identified the Trinidad populations as distinct species from the mainland populations, 
while a subset of analyses (SSDA & BFD) further split populations from eastern and western Amazonia. We first 
address whether the Trinidad populations represent a distinct species from the mainland populations, and then 
discuss whether the South American populations consist of one or more species. 
 
All species delimitation analyses recovered Trinidadian populations as being distinct from Amazonian G. 
humeralis (Table 2; Supplemental Figs. 3 and 4). Additionally, uncorrected genetic distances in mitochondrial 
ND2 (10%) between Trinidad and eastern populations (Table 1) are comparable to mitochondrial genetic 
distances among other recognized sister species of geckos, which typically range from 4.1% to 35.5% (Botov et 
al., 2015, Grismer et al., 2014a, Grismer et al., 2014b, Grismer et al., 2017, Oliver et al., 2007, Pepper et al., 
2006, Portik et al., 2013). Although species delimitation based solely on pre-determined sequence divergence 
values is difficult, if not impossible, to justify due to variations in effective population sizes and lineage-specific 
substitution rates (Barraclough et al., 2009, Moritz and Cicero, 2004, Pons et al., 2006), genetic distances among 
putative taxa can highlight taxa that warrant closer examination using other species delimitation methodologies 
(Gamble et al., 2012a, Hickerson et al., 2006), e.g. PTP, SSDA, and BFD. Thus, the bulk of the evidence supports 
recognition of the Trinidadian population as an independently evolving metapopulation lineage, or species (de 
Queiroz, 2007), distinct from mainland G. humeralis. Because the type locality of G. humeralis is from Peru 
(Guichenot, 1855, Rivero-Blanco, 1979), mainland South American populations should retain that name. Geckos 
on Trinidad, however, were previously described as G. ferrugineus (Cope, 1864) and we resurrect that name 
from synonymy for the Trinidadian population and briefly discuss its unusual nominal history. 
 
Gonatodes ferrugineus has a complex taxonomic history (see supplement for complete synonymy). Cope 
(1864) described G. ferrugineus from material collected on Trinidad that Theodore Gill deposited in the 
Smithsonian. Although the original description was ambiguous, and the type presumably lost (Rivero-Blanco, 
1979), Cope (1868) later identified a G. ferrugineus specimen (presumably being unaware of G. humeralis) 
among a collection of lizards from Peru and thus later naturalists assumed that G. ferrugineus was 
morphologically similar-to, and perhaps a junior synonym of, G. humeralis (Guichenot, 1855). Gonatodes 
ferrugineuswas eventually synonymized with G. humeralis, although no justification was provided for the 
decision (Donoso-Barros, 1968). However, throughout the late 19th and most of the 20th centuries 
discrepancies in nomenclature were apparent. Some herpetologists appeared to be unaware of G. 
ferrugineus and listed G. humeralis as occurring on Trinidad, likely based on their own experiences with this 
species while working in South America (Parker, 1935, Roux, 1926). Others listed G. ferrugineus as occurring on 
Trinidad and G. humeralis on the mainland (Boulenger, 1885, Burt & Burt, 1933). Wermuth (1965) added to the 
confusion by indicating that both G. ferrugineus and G. humeralis co-occur on Trinidad. However, following the 
explicit synonymy of Donoso-Barros (1968) and Rivero-Blanco’s thorough scholarly review (1979), synonymy 
of G. ferrugineus with G. humeralis was unanimously accepted (Avila-Pires, 1995, Kluge, 1993, Kluge, 
1995, Kluge, 2001). 
 
Gonatodes ferrugineus is currently morphologically indistinguishable from G. humeralis although there appear 
to be some qualitative differences in proportionality of the face, body size, and coloration in adult males that 
may, upon further investigation, diagnose this species (Authors’ pers. obs.; Rivero-Blanco, 1979). Coloration may 
be particularly useful as adult males from Trinidad are generally not as colorful as those from mainland South 
America (Supplemental Fig. 1). Trinidadian males lack red spots on the sides of the body and their heads tend to 
favor orange/yellow rather than red and white/blue, both of which are typical features of most South American 
populations (Authors’ pers. obs.; Rivero-Blanco, 1979). Similarly-colored males to those from Trinidad have also 
been observed in northern Venezuela (Rivero-Blanco, 1979), leading to the possibility that G. ferrugineus occurs 
there as well (Supplemental Fig. 1). Indeed, several Trinidadian endemics exhibit distributions that extend into 
northern Venezuela, such as Gonatodes ceciliae, Gonatodes vittatus, Polychrus auduboni, and Flectonotus 

https://www.sciencedirect.com/science/article/pii/S1055790318305578#t0010
https://www.sciencedirect.com/science/article/pii/S1055790318305578#s0105
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genetic-distance
https://www.sciencedirect.com/science/article/pii/S1055790318305578#t0005
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0060
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0060
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0400
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0405
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0410
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0710
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0725
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0725
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0740
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/effective-population-size
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0040
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0655
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0735
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0360
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0460
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0200
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0200
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0420
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0165
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0165
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0165
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/gills
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0170
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/lizards
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0420
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0240
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0720
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0800
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0065
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0090
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0935
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0240
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0025
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0545
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0550
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0550
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0555
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#s0105
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#b0780
https://www.sciencedirect.com/science/article/pii/S1055790318305578#s0105


fitzgeraldi(Murphy, 1997, Murphy et al., 2017a). Further, previous studies that have examined morphological 
variation within G. humeralis have not included specimens from Trinidad (Avila-Pires, 1995, Avila-Pires et al., 
2012, Vitt et al., 1997). Thus, future work should attempt to identify diagnostic phenotypic differences to 
complement the identified genotypic characters between these two species and determine the geographical 
boundaries of these species (Supplemental Fig. 1). It is worth pointing out a gap in our sampling from the 
northern Guiana Shield to Trinidad. Indeed, having not sampled Venezuelan populations may confound species 
delimitation metrics. However, we find this unlikely as we see no evidence of gene flow between Trinidad 
andthe mainland, even when K = 2 (Supplemental Fig. 2) and 9.4% pairwise divergence at the mitochondrial 
locus ND2 is considerable, and likely reflects substantial reproductive isolation. 
 
Although G. ferrugineus was revealed to be unambiguously distinct from mainland populations in all analyses, 
the status among South American populations was less straightforward. SSDA and BFD both provided support 
for a species delimitation model that splits mainland G. humeralis into two species, occupying eastern and 
western Amazonia (Table 2, Table 3, Supplemental Fig. 4). This hypothesis was bolstered by the fact that 
western Amazonia did not possess a large proportion of eastern-specific alleles (Fig. 1b) and that western 
Amazonia is monophyletic, although not reciprocally monophyletic with relation to eastern populations (Fig. 1a). 
These data are also congruent with previous work showing that the western Amazonian populations exhibit 
ecological differences compared to eastern populations. Namely, eastern G. humeralis occurs in primary forest, 
whereas western G. humeralis occur frequently in clearings, secondary forests, and human dwellings (Vitt et al., 
1997). Additionally, a model that supports a parapatric mode of speciation across Amazonia would support the 
gradient hypothesis of Amazonian biogeography (Endler, 1977). However, there is emerging evidence that 
intraspecific, population-level processes can confound assumptions made by coalescent species delimitation 
methods, such as SSDA and BFD (Ahrens et al., 2016, Barley et al., 2018, Gratton et al., 2015, Sukumaran and 
Knowles, 2017). This includes processes such as IBD, which we identified in our mainland samples, that can 
result in oversplitting species even in well-represented, continuously sampled populations. When considered in 
conjunction with our relatively sparse sampling, particularly in central Amazonia (Fig. 1), it is most likely that 
SSDA and BFD mis-interpreted this structure as speciation, and thus oversplit the mainland clade. Additionally, 
for both the mtDNA and RADseq data, eastern and western populations are not reciprocally monophyletic. 
While reciprocal monophyly at any specific locus is not a prerequisite for species delimitation (Hudson and 
Coyne, 2002, Palumbi, 2001), rapidly coalescing loci like mtDNA frequently form monophyletic sister species, 
reflecting their reproductive isolation (Wiens and Penkrot, 2002, Zink and Barrowclough, 2008). Thus, the failure 
to recover reciprocal monophyly, coupled with high proportions of shared alleles between eastern and western 
lineages, supports a single-species hypothesis for mainland, i.e. G. humeralis sensu stricto. 
 
Our estimates of the divergence time between mainland Amazonia and Trinidad are moderately disparate 
(mean = 1.89 mya (secondary calibration) and 2.7 mya (ND2 rate)). This is as expected, because gene divergence 
occurs prior to species divergence (Edwards and Beerli, 2000). Thus, we err on the side of the more-recent 
species divergence estimate of 1.89 mya (Fig. 2), which then suggests that cladogenesis between G. 
ferrugineus and G. humeralis took place in the early- to mid-Pleistocene, coinciding with the published 
divergences separating sister taxa in other organisms distributed on Trinidad and South America, including: 
fishes (Jowers et al., 2008), frogs (Camargo et al., 2009), skinks (Hedges and Conn, 2012), and birds (Hunt et al., 
2001). Concordance across animal clades is suggestive of a large-scale isolating event between groups of 
organisms on Trinidad and South America during this time-period due to Pleistocene glacial cycles. However, 
these divergences are ancient considering recent connections between the Paria peninsula of Venezuela and 
Trinidad as recently as 10,000 years ago (Comeau, 1991). This transient connector may have also provided G. 
ferrugineus with the means of re-colonizing the mainland in a similar manner to G. ceciliaeand G. 
vittatus (Supplemental Fig. 1). This possibility presents an interesting testable hypothesis of testing co-
divergence of these lineages. Nonetheless, testing this hypothesis using a model-based biogeographic analysis 
(such as Ree et al., 2005) is currently not possible, as we are still lacking a fully sampled Gonatodes phylogeny 
(Gamble et al., 2008, Schargel et al., 2010, Russell et al., 2015). 
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We are currently unable to devise definitive tests to differentiate between three competing phylogeographic 
scenarios: (1) Trinidad and mainland populations were isolated via vicariance during Pleistocene glacial cycles, 
(2) dispersal to Trinidad via river flotsam (from the Orinoco or other nearby river), or (3) the inverse scenario, 
dispersal to the mainland from Trinidad. Given the current data, we are unable to ascertain the approximate 
distribution of the most recent common ancestor to G. humeralis and G. ferrugineus. As discussed above, 
western Amazonian populations are nested within eastern populations of G. humeralis, excluding the possibility 
of an Andean origination (Fig. 1). G. humeralispossesses significantly greater genetic diversity in eastern 
Amazonia than G. ferrugineus, which suggests a founder effect bottleneck on Trinidad via (1) vicariance or (2) 
riverine dispersal and discourages (3) the inverse possibility of dispersal from Trinidad to South America 
(Supplemental Table 2). In many cases, high levels of genetic diversity correlate with a lineage’s point-of-origin 
as genetic diversity accumulates over time in stable populations (Ingman et al., 2000, Kimura, 1983). In addition, 
most Gonatodes species occur in South America, including a member of G. humeralis sensu lato’s sister group, G. 
conncinatus, suggesting a continental origin, with Caribbean species resulting from subsequent dispersals from 
the mainland (Supplemental Fig. 1), unlike Anolis lizards (Glor et al., 2001). However, several species closely-
related to this clade, e.g. G. ocellatus, G. ceciliae, and G. antillensis (G. conncinatus’ sister species), occur on 
islands north of South America, including Trinidad and Tobago (Supplemental Fig. 1). Thus, although the data are 
suggestive, these scenarios can, and should be, explicitly tested when sufficient data are available. 
 
The identification of the recent radiation of G. humeralis across Amazonia provides a powerful framework for 
testing recent biogeographic theories using fine-scale sampling, given specific demographic and phylogeographic 
predictions (Avila-Pires et al., 2012, Bush and Oliveira, 2006, Haffer, 1997, Prates et al., 2016, Werneck et al., 
2012). We found that G. humeralis does not diverge from a neutral model, suggesting a relatively constant 
population size over time. However, it is also known that small sample sizes (mainland N = 20) can confound 
true deviations from neutrality, although failure to diverge from a neutral model is also a common theme in 
Amazonian taxa and is not unique to G. humeralis (Lessa et al., 2003). This is still somewhat surprising since the 
divergence between G. humeralis in eastern and western Amazonia has occurred so recently (Fig. 2). This 
shallow time-frame, however, provides the potential for Quaternary divergence hypotheses, namely the refuge 
(Haffer, 1969) and vanishing refuge (Vanzolini and Williams, 1981) hypotheses, to be tested by employing more 
fine-scale sampling than was available for this study. Thus, G. humeralis sensu stricto provides a model system 
for elucidating the recent history of Amazonia. 
 
Within eastern Amazonia, our results are largely concordant with the findings of Avila-Pires et al. (2012), using 
mitochondrial data to infer high genetic diversity in eastern Amazonia (Supplemental Table 3). Along with the 
lack of genetic diversity in western Amazonia and on Trinidad, our data suggest the most recent common 
ancestor of G. humeralis sensu stricto occurred in eastern Amazonia, with subsequent westward expansion; as 
source populations typically have higher genetic diversity than their emigrated counterparts (Cann et al., 
1987, Ingman et al., 2000). Previous investigations of geographic barriers that have affected G. humeralis have 
focused on riverine barriers (Avila-Pires et al., 2012). Rivers have played an important role in Amazonian 
biogeography by acting as barriers to gene flow in multiple taxa [Cracraft, 1985, Haffer, 1969, Oliveira et al., 
2017, Wallace, 1852]. However, there is little evidence that they have had much impact on the present-day 
distribution of G. humeralis, as our time-calibrated phylogeny suggests that intraspecific divergence within G. 
humeralis took place <2.4 mya (Fig. 2), which is more recent than the establishment of the present-day Amazon 
river (≥3.6 mya) or the paleo-Tocantins river (≈2.6 mya) (Figueiredo et al., 2009, Latrubesse et al., 2010). Future 
investigations, with more thorough geographic sampling, may be able to elucidate a role for riverine barriers in 
relation to migration and gene flow in G. humeralis. Furthermore, the adaptation(s) that have led to the 
unusually broad distribution of G. humeralis may be of greater macroevolutionary importance for further 
investigation. Here, we briefly discuss the current state of knowledge regarding G. humeralis’ lineage-specific 
adaptations. 
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4.1. Gonatodes as a phylogeographic model system 
Gonatodes humeralis is distributed over a geographic range considerably larger than that of any of its 
congeners. Indeed, because most geckos exhibit small ranges, G. humeralis may possess one of the largest 
native ranges of any gecko species (Meiri et al., 2017, Roll et al., 2017). Gonatodes humeralis resembles its 
congeners in many respects, and there are several hypotheses to explain the large distribution of G. humeralis. 
The first involves increased thermal tolerance, which could allow G. humeralis to disperse across warm, open 
areas between forest fragments (Vanzolini and Williams, 1981). However, G. humeralis maintains the same body 
temperature as at least two congeners: G. concinnatus (Vitt and Zani, 1996); and G. hasemani (Vitt et al., 2000), 
and although it occupies slightly warmer microhabitats than G. hasemani, its thermal properties may be 
explained by differences in body size; as G. humeralis is the smallest member of its genus (Avila-Pires, 1995). To 
test this as a potential explanation for the relative success of G. humeralis, body and microhabitat temperatures 
for additional Gonatodes species will be needed (Hertz et al., 1993). Another hypothesis involves the presence of 
functionally adhesive digits in G. humeralis, and G. ferrugineus, a unique trait for these taxa (Higham et al., 
2017, Russell et al., 2015). 
 
The gain and loss of adhesive toepads in geckos has been hypothesized to represent a key innovation (Higham et 
al., 2017, Losos, 2011, Russell and Delaugerre, 2017). A key innovation is a behavioral or morphological 
adaptation that has the capacity to enhance competitive ability, relax adaptive trade-offs, or catalyze the 
exploitation of a novel resource, which, in turn enhances the number or longevity of a species (Hunter, 1998). 
Digital adhesion allows geckos to exploit vertical, low-friction surfaces and may have allowed G. humeralis to 
occupy habitats unavailable to its congeners, such as higher strata in the rainforest canopy or locomotion on a 
wide variety of substrates (Vitt et al., 1997, Russell et al., 2015). Although current genetic and fossil data are 
lacking to successfully correlate gain and loss of digital adhesion and diversification rates in geckos, it has been 
demonstrated that: (1) digital adhesion has been gained, and lost, multiple times throughout the evolutionary 
history of gecko lizards (Gekkota) (Gamble et al., 2012b), (2) under different environmental conditions, selection 
can favor the presence or absence of adhesive digits (Russell and Delaugerre, 2017), (3) the evolution of 
functional adhesion requires few morphological changes (Russell et al., 2015), and (4) small morphological 
changes can have marked impacts on function and the success of a lineage (Burggren, 1992, Higham et al., 
2015, Higham et al., 2016, Hunter, 1998, Liem, 1973Russell, 1979, Thomason and Russell, 1986, Webb, 1982). 
Although, key innovations are generally discussed in the context of adaptive radiations(Farrell, 1998, Stroud and 
Losos, 2016), it is evident that we witness evolutionary processes as a snapshot in time and, given a strong 
environmental impetus, a well-adapted (successful) lineage with a broad range may also be a lineage that is 
primed for subsequent diversification (Endler, 1977, Haffer, 1969). Thus, digital adhesion, which is absent from 
all other Gonatodes species, provides a putative mechanism for G. humeralis sensu lato, relative to other 
members of the genus, to have capitalized on available ecological opportunity across Amazonia and on Trinidad 
(see [Wellborn and Langerhans, 2014] for a scholarly review of ecological opportunity). 

5. Conclusion 
We propose that G. humeralis sensu lato is composed of two species. (1) G. humeralis sensu stricto occupies 
mainland South America and (2) its sister species, G. ferrugineus, resides allopatrically on the island of Trinidad. 
However, we reject the hypothesis that G. humeralis is a species-complex made up of multiple species across 
Amazonia. More specifically, genetic analyses support the hypothesis that G. humeralis sensu stricto is a single 
species throughout its contiguous range across northern South America with substantial population 
structure (local diversity and IBD). This is extremely atypical for a small, non-volant Neotropical taxon, and this 
pattern contrasts with that of most Amazonian taxa, as well as other species of Gonatodes, which occupy small, 
disjunctive distributions, and this discrepancy in geographic range invites further investigation. Indeed, unlike 
many clades consisting of widespread Neotropical taxa, Gonatodes harbors both widespread and geographically 
restricted taxa, providing a powerful system for identifying traits that influence species distributions. Thus, 
future work should attempt to elucidate the evolutionary adaptations that have influenced 
the biogeography of Gonatodes. 
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Appendix A. Supplementary material 
The following are the Supplementary data to this article: 
 

Supplementary data 1. 
Supplementary Figure 1. Gonatodes humeralis occurs sympatrically across its range with 13 congeners: G. 
alexandermendensi, G. annularis, G. ceciliae, G. conncinatus, G. eladoi, G. hasemani, G. nascimento, G. riveroi, 
G. rozei, G. seigliei, G. tapajonicus, G. timidus, and G. vittatus. All range estimates are based upon museum 
records from Universidad Nacional de Colombia and from the literature: Avila-Pires, 1995; Carvajal-Campos & 
Torres-Carvajal, 2012; Meilink et al. 2013; Ribeiro-Junior, 2015; Rivas & Schargel, 2008; Rivero-Blanco, 1979; 
Schargel et al. 2017; Uetz, 2017; Vanzolini, 1955; Vitt & Zani, 1996; Vitt et al. 1997 & 2000. Bottom right: 
Proposed species range adjustments concluded from this study, i.e. dividing G. humeralis and G. ferrugineus. “?” 
denotes the findings of Rivero-Blanco (1979) where male specimens from northern Venezuela more closely 
resemble specimens from Trinidad leading to the possibility that this is G. ferrugineus. Bottom: Representative 
photographs of each species G. humeralis courtesy of L.J.V. and G. ferrugineus courtesy of D.P.S. 
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Supplementary data 2. 
Supplementary Figure 2. Distruct plot output of STRUCTURE software investigating proportions of shared alleles 
among 16,381 unlinked SNPs with K=1-6. Line graph depicting deltaK = [mean(|L”(K)|)/sd(L(K))] over iteration of 
each K. 
 

 
 

Supplementary data 3. 
Supplementary Figure 3. Poisson Tree Processes (PTP) annotated mitochondrial tree output indicating distinct 
species as red clades with green root. The same tree is shown in an expanded cladogram format reporting nodal 
support of the mtDNA tree (posterior probabilities ≥0.95). 
 



 
 

Supplementary data 4. 
Supplementary Figure 4. Top left: map relating locality data to location on representative trees. Bottom left: 
(PTP) Species delimitation model predicted by PTP analysis using mitochondrial gene tree. Top right: (SSDA – 
STACEY) Species delimitation model predicted by SSDA in a Bayesian coalescent framework, support values for 
each node correspond to posterior probabilities that indicate each node is a distinct species under six different 
demographic scenarios (see methods). Bottom right: (BFD) Species delimitation model supported by BFD, 
reported number [ln(BF) = 9.5] reflecting a model comparison between the two-species (PTP) and three-species 
(SSDA) models by comparing Bayes factors (see methods). Dash marks along branch lengths represent that the 
lineage beyond is supported as a species-level clade in that respective analysis. 
 

 
 

Supplementary data 5. 
Supplementary Figure 5. Bayesian time-calibrated phylogenetic reconstruction using a secondary time-
calibrated root acquired from Gamble et al. (2015), set at ≈72.5 million years with a normal distribution (σ = 4). 
Posterior probabilities reported at each node with colored circles where large red circles are equal to posterior 
probability equal to ≥0.99, while smaller blue circles are equal to less than 0.95 (unsupported). Mean node ages 
are reported with node bars indicating 95% confidence interval of each mean age. 
 



 
 

Supplementary data 6. 
Supplementary Figure 6. Bayesian phylogenetic reconstruction using STACEY. (A) Maximum sum of clade 
credibility tree summarized from 27,003 post-burnin trees, numbers are posterior support for the associated 
node. (B) DensiTree representation of 27,003 post-burnin trees. 
 

 
 

Supplementary data 7. 
Supplementary Table 1. Locality and GenBank accessibility information of data generated in this study. 

Species Specim
en ID 

Locality Locali
ty ID 

16S  ND2 RAG
1 

CMO
S 

PTPN
12 

MAP
1b 

Radseq 

G. 
ferrugi
neus 

TG1681 Biche, Trinidad 1 KX76
2113 

KX76
2236 

KX76
2207 

KX76
2257 

KX76
2141 

KX76
2166 

SAMN06
827899 

G. 
ferrugi
neus 

TG1729 Flanagin Town, 
Trinidad 

1 KX76
2114 

KX76
2237 

KX76
2208 

KX76
2250 

KX76
2142 

KX76
2167 

SAMN06
827900 

G. 
ferrugi
neus 

TG1730 Flanagin Town, 
Trinidad 

1 KX76
2115 

KX76
2238 

KX76
2209 

KX76
2255 

KX76
2143 

KX76
2168 

SAMN06
827901 

G. 
ferrugi
neus 

TG1842 Biche, Trinidad 1 KX76
2116 

KX76
2239 

KX76
2210 

KX75
7678 

KX76
2144 

KX76
2169 

SAMN06
827902 

G. 
ferrugi
neus 

TG1843 Biche, Trinidad 1 KX76
2117 

KX76
2240 

KX77
4276 

N/A. KX77
4278 

KX76
2170 

SAMN06
827903 



G. 
ferrugi
neus 

TG1850 Flanagin Town, 
Trinidad 

1 KX76
2118 

KX76
2241 

KX76
2211 

KX76
2254 

KX76
2145 

KX76
2171 

SAMN06
827904 

G. 
ferrugi
neus 

TG1851 Flanagin Town, 
Trinidad 

1 KX76
2119 

KX76
2242 

KX76
2212 

KX76
2253 

KX76
2146 

KX76
2172 

SAMN06
827905 

G. 
ferrugi
neus 

TG1862 Flanagin Town, 
Trinidad 

1 KX76
2120 

KX76
2243 

KX76
2213 

KX76
2252 

KX76
2147 

KX76
2173 

SAMN06
827906 

G. 
ferrugi
neus 

TG1896 Flanagin Town, 
Trinidad 

1 KX76
2121 

KX76
2244 

KX76
2214 

KX76
2256 

KX76
2148 

KX76
2174 

SAMN06
827907 

G. 
ferrugi
neus 

TG1897 Flanagin Town, 
Trinidad 

1 KX76
2122 

KX76
2245 

KX77
4277 

KX76
2251 

KX77
4279 

N/A. SAMN06
827908 

G. 
humera
lis 

AMCC1
01359 

Kwakwani, Berbice 
River, Guyana 

2 EU47
7057 

KX76
2218 

KX76
2193 

KX76
2179 

KX76
2126 

KX76
2152 

SAMN06
827879 

G. 
humera
lis 

AMCC1
06913 

Dubulay Ranch, 
Berbice River, 
Guyana 

2 EU47
7055 

KX76
2219 

N/A. N/A. N/A. N/A. SAMN06
827880 

G. 
humera
lis 

YPM15
353 

Kappel, Sipali District, 
Suriname 

3 EF56
4012 

KX76
2247 

N/A. N/A. N/A. N/A. SAMN06
827898 

G. 
humera
lis 

LSUMZ
12371 

Faz. Nova Esperanca, 
Roraima, Brazil 

4 EU47
7058 

KX76
2222 

KX76
2194 

KX76
2180 

KX76
2127 

KX76
2153 

SAMN06
827882 

G. 
humera
lis 

LSUMZ
12376 

Faz. Nova Esperanca, 
Roraima, Brazil 

4 EU47
7056 

KX76
2223 

N/A. N/A. N/A. N/A. SAMN06
827883 

G. 
humera
lis 

CHUNB
31161 

Monte Alegre, Pará, 
Brazil 

5 EF56
4040 

KX76
2220 

N/A. EF56
4092 

N/A. N/A. SAMN06
827881 

G. 
humera
lis 

LSUMZ
14193 

Santarem, Pará, 
Brazil 

6 EF56
4031 

KX76
2224 

KX76
2196 

EF56
4085 

KX76
2129 

KX76
2155 

SAMN06
827888 

G. 
humera
lis 

LSUMZ
14194 

Santarem, Pará, 
Brazil 

6 EF56
4029 

KX76
2225 

KX76
2195 

KX76
2181 

KX76
2128 

KX76
2154 

SAMN06
827889 

G. 
humera
lis 

LSUMZ
16405 

Castanho, Amazonas, 
Brazil 

7 EU47
7063 

KX76
2230 

KX76
2201 

KX76
2184 

KX76
2134 

KX76
2160 

SAMN06
827890 

G. 
humera
lis 

LSUMZ
16408 

Castanho, Amazonas, 
Brazil 

7 EU47
7062 

KX76
2231 

KX76
2202 

KX76
2185 

KX76
2135 

KX76
2161 

SAMN06
827891 

G. 
humera
lis 

CHUNB
47049 

Alta Floresta, Mato 
Grosso, Brazil 

8 EU47
7054 

KX76
2221 

N/A. N/A. N/A. N/A. N/A. 



G. 
humera
lis 

LSUMZ
17785 

Guajará-Mirim, 
Rondônia, Brazil 

9 EU47
7065 

KX76
2232 

KX76
2203 

KX76
2186 

KX76
2136 

KX76
2162 

SAMN06
827892 

G. 
humera
lis 

LSUMZ
17786 

Guajará-Mirim, 
Rondônia, Brazil 

9 EU47
7064 

KX76
2233 

KX76
2204 

KX76
2187 

KX76
2137 

KX76
2163 

SAMN06
827893 

G. 
humera
lis 

MHNS
M1472
2 

Cuzco Amazònico, 
Madre de Dios, Peru 

10 EU47
7067 

KX76
2234 

KX76
2205 

KX76
2188 

KX76
2138 

KX76
2164 

SAMN06
827895 

G. 
humera
lis 

MHNS
M1472
3 

Cuzco Amazònico, 
Madre de Dios, Peru 

10 EU47
7068 

KX76
2235 

KX76
2206 

KX76
2189 

KX76
2139 

KX76
2165 

SAMN06
827896 

G. 
humera
lis 

WED57
873 

Cuzco Amazònico, 
Madre de Dios, Peru 

10 EF56
4028 

KX76
2246 

KX76
2215 

EF56
4082 

KX76
2140 

KX76
2175 

SAMN06
827897 

G. 
humera
lis 

LSUMZ
13586 

Porto Walter, Acre, 
Brazil 

11 EU47
7069 

KX76
2228 

KX76
2199 

KX76
2183 

KX76
2132 

KX76
2158 

SAMN06
827886 

G. 
humera
lis 

LSUMZ
13587 

Porto Walter, Acre, 
Brazil 

11 EU47
7066 

KX76
2229 

KX76
2200 

N/A. KX76
2133 

KX76
2159 

SAMN06
827887 

G. 
humera
lis 

MF194
92 

Orellana, Napo, 
Ecuador 

12 EF56
4013 

JX04
1361 

EF53
4796 

EF53
4922 

JF41
6860 

N/A. SAMN06
827894 

G. 
humera
lis 

LSUMZ
12638 

RPF-Cuyabeno, 
Sucumbíos, Ecuador 

13 EU47
7061 

KX76
2226 

KX76
2197 

KX76
2182 

KX76
2130 

KX76
2156 

SAMN06
827884 

G. 
humera
lis 

LSUMZ
12639 

RPF-Cuyabeno, 
Sucumbíos, Ecuador 

13 EF56
4030 

KX76
2227 

KX76
2198 

EF56
4084 

KX76
2131 

KX76
2157 

SAMN06
827885 

G. 
antillen
sis 

YPM17
581 

Westpunt Bay Beach, 
Curaçao 

N/A. KX76
2123 

KX76
2248 

KX76
2216 

KX76
2191 

KX76
2149 

KX76
2176 

N/A. 

G. 
antillen
sis 

YPM17
582 

Westpunt Bay Beach, 
Curaçao 

N/A. KX76
2124 

KX76
2249 

KX76
2217 

KX76
2192 

KX76
2150 

KX76
2177 

N/A. 

G. 
antillen
sis 

YPM17
583 

Westpunt Bay Beach, 
Curaçao 

N/A. KX76
2125 

KP64
0636 

KP64
0630 

KP64
0623 

KX76
2151 

KX76
2178 

N/A. 

 

Supplementary data 8. 
Supplementary Table 2. GenBank accessibility for StarBEAST2 analysis from Higham et al. (2017) and this study 

Species 16S ND2 ACM4 RAG1 RAG2 CMOS PTPN12 PDC 
G. ferrugineus KX76211

3 
KX76223
6 

-- KX76220
7 

-- KX76225
7 

KX76214
1 

-- 

G. ferrugineus KX76211
9 

KX76224
2 

-- KX76221
2 

-- KX76225
3 

KX76214
6 

-- 

G. ferrugineus KX76212
0 

KX76224
3 

-- KX76221
3 

-- KX76225
2 

KX76214
7 

-- 



G. humeralis_East EU47705
7 

KX76221
8 

EF56405
7 

KX76219
3 

EF56410
9 

KX76217
9 

KX76212
6 

-- 

G. humeralis_East EF56404
0 

KX76222
0 

EF56406
6 

-- EF56411
8 

EF56409
2 

-- -- 

G. humeralis_East EF56403
1 

KX76222
4 

EF56405
9 

KX76219
6 

EF56411
1 

EF56408
5 

KX76212
9 

-- 

G. 
humeralis_West 

EF56402
8 

KX76224
6 

EF56405
6 

KX76221
5 

EF56410
8 

EF56408
2 

KX76214
0 

-- 

G. 
humeralis_West 

EF56401
3 

JX04136
1 

EF53487
9 

EF53479
6 

EF53496
4 

EF53492
2 

JF41686
0 

-- 

G. antillensis KX76212
3 

KX76224
7 

-- KX76221
6 

-- KX76219
1 

KX76214
9 

-- 

G. antillensis KX76212
4 

KX76224
8 

-- KX76221
7 

-- KX76219
2 

KX76215
0 

-- 

G. antillensis KX76212
5 

KP64063
6 

KP64062
7 

KP64063
0 

KP64062
5 

KP64062
3 

KX76215
1 

-- 

G. eladioi HQ4261
95 

-- EF56405
5 

HQ4262
83  

EF56410
7  

EF56408
1  

JF41685
9 

HQ4261
95  

G. hasemani  EF56401
5  

KT11956
9 

EF53487
8 

-- EF53496
3  

EF53492
1  

-- EF53483
7  

G. albogularis EF56402
0  

JX04135
4  

EF53488
0  

EF53479
7 

EF53496
5  

EF53492
3  

JF41685
4 

EF53483
9 

G. 
alexandermendesi 

EF56402
6  

JX04135
5  

EF53488
1 

EF53479
8 

EF53496
6 

EF53492
4 

-- EF53484
0 

G. annularis EF56403
7  

JX04135
6  

EF53487
6 

EF53479
4 

EF53496
1 

EF53491
9 

JF41685
5 

EF53483
5 

G. caudiscutatus EF56401
1  

JX04135
7  

EF53487
7 

EF53479
5 

EF53496
2 

EF53492
0 

JF41685
6 

EF53483
6 

G. ceciliae EF56403
5  

JX04135
8  

EF56406
2 

JF416914 EF56411
4 

EF56408
8 

JF41685
7 

HQ4261
93 

G. concinnatus EF56401
2  

JX04135
9  

EF56404
4 

HQ4262
82 

EF56409
6 

EF56407
0 

JF41685
8 

HQ4261
94 

G. daudini EF56403
4  

JX04136
0  

EF53487
5 

EF53479
3 

EF53496
0 

EF53491
8 

-- EF53483
4 

G. ocellatus EF56401
4  

JX04136
2  

EF56404
6 

HQ4262
84 

EF56409
8 

EF56407
2 

-- HQ4261
96 

G. vittatus EF56403
2  

JX04136
3  

EF56406
0 

HQ4262
85 

EF56411
2 

EF56408
6 

-- KT11956
8 

L. festae EF56400
7  

 -- EF56404
2 

HQ4262
97  

EF56409
4  

EF56406
8  

JF41686
2 

HQ4262
08  

L. sp. EF56400
8  

JX04137
5  

EF53487
1 

EF53478
9 

EF53495
6 

EF53491
4 

JF41686
1 

EF53483
0 

L. xanthostigma EF56400
9  

JX04137
6  

EF53487
2 

EF53479
0 

EF53495
7 

EF53491
5 

JF41686
3 

EF53483
1 

 

Supplementary data 9. 
Supplementary Table 3. Within-group measures of genetic diversity using mtDNA. Within-group genetic 
distances for each cluster (p-distances) with standard error (S.E.) calculated using 500 bootstrap replicates in 



MEGA7 (Kumar et al. 2016). Nucleotide diversity (π) for each cluster and standard deviations (sd), calculated 
using DNAsp (Librado & Rozas, 2009); including 99% confidence intervals (π±3*sd). 

Geographic 
Cluster 

within-group p-
distance 

S.E. pi sd pi (±) 3*sd 
*** 

G. humeralis East 0.0578 ±0.00
45 

0.05811 0.003
2 

0.04851 - 
0.06771 

 G. humeralis 
West 

0.0296 ±0.00
33 

0.02761 0.005
14 

0.01219 - 
0.04303 

G. humeralis 
Trinidad 

0.0026 ±0.00
12 

0.00284 0.000
32 

0.00188 - 
0.0038 

G. antillensis 0.0074 ±0.00
23 

0.0071 0.002
06 

0.00092 - 
0.01328 

  MEGA7 (Kumar et al. 
2016) 

 DNAsp v5.0 (Librado & 
Rozas, 2009) 
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