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Figuur 1: a) Ilustratie van de werking van
een massasensor. b) Het

verplaatsingsgevoeligheidsschema c) hoe de
transmissie afhangt van de verplaatsing

In de laatste dagen van 1959
werd er een legendarische lezing ge-
geven door Richard Feynman met
de titel ’There’s Plenty of Room at
the Bottom: An invitation to En-
ter a New Field of Physics. Daarin
beschrijft Feynman een toen nieuw
en nog onontwikkeld wetenschappe-
lijk veld van manipulatie en controle
op kleine schaal. De lezing bleef
lange tijd onopgemerkt, maar begin
jaren tachtig werd ze door voorstan-
ders van nanotechnologie aangehaald
om de wetenschappelijke geloofwaar-
digheid van hun werk te ondersteunen.

De schalingswetten zijn van die
aard dat wanneer iets tot de helft wordt
verkleind, het oppervlak wordt ver-
kleind tot een kwart en het volume tot
een achtse van wat ze waren. Dit be-
tekent dat kleine mechanische structu-
ren stijver zijn en dat hun massa lager
is, waardoor de resonantiefrequenties aanzienlijk toenemen. Dit is bijvoorbeeld
van belang bij het ontwerpen van sensoren, omdat ze gevoeliger worden voor ver-
anderingen in massa en omdat er minder thermische ruis is bij hogere frequenties.
Daarom is het onderzoek in veel sensortoepassingen een race om de kleinste sensor
te maken die nog steeds bruikbaar is en kan worden uitgelezen.

Kleine massa’s zijn moeilijk te meten met behulp van de zwaartekracht, die
te zwak is daarvoor. In plaats daarvan wordt hun inertie (traagheid) gemeten. De
tweede wet van Newton zegt dat kracht gelijk is aan massa maal versnelling. Dus
als een kracht, inwerkend op een monster, bekend is en de verandering in de snel-
heid van het monster kan worden gemeten, dan kan de massa van dat monster
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Figuur 2: a) Een SEM afbeelding van de massasensor. B) Een spectrum van de
sensorrespons wanneer een optische kracht gemoduleerd is.

worden berekend. Een van de handigste manieren om dit te bereiken is om te me-
ten hoe de resonantiefrequentie van een cantilever verandert als er een testmassa
wordt opgeplaatst.

De reductie in dimensies van de cantilever maakt het echter alsmaar proble-
matischer om ook een aandrijving en een detector met het systeem te integreren.
Daarom is erg handig dat een goed micro-elektromechanisch systeem (MEMS)
materiaal, zoals silicium, ook optisch transparant is. Als onze cantilever ook een
optische golfgeleider is, dan kunnen we de richting van het licht meten dat de
cantilever/golfgeleider verlaat en hoe die verandert wanneer de cantilever trilt.

Zoals onder andere de Nobelprijswinnaar Arthur Askin heeft aangetoond, wor-
den materialen met een hoge brekingsindex aangetrokken tot het centrum van een
gefocuste laserstraal. Dus wanneer het licht wordt gekoppeld aan een golfgeleider
begint die andere golfgeleiders die zeer dichtbij zijn aan te trekken. Dit principe
kan worden gebruikt om de eerder beschreven massasensor aan te drijven. Het ge-
bruik van optische krachten om mechanische systemen aan te drijven is interessant
omdat veel van de voordelen van het werken met licht, zoals hoge modulatiesnel-
heden en lage propagatieverliezen, behouden kunnen worden.

Optomechanische sensoren bestaan al een tijdje in optische vezels. Een sterke
optische golf vervormt de vezel zodat deze begint te trillen en het licht wordt ge-
reflecteerd door die trilling. Het proces wordt gestimuleerde Brillouinverstrooiing
genoemd. De frequentie van die trillingen is materiaalafhankelijk en wordt di-
rect benvloed door spanning en temperatuur in de vezel. Wanneer het licht wordt
gefocust in de veel kleinere golfgeleiders die in gentegreerde fotonica worden ge-
bruikt, wordt de verstrooiingsefficintie veel hoger en is er daarom een focus op het
overbrengen van de Brillouinverstrooiingsapparaten die in vezels bestaan naar een
gentegreerd platform.

Dit werk is verdeeld in twee delen: In het eerste deel hebben we een volle-
dig optische actuatie en detectie van een massatraagheidssensor bestudeerd [1].
In het tweede deel hebben we genetische algoritmes gebruikt om optische golf-
geleiders te vinden die de gestimuleerde Brillouinverstrooiing (SBS) versterking
optimaliseren [2]. De SBS versterkingscofficint is daarbij een metriek voor de
verstrooiingsefficintie van de golfgeleider.
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Resultaat

De resolutie van een massasensor is wordt bepaald door hoe sterk de ruis kan
onderdrukt worden t.o.v. de amplitude van de coherente trillingen. In de literatuur
is aangetoond dat optische slotgolfgeleiders uitzonderlijk sterke optomechanische
krachten genereren en deze kunnen dan ook gebruikt worden voor de aandrijving
van een massa sensor. Het gebruik van een optisch aandrijving is interessant omdat
dezelfde on-chip infrastructuur ook kan worden gebruikt voor de detectie van het
signaal. In de door ons voorgestelde sensor wordt het licht gekoppeld in de slot-
golfgeleider met een multimode interferometer die een robuust anker biedt voor de
mechanische resonator. Bovendien kan deze samen met decantilever in n enkele
stap gedefinieerd worden, wat de herhaalbaarheid van de sensormetingen verbetert.
Dit maakt het mogelijk om massasensoren met een zeer kleine on-chip footprint (
< 2000 um2) te realiseren.

De performantie van een massasensor wordt voor een groot deel beoordeeld
door twee karakteristieken: de massaresponsiviteit is de frequentieverschuiving
per gemeten testmassa en de massagevoeligheid is het kleinste massaverschil dat
kan worden onderscheden. Een van de in het kader van dit werk gefabriceerde
sensoren heeft een massa-reactievermogen van 146 ZHz/kg en een massagevoelig-
heid van 500 kDa. Deze massa-gevoeligheid is in lijn met die van gepubliceerde
sensoren [3, 4] en eerder voorgestelde volledig-fotonische massasensoren [5, 6],
maar onze sensor heeft een beduidend kleiner vermogen om de vibratie aan te drij-
ven. Samenvattend hebben we een massasensor ontworpen, gefabriceerd en geme-
ten die door gebruik te maken van een nieuwe actuatiemethode een competitieve
prestatie levert. De kleine afmetingen, de keuze van het materiaalplatform en de
fabricagemethoden maken een goedkope sensor compatibel met massaproductie
mogelijk.

Om een golfgeleider te ontwerpen met een sterke SBS versterking, is een com-
promis nodig tussen het bereiken van lage optische verliezen, een goede mechani-
sche geleiding en een sterke koppeling tussen beide effecten, allemaal in dezelfde
fysieke structuur. SBS in gentegreerde fotonica is nog steeds een relatief nieuw
onderwerp, en is nog maar enkele jaren geleden voor het eerst gedemonstreerd.
De focus van de onderzoeksgemeenschap lag tot nu toe vooral op het vinden van
het juiste materiaal om in te werken en minder op de vorm van de golfgeleider.

In dit doctoraatsonderzoek hebben we gebruik gemaakt van genetische algo-
ritmen om de golfgeleiders met de hoogste SBS versterking over een reeks me-
chanische frequenties te vinden. De hoogste versterking onder de gegenereerde
golfgeleiders is 2,5 x 108 1

Wm , ruim boven wat bereiekt werd in eerder aange-
toonde golfgeleiders. De voorgestelde golfgeleider is gellustreerd in figuur 3. De
geaccumuleerde resultaten van alle 24000 gesimuleerde golfgeleiders zijn weer-
gegeven in figuur 4. Met deze resultaten kunnen we ook iets zeggen over de meer
algemene trends over het mechanische frequentiebereik. Als voorbeeld: de om-
gekeerde kwadratische afhankelijkheid van de mechanische frequentie is duidelijk



xx NEDERLANDSE SAMENVATTING

Figuur 3: a) De golfgeleider met de hoogste gestimuleerde
Brillouinverstrooiingsversterking. Oranje komt overeen met silicium en zwart met

siliciumoxide. Een cel is 50 nm x 50 nm. b) and c) represent the mechanical and optical
modes in this waveguide.

Figuur 4: a) Alle optomechanische modeparen van alle golfgeleiders die gevalueerd zijn
door het genetisch algoritme. B) Een onafhankelijk geoptimaliseerde golfgeleider. De

zwarte lijn in a) is een projectie van golfgeleider b) voor het hele frequentiebereik.

zichtbaar, maar dat patroon wordt verstoord rond 10 GHz. In dat gebied verandert
de koppelingsmechanica en begint de vervorming een significante invloed te heb-
ben op de optische eigenschappen van de golfgeleider, waar deze voordien vaak
genegeerd kon worden. Met deze resultaten toonden we aan dat genetische algorit-
men een geschikte methode zijn voor multi-objectief optimalisatie van niet-lineaire
golfgeleiders. Dit is interessant bij het ontwerpen van een SBS-golfgeleider voor
sensortoepassingen of voor gebruik in een specifiek mechanisch frequentiebereik.
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Figure 5: a) Illustration of the operation of a
mass sensor. b) The displacement sensitivity
scheme and c) how the transmission depends

on the displacement.

Introduction

There is a legendary lecture given
by Richard Feynman in the last days of
1959 called ’There’s Plenty of Room
at the Bottom: An Invitation to En-
ter a New Field of Physics’. Therein
Feynman describes a then new and
mostly undeveloped scientific field of
manipulating and controlling things on
a small scale. It mainly went unno-
ticed for a long while but beginning in
the 1980s nanotechnology advocates
cited it to establish the scientific cred-
ibility of their work.

The scaling laws are such that
when something is shrunk down to
half its size the surface is shrunk to
a quarter and the volume an eight of
what it was. This means that small me-
chanical structures are stiffer and that
their mass is lower so as a result the
resonance frequencies increase substantially. This is significant when designing
sensors e.g. as they become more sensitive to changes in mass when the sen-
sor mass is smaller and because there is less thermal noise at higher frequencies.
Therefore the research in many sensing applications is a race to make the smallest
sensor where the relevant metric is still possible to measure.

Small masses are difficult to measure with the help of the gravitational force;
it is too weak. It is instead measured via the inertia. Newton’s second law says
that force is mass times acceleration. So if a force acting upon a sample is known
and the change in the speed of the sample can be measured, then the mass of that
sample can be calculated. One of the more convenient ways of achieving this is
to measure how the resonance frequency of a cantilever changes when a sample is
attached to it.

The small size of the cantilever becomes a problem however as it becomes
difficult to integrate a drive and a detector. It is very convenient than that a good
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Figure 6: a) A SEM image of the mass sensor. b) A spectrum of the sensor response when
the optical force is modulated.

micro-electro-mechanical systems (MEMS) material like silicon is transparent. If
our cantilever is also an optical waveguide as well then we can measure the di-
rection of the light leaving the cantilever/waveguide and how it changes when it
vibrates.

As was demonstrated by among other last years Nobel prize laureate Arthur
Askin, high refractive index materials are attracted to the centre of a focused laser
beam. So when light is coupled to a waveguide it starts to pull in other waveguides
that are very close by. This principle is used to drive the mass sensor described
earlier. Using optical forces to drive mechanical systems is interesting because
many of the advantages from working with light are kept like high modulation
speeds and low propagation losses.

Optomechanical sensors have existed for a while already in optical fibres. A
strong optical wave deforms the fibre so it starts to vibrate and then light is re-
flected by that vibration. The process is called stimulated Brillouin scattering. The
frequency of those vibrations are material dependent and are directly affected by
stress and temperature in the fibre. When the light is focused into the much smaller
waveguides that are used in integrated photonics the scattering efficiency becomes
much higher and there is, therefore, a focus on translating the Brillouin scattering
devices that exist in fibres into an integrated platform.

Results

This work is split into two sections. In the first part, we have studied using
an all-optical actuation and detection of an inertia mass sensor [1]. In the second
part, we have used genetic algorithms to find the optical waveguide design with the
optimal stimulated Brillouin scattering (SBS) gain [2]. The SBS gain coefficient
is a metric for the scattering efficiency of the waveguide.

The resolution of an inertia mass sensor is dependent on the amplitude of the
coherent vibrations over the frequency noise. Optical slot waveguides have been
shown to generate exceptionally strong optomechanical forces and can, therefore,
drive the waveguide to high vibrational amplitudes. Using an optical drive is inter-
esting because it can use the same on-chip infrastructure as the detection scheme



ENGLISH SUMMARY xxv

Figure 7: a) The waveguide with the highest stimulated Brillouin scattering gain. Orange
indicating silicon and black silica. The rectangles each representing a 50 nm by 50 nm

square. b) The mechanical mode and c) the optical mode.

and optical displacement detection has demonstrated sensitivity well below the
thermal noise.

In our sensor we couple the light into a slot waveguide cantilever with a multi-
mode interferometer. This way we provide a robust anchor for the optical waveg-
uide so that it can be a good mechanical resonator and define the length of the
waveguide in a single processing step which improves repeatability for the sensor
metrics. We then collect the light leaving the slot with another slot waveguide fixed
to another MMI after which the light is routed to a photo-detector. Altogether this
allows for mass sensors with a very small on-chip footprint ( < 2000 um2).

A mass sensor is qualified in large part by two metrics: the mass responsivity
is the frequency shift per sample mass measured and the mass sensitivity is the
smallest mass difference that can be resolved. One of the fabricated sensors which
is operating at 10 MHz has a mass responsivity of 146 ZHz/kg and a mass sen-
sitivity of 500 kDa. This mass sensitivity is in line with published sensors [3, 4]
and previously suggested all-photonically transduced mass sensors [5, 6] while
using a significantly smaller power to drive the vibration. In conclusion, we have
designed, fabricated and measured a mass sensor that by using a novel actuation
method achieves a competitive performance. The small sensor footprint, the choice
of material platform and fabrication methods allows for cheap mass production.

To design a waveguide for a strong SBS gain, one needs to compromise be-
tween having a good optical waveguide, a good mechanical waveguide, and a
strong coupling between the two, all in the same physical structure. SBS in in-
tegrated photonics is still a relatively new subject having been demonstrated only
a few years ago. The focus of the research community has primarily been on find-
ing the right material to work in and less on the shape of the waveguide.

In this PhD research we have used genetic algorithms to find the waveguides
with the highest SBS gain over a range of mechanical frequencies. The highest
gain among the generated waveguides is 2.5 x 108 1

Wm , well above any previously
demonstrated SBS WG. The waveguide is illustrated in figure 7. The accumulated
results of all 24000 simulated waveguides are shown in figure 8. Based on our
results we can also say something about the more general trends across the me-
chanical frequency span. As an example, the inverse square dependence on the
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Figure 8: a) All the optomechanical mode pairs of all the waveguides evaluated by the
genetic algorithm. b) A separately optimized slot waveguide. The black line in a) is a

projection of waveguide b) for the whole frequency span.

mechanical frequency is clear to see but that pattern is broken around 10 GHz. In
that region, the coupling mechanics changes and the strain starts to have a signif-
icant influence on the optical properties of the waveguide where earlier it could
often be ignored. We show that genetic algorithms are a suitable method for multi-
objective optimisation of nonlinear waveguides. This is interesting when designing
an SBS waveguide for sensing or for use in a specific mechanical frequency span.
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1
Introduction

1.1 Mass sensing
There are several ways of measuring the mass of an object. Ancient inventions
such as the balanced scale and more modern versions using springs are familiar to
most of us and have been instrumental in the development of fundamental aspects
of civilisation such as trade. For small masses, however, these methods encounter
difficulties. Gravity is a weak force in these situations and to find a spring soft
enough or to operate a series of ultra-small counterweights quickly becomes a
problem. Instead, the mass is measured via the inertia of the sample. By measuring
the acceleration while experiencing a known force the mass can be calculated using
Newton’s second law. One option is to use a mass spectrometer but it does not
measure the mass, instead it measures the mass-to-charge ratio. It is not trivial
to ionise the particle to a known charge so while it is an excellent way to find the
isotropic components of a molecule it does not directly measure the mass. Another
option is to use MEMS or NEMS resonators as they offer low spring constants and
low masses so the added sample mass makes a significant change to the resonator
parameters. Some examples are the quartz crystal microbalance and the MEMS
cantilever.

MEMS cantilevers came into prominence in 1986 with the experimental demon-
stration of the atomic force microscope (AFM) [1]. The AFM is essentially a
minute record player where a needle traces the surface of the sample and records its
topology and hardness. The needlepoint sharpened to a radius of a few nanometers
is attached to a cantilever which deflects as the tip makes contact with the sample.
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Similar to when measuring mass the cantilever needs to have a low spring constant
to increase sensitivity and a high resonance frequency as it shields the cantilever
from external vibrations.

Cantilever-based sensors appeared as a research field in the 1990s with the dis-
covery that with a metal coating on one side these AFM cantilevers were sensitive
to temperature, humidity and a series of chemicals [2–4].

Today it is a well-established technology for label-free sensing and with the ad-
vances made in CMOS fabrication promises cheap, portable, sensitive and highly
parallel analysis systems. Examples of sensor applications are covering such di-
verse fields as drug discovery [5], bacteria detection [6], material characterisa-
tion [7] and explosives detection [8].

There are several ways cantilevers can be used as a sensor [9]. We can measure:
the deflection from surface forces generated by an analyte absorbed at the surface,
the deflection from the intrinsic properties of the resonator changing or the shift
in resonance frequency as its properties as a resonator change. The inertia mass
sensor measures that frequency shift as a sample mass is added to the mass of the
cantilever, as is illustrated in figure 5a in the summary.

One of the difficulties with using MEMS devices for mass sensing is the sam-
ple deposition. These devices are often fragile and sensitive. A solution is to
integrate a microfluidic channel into the MEMS device, then the delivery can be
made easier and faster. Many potential samples are initially in liquid form [10]
and are damaged by drying so this delivery method is very promising.

The detection limit of an inertia mass sensor is directly dependent on the small-
est frequency shift it can measure. Since frequency noise decreases with amplitude
a good mass sensor has a strong force driving the vibration. With that comes that a
good mass sensor also has excellent nonlinear properties so it can work with large
vibrations without coupling other noise sources to the phase noise.

1.2 State of the art mass sensing

Ultimately the performance of a mass sensor is very dependent on the conditions
under which it operates. The current state of the art for mass sensors combines
the incredibly low mass of a carbon nanotube resonator with the low noise envi-
ronment at 4 Kelvin [11]. This way it is possible to resolve mass shifts of 1.7yg
(yg=10−24 g). The results are impressive but nanotubes have proven to be com-
plicated to introduce in a mass-produced process and that degree of cooling is
time-consuming and expensive.

It is possible to suppress the frequency noise in the sensor with the help of
cavity optomechanical effects [12]. This method has been successful but does in
turn require very high optical quality factors, the sensor in question has a quality
factor above 106. The quality of the surface required to reach such values makes
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it difficult to combine it with many kinds of samples or the surface preparation
needed to make the surface adhesion selective to the sample.

The best beam mass sensor known to the author that gives values for operation
in room temperature is a silicon carbide beam with a magnetomotive actuation and
detection [13] that is able to resolve masses as low as 2.5 ag (ag=10−18 g) or 1.5
MDa. More about the driving and detection methods can be found in the sections
about actuation and displacement sensing.

1.3 Silicon photonics

There are many ways of detecting vibrations but one of the most competitive is an
integrated optical approach [14]. The method we are proposing in this work relies
on that by choosing a transparent high refractive index material such as silicon
for the cantilever it can guide light. By shining light through the cantilever it is
possible to detect the vibrations as they bring the tip of the cantilever in and out
of alignment with a second waveguide that collects the light and routes it to a
photo-detector.

Since the read-out of the proposed mass sensor is done with light it is necessary
to address the optical component of the device. Luckily the CMOS technology that
allowed the fabrication of MEMS devices was also followed by the rapid develop-
ment of integrated photonics.

One of the most significant technological revolutions of the last century was
how electronics once as big as a whole room now can fit into a pocket. Computers
are now millions of times faster than its large counterpart from previous decades,
at a fraction of the cost.

The silicon photonics community hopes that the same development is possible
in photonics and bring our optical tables down to a more portable size and in
a mass producible design. By using the same technology and materials as are
used in the CMOS facilities to fabricate integrated electronics we benefit from
the extensive work already done to provide high-quality performance in a mass-
producible format [15].

Many of the needed components have already been demonstrated such as tun-
able filters, spectrometers, grating couplers, high-speed detectors and modula-
tors [16, 17]. It is not without setbacks, however. A major roadblock is the lack
of integrated light sources in the silicon platform. In large part, this is due to the
difficulty to integrate the gain medium. Another roadblock is the difficulty in repli-
cating the performance of a device consistently. Light is sensitive to defects even
at the atom level and the resulting losses and reflections cascade through the circuit
making intricate devices exceedingly challenging to realise.

Despite the challenges there are already a host of uses for integrated pho-
tonics, e.g. transmitters and receivers for fibre optic communication, a host of
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a) b)

Figure 1.1: a) A chip with integrated circuits at a measurement stage and two fibers for
coupling light in and out of the circuit. b) The CAD schematic of such a circuit.

different medical sensors focused on sensing insulin and other substances in the
body. It demonstrates that the fabrication technology is mature enough for a micro-
optomechanical sensor (MOEMS) such as the mass sensor.

Since an integrated optical vibration detection method has been proven to be
competitive with other methods, it is interesting that it is also possible to drive the
vibrations with an optical force. Two optical waveguides in very close proximity
can be made to attract or repel each other when there is light in the waveguides
[18]. This kind of all-optical drive and detection approach has been suggested
before [19, 20] but in this work we propose using a slot waveguide which has been
shown to generate more than ten times stronger force than standard waveguides
for the same optical power.

The strong optical forces in a slot waveguide should be able to excite much
stronger vibrations than comparable resonators using the same given optical power.
The strong vibrations should lead to a reduction in the phase noise as well as an
improved mass sensitivity. Since the device is not using any wavelength dependent
components the vibrations can be detected by using broadband light sources or
non-tuneable lasers which together with the simple fabrication process keeps the
cost low.

Therefore, in the first part of this thesis we will investigate the use of slot
waveguides as inertial mass sensors.

1.4 The design of our mass sensor

Our proposed mass sensor is illustrated in figure 1.2. By putting two thin silicon
cantilevers very close to each other they will function as a slot waveguide. To
focus light into the cantilever slot we have chosen to use a multimode interferom-
eter (MMI). It is a very wide optical waveguide which uses interference between
several optical modes to couple light between waveguides. The block-like MMI
offers a good anchoring for a mechanical resonator. The sensor consists of 2 to
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a)
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Incoming  Light Outgoing  Light
Loss

es

Figure 1.2: a) An illustration of the mass sensor and the coupling to and from it. 2) By
guiding light in the slot between two cantilevers it generates a strong force between them
driving a vibration. How well light couples to the other slot is dependent on how the first

slot is deformed by the vibration.

6 µm long, 280 nm wide cantilevers that are etched out of a 220 nm thick layer
of silicon. The slot between the cantilevers is 100 nm wide. The receiving slot
waveguide slot is widened to 280 nm in order to increase the displacement sensi-
tivity but then tapered down to the same dimensions as the sensor waveguide. In
cases where it is not specified we are using the 6 µm sensor cantilever as it gives
the strongest signal.

1.5 Brillouin scattering

The optomechanical force that drives the mass sensor is present also in the waveg-
uides used to route light around the circuit. If it were not for damping via the
substrate these waveguides would vibrate as well. The difference is that unlike
the single resonator case the waveguide acts as a continuous set of mechanical
resonators coupled to the same optical drive. Physically the strain caused by an
acoustic wave that is propagating through a waveguide results in a periodic change
in the refractive index which in turn scatters the light. This process is called Bril-
louin scattering and is well studied in long conventional optical fibres but still
relatively new in integrated optics where the interaction is much stronger but the
length of the waveguide much shorter [21].

Brillouin scattering or ”the inelastic scattering of light caused by acoustic
phonons” was suggested by both Brillouin in 1922 [22] and Mandelstam in 1926
[23], the latter is believed to have recognised the phenomenon almost a decade be-
fore his publication. When the light amplifies these phonons it is called stimulated
Brillouin scattering (SBS), and it was demonstrated in 1964 by Chiao et al [24]. It
is capable of both up and down conversion of the frequency as well as forward and
backwards scattering of the light.

SBS in fibres has been used to make distributed temperature or strain sensors
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[25] which can be can be integrated into large and long structures such as bridges.
The method is quite simple and can easily be understood when you know that the
properties of silica that decide which acoustic frequencies can be excited are both
temperature and strain dependent. The Brillouin frequency, as it is called, can be
tracked by continuously measuring the frequency shift of the light reflected when
coupling a strong laser to the fibre.

It has also been used to amplify weak signals [26]. A strong pump laser sep-
arated from the weak signal by the Brillouin frequency will generate an acoustic
vibration proportional to the signal. The intensity of the light scattered from the
pump to the signal frequency is proportional to the vibrations. A Brillouin waveg-
uide can in this way function as a gain medium and be used to amplify the signal.

Brillouin scattering in regular optical fibres is mostly due to the strain induced
by the acoustic wave and how it affects the refractive index but the acoustic wave
also warps the shape of the waveguide itself. For waveguides with sub-wavelength
features such as photonic crystal fibres and those used in integrated photonics,
these shape changes can have a significant impact on the optical properties. It has
been shown that this kind of optomechanical coupling, called radiation pressure, is
in some waveguides able to generate stronger forces than the electrostrictive force.

Smaller waveguides also mean that the light is focused into a smaller optical
mode increasing the intensity of the light and the nonlinear interaction. A host of
promising applications like small footprint narrow linewidth lasers [27, 28] and
tunable dynamic gratings [29] have already been demonstrated and there is the
hope that many more will follow [30].

1.6 Algorithmic design and optimization of Brillouin
active waveguides

The magnitude of the SBS coupling is dependent on both optical modes, the one
mechanical mode, the overlap between them all, the optical group velocity and
several other properties. It can be difficult without simulation tools to estimate
how good a novel waveguide is for Brillouin scattering or what changes are needed
to make it better. Since Brillouin scattering was first demonstrated the majority of
the development has been focused on finding the right material system and not so
much on the shape of the waveguide. A way of addressing this gap is to rely on
computational aids.

For a computer to be able to run an algorithm with such a purpose, the waveg-
uides need to be parametrised in a flexible way so that any shape can be described.
We have chosen to rasterise the waveguide into a 17 by 14 pixel grid. With three
possible materials to assign to each element (silicon, silicon oxide, air) it quickly
expands to 10113 possible waveguide shapes. Even if many of these waveguides
are functionally identical it is unrealistic to test the performance of all of them.
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Evolutionary algorithms are a class of general purpose search algorithms based
on an iterative approach and it has been used to solve optical problems before
[31–33]. Evolutionary algorithms mimic evolutionary pressure, genetic crossover
and mutation to generation by generation generate and select the best candidate
solutions to a problem. With this approach, evolutionary algorithms have been
shown to provide often counter-intuitive but educational answers in domains rang-
ing from the growth of plants and website design to Othello strategies [34–36].

In the second part of this work, we will design a genetic algorithm that we then
use to optimize the SBS gain over a wide range of mechanical frequencies. This
way we find several different types of waveguides excelling their SBS gain while
providing a diverse range of other metrics, such as group index, mass or frequency.
We are also discussing the general trends in the accumulated data.
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1.7 Outline
The thesis is organized as follows:

• Chapter 2 is focused on optomechanical interactions in optical waveguides.
It aims at introducing the relevant analytic tools to model mechanical res-
onators and optomechanical forces. It also includes a brief presentation of
the alternative to optomechanical designs to place the work in a relevant
context. Finally, it includes an introduction to coupled resonator systems,
nonlinear resonators and frequency noise.

• Chapter 3 is focused on the design, fabrication and measurement of the mass
sensor. It starts with an introduction to the parameters that qualify a mass
sensor: the mass responsivity and the mass sensitivity. Following that is an
exposition on the mass sensor and the considerations taken around the slot
waveguide design. It also includes an investigation on a novel mass sensing
design utilising the synchronisation conditions of dissipative coupling. Next
is a section about the fabrication process and one about the measurement of
the signal and the noise.

• Chapter 4 is focused on the design of the genetic algorithm. Genetic algo-
rithms are designed to find a sufficiently good solution to an optimisation
problem often using incomplete or imperfect information or limited compu-
tation capacity. Generally, this is made more difficult by that the set of solu-
tions is too large to be adequately sampled. Genetic algorithms are inspired
by natural selection and rely on bio-inspired operators such as mutation,
crossover and selection.

• Chapter 5 focuses on Brillouin scattering and how light propagates along
waveguides and interacts with the light. It starts with a short description of
what makes Brillouin scattering different from the resonator case and the
metrics that are used to qualify it. Then follows an analysis of the results of
the genetic algorithm, both individual waveguides and the more overarching
trends.

• The last chapter contains a conclusion of the work as well as a few suggested
future projects.
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1. Jesper Håkansson, and Dries Van Thourhout, Generating novel waveguides

for stimulated Brillouin scattering with genetic algorithms, Conference on
Lasers and Electro-Optics (CLEO), Munich, Germany, (2019).
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2
Optomechanical Resonators

2.1 Introduction

This chapter is focused on optomechanical interactions in optical waveguides. It
aims at introducing the relevant analytic tools to model mechanical resonators and
optomechanical forces. It also includes a brief presentation of the alternative to
optomechanical designs in order to place the work in a relevant context. Finally,
it includes an introduction to coupled resonator systems, nonlinear resonators and
frequency noise.

2.2 Mechanical resonators

Being able to model and understand the mechanical properties of a MEMS struc-
ture is, of course, essential to their design. Mechanics is an old discipline origi-
nating in ancient Greece and then via Newton, Euler, Lagrange and many others,
it has continued to develop to this day. Mathematically mechanics has two prin-
cipal branches: Lagrangian mechanics and Hamiltonian mechanics. Neither of
them is fundamentally different from Newtonian mechanics, but their mathemati-
cal approach makes many problems easier to work with. The vectors that represent
forces and speeds in Newtonian mechanics are reformulated as scalars. Lagrangian
mechanics instead approach the problem from the difference between the kinetic
and potential energy and the flux between those two forms of energy. This way
the forces that can be derived are placed in a generalised coordinate system. The
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energy terms can often be written so that redundant terms disappear and so it sim-
plifies the constraints of the system. Hamiltonian mechanics instead works with
the sum of the energies of the system, making it well suited for accounting for
where the energy is that it is conserved. It often offers an easier way to deal with
mechanical energy and momentum. Before that becomes relevant the mechanical
problem must be broken down into parameters that can be worked with.

2.2.1 Resonance frequency
The most essential of the parameters of mechanical resonators is perhaps the res-
onance frequency. It can be calculated in several ways depending on the assump-
tions we start with. One way is to write down the different forces acting locally
upon the structure as it is deformed and equating them to the inertia force from
Newton’s third law. For a simple resonator, the differential equation of a segment
can look something like this,

K(Φ(r, t))− ρ(r)Φ̈(r, t) = 0 (2.1)

where K is a function calculating the force restoring the structure to a relaxed
state from a displacement and ρ(r) the density. Φ(r, t) and Φ̈(r, t) represent the
displacement and acceleration of that structure at the point, r, and time, t.

Using the Fourier method the velocity of the structure can be separated into a
spatial mode shape and a time-dependent oscillation and can be written down as
Φ(r, t) = φ̃(r)eiωt. The mode shape can be calculated by finding shapes which
satisfy the spatial part of the differential equations and the boundary conditions
implied from how the boundary interacts with the surrounding.

The second time derivative of the displacement gives the acceleration,
Φ̈(r, t) = −φ̃(r)ω2eiωt. By introducing the now calculated mode shape into equa-
tion (2.1) and using the time independent frequency term in the acceleration it is
then possible to solve for the resonance frequency.

Rayleigh’s quotient offers another way for calculating resonance frequencies
under the added assumption that the system is lossless and that the mode shape is
known. The total mechanical energy of the system is the sum of the kinetic energy
and the potential energy. The system transfers the energy between the extremes of
an only kinetic energy state to an only potential energy state and then back again.
From that, it can be assumed that the maximum kinetic energy is the same as the
maximum potential energy,

Wkin(tmax,kin) = Wpot(tmax,pot) (2.2)

In a linear system, the potential energy is proportional to the square of the
displacement and the kinetic energy is proportional to the square of the veloc-
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ity. The kinetic energy of an object can be written as Wkin = Φ̇2m/2. Using
the same separation of spatial and temporal displacement dependencies as before,
Φ̇(r, t) = iωφ̃(r)eiωt, it is possible to break out the frequency from the velocity
term. The kinetic energy can then be rewritten as,

Wkin,max =
ω2

2

∫

V

φ̃2(r)ρ(r) dr (2.3)

where V is the whole structure. Since the potential energy is independent of
the speed, it is possible to solve equation (2.2) for the resonance frequency,

ω2 =
Wpot(Φ(tmax,pot))
1
2

∫
V
φ̃2(r)ρ(r) dr

(2.4)

2.2.2 Lumped parameters models

The easiest way to describe a mechanical resonator is often as a harmonic oscilla-
tor, a point mass on a spring where the restoring force is linear to the displacement.
In this model the resonance frequency is ω2 = k/m, where k is the stiffness of
the spring and m is the mass. This model is great to work with but looking at the
earlier expression, eq. 2.4, not all of the mass of the resonator contribute equally
to the resonance frequency. This is because not all of the resonator move at the
same speed. It is therefore common to reduce the mode shape to effective param-
eters, ω2 = keff/meff . The effective mass, meff ,can be calculated from the
expression,

meff =

∫

V

φ2(r)ρ(r)dr (2.5)

where φ is the normalized mode shape. It relates to the previous expression
of the mode shape as φ̃(r) = a φ(r). It is important to note that the effective
mass varies with the normalization point. In this work the effective mass has been
normalised to the maximum displacement of the mode, max(φ) ≡ 1, as it is con-
venient for the displacement sensing method we are using. A similar treatment can
be given to the stiffness. A single amplitude value, a, can then be used to represent
the amplitude of the whole mode.

The amplitude of a vibration can be calculated using the effective parameters if
we also introduce the forces related to friction losses. The actual sources of these
losses we get to in a section a bit later in the thesis. A term cn is introduced to
represent the coefficient for the viscous force working on a mode, n. The forces
can then be written as,

meff,nän + cnȧn + keff,nan = Feff,n (2.6)
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Figure 2.1: Drawing of a cantilever.

The quality factor is another parameter often used to quantify the losses. It
relates to the viscous coefficient as Q = meffΩ/c. For a linear resonator the
stiffness can be eliminated from the equation using the resonance frequency
Ω =

√
keff/meff . The equation (2.6) for an oscillating force can be rewritten to

solve for the complex amplitude,

an(ω) =
Feff,n

meff,n((Ω2
n − ω2) + iΩnω/Qmech,n)

(2.7)

= χn(ω)Feff,n (2.8)

where ω is the frequency of the oscillating force and χ is the mechanical sus-
ceptibility function. Both the amplitude and the phase response can be calculated
from the complex amplitude, (an = AeiB).

An = |an| =
Feff,n

meff,n

√
(Ω2

n − ω2)2 + (Ωnω/Qmech,n)2
(2.9)

Bn = angle(an) = arctan(
Ωnω/Qmech,n

Ω2
n − ω2

) (2.10)

2.2.3 Analytical solutions to cantilevers

A straightforward but somewhat simplistic model for cantilevers is Euler-Bernoulli
beam theory which is a special case of Timoshenko beam theory. Euler-Bernoulli
beam theory ignores rotational inertia and shear deformation so it is valid only for
small deflections and lateral forces. It will suffice until we get to the discussion
of nonlinear properties. It is a well-documented theory which has been further ex-
panded upon in several sources, e.g. [1]. Rather than deriving 200-year-old equa-
tions in detail I have chosen to provide just the relevant equations and assumptions
to guide further discussion.
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Figure 2.2: Resonance frequency measurements of a series of cantilevers of different length
compared to the inverse square dependency on length expected from classic beam theory.

The forces working on the beam can be described as bending rigidity, inertia
forces and external forces. Written as an equation it comes to,

EI
∂4Φ(x, t)

∂x4
+ ρA

∂2Φ(x, t)

∂t2
= Fext(x, t) (2.11)

where E and ρ are the material constants: Young’s modulus and density. I and
A are the geometric moment of inertia and the area of the cross-section.

Me make the ansatz of separating the time and spatial variables, Φ(x, t) =

φ̃(x)τ̃(t). By assuming that the cantilever is fixed at the anchoring point, φ̃(0),
and free at the tip, φ̃(L), we can write down the boundary conditions,

φ̃(0) =
dφ̃(0)

dx
=
d2φ̃(L)

dx2
=
d3φ̃(L)

dx3
= 0 (2.12)

If we assume the restoring force is linear to displacement we can use the har-
monic oscillator model for the temporal component, τ̃(t) = eiΩt.

• The resonance frequency can be calculated from,

Ωmech,n =
λ2
n

L2

√
EI

ρA
= λ2

n

W

L2

√
E

12ρ
(2.13)

L, W and H are the length, width and thickness of the beam, as drawn in
figure 2.1. λn is a constant that satisfies the boundary conditions and relates
to the wavenumber βn via,

λn = βnL = [1.8751, 4.6941, 7.8548, (2n− 1)π/2] (2.14)

The calculated frequency is often a bit higher than the fabricated result be-
cause the model assumes the base of the cantilever does not move. Measure-
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Figure 2.3: The mode shapes of the first few orders of resonances of a cantilever. The
equations are given in equation 2.15.

ments of the mechanical frequency of fabricated cantilevers can be found in
figure 2.2.

• The mode shape can be written as,

φn(x) =
1

2

(
cos(βnx)−cosh(βnx)−cos(βnx) + cosh(βnx)

sin(βnx) + sinh(βnx)
(sin(βnx)−sinh(βnx)

)

(2.15)

It is worth reiterating the mode is normalized to the peak, φn(L) ≡ 1, as is
the effective mass and force, see figure 2.3b.

• From the mode shape it is then possible to calculate an effective mass frac-
tion which relates the resting mass of the cantilever to the effective mass
of its respective modes. The value is for cantilevers almost independent of
mode order.

mfrac,n = meff,n/mrest ≈ .25 (2.16)

The force that is participating in the drive of the cantilever is however still
mode dependent. It can be calculated in the same manner as the effective
mass.

ffrac,n =

∫
φn(r)Fdr = [.39, .22, .13, ...]FL (2.17)

where F is the driving force per length.
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2.2.4 Perturbing the mechanical resonator

Small changes to the shape of a resonator are reflected in the resonance frequency.
As oxide builds upon the silicon surface, as fabrication inevitably leaves some
surface roughness or (important for mass sensors) as samples get deposited on the
resonator the stiffness and mass of the resonator changes.

The kinetic energy and effective mass were addressed earlier and are trivial if
the mode shape stays the same and the added mass and its position are known.
The potential energy however has not been discussed yet. It comes from the force
that restores the resonator to a relaxed state. Starting from the simplest case, the
restoring force of a small cube that is squeezed along one axis is written as Fspr =

−kx, where k is the spring constant and x is the displacement. An integral of the
work performed to deform it gives a potential energy of Upot = − 1

2kx
2. This is

for the one-dimensional case, expanded to three dimensions and using anisotropic
material constants it becomes,

Upot,mat =
∑

ijkl

∫

V

1

2
Cijklεijεkldr (2.18)

whereCijkl is the elasticity tensor, εij and εkl are the strains along their respec-
tive dimensions. Strain and elasticity are expanded upon in the materials section.
If other forces contribute to the stiffness of the resonator, e.g. if the driving force
depends on the shape of the resonator, it will need to be included as well. The
influence on slot-waveguide resonators is addressed in the section with the same
name.

If a test mass is deposited or an oxide is grown on the surface, strain at that
surface it will carry over into the deposited material. As long as the change is
small enough not to disturb the mode shape the new frequency will be,

Ω2
new =

Upot + δUpot
1
2 (meff + δmeff )

=
2Upot
meff

(1 +
δUpot
Upot

)(1− δmeff

meff
)

≈ Ω2
old(1 +

δUpot
1
2meffΩ2

old

− δmeff

meff
)

Ωnew ≈ Ωold +
δUpot

meffΩold
− Ωold

2

δmeff

meff
(2.19)

where δUpot is the changes in potential. It is important to stress that the poten-
tial energy calculation uses the same normalisation as the effective mass.
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Figure 2.4: a) In-plane drawing of a (1,0,0) wafer with arrows in the [1,0,0] and [1,1,0]
direction. b) SOI material stack provided by the IMEC standard passives MPW. The top

silicon layer is intended to guide the light and the buried oxide keeps that guiding layer far
enough from the silicon substrate underneath.

2.3 Material properties

This section discusses the material parameters of the materials used, it also dis-
cusses the material properties and what they represent. Starting with optical, then
mechanical and lastly optomechanical properties.

All the fabrication and measurements in this thesis have been carried out on de-
vices in the silicon-on-insulator (SOI) platform. This is done in part because of the
large experience the research group has in working with SOI as well as because
both the mechanical and optical properties of silicon are competitive. Silicon-
based materials are the dominant choice for cantilever sensors; they are well char-
acterised and stable over time [2]. A competing material choice for cantilever
sensors is polymers such as SU8. It is cheap and often easier to work with but very
soft which makes it unsuitable for our application. The force in slot waveguides
works only over a very short distance so to maximize the mechanical energy it is
preferable to use a stiffer material. It is also unstable over more extended time
periods and the mechanical losses are much higher.

The work with Brillouin scattering is theoretical and as such can easily be
expanded to other material platforms such as chalcogenide which show impressive
optomechanical interaction. The material properties of several of the more popular
material platforms are therefore included.

2.3.1 Optical

The first thing to consider when choosing an optical material is transparency. Los-
ing light to unwanted absorption is inevitably going to be a detriment and might
even make it impossible to do anything at all. The SOI-platform is transparent
from about 1.1 µm to 3.7 µm. Physically the shorter wavelength limit is due to
the lower band edge of silicon and the longer limit due to the onset of absorption
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in silica. The transparency at 1550 nm is especially important to us as it enables
us to use the cheap amplifiers, detectors and sources that are available in what is
called the C-band, 1530 to 1565 nm. Since much of the work in the well-funded
telecom industry is done in the C-band, development and the economics of scale
has followed.

Waveguide losses are somewhat tricky to model since they often are a result
of stochastic processes in fabrication. There is a material part, related not only to
the inherent properties of the material but also its purity. Amorphous or polycrys-
talline silicon for example has much worse transmission than the monocrystalline
configuration. Surface roughness dominates the propagation losses in silicon wire
waveguides [3]. It is where small changes in the surface of a waveguide scatter the
light. This roughness can come from the fabrication process but also the surface
oxide forming when the silicon comes into contact with oxygen. It scales with
the size of the roughness and the inverse of the wavevector [3]. Designwise wider
waveguides with less confinement and less overlap between the optical power and
surface roughness often have lower losses.

SOI allows for wire waveguide losses around < .6 dB/cm and rib waveguide
losses below< 0.2 dB/cm [4]. These losses are in large part due to scattering from
sidewall roughness and the rib waveguide design has a less confined waveguide
mode, meaning a lower optical field strength at the sidewall, as well as less actual
sidewalls to perform the scattering. This is also a major part of the reason slot
waveguides show even higher losses (about 3.6 dB/cm [4]) than the conventional
wire waveguide.

The SOI-platform also offers a high refractive index contrast between the waveg-
uide material (nSi = 3.47) and the insulator (nSiO2 = 1.48). The high contrast
allows for small waveguides, short bends and an overall reduction in the size of
both the circuitry routing light to and from the mass sensor and a reduction of the
size of the sensor itself. A smaller circuit is a cost-benefit as much of the asso-
ciated processing costs scale with the footprint of the whole device. A smaller
sensor is interesting because of the corresponding reduction of the effective mass
and increase in mass sensitivity.

The high index contrast also means the light can be focused into a smaller
waveguide. The field intensity increases when the same amount of optical power
goes through a smaller cross-section. Both optomechanical forces and other effects
that deformation has on an optical mode increases with that intensity.

2.3.2 Crystal Orientations
Since silicon is an anisotropic material with regards to its mechanical properties
it is important to be able to keep track of and talk about the directions in the
crystal lattice. This direction is often given in three value Miller index notation,
[h,k,l]. It is a vector using the base vectors of the reciprocal lattice. The plane
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orthogonal to that vector is written as (h,k,l). For convenience, since there are
often many directions and planes with identical properties, the notation 〈h,k,l〉
denote all directions [h,k,l] that are identical and h,k,l denote all planes (h,k,l)
that are identical. In silicon for example [1,0,0], [-1,0,0] and [0,1,0] can all be
expressed as 〈1,0,0〉. The convention is that negative values are expressed with a
bar, as an example [1̄,0,0] instead of [-1,0,0]. The indexes should also be reduced
so that their greatest common divisor is 1.

2.3.3 Mechanical

The material choice also has a significant effect on the properties of a mechani-
cal resonator. Starting by explaining the two material properties in the cantilever
resonance frequency equation: density and Young’s modulus.

Density is the mass per volume of a material and of course mass as a property
comes back in almost every dynamic model in mechanics. Relevant specifically
for mass sensors is the mass responsivity which is maximised when the mass is
low. However, the mass simultaneously appears in so many other properties that
the advantage is not clear just from that. Table 2.1 gives the density for some of
the relevant materials.

The Young’s modulus is a scalar property describing the stiffness of the mate-
rial. The stiffness gives how large pressure onto a surface is needed to deform a
material by a given fraction of its length. Imagine a cube with the length L in all
dimensions with the force F acting on one surface. The Young’s modulus can be
written as,

E =
σ

ε
=

F/A

δLpar/L
(2.20)

where σ = F/A, called the stress, is the pressure upon the surface and ε =

δLpar/L, called the strain, is the change in length of the cube divided by the
original length of the cube (both lengths measured in the direction of the force).
In the special case of cantilevers the strains are dominantly along the length of the
cantilever and therefore it is possible to stay with this 1-dimensional model and
treat silicon as an isotropic material, with a Young’s modulus ESi,〈1,1,0〉 = 169

GPa. The 〈1, 1, 0〉 orientation is mentioned because cantilevers and other long
structures such as waveguides are throughout the thesis designed to extend along
the 〈1, 1, 0〉 crystal orientation as it is praxis in silicon photonics. Silicon however
is not isotropic and if the cantilevers were rotated to extend along the 〈1, 0, 0〉
direction the Young’s modulus would be ESi,〈1,0,0〉 = 130 GPa.

Paired with the Young’s modulus is the Poisson’s ratio, ν, which tells how
much the material will expand or contract in the other directions as a response to
the strain in the direction of the force.
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Material C11 C12 C44 ρ Ref.

c-Si 166 63.9 79.6 2329 [5]
SiOx 78.6 16.1 31.2 2203 [6]
Ge 129 47.9 67.0 5323 [5]
GaAs 119 53.7 59.4 5340 [7–9]
InP 102 57.6 46.0 4787 [7, 9]
As2S3 18.7 6.1 6.4 2595 [10]

Table 2.1: The values of are assuming the crystal orientation 〈1, 0, 0〉.

ν = − δLort
δLpar

(2.21)

For a 3-dimensional treatment of the stress and strain both Young’s modulus
and Poisson’s ration are combined into an elastic compliance tensor, Sijkl. It
describes the constitutive relation between stress, σij , and strain, εij , and is written
as,




ε11

ε22

ε33

ε23

ε13

ε12
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and conversely the elasticity tensor, Cijkl, which instead gives the stress as a
function of the strain,

Cijkl = S−1
ijkl (2.22)

The strain tensor is defined as εij = 1
2 (
∂uj

xi
+ ∂ui

xj
) where ∂uj

xi
is the spatial

displacement gradient in the dimensions i and j.
Crystalline silicon has a diamond cubic crystal structure, a structure it shares

with germanium and of course carbon (diamond). This means it will have a cubic
symmetry also in the compliance matrix and the photoelasticity matrix. A compli-
ance tensor with cubic symmetry can be reduced to,

C3Sym =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




The corresponding values for silicon and more are given in table 2.1.
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Unlike silicon, silica is an isotropic material. This means the material proper-
ties are independent of direction and that the compliance matrix can be simplified
even further.

CIso =
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)




The parameters are given in the 〈1, 0, 0〉 crystal orientation but we mostly work in
the 〈1, 1, 0〉 orientation so the compliance matrix needs to be rotated. This can be
done by multiplying the matrix with a transformation matrix [11],

Cmnop = T (θ)CijklT
T (θ) (2.23)

The transformation matrix, T , is compounded of several rotation matrices, R,
that has been cyclic column or row shifted and then element-wise multiplied. The
rotation matrix is given by,

R(θ) =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (2.24)

The example given rotates the matrix around an axis in the third dimension
but it can be reordered to rotate around any of the other two. The transformation
matrix is in this case written as,

T (θ) =

[
R(0,0) ◦R(0,0) R(1,0) ◦R(−1,0)

R(0,1) ◦R(0,−1) R(1,1) ◦R(−1,−1) +R(−1,1) ◦R(1,−1)

]

=




c2 s2 0 0 0 2cs
s2 c2 0 0 0 −2cs
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
−cs cs 0 0 0 c2 − s2




(2.25)

where c = cos(θ) and s = sin(θ).
Beyond mass and stiffness there are other material properties like thermal ex-

pansion, thermal conductivity, heat capacity and the Grüneisen parameter1 all of
which affect the quality factor. These will be further expanded upon in the me-
chanical losses section as they mediate the thermal losses.

1The Grüneisen parameter is not only relevant to the quality factor but it also describes how the
vibrational frequency of the material changes with strain. It appears in discussions on how the strain
fields of different mechanical modes couple to each other or the thermal vibrations.
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Material λ [um] p11 p12 p44 n Ref.

c-Si 1.15 -0.101 0.0094 3.47
3.39 -0.094 0.017 -0.051 3.47 [5]

SiOx 0.63 0.121 0.270 1.48 [6]
Ge -0.151 -0.128 -0.072 4.02 [5]
GaAs 1.55 -0.165 -0.14 -0.072 3.37 [8–10]
InP -0.13 -0.11 -0.06 3.17 [7, 9]
As2S3 1.55 0.25 0.24 0.005 2.37 [10]

Table 2.2: The values are assuming the crystal orientation 〈1, 0, 0〉 and are not necessarily
at 1.55µm optical wavelength.

2.3.4 Photoelastic properties
The photoelastic effect is a material property that couples the mechanical strain
to the optical refractive index. Because of this, it is often used to determine the
stress in a material, particularly before the wide adoption of finite element method
simulations. The effect is also utilised by acousto-optic modulators which with an
acoustic wave creates a grating to scatter light. The effect is traditionally described
by the equation [12],

∆ηij = ∆(
1

n2
)ij = pijklSkl (2.26)

where η is the change in the optical impermeability tensor. pijkl and Skl are the
strain-optic tensor and the strain tensor. Since both ηij and Skl are typically sym-
metric the notation can often be reduced to, ∆ηi = pijSj , and the index ellipsoid
is conveniently written as,

x2(
1

n2
x

+
∑

j

p1jSj) + y2(
1

n2
y

+
∑

j

p2jSj) + z2(
1

n2
z

+
∑

j

p3jSj)

+ 2yz
∑

j

p4jSj + 2zx
∑

j

p5jSj + 2xy
∑

j

p6jSj = 1
(2.27)

where nx, ny and nz are the principal indices of refraction and x, y and z are
the components of a unitary propagation direction vector. The resulting forces are
described in the electrostriction section.

2.4 Mechanical losses
The quality factor of the resonator is often one of the most important parameters
to consider when dealing with sensing applications. It decides how selective the
resonator is to incoming frequencies, how well a signal can build up, how quickly
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it decays, how strongly it is affected by noise and with all that it comes back either
directly or indirectly to influence almost every relevant parameter. Mathematically
it is defined as,

Q = 2π
Energy Stored

Energy Dissipated Per Cycle
(2.28)

The amplitude of the vibration scales with the quality factor and as such it de-
cides to which extent the measurement signal drowns out the noise. On the other
hand at high amplitudes the resonator becomes more susceptible to nonlinear ef-
fects. Alternating through the work the losses will be expressed as either a quality
factor or as a loss rate (Γ = Ω/Q) depending on which is the most convenient.
Loss rates are often preferable to work with mathematically as it is a frequency
and because of that the equations often become simpler.

Ω

Qtotal
= Γtotal = Γgas + Γclamp + Γox + Γte + Γalk + ... (2.29)

The different loss rates will be expanded upon in the following subsections. For
the work with the mass sensor only air damping, oxide, clamping and thermoelas-
tic losses are significant. This has to do with their relevance in the megahertz range
and for silicon resonators. When working at higher frequencies Akhiezer losses
start to be relevant.

2.4.1 Air damping
If nothing is done about it the dominant mechanical loss channel in most MEMS
cantilevers is air damping. For a nanomechanical system such as ours the surface
to volume ratio is exceptionally large which exacerbates the problem further than
it would be for larger structures. Pragmatically it would be preferable to be able
to work in air. With the need for vacuum comes the need for a vacuum chamber
which adds a step to the measurement and interferes with biological samples and
most deposition processes. It does however also reduce the quality factor of our
mass sensor by two orders of magnitude so the motivation for working in vacuum
is clear.

Gas damping can be classified in two pressure regions: the fluidic (Kn � 1)
and the ballistic range (Kn � 1) [1]. They are divided by the Knudsen num-
ber, Kn, which compares the mean free path length of the gas, λmfpl, with the
dimension, D, of the structure.

Kn = λmfpl/D (2.30)

In atmospheric pressure λmfpl ≈ 70 nm, meaning nanometer structures strad-
dle the divide already under normal circumstances.
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Analytically there are three loss channels associated with air damping in the
fluidic regime: particle collisions (Q̃PC), viscous losses (Q̃V isc) and squeezed
film losses (Q̃SQ) [13]. The particle collision losses are just that, the losses asso-
ciated with the collisions between the resonator and individual gas molecules. The
viscous losses are related to the friction in the gas and squeezed film losses relate
to losses induced by the trapping of air in a slot between two layers.

Q̃PC =
3πρυTWΩ

16p
(2.31)

p and υT is gas pressure and the average thermal velocity of gas molecules.

Q̃V isc = ρWH2Ω/cvisc

cvisc = 3πµH +
3π

4
H2
√

2µρgasΩ
(2.32)

ρgas and µ are the density and dynamic viscosity of the gas. cvisc is the viscous
damping constant.

Q̃SQ =
ρΩWh3

gap

µH2
(2.33)

Hgap is the width of the gap where the gas is squeezed.
For higher frequencies air damping is less of an issue [14] because the air is

no longer able to respond to the mechanical motion when the resonance frequency
approaches 1/τrlx. The relaxation time for air at ambient pressure is τrlx ≈ 2.3ns.

By putting the device in a vacuum chamber we can reduce the pressure and the
system moves from the fluidic regime to the ballistic regime. There are analytical
tools [1] for working at low pressures but using an accessible vacuum chamber we
can show that air damping no longer is a dominant loss channel at the pressures
we can reach. Figure 2.5 shows a measurement of the quality factor of the mass
sensor described in the mass sensor section as a function of the pressure. The
quality factors lack of response to pressure at low pressures suggests that we are
limited by something else.

For reference, applied to our 10 MHz slot cantilever device we get Q̃PC,6um =

110, Q̃V isc,6um = 89 which in total gives a calculated air damping of Q̃Air,6um =

49 which can be compared to the measured air damping of QAir,6um = 50.

2.4.2 Clamping losses

Clamping loss is a loss channel where the mechanical energy leaks out through the
anchor of the resonator and into the substrate. Most applications require there to
be some point where the resonator is connecting to the surrounding to suspend it
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Figure 2.5: The measured mechanical quality factor of the mass sensing cantilever pair
plotted against air pressure.

and as such clamping losses are often relevant. Luckily a lot can be done about it
in the design process both by choosing the right materials and resonator types.

Our mass sensor cantilevers are anchored in a slab of silicon. The long and
thin cantilevers have a much lower resonance frequency than the stiff bulk silicon
so it can maintain a reasonably high-quality factor. The clamping losses for can-
tilevers have been solved analytically for when the substrate it is anchored in is
extending in the direction normal to the vibrations [15]. That solution does how-
ever not directly translate to our situation where the vibrations are in the plane of
the substrate.

Clamping losses are instead simulated using a finite element solver (FEM),
COMSOL Multiphysics. By including a part of the substrate into the simulation
of the resonator it is possible to simulate the perturbations of the anchoring as well
as the vibrations radiating from the resonator and from that calculate the quality
factor. By surrounding the added substrate with a perfectly matched layer (PML)
the energy radiating into the substrate is absorbed, see figure 2.6. The losses give
an imaginary component to the simulated resonance frequency. From that complex
resonance frequency, Ωsim, it is possible to calculate the clamping losses,

Qclamp =
Re(Ωsim)

2 Im(Ωsim)
(2.34)

where Ωsim is the simulated resonance frequency. The 6 um mass sensor is
simulated to have Q-factor due to clamping losses of Qclamp =2 x 104.

There are several design strategies to keep the energy from leaking out of the
resonator [16]: Destructive interference, total internal reflection, geometric soft-
ening and phononic bandgaps.
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The losses that do radiate out in the substrate can be canceled out by having
an identical resonator radiating at opposite phase from a close by anchoring point
i.e. a tuning fork. The phase difference is enforced by designing for a coupling
strong enough to synchronise the two resonators. It is a relevant side note because
particularly strong optomechanical forces are generated in slot waveguides which
consists of two parallel waveguides forming a small slot in between them. The
waveguide then conveniently already forms a pair of cantilevers anchored closely
together. This will be expanded upon in the synchronisation subsection later in the
chapter.

Analogous to how it works in optics the mechanical version of total internal
reflection happens when the waves leave a material with a low speed of sound and
enter a material with a higher speed of sound. If the angle of incidence is steep
enough that the wave is scattered back into the slow medium then the reflectivity
is total. So by surrounding an optical waveguide made from a material with a slow
speed of sound with a cladding made from a material with a high speed of sound
it is possible to confine a mechanical resonance in the waveguide.

The speed of sound (v =
√
E/ρ) in a material depends on the density, ρ, and

stiffness, E. Silicon (vSi,t = 5843m/s for the transverse wave) has a faster speed
of sound than oxide (vSiO2,t = 5500m/s for the transverse wave) because it is
stiffer and total internal reflection is therefore not a suitable method for confining
a mechanical resonance. There are however other material platforms where such a
method is possible such as chalcogenide [17].

If total internal reflection is not possible either because of the difference in
the speed of sound or the incidence angle of the phonon it is sometimes possible
to confine the vibration with a phononic crystal. Phononic crystals are periodic
structures that have a band gap that forbids propagation of a specific frequency
range of vibrations. Mechanical vibrations in the GHz range have a wavelength
that is comparable to the 1550 nm optical wavelength we are working with which
means it is possible to confine both sound and light with the same crystal. These
kinds of structures called optomechanical crystals have managed to simultaneously
achieve a strong optomechanical coupling as well as very high optical (> 106) and
mechanical (> 105) quality factors [18].

Lastly, it is sometimes possible to clamp the structure only in parts of the struc-
ture that is not moving. Then there are no vibrations to leak through the structure.
The simplest example is perhaps a tuning fork mentioned earlier.

2.4.3 Surface oxide
When silicon is exposed to air it quickly binds with the oxygen in the air forming
a thin (about five atom layers) disordered oxide layer at the surface. The disor-
der of the oxide results in a disordered stress field forming at the surface which
impacts optical and mechanical properties. It has been shown to influence optical
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Figure 2.6: Mechanical mode leaking from the resonator into the substrate and then being
absorbed in the outer circle to simulate clamping losses. Shown with log10 scale and

normalized to the maximum displacement.

surface scattering [19], two-photon absorption and free carrier lifetimes. On the
mechanical side it has a definite effect on the quality factor [20].

Experiments, however, show that by removing the surface oxide of our can-
tilever the quality factors increases which when compared to literature suggests
that clamping losses are not the dominant loss channel. The results of the experi-
ment shown in figure 2.7 consists of a vacuum measurement of a driven resonator
compared with another measurement after the surface oxide has been removed
with a quick dip in HF, transported in a nitrogen filled container and the with an
estimated total of 20 min of air exposure reintroduced in the vacuum chamber for
another measurement. This increased the quality factor from 4000 to 6300. As
a second reference air was then released in the vacuum chamber for an hour to
rebuild the oxide after which it was again evacuated and another measurement was
done. The quality factor was now reduced to 5100. The shift in frequency is due to
the cantilever being thinned down as the oxide is removed and then in the second
step due to the surface silicon turning into oxide which is softer.

Surface oxide dependent losses such as these are a known loss channel and can
be managed by either avoiding air exposure, which can be impractical for many
reasons, by coating the cantilever in a material with less friction such a nitride or
even rebuilding the oxide in a more intentional fashion [20].



CHAPTER 2 33

Figure 2.7: Measurements before removing the oxide give a Q-factor of 4000 which
increases to 6300 after it is removed. The Q-factor then decreases to 5100 after an hour of

air exposure.

2.4.4 Thermomechanical losses

There are also a few loss channels that are inherent to the resonator material itself
like thermomechancial losses and Akhiezer losses.

Thermal expansion as a material property connects temperature with a change
strain. So as the material is compressed or decompressed it heats up or cools
down. If it is given time that temperature shift diffuses away relaxing some of
that strain taking some of the potential energy with it. Thermoelastic damping is
where thermal stress relaxes faster than the vibration. The thermal stress relax-
ation time, τtd, depends on the thermal conductivity, κ, the specific heat capacity,
CV , and the width of the temperature/strain gradient, Wtg . It can be written as
τtd = W 2

tgCV /π
2κ. The magnitude of the thermoelastic damping can be calcu-

lated analytically [21].

Γte =
α2ET

CV

ω τtd
1 + (ω τtd)2

(2.35)

T , α are the mean temperature and thermal expansion coefficient . ω andE are
the resonance frequency and the Young’s modulus of the resonator. Often, how-
ever, it is preferable to simulate the damping in an FEM tool such as COMSOL.
The low frequency cut-off of the damping is because thermal stress is a smaller
portion of the potential energy of heavier and softer resonators.

Thermoelastic damping is often easiest managed by choosing a resonator ma-
terial with good thermal properties but can otherwise be reduced in design. The
losses are maximised when thermal diffusion time and the mechanical oscillation
time are the same, τtd = ω−1. So designing the resonator for a uniform stress field
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would eliminate the temperature gradient and thereby limit this kind of losses.
In regards to silicon cantilevers such as ours the thermoelastic losses typically

peak around a few MHz making them relevant to consider. Simulations, however,
show the quality factor to be 4 x 105, almost two orders larger than the best quality
factor we measured.

2.4.5 Akhiezer losses

Akhiezer damping is similarly to thermoelastic damping a thermomechanical loss
channel. In this case, the losses are due to the heat flow between different mechani-
cal modes. Non-linearities in the elasticity means the thermal vibration frequencies
are modulated by the strain of the mechanical mode. The oscillating strain disturbs
the thermal equilibrium and when the thermal vibrations relax the associated po-
tential energy is lost with it. Akhiezer damping is different from thermoelastic
damping in that it is present even in a homogenous stress field. The coupling be-
tween the stress field and the thermal resonances is modelled by the Grüneisen
parameter [22]

2.5 Displacement Sensing

When using a cantilever as a mass sensor it is desirable to have as low an effective
mass as possible as it makes the sample mass comparatively heavier and has a more
significant impact on the resonance frequency. This typically leads to a smaller
resonator and a higher resonance frequency. Movement in a smaller resonator is
often more difficult to detect. It becomes difficult to integrate the sensor and the
resonator has less of an impact on most properties that can be measured. The
higher resonance frequency often means the resonator is stiffer, at least relative
to the forces that can be generated to drive the resonator. The result is that the
amplitude of the vibration is lower so the sensor must be more sensitive. Because
of this there are several solutions for displacement sensing for MEMS and NEMS
structures.

2.5.1 Capacitive detection

Capacitive detection is one of the cornerstones in the MEMS world. An electrode
close to the resonator senses the displacement by detecting the capacitance change
when the resonator moves. The electric charge, Q, stored in a capacitor is given by
Q = C(a)U , where C(a) and U are the capacitance as a function of displacement
and the potential. If the potential is kept static then when the capacitor vibrates it
periodically releases an electric charge. This current can be detected, and from it
the motion can be calculated.
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∂Q

∂t
=
∂C(a)

∂a

∂a

∂t
U (2.36)

The signal increases with increasing potential, but the voltage also generates
an attractive force,

FC =
1

2
U2 ∂C(a)

∂a
(2.37)

Therefore a too high voltage risks collapsing the resonator. As a result, capaci-
tive detection is limited by the sensitivity of the capacitance and the potential. The
smaller the resonator, the less of an effect it will have on the capacitance and the
higher the frequency, the smaller displacements will be that have to be measured.
Therefore the capacitive system is often integrated with both filters and amplifiers
to yield a signal that can be measured.

2.5.2 Piezoresistive Detection

Piezoresistive detection is based around the idea that strain induces a change in the
resistivity of a material. By patterning the base of the cantilever with a small wire
of, e.g. a gold-palladium alloy and integrating it in a circuit sensitive to the change
the displacement can be detected. The wire, called a strain gauge, can be assumed
to have a linear piezoresistive effect at small strains.

2.5.3 External interferomentric detection

Interferomentric detection is one of the most accurate methods but it is also diffi-
cult to integrate. A Michelson interferometer is a device that splits laser light into
two separate paths. These beams are reflected and then superimposed. The result-
ing interference pattern can then be used to measure changes in the path difference
between the two beams. The measurement is difficult to set-up because first there
needs to be a mirror attached to the mechanical resonator, large enough to be a
good reflector and in a place that is sensitive to the motion and second the laser
light needs to be reflected off the mirror in a direction where it can be recollected
which put a very high demand on the alignment.

2.5.4 Integrated optical phase detection

If the mechanical resonator also is an optical waveguide, it is possible to use the
light passing through the waveguide to measure the vibrations. The speed of light
in vacuum might be constant, but as soon as it is coupled into a material it gets
slowed down by the light-matter interaction. In a sub-wavelength waveguide this
interaction is complicated by the geometric constraints. Together the material
properties and the waveguide shapes the optical mode and the resulting speed is
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given by the effective refractive index. When the waveguide vibrates strain and
deformation then affect the refractive index resulting in phase modulation. This is
directly tied to the optomechanical forces so it will be significantly expanded upon
in that section.

2.5.5 Integrated optical intensity detection
Lastly, the method used for the mass sensors in this thesis. It relies on the align-
ment between end-coupled cantilevers that are simultaneously optical waveguides.
This type of transduction was first presented in 2006 by Zinoviev et al. [23]. When
vibrations displace the sensing waveguide the alignment to the receiving waveg-
uide changes. The oscillating alignment is then imprinted on the probe light as a
modulated transmission. This will be expanded upon in the mass sensing chapter.

2.6 Actuation
The other component of transduction is the actuation. Choosing an actuator is a
trade-off between force, speed and actuation length. Ultimately the fabrication
limitations play a role as well. As an example, many of the options that generate
a strong force have a short actuation length and therefore limiting the vibrational
amplitudes that can be reached. It is also essential that the physical process is fast
enough that it can operate at the resonance frequency.

2.6.1 Electrostatic
As mentioned earlier the capacitive detection scheme generates a force and by
modulating the voltage over the capacitors it is possible to drive the mechanical
motion. It is called the electrostatic force and arises from the Coulomb’s force
between the charges in the capacitors. Combined with a capacitive detection the
force (eq. 2.37) can be written as,

FC =
1

2
(UDC + UAC cos(ωt))2 ∂C(a)

∂a

=
1

4
(2U2

DC + U2
AC + 4UDCUAC cos(ωt) + U2

AC cos(2ωt))
∂C(a)

∂a
(2.38)

How large the force is is dependent on the capacitor and therefore it is con-
strained by the same scaling laws as the capacitive detection scheme.

2.6.2 Thermoelastic
It is also possible to drive the resonance using the thermoelastic properties. Using
a pulsed heating scheme the thermal expansion can excite the resonance. This
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is easiest designed for by using a bi-layered resonator where the materials have
two different thermal expansion coefficients. The stress gradient that forms as the
temperature changes actuates the motion. It is a strong drive even if it rarely has a
long range of motion. Therefore it often relies heavily on leverage.

2.6.3 Piezoelectric

Piezoelectricity is the electric charge that is generated when a material is under
stress and vice versa. If such a material is integrated with the mechanical resonator
then a modulated electric potential can be used to drive the resonance.

εi = Cijσj + dijEj (2.39)

Di = εijEj + dTijσj (2.40)

where dij is the 3x6 piezoelectric matrix. There are several materials used in
the CMOS industry like AlN, ZnO, PZT, GaN and GaAs that show piezoelectric
effects. The transduction efficiency is limited by the strength of the piezoelectric
tensor. Similar to the thermoelastic actuation method it is often a strong drive but
the range of motion is limited.

2.6.4 Optical forces

As can be seen in Nobel prize-winning work such as last years (2018) winner opti-
cal tweezers or the optical cooling and trapping experiments that won two decades
ago: light inflicts a small but very precise amount of pressure. Through clever
measurement schemes and applications it is possible to do both very fundamental
work in quantum mechanics and to provide the tools to capture and manipulate
living cells without harming them.

A direct way to analytically approach these forces would be to through Maxwell’s
stress tensor. When ignoring the magnetic component that typically can be consid-
ered small in our work we can limit ourself to working with the electrostatic stress
tensor. It can be written as,

σij = ε0EiEj −
1

2
ε0E

2
i δij (2.41)

where ε0 is the vacuum permittivity, Ei is the electric field in the dimension
i and δij is the Kronecker delta. In the steady state a waveguide then responds
to these forces induced by the light with a deformation that is to reestablish the
mechanical deformation equilibrium,

∇ · (σelast + σelec) = 0 (2.42)
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where the total stress in the medium, σ, is the sum of the elastic stress contri-
bution, σelast, and the electrostatic stress tensor, σelec. The total optical force is
the time-averaged integral of the divergence of Maxwell’s stress tensor taken over
the whole volume, V .

Fopt =

∫

V

∇ ·
∑

i,j

σij (2.43)

It is accurate and reliable but it offers little in the way of intuition and can
often get complicated for dynamic or multispectral systems. Strictly speaking it
also only covers rigid bodies. There are also many other material dependent factors
that via strain induce a force such as electrostriction and thermo-optomechanics.
Electrostriction, in particular, is a very relevant contributor to our work in Brillouin
scattering.

A more intuitive approach to the optical forces can be found by describing the
optical mode using coupled mode theory. For a lossless system the optical forces
along the waveguide can then be calculated from [24],

Fopt =
Popt
c

δneff
δũ

(2.44)

where Popt is the optical power in the waveguide, c the speed of light and
δneff/δũ is the change in effective refractive index for a mechanical deformation,
ũ.

A way to understand the force is to imagine a optical waveguide with light
passing through it. At some point in time the waveguide is deformed causing
the effective refractive index of the optical mode to increase and the speed of the
light in the waveguide decreases. The delay results in a phase delay for the light
leaving the waveguide, in other words a reduction of the frequency of the light and
therefore the energy of the photons. That energy is lost due to mechanical work
performed by the light on the waveguide during the waveguide deformation.

In many ways this is the same as that light reflected off a mirror moving away
from the light source performs mechanical work on that mirror. If there is a mir-
ror at the end of the optical waveguide the increase in effective refractive index
increases the optical path length to the mirror.

2.6.4.1 Electrostriction

Since the optomechanical force depends on a mechanically induced change in the
effective refractive index, many things that change the refractive index of a mate-
rial can drive a vibration. The most direct one is the strain. The electrostrictive
force is the force induced when the electric field interacts with elasto-optic proper-
ties of the material. A motion induces a strain which in turn changes the refractive
index of the waveguide, performing mechanical work on the light.
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Before calculating the magnitude of the coupling between an optical and a
mechanical mode one first need to consider that the magnitude of a simulated mode
is relative. As such the values need to be normalised. In the case of the mechanical
amplitude this achieved by using the same normalisation we have used for the
effective mass, |u|max ≡ 1. In the case of the optical amplitude it is achieved
by normalizing to the guided optical power, Popt = 1

vg
〈E|εE〉, where vg is the

optical group velocity and ε is the permittivity.
The overlap integral between the optomechanical force and motion is then,

〈fES , u〉 =

∫∫

A

∑

ijkl

1

2
n4EiEjpijklSkl dA (2.45)

where n is the refractive index, E is the electric field in the polarization i or j,
pijkl is the electrostrictive constant, Skl is the strain.

The electrostrictive constants can be both positive and negative. As a result,
the coupling can be low even if the strain and optical power spatially overlap. The
radiation pressure, however, depends on the refractive index which for the structure
to guide light must be positive.

2.6.4.2 Radiation pressure

Radiation pressure is a force acting on the refractive index interface between two
materials. It is perhaps most often described as a comparison to the Doppler ef-
fect. Light bouncing off a mirror that is moving away from the light source is red
shifted much the same way as if the source itself was moving away. This shift in
wavelength and therefore energy is because the light performs work on that mirror.
It is possible to calculate the radiation pressure, Frad, from the reflected power,

Frad =
2I

c
cos(θins)

2 (2.46)

where I is the incident irradiance, θins is the incidence angle and c the speed
of light.

Many waveguides such as slot and wire waveguides guide light with total inter-
nal reflection. When light with an incidence angle steeper than the critical angle,
θcrit = arcsin(nwg/nclad), goes from a material with high refractive index, nwg ,
to a material with lower refractive index, nclad, the angle of refraction exceeds
the material interface and all the light is reflected as if it hits a mirror. So light
in a waveguide bounces back and forth exerting a pressure on the refractive index
boundaries.

For complex geometries, such as with sub-wavelength waveguides, the pres-
sure can be calculated from Maxwell’s stress tensor. Conveniently it is possible to
reduce Maxwell’s stress tensor into a line integral by using Green’s theorem along
all the material interfaces. An overlap integral between these optical forces and
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a)

b)

Figure 2.8: a) Optical and (b) mechanical mode of a wire waveguide. The blue color
signify the volumetric strain.

the displacement (which is proportional to the velocity) of the mechanical mode
gives the mechanical power, the radiation pressure coupling between the optical
and mechanical mode. The calculation is complicated somewhat by the discon-
tinuity in the electric field crossing a refractive index boundary. It has however
been shown that it is preferable to use the electric displacement field instead as it
is continuous [25]. The optically and mechanically normalised radiation pressure
is,

〈fRP , u〉 =

∮

S

1

2

(
(ε1 − ε2)E2

‖ − (ε−1
1 − ε−1

2 )D2
⊥
)

(n̂ · u) dS (2.47)

where S is the interface between the different materials of the waveguide. E
and D are the electric and electric displacement field. The permittivity ε is given
on the two sides of the material interface. The subscripts ‖ and ⊥ denote the
field parallel and orthogonal to the interface. n̂ is normal to the material interface
pointing into material 2.

2.7 Mechanical non-linearities

This thesis has until here been a look at mechanical resonators operating at low
amplitudes and therefore in the linear regime. With higher forces and quality fac-
tors the amplitude grows and results start to diverge from the linear assumptions
we started with. The high amplitude solutions are important as they provide the
limit to how high over the noise floor we can raise the signal.
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Resonator Mode Order Critical Amplitude
Cantilever 1st order mode AC ≈ 6.3L/

√
Q

Cantilever 2nd order mode AC ≈ 0.345L/
√
Q

Fixed Beam 1st order mode AC ≈ 1.46W/
√
Q

Fixed Beam 2nd order mode AC ≈ 1.024W/
√
Q

Table 2.3: Critical amplitude of cantilevers and beams clamped on both sides. L is the
length and W the width of the resonator.

There are many types of nonlinearities. In MEMS they can arise from material
properties, from sensing or driving methods or directly from the geometric shape
of the resonator. For example, beams are fixed at both ends and must extend to
be able to deflect. The extension is not linear to the displacement which leads to a
Duffing nonlinearity. A Duffing oscillator model includes a third order term for the
stiffness and as a result the resonance frequency becomes amplitude dependent.
In the fixed beam example the extra stiffness means the frequency increases. A
cantilever, as much of this work has focused on, has one end free so it does not
need to extend in the same way. It is, therefore, able to operate linearly at much
higher amplitudes than the beam. Eventually, however, the fundamental cantilever
mode experiences an increasing frequency as a geometric hardening exceeds an
inertia softening nonlinearity.

As the amplitude increases and the frequency shifts even more, at a point, the
shift will be so large that it forms a bistability, as illustrated in figure 2.9. At that
point, the same drive forces and frequencies will converge at a different steady state
amplitude depending on if the resonator started rest or at an amplitude higher than
the critical amplitude, AC . The critical amplitude due to geometric nonlinearity
for a few different resonators is given in table 2.3. As can be seen from these
functions the critical amplitude is limited by a high-quality factor. It has been
shown that it is often preferable to increase the vibrational amplitude with a strong
driving force instead of with a high quality factor if possible [26].

2.7.1 Solving the critical amplitude for a nonlinear drive and
resonator

The light in the waveguide also induces a mechanical nonlinearity that modifies
the critical amplitude. Analytically it can be approached in two parts, the first part
is due to the continuous optical power in the waveguide and the second part is
due to the modulated optical power. The force in slot waveguides has an inverse
square dependence with respect to the slot width, so the continuous optical power
induced nonlinearities can be treated similarly to how they have been treated in
capacitively detected MEMS devices [27]. Luckily the mechanical and optical
third-order nonlinearities have opposite signs, and while it does not make sense
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Figure 2.9: (a) is the amplitude response and (b) is the phase response of the susceptibility
function of a nonlinear resonator for several different drive forces. The legend is valid for
both figures. The orange line reaches the critical amplitude. The nonlinear parameters are

taken from simulations of the mass sensor.

to restrict the driving force to the point where they cancel out completely it does
improve the high amplitude performance. The nonlinearity due to the modulated
optical power can be included in the critical amplitude by in the final step solving
for the optical power needed to reach the critical amplitude instead of the ampli-
tude. For a nonlinearity with these terms it means a small underestimation of the
critical amplitude.

When including the mechanical and optical nonlinearity (up to the 3rd order)
in the mechanical Langevin equations they can be written down as,

ä =− ω2
0a− Γȧ+

k3

meff
a3 + PDC(g0 + g1a+ g2a

2 + g3a
3)

− PAC(g0 + g1a+ g2a
2 + g3a

3)cos(ωt)

(2.48)

Where PAC and PDC is the modulated and constant optical power in the
waveguide. gn = Ψnpn

1
meff

is the transduction of the higher order components

of the nonlinear force onto the resonator. Ψn = 1
L

∫ L
0
φ(s)n+1ds is a lumped

parameter for the mechanical mode and pn is the n-th order Taylor expansion co-
efficient of the force. k3 is the third order nonlinearity of the stiffness inherent
to the cantilever shape [27]. Since the resonator is no longer linear the harmonic
oscillator approximations are no longer enough. It is instead possible to derive a
steady state expression for the amplitude dependent on both force and phase lag
and a complimentary expression for the phase lag dependent on force and ampli-
tude. The derivation is starting by replacing the displacement and velocity with an
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in-phase, u, and an out-of-phase component, v, relative to the phase of the driving
force,

a = u cos(ωt)− v sin(ωt)

ȧ = −ω(u sin(ωt) + v cos(ωt))

If the function is then averaged over an oscillation and rewritten in radial com-
ponents, u = r cos(θ) & v = r sin(θ), it gives,

äavr = −1

8
r
(
− Γω cos(θ) +

(
PDC(4g1 + 3g3r

2) + 3
k3

meff
r2

− 4(ω2
0 − ω2)− 2PACg2r cos(θ)

)
sin(θ)

) (2.49)

The steady state solution is found when the net acceleration over an oscillation
is zero, äavr = 0. In order to do so the net acceleration is expanded into r and θ
terms and derived,

dr

dt
=

1

8ω
(4rΓω − PAC(4g0 + g2r

2) sin(θ)) (2.50)

dθ

dt
=

1

8ω

(
(4PDCg1 + 3(PDCg3 +

k3

meff
)r2 − 4(ω2

0 − ω2))

− PAC
r

(4g0 + 3g2r
2) cos(θ)

)
(2.51)

Analytically the critical amplitude can be described as the lowest amplitude
when dω/dr = 0 or dω/dθ = 0 has a solution. In words it is when the phase or
amplitude response no longer is unique to a drive frequency.

The steady state solution requires the time derivatives to be zero. The drive
frequency can be solved for with equation 2.51 and the linear version of equation
2.50 (remove the g2 term). Then the phase derivative is,

dω/dθ =
1

4Γ2ω2

(
− 3P 2

ACg0g2Γω cos(2θ) + 4Γ3ω3 csc(θ)2

+ 3P 2
ACg

2
0(PDCg3 +m3) sin(2θ)

)
(2.52)

Using the linear equation for the amplitude introduces a small error but the
signs on the nonlinear terms mean we underestimate the critical amplitude some-
what and it will just make it a conservative estimate. Equation 2.52 is possible to
solve for the optical power needed to achieve critical amplitude which can be used
to calculate the amplitude.
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Figure 2.10: The (a) amplitude and (b) phase of the suceptibility function for resonators
modeled with different orders of nonlinear constants. The PDC terms includes the

nonlinearities associated with continuous optical power in the waveguide. The PAC terms
includes the nonlinearities associated with the modulated drive force. The legend is valid

for both figures.

rcrit =
4
√

2

3
√
−
√

3(PDCg3 + k3)/ω0Γmeff − g2/g0

(2.53)

PDC , ω0, meff and Γ are the average optical power in the slot waveguide, the
mechanical resonance frequency, the effective mass and the loss rate. The critical
amplitude is reached with a modulated optical power of, PAC,crit = 4rcritω0Γ/(4g0+

g2r
2
crit), assuming it does not exceed the slot width, see Fig. 2.11.
We can also solve equation 2.50 and 2.51 to get the amplitude and phase. The

derivatives of their respective steady state solution must be zero and using the
Pythagorean identity, 1 = cos(θ)2 + sin(θ)2, the amplitude can be rewritten as a
transcendental equation,

P 2
AC =

(
δωr

g0 + 1
4g2r2

)2

+

(
3
4 (PDCg3 +m3)r3 + (PDCg1 + ω2 − ω2

0)r

g0 + 3
4g2r2

)2

(2.54)
which can be numerically solved. By using the amplitude and equation 2.51

we can calculate the phase,

θ = arccos(
4(PDCg1 + ω2 − ω2

0)r + 3(PDCg3 +m3)r3

PAC(4g0 + 3g2r2)
) (2.55)
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Figure 2.11: The dashed orange line shows the critical amplitude and force acting on the
slot waveguide as a function of cantilever width. The critical amplitude is calculated

assuming a 1 mW CW optical power in the waveguide and a 100 nm slot width. For most
cantilever widths the slot is the fundamental limit to the amplitude.

The resulting amplitude and phase response can be seen in figure 2.9 and 2.10.
How noise accumulate at and near the steady state solution can be solved from
equation 2.50 and 2.51.

By coupling the drive force to the resonator signal it is possible to use the non-
linearities to suppress the resonator noise [28]. Sadly for our mass sensor it also
warps the phase response of the sensor beyond its usefulness as an indicator for
mass.

2.7.2 Other optical non-linearities

Aside from the non-linearities associated with the optomechanical forces there
are material related optical non-linearities. When using high optical powers they
start to affect the refractive index or transmission of waveguides. Since noise is
often managed by overwhelming it with a much stronger signal it is important to
be able to use as much optical power as possible to drive the vibrations. Optical
non-linearities are therefor one of the limits to the performance of the mechanical
sensor. This problem is complicated further by that both the light driving the
vibration and the light that senses the vibration share a waveguide. The drive
will therefore via the non-linearity imprint on the probe. Since the signal is weak
this becomes a problem at much lower powers than in most applications.

A dominant non-linear absorption channel is two-photon absorption (TPA). It
is a third order process where the energy of two photons combines to excite a
molecule to a higher electron state. Silicon is transparent at 1550 nm wavelength
because a single photon does not have enough energy for an electron to cross the
band gap. At higher powers the light-matter interaction is strong enough for two or
more photons to be absorbed at virtually the same time and together they provide
enough energy for the electron to make the crossing.
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Figure 2.12: Diagram of coupled resonators. The variables signify: g and k are springs, c
viscous damping and m the mass. a denotes displacement of the mass along the direction

of the arrow.

The absorption is described by Beer-Lamberts law for TPA which is written,

I(z) =
I0

1 + βzI0
(2.56)

where I is the intensity remaining after propagating a distance z and β is the
two-photon absorption coefficient.

Kerr nonlinearity is the second order polarisation dependency of the refractive
index on the optical power. Light is slowed down in a material because when it
passes through it causes an oscillation to the charges of the atoms, mostly the elec-
trons. Since moving these charges generate electromagnetic radiation, the phase
delay between original optical force and the generated light interfere, leading to
a slowing down of the light. The forces that confine the charges are not neces-
sarily linear and therefore neither is the refractive index. The phenomenological
mathematical description can be written,

n = n0 + n2I (2.57)

where n0 and n2 are the coefficients of a linear regression.

If the mechanical motion is detected with how it affects the transmission then
the TPA will interfere with that measurement. The TPA will be in phase with the
drive while the phase of the mechanical motion will depend on the difference be-
tween the drive frequency and the resonance frequency. So instead of the Gaussian
peak a resonance normally looks like to a spectral measurement it will appear as a
Fano resonance. Such a measurement can be seen in figure 3.23 towards the end
of the next chapter. The same spectrum will occur for a phase measurement if the
Kerr non-linearity is strong enough.
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2.8 Coupled resonators
If two cantilevers are anchored close to each other (as they are in the mass sen-
sor design) there is a chance that they couple mechanically this kind of coupling
influences almost every single parameter of the resonator. An efficient and illustra-
tive way to approach this is to calculate the supermodes of the coupled resonators.
They can be calculated from the forces acting upon the resonators. Writing down
the forces of the coupled system using the variables as drawn in figure 2.12a and
rewriting Γn = cn/mn and Ω2

n = kn/mn, where n and m denotes the index of
the test mass and the test mass it is connected to.

ä1 = Γ1ȧ1 − Ω2
1a1 +

k12

m1
(a2 − a1)

ä2 = Γ2ȧ2 − Ω2
2a2 +

k12

m2
(a1 − a2)

(2.58)

Where ai,ȧi and äi are displacement of resonator i and its first and second
time derivative. Assuming the resonators are operating at steady state amplitude
means the resonator does not accelerate under the rotating frame approximation.
Assuming the amplitudes are small means the harmonic oscillator assumptions are
still valid and the equations can be rewritten in matrix form as,

[
Ω2

1 − ω2 + iΓ1ω −k12m1

−k12m2
Ω2

2 − ω2 + iωΓ2

] [
a1

a2

]
=

[
0
0

]

For a non-trivial solution to exist the determinant of the system must be zero.
By finding that set of frequencies for which the determinant of the system is zero
calculate the eigenfrequencies of the supermodes. To simplify the calculation we
assume we are working at frequencies near the resonance, (Ω − ω)2 � 2Ωω, so
that the system can be linearized.

det

∣∣∣∣∣
2Ω2

1 − 2Ω1ω + iΓ1ω −k12m1

−k12m2
2Ω2

2 − 2Ω2ω + iωΓ2

∣∣∣∣∣ = 0

Which under the assumption that the loss rate is small compared to the fre-
quency can be solved,

ω± =
Ω1 + Ω2

2
+ i

Γ1 + Γ2

4
±
√

(
Ω1 − Ω2

2
+ i

Γ1 − Γ2

4
)2 +

K2
12

4Ω1Ω2
(2.59)

where ω± are the complex frequencies of the supermodes, ω1,2 and Γ1,2 are
the resonance frequencies and loss rates of the individual cantilevers and g is the
coupling coefficient. We have replaced k212

m1m2
= K2

12 for convenience.
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From this equation it can be seen that if the coupling K2
12/4Ω1Ω2 is small in

comparison to the individual frequency splitting of the two cantilevers the coupling
can be ignored in terms of its effect on the resonance frequency.

Another effect of the formation of the supermodes is that they dictate the phase
relationship between the resonators. If the resonators are detuned they will tran-
sition out of the super mode and into a regular single resonator vibration. During
this transition the vibration of the other resonator is gradually damped. The ampli-
tude can be found by solving for the eigenvectors corresponding to the eigenvalues
of the system.

2.8.1 Individual resonators in a coupled system
Coupled mode theory does not capture the whole dynamics of the coupled system,
however. The steady state solution does very little to explain how the system
responds as noise push the resonator away from the steady-state solution. First
however we need to find the synchronization conditions.

We continue with the mass sensor cantilever pair as the example to work from.
Depending on the the design of the anchoring it is possible to get both an elastic-
and a dissipative coupling. So we can use the same variables as earlier, in equation
2.58, and need to introduce viscous coupling constant, c12, acting between the
same test masses as k12. From those equations we can write down the forces on
test mass 1,

F1 = −k1x1 − c1ẋ1 − k12(x1 − x2)− c12(ẋ1 − ẋ2) (2.60)

Make the anzatz that the oscillators can be written as xn = ane
iωt then the

equation can be rewritten to,

F1 = −k1x1 − iω1c1x1 − k12(x1 − x2)− c12(iω1ẋ1 − iω2ẋ2) (2.61)

If we want to use the Kuramoto model [29, 30] for the coupled system then the
resonators and their influence on each other should be written as Hopf resonators,

ϕ̇n = −Ωn +
Fn(t)

mnΩnAn
cos(ϕn) (2.62)

Ȧn = −γ(An − Ān) +
Fn(t)

mnΩn
sin(ϕn) (2.63)

ϕn and An are the phase and amplitude of resonator n. γ is the fractional rate
with which the resonator returns to its steady state amplitude. Ān is the steady state
amplitude which often is zero. It become relevant if the resonator is driven via a
feedback system, optomechanically amplified or otherwise driven into a limit cycle
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operation. Include the force term from equation 2.61 and the oscillation frequency
of resonator 1 becomes,

ϕ̇1 = −Ω1 +
cos(ϕ1)

Ω1A1m1
(A2k12 cos(ϕ2) +A2Ω2c12 sin(ϕ2)) (2.64)

By expanding the trigonometric products and only keeping the slow terms, i.e.
ϕ1 − ϕ2 = δϕ12, and assuming the resonator masses are similar (m1 ≈ m2) we
are left with the terms the resonator is more likely to be able to follow.

ϕ̇1 ≈ −Ω1 +
A2

2Ω1A1
(K12 cos(δϕ12) + Ω2Γ12 sin(δϕ12)) (2.65)

where Γ12 is the dissipative coupling rate, Γ12 = c12/m.
The influence the coupling has on the phase velocity means that the resonators

work as frequency modulators on each other. We can find the coupling require-
ments for supermodes once again when we consider the strength of the sidebands
of a frequency modulated signal. The signal strength is ∝ J( K12

2Ωδϕ12
) where J is

the Bessel function of the first kind, which is close to zero when K12

2Ω � δϕ12.
We then instead look at the difference in phase between the two resonators and

use sin(δϕ12) = − sin(δϕ21) while cos(δϕ12) = cos(δϕ21), then the change in
relative phase can be written as,

δϕ̇ = −δω + C cos δϕ+D sin δϕ (2.66)

where C and D can be approximated as,

C =
k12

2
(

a1

m2Ω2a2
− a2

m1Ω1a1
) ≈ K12

2

δΩ

Ω2

D =
c12

2
(
a1Ω1

m2Ω2a2
+

a2Ω2

m1Ω1a1
) ≈ c12

m1

if amplitude and mass are identical (A1 = A2 = A & m1 = m2 = m) and
the resonance frequencies similar (Ω1 + δΩ = Ω2) the change in relative phase is
then,

δϕ̇ = −δΩ(1 +
K12

2Ω2
cos(δϕ)) + Γ12 sin(δϕ) (2.67)

The synchronization condition (δϕ̇ = 0) is then satisfied if either,

K12 cos(δϕ) > 2Ω2 (2.68)

or,
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Γ12 sin(δϕ) > δω (2.69)

The frequency dependency in the elastic coupling term means that a very
strong elastic coupling is needed before the frequency is significantly influenced.
It is however not difficult to get such a coupling for the mass sensor as will be
demonstrated in the next chapter.

2.9 Understanding frequency noise

The accuracy with which the resonance frequency of the sensor can be measured
gives the lower limit to how accurate it is. Understanding and measuring frequency
noise is therefore necessary when discussing the performance of a mass sensor.

First, in order to define frequency, noise and the other peripheral terms we start
from the analytic expression of a sample signal. The instantaneous output of an
oscillator at a time t can be written as,

V (t) = (V0 + εV (t)) cos(Ωt+ εθ(t)) (2.70)

where V0 and Ω are the amplitude and frequency of the oscillator. εV (t) and
εθ(t) are the deviation from that amplitude and phase. The IEEE Standard Defini-
tions [31] for frequency is expressed in oscillation per second. To stay consistent
with the rest of the equations in the thesis these expressions have been re-expressed
as radians per second.

Then the amplitude (yai), frequency (yfi) and phase (ypi) instability are de-
fined as,

yai(t) ≡
εV (t)

V0
(2.71)

yfi(t) ≡
∂εθ(t)/∂t

Ω
(2.72)

ypi(t) ≡
εθ(t)

Ω
(2.73)

the measurement of the frequency noise is typically not able to get to these exact
parameters, however.

• In the time domain the frequency instabilities are instead derived from the
two sample deviation which in this context is called the Allan variance. It is
how e.g. the stability of clocks is measured. Allan variance is a statistical
measurement of the variation between the phase distance travelled in two
consecutive time periods and can be calculated from [31],
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σ2
Allan(τ) =

1

2τ2
〈(θ̇(t+ τ)− θ̇(t))2〉 (2.74)

=
1

2τ2
〈(θ(t+ 2τ)− 2θ(t+ τ) + θ(t))2〉 (2.75)

σAllan(τ) is the Allan deviation. θ(t) and θ̇(t) are the measured phase and
phase velocity at the time t. τ is the time between the measurements. In
other words, the time frame for which the stability is evaluated.

• In the frequency domain the parameter used is instead the root mean squared
fractional frequency deviation as a function of Fourier frequency. The insta-
bility can indirectly be accessed via the spectral density of the fractional
frequency fluctuations, Sfi(ω), by measuring the phase noise and then cal-
culating from there.

Sfi(ω) =
〈y2
fi(ω)〉
BW

(2.76)

where BW is the measurement bandwidth. Sfi(ω) is measured in 1/Hz.
The spectral density of the frequency fluctuations can be calculated from
the phase fluctuations via,

Spi(ω) =
Ω2

ω2
Sfi(ω) (2.77)

Finally, the standard measurement for characterising frequency and phase
instabilities in the frequency domain is the phase noise, L(ω), which is de-
fined as one half of the double-sideband spectral density of phase fluctua-
tions,

L(ω) ≡ Spi(ω)/2 (2.78)

In a similar way the the spectral density of the fractional amplitude fluctua-
tions can be accessed via,

Sai(ω) =
〈y2
ai(ω)〉
BW

(2.79)

2.9.1 Sources of the frequency noise

The practical limit to frequency noise in MEMS and NEMS resonators is not en-
tirely understood [32] but there are several different noise forces that contribute.
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Among the suggested ones are e.g. thermomechanical fluctuations, thermal fluc-
tuations, adsorption-desorption noise and momentum exchange noise [33].

The temperature does not only cause noise via the thermal noise force. There
is also a temperature dependence to many of the material parameters. Since the
resonators are designed to have as small a mass as possible they have an equally
small heat capacity. Because of that temperature fluctuations can locally be rather
large so the temperature dependent properties of the resonator then fluctuate with
the temperature acting as another source of noise.

Adsorption-desorption noise is related to the change in surface stress and mass
as the resonator absorbs particles from the surrounding gas or desorbs these parti-
cles back into the surrounding. The momentum exchange noise instead relates to
the collisions with the surrounding gas molecules.

Compared to the thermomechanical noise, the direct optomechanical noise
force should not be a problem as the mechanical frequency noise caused by inten-
sity noise of even a cheap laser is several orders lower than the thermomechanical
frequency noise, at our optical powers [13].

Long integration times can help reduce the SNR of the measurement but those
gains are ultimately constrained by frequency drifts. Experiments have shown
some success with compensating for these drifts by continuously calibrating the
measured frequency drift against the drift of another mechanical mode in the same
resonator [32] but this is not easily done when measuring frequency for mass sens-
ing purposes.

Before going deeper into the phase noise discussion it is worth presenting the
mass sensor so that the discussion can be given context by noise measurements.
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3
Strong optical forces in slot waveguide

mass sensor

3.1 Introduction

This chapter is focused on the design, fabrication and measurement of the mass
sensor. It starts with an introduction to the parameters that qualify a mass sensor:
the mass responsivity and the mass sensitivity. Following that is an exposition on
the mass sensor and the considerations taken around the slot waveguide design. It
also includes an investigation on a novel mass sensing design utilising the synchro-
nisation conditions of dissipative coupling. Next is a section about the fabrication
process and one about the measurement of the signal and the noise.

3.2 Mass responsivity

One of the ways to measure small masses is by measuring the resonance frequency
shift as a small mass is deposited on a mechanical resonator. If the measured
sample has a low Young’s modulus or is deposited away from the strain of the
mechanical mode the stiffness component can be ignored leaving only the mass
contribution.

The perturbation function calculated earlier (equation 2.19) gives the frequency
shift when a such a mass is added,



58 CHAPTER 4

ωshift ≈
Ωold

2meff
msmpl,eff

where msmpl,eff is the effective sample mass and ωshift = Ωnew − Ωold the
frequency shift. The frequency shift per added mass is called the mass responsivity
and is often denoted R, (= Ωold

2meff
). One of the keywords here is effective mass

as the response depends on where along the resonator the mass is deposited. As a
result, the frequency shift of a point mass on a cantilever is going to be,

ωshift,n ≈
Ωn

2meff,n
φ2
n(x)msmpl (3.1)

and in reverse, calculating the mass from the frequency shift,

msample ≈
2meff,n

φ2
n(x)

ωshift,n
Ωn

(3.2)

In many cases, the deposited mass will instead be distributed as a thin layer
coating the whole surface of the resonator. If the coating does not contribute to the
stiffness then the frequency shift will be,

ωshift,n ≈
Ωnmcoat

2meff,n

(
WHφ2

n(L) + 2(W +H)

∫ L

0

φ2
n(x)dx

)
(3.3)

where mcoat is the added mass per surface area. L, H and W are the length,
thickness and width of the cantilever.

For the first order mode the shift is,

ωshift,1 ≈
Ωnmcoat

2meff,1

(
WH + (W +H)

L

2

)
(3.4)

3.2.1 Sensitivity to sample distribution

When the deposition method does not accurately position the sample it becomes a
factor of uncertainty to the mass measurement. However, the position dependency
is mode dependent so by measuring the frequency shift of several modes it can also
be used for a position determination. If the sample is placed close to the tip it is
possible to use the measured resonance frequency shift and the simulated effective
mass to calculate the positions of the sample mass,

√
Ωmωshift,n
Ωnωshift,m

=
φn(x)

φm(x)
(3.5)
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Figure 3.1: The figure is showing the effective mass contribution, φ2
n(x), for different

mode order, n, against each other. The orange dots mark 10% percentiles of the cantilever
length. The radial grey lines act as a visual guide for the fractions φ2

n(x)/φ2
m(x).

For positions further away from the cantilever tip fitting the results against
more modes is needed for extracting the position. This is to avoid degenerate
results, seen in figure 3.1 as the same grey line crossing the blue line twice.

Using the same line of thinking it is possible to measure several of the modes
and use that information to make the measurement position independent [1]. The
difference between the mode shapes makes it so that it is possible to find a linear
combination of the modes that together give a position independent response, see
figure 3.2.

The coefficients for the linear combination are found by fitting the mode shapes
against a unitary response. The best results are seen if the possible sample posi-
tions are limited to only a part of the cantilever. The same limits can in practice be
imposed on the mass sensor by coating this part of the cantilever with a selective
coating.

3.2.2 Mass sensitivity

The mass responsivity is not the only important parameter of a mass sensor. There
is also the mass resolution, the accuracy with which the sensor operates. A mass
measurement is calculated from the frequency shift by using the mass responsivity.
Thus noise in the mass measurement can be written as [2],

δmmin ≈ R−1σΩ (3.6)

where R is the mass responsivity and σΩ is the frequency noise.
The frequency noise is however also influenced by the measurement technique.

A typical scheme for a frequency measurement is a phase-locked loop (PLL). It
drives the resonator with a voltage-controlled oscillator (VCO). The phase of the
response signal from the resonator depends on the difference between the drive
frequency and the resonance frequency. A fraction of the drive signal is split off
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a) b)

Figure 3.2: a) Normalized mass responsivity of a superposition of the first three orders of
modes. The superposition is optimized for the top 20% of the cantilever (the blue region).

b) Enlarged view of the optimized area.

and combined with the response signal in an RF mixer. The resulting DC com-
ponent is proportional to the phase difference between the two signals. The DC
component is fed back into the VCO to adjust the drive frequency. A controllable
phase delay on the split-off drive signal makes it possible to tune the feedback so
it is centred at the resonance.

In such a situation the smallest measurable effective mass can be written as,

δmmin ≈ 2meff10−DR/20

√
∆f

QΩ0
(3.7)

where δmmin is the smallest measurable effective mass. ∆f is the bandwidth
of the PLL circuit. DR is the signal to noise ratio expressed in decibel.

For only thermomechanical noise the SNR is DR = 10 log10(Ec/Eth), where
Eth = 1

2kBT and Ec = 1
2meffΩ2

0〈a〉2 the thermal and kinetic energy of the
resonator.

3.3 Designing the mass sensor

The initial motivation of this mass sensor design is to use the strong optomechan-
ical force that is generated in slot waveguides to reduce the frequency noise and
thereby improve the mass sensitivity of a cantilever mass sensor. The design of
the slot waveguide itself is guided by fabrication tolerances, optimisation of forces
and displacement sensitivity. This however leaves some freedom when it comes
to the design of the anchoring of these slot waveguide cantilevers. By coupling
to the waveguide using a multimode interferometer (MMI) it is possible to define
the cantilever length in one fabrication step. The MMI forms a very rigid base for
the cantilevers which helps reduce the clamping losses. A schematic of the sensor
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a) b)

Figure 3.3: Mechanical supermodes of the cantilever pair. The colors signify the
volumetric strain.

design is shown in figure 3.8.
There is however an inevitable coupling between the two cantilevers that makes

the slot, both through the anchoring but also optomechanically. As a result they
will form a symmetric and asymmetric pair of supermodes, as shown in figure
3.3. Since both cantilevers move this will, in turn, modify the mass responsivity as
described in equation 2.59.

3.3.1 Measuring the coupling between the cantilevers

Designing the mechanical coupling between the two cantilevers is possible. By
either cutting the slot further into or stopping the slot before it cuts into the MMI
it is possible to control the elastic and the dissipate coupling, see the figures 3.4
a and b. Increasing δstem enhances the coupling between the two cantilevers and
the shared section improves the destructive interference of the clamping losses
radiating into the substrate. Simulations show that as long as the two cantilevers
are perfectly identical it is possible to effectively eliminate the clamping losses.

Notable is that in the figure 3.4b there is mode crossing at δstem = 220 nm.
Here the elastic coupling disappears and only the dissipative coupling remains.

This dynamic can be captured analytically by considering the two cantilevers
anchored to a base resonator instead of a fixed substrate and that they are elastically
coupled. That these two couplings have opposite signs.

As a platform for cantilevers it is possible to design for a strongly coupled
tuning fork or independent cantilevers.

To minimise the added complications of the coupling one of the cantilevers
has been shortened by 100 nm, δas, to detune its frequency. This corresponds to a
measured change of the resonance frequency by 440 kHz for a 6 µm cantilever as
compared to the measured 38 kHz coupling induced splitting measured in a pair
designed to be identical in length. It is possible to detune the cantilevers further
by either making one cantilever thinner or by shortening it further. The measured
frequency splitting is compared with the simulated splitting in figure 3.5. A sample
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δas

δstem

Figure 3.4: a) Schematic for designing the coupling between the cantilevers. b) The
resulting frequency splitting from tuning δstem.
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Figure 3.5: Mode splitting for the mass sensor cantilever pair described in the next
chapter. The cantilevers are of equal and unequal length, unequal meaning one of them is

100 nm shorter than the other. The 2 and 3 um equal length measurements are not
available since the signal is too low.

spectrum is provided in figure 3.6. The results match well except for the 2 um
cantilever pair.

3.3.2 Dissipatively coupled resonators as mass sensors

There are suggested tuning fork mass sensor designs relying on measuring how
an added mass spoils their high-quality factor [3]. By detuning one of the prongs
they are driven out of phase and the tuning fork mode partially breaks down. The
anchoring losses no longer destructively interfere and the clamping losses increase.
However, the measurement strategy changes from a phase response measurement
to an amplitude measurement and under normal operation amplitude noise does not
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Figure 3.6: The RF spectrum of two mass sensors. In one of the cantilever pair one of the
cantilevers has been shortened by 100 nm. The difference in signal is largely due to a

difference in input optical power.

decrease with amplitude. It is therefore not clear that this method is advantageous.
It is possible to design a purely dissipative coupling and we have derived the

dissipative synchronization requirements, equation (2.69). It shows a phase dif-
ference and loss rate [4] that is frequency difference dependent and it is worth
discussing if this phase difference is a suitable mass sensing mechanism. The
phase difference,

sin(δϕsynch) =
δω

Γc
(3.8)

δϕsynch is a stable equilibrium state since the force that maintains the phase
difference is weaker the smaller the phase difference is while the difference in
resonance frequency drives the phase apart.

By simulating two dissipatively coupled resonators it is possible to estimate
how the individual frequency noise impacts the relative phase difference. The
phase velocity of the resonators can be described with a Hopf model for the res-
onators, as described in equation 2.63, driven by the thermomechanical noise
force, Fth(ω) =

√
4kBTc. The derivation of the force can be found in the thermal

calibration chapter With that the evolution of amplitude and phase can be simu-
lated, in our case by using python. The results are shown in figure 3.7.

As it turns out the mass sensitivity of the synchronised sensor is worse than
that of an individual cantilever. The phase difference takes a while to stabilise at
the equilibrium. Therefore the phase difference is not indicative of the equilibrium



64 CHAPTER 4

Figure 3.7: a) Simulations of the phase difference between the two prongs. b) Mass
sensitivity as a function of integration time. The two prongs double in effective mass as the

coupling mediates the synchronisation ((Γ12)−1 = 10−4s). The improvement in noise
level is counteracted by the increase in mass.
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Figure 3.8: Drawing of the mass sensor cantilevers with the purpose of naming the
dimensions of each component. The blue line and arrows shows the first order mechanical

mode of the cantilever.

for time frames shorter than the stabilisation time. For time frames longer than the
stabilisation time it is instead noisier than an individual cantilever. The individual
prongs of the synchronised system do have less phase noise but since they are
synchronised they act as if they combine their effective mass. By doubling the
effective mass the mass responsivity is halved and the mass sensitivity reduced.
The reduction in phase noise has been demonstrated before in optomechanically
synchronised systems [5].

3.3.3 Slot waveguides for optomechanics
A slot waveguide is a waveguide that guides the light in the subwavelength low
refractive index slot in between two high refractive index slabs. The high refrac-
tive index slabs constrain the optical mode in the slot. Maxwell’s equations state
that the electric displacement field must be continuous, so the difference in the
electric field on the two sides of the interface is proportional to the difference in
permittivity. The mode is shown in figure 3.9.

3.3.3.1 Optomechanical forces in slot waveguides

In the same way as to how a high refractive index particle is driven towards higher
optical intensity in an optical tweezer, a waveguide is pushed towards the shape
that maximises the effective refractive index of the mode. As such the light in
a slot waveguide forces the high refractive index slabs together into their highest
refractive index form, a waveguide with twice the slab width.

The effective refractive index of a slot waveguide goes from consisting of one
alone of the silicon slabs to, as they get closer to each other and start to interact,
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Figure 3.9: Optical mode in slot waveguide (the electric field is displayed in red). The
black arrows radiating from the interface show the direction and relative magnitude of the
local force contribution in accordance with the perturbation theory used to calculate the

radiation pressure.

Figure 3.10: Effective refractive index as it depends on the width of the silicon slab. As the
slot waveguide grows wider the slot mode (TE1) transitions into a symmetric supermode
like the one in a directional coupler. Around that point another slot mode (TE3) can be

guided.
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a)

b)

Figure 3.11: (a) The refractive index and (b) optical forces in a slot waveguide.

ultimately form a wire waveguide with the combined width of both slabs, see figure
3.11 (a). The transition becomes very sharp as the slot closes. Using equation
(2.44) the forces can be calculated.

Simulations show that for a wider slot the refractive index is exponentially de-
pendent on the slot width. When the slot is narrower, the second beam can no
longer be treated as a perturbation of the field around the first beam. In that case,
the force dependence on slot width, seen in figure 3.11, shows very good corre-
spondence to the inverse of a second order polynomial. Fitted to the force simu-
lated for the slot waveguide in the mass sensor it gives pfit(h) = PoptL/(6.72 +

7.37108h+ 5.291015h2), where h is the slot width.
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Figure 3.12: The force as a function of the width of the silicon slabs in the slot waveguide.

3.3.4 Designing the slot

The force in a slot waveguide is not only dependent on the width of the slot but
also the width of the silicon slabs. A simulation of the force as a function of the
silicon width can be seen in figure 3.12 starting from 200 nm, which is the cut-off
for single mode operation, and expanding until 350 nm where the silicon is wide
enough to guide the light in itself. The maximum force is found at 280 nm, near
the maximum of the mode splitting found in figure 3.10. How far thinking about
the force as a consequence of the mode splitting can be taken is uncertain; since
the other mode (TE2) is barely guided at this width.

The slot waveguide design puts some very strict demands on the cantilever
cross-section. These constraints can be lessened somewhat by allowing for an
asymmetric slot design. While the force is maximised for the symmetric case, as
can be seen in figure 3.13, it is worth considering the mechanical benefits of using
a narrower cantilever.

A narrower cantilever is lighter and softer with a lower resonance frequency.
The mass responsivity is relative to the cantilever effective mass. Also, the mass
sensitivity should improve if the other parameters such as quality factor stay the
same. It was not fabricated however due to the waveguide parameters already
being close to the lithographic limits. Simulations show that the displacement
sensitivity is worse for a narrower cantilever.

3.3.5 Optical stiffness and damping

The mechanical resonance frequency depends on the effective mass and stiffness

of the resonator (Ω =
√

keff

meff
). Since the optical force is dependent on the width

of the slot, see figure 3.11, it acts as an optical spring and must often be included
in the resonance frequency calculation,
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Figure 3.13: The forces in an asymmetric slot waveguide in silicon for the waveguide
dimensions given in the plot.

Ω′n =

√
keff,n + g1,nPDC

meff,n
(3.9)

where g1,n is the transduction of the first order component of the nonlinear
force as described in the nonlinearities section. PDC is the continuous optical
power in the waveguide. For softer resonators, it can be a quite substantial part of
the stiffness but for MHz MEMS structures it can often be treated as a perturbation.
Since the optical force from the mechanical perspective is lossless it is possible to
dilute the strain associated losses in the resonator and increase the quality factor.

Another way the optical force influences the mechanical amplitude is via the
second order derivative of the force. At resonance, the optical force driving the
vibration is in phase with the force damping the vibration and will look as if it
effectively modifies the damping. A word of warning here is that this term is due
to what is effectively an increase in the driving force and does not replace the losses
from the mechanical strain. It does therefore not shield the resonator from thermal
noise which leads it to be called effective damping [6]. Whether the optical force is
increasing or decreasing the damping depends on the sign of the second derivative.
The new amplitude at resonance is,

a =
PAC(g0 + 1

4g2a
2)

Γω
(3.10)

3.3.6 Displacement sensitivity

We are detecting the vibrations in the sensor by how they affect the transmission
between the sensor slot and the receiver slot. The displacement sensitivity for a
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Figure 3.14: The displacement sensitivity of the transmitting slot mapped as a function of
of the two slot widths. The red cross marks the point we are operating at.

span of different sensing and receiving slot widths is simulated using FDTD and
the results are shown in figure 3.14.

It shows that the sensitivity is better for a narrow sensor slot and a wider re-
ceiver slot. This is because vibrations are larger proportionally to a narrow sensor
slot. We arrived at using a sensing slot width of 100 nm and a receiving slot width
of 280 nm as a compromise between overall transmission and displacement sen-
sitivity. The result is a simulated sensitivity of 1.2 µm−1 as relative to incoming
light. The receiving slot is then quickly tapered down to 100 nm to minimise the
reflection and losses. Since one of the prongs is shortened to break the tuning fork
supermodes the displacement sensitivity is affected, it is reduced by -0.2 dB.

3.3.7 Thermal calibration

The displacement sensitivity is directly measured by exciting the resonator to a
known amplitude and then measuring the resulting signal. The difficult part is
often to know the amplitude of the vibration. It is therefore convenient that the
sensor is sensitive enough to measure the thermal vibrations [7] as the energy of
those vibrations is dependent only on temperature.

If the resonator is at thermal equilibrium then the thermal energy of anyone
of the vibrational modes is Eth = 1

2kBT . kB and T are Boltzmann’s constant
and the temperature of the resonator. The equipartition theorem then says that the
energy of the mechanical vibrations is equal to the thermal energy of the mode so,

1

2
kBT =

1

2
keff 〈a2〉 =

1

2
meff 〈ȧ2〉 (3.11)

Under these conditions, the fluctuation-dissipation theorem links the viscous
damping force, c, to the thermomechanical noise force, fth, resulting in noise
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Figure 3.15: Setup and measurement of the thermal vibrations of the cantilever. By
comparing with the expected thermal amplitude marked in the figure it is possible to verify

the displacement sensitivity.
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force power spectral density of,

F 2
th(ω) = 4kBTc (3.12)

The thermal noise force is incoherent but with long integration time the ex-
pectation value of the amplitude can be measured. The resonance frequency and
quality factor can be extracted from the same measurement and effective masses
can be effectively simulated. With those parameters it is possible to calculate the
amplitude of the thermomechanical noise at resonance,

S1/2 =

√
4kBTQ

Ω3meff
(3.13)

By doing an optical transmission measurement1 on the mass sensor and then
extracting the optical RF signal using a photodiode and an ESA, results shown
in figure 3.15, we extract the displacement sensitivity of a sensor. In order the
amplify the weak signal we do the measurement in vacuum to avoid air damping
and then post–amplify the optical signal with an EDFA before it reaches the diode.

We couple in and out of the chip vertically using fibre and grating couplers [8],
losing 5.5 dB at each instance. The insertion loss of the device accounts for the
remaining 3 dB that is lost over the device. The device as well as the fibres used
for coupling in and out of the chip are placed in a vacuum chamber evacuated
below 10−2mbar for each measurement. The thermomechanical noise is mea-
sured at 1563 nm with a transmission measurement using a high-speed photodi-
ode connected to an electric spectrum analyser (ESA). Measurements of the two
cantilevers, 6 and 5.9 µm long, show a resonance frequency of 9.56 and 10.0 MHz

and a quality factor of 4500 and 4600. The results can be seen in Figure 3.15. The
9.56 MHz resonance is measured too be 2.13 mW/

√
Hz which is calculated to

have a thermal amplitude of 1.28 pm/
√

Hz. The measured values compare well
with the simulated value of the displacement sensitivity. Figure 3.16 shows the
displacement sensitivity measured over a wavelength span of 30 nm.

3.4 Optical Circuit
Aside from the mass sensor the design has been kept as simple as possible. Only
two other components are present in the circuit: grating couplers to couple light to
and from the chip and two MMIs to give a good base for the mass sensor.

There are a few ways to couple light into an optical circuit, e.g. tapers and
grating couplers. We have been working with grating couplers because they allow

1The measurements have been performed with a Syntune S7500 tunable laser, a Finisar 1000S
Waveshaper, an HP Lightwave 70810B high-speed photodiode and a Keysight N9010A EXA Signal
Analyzer. The EDFA used is of type Keopsys CEFA-C-HG.
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Figure 3.16: Shows the displacement sensitivity over a spectrum of wavelengths calculated
from the amplitude of the thermal spectrum. The displacement sensitivity relative to the

power leaving the sensor.

Figure 3.17: MMI coupling light from wire waveguide to slot mass sensor.

us to couple into the silicon from above which is very convenient when working
with many devices on the same chip. It is a wavelength and polarisation dependent
device that in its totality is beyond the scope of this PhD but there are plenty of
sources to be found expanding on the subject [9]. A grating coupler is a periodic
grating etched into the silicon that scatters the light to an angle which can be con-
fined by total internal reflection. The light is then focused into a waveguide with
which it is routed to the MMI.

An MMI is a kind of waveguide combiner, mixer or splitter. Light from an
incoming waveguide excites a combination of the spatial modes in a much broader
waveguide. The modes then propagate at different speeds in accordance with their
respective effective refractive indexes. As they propagate they form an evolving
combination of interference patterns which at points is dominated by higher order
modes, see figure 3.17. By terminating the broad waveguide at one of these points
it is possible to efficiently divide the light between different waveguides by butt-
coupling waveguides to the positions of high field intensity.

After propagating in the MMI for a distance the modes reform the initial phase
conditions and light is once again focused in the same pattern it entered the MMI.
This makes it possible to design a 1 to 1 coupler such as the one we have used in
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Figure 3.18: A SEM picture of the mass sensor. MMI has been shaded red and the
cantilevers have been shaded purple.

the mass sensor.
Since the MMI can be designed as a splitter it is also possible to couple to more

than one sensor at once. By multiplexing several mass sensors they form a sensor
array with a very small footprint [10].

Typically the coupling efficiency depends on how well the original mode can
be decomposed into the MMI modes but since we are terminating the MMI with
a slot waveguide it is not obvious that the coupling will be good. Using an op-
tical mode solver, FIMMWAVE, we simulate to coupling efficiency to be 90%

for a slightly shortened 1 to 1 MMI. Simulating an MMI using a mode solver is
preferable to using an FDTD solver as it is much faster for this kind of problems.
The measured losses over the whole device once the grating coupler losses are
accounted for is about 3 dB.

3.5 Fabrication
The fabrication of the mass sensor has been kept as simple as possible. It was
patterned in a 220 nm thick silicon layer on top a 2 µm silicon oxide (SOI) using
193 nm UV lithography via the multi-project wafer (MPW) service provided by
IMEC (www.ePIXfab.eu). The under-etching has been done in the cleanroom of
the photonics research group in Ghent.

3.5.1 Optical proximity correction

Just as the Rayleigh criterion set a limit to what can be optically resolved it is also
a limit to the smallest area of resist that can be exposed. The size and depth of the
focus in the lithographic stepper set the limit to the smallest features that can be
patterned called the critical dimension, CD.

When designing close to this limit there is a proximity effect to take into ac-
count. Photoresist degrades at a critical exposure level and the exposure power is
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calibrated for that. Nearby features on the photomask diffract, however, scattering
light into the border region between degraded and non-degraded resist, affecting
the exposure level and moving that border. The results are that areas of the mask
where there is much detail are more difficult to design. By being aware of the
complications it is possible to compensate for them somewhat.

Simulations show that the anchoring losses decrease when the anchor corner is
sharp. The rounding act like a taper for the mechanical impedance mismatch and
by doing so reduces the reflection. Small changes in the anchor design also have a
large impact on the coupling between the two cantilevers in the sensor. Designing
a cut in the corner of the silicon layer, see figure 3.19, results in a sharper corner
in the fabricated design. SEM images of the fabricated cantilevers: a reference
without cut and a pair of cuts 30 nm and 60 nm show that the radius of the corner
is reduced from 91 nm to 85 nm and 76 nm. The rounding of the corners at the
inside of the slot fills up the slot for 80 nm, as can be seen in figure 3.19a. The
largest cut manages to start at the MMI but it is beginning to dig into the width
of the cantilever. Measurements show that the losses is not reliably decreased but
that can be expected as the surface losses are even larger.

3.5.2 Under-etching
The SOI material stack puts the optical silicon layer on top of silicon oxide. So for
a silicon resonator to be free to vibrate the oxide needs to be removed. One way
of doing so is by etching away the oxide with hydrofluoric acid (HF).

HF is a dangerous liquid but it provides good selectivity for oxide relative to
silicon. The etching speed for oxide varies with the type and quality of oxide but
the silicon is virtually untouched short of the thin native oxide layer formed at the
silicon-air interface.

To protect the oxide on the chip that is not supposed to be etched is pro-
tected by a layer of photoresist. The resist is deposited, patterned and developed
to form an HF-resistant mask covering these areas while leaving the area that is
supposed to be etched exposed to the etchant, see figure 3.20. It is important
to keep in mind that the mask will also be under-etched, often at a higher etch
rate than the oxide itself. The etch rate is also usually higher along waveguides
and similar long structures. In our case the etching was done with a buffered
etchant ( HF:NH4F = 12.5 : 87.5% ) and the photoresist used was TI 35E from
micro chemicals. Development of the resist is done with AZ-400 from the same
company.

To minimise the manual errors and avoid over-etching it is often preferable to
use a partial etch step to define the silicon devices in the initial design. The re-
maining silicon works as a good etch mask and should the structure still be under-
etched it will support the structure. The shared fabrication that comes with using
an MPW, however, makes it so you still can not get rid of using photoresist com-
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a)

b)

c)

d)

Silicon

�opc
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Figure 3.19: The result of (a) δopc =0 nm, (b) 30 nm, (c) 60 nm designed cut into the base
of the cantilevers (d) drawing of the mask design. As a result the radius of the corner is
reduced from 91 nm to 76 nm. The largest cut is beginning to dig into the width of the

cantilever.
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Air

Buried Oxide

Silicon

Si(OH)4 + 4 HF          SiF4 + 4 H2O

Substrate

Photoresist

Figure 3.20: Diagram of underetching a waveguide. The grey contours show the air-oxide
interface as the etching progresses. The structure on the right would be underetched

without the photoresist delaying the etch.

Task Time
Clean sample
Spin coat TI35E, 4000 rpm 40 s
Soft bake, 100 C 180 s
Contact lithography 60 s
Wait 20 min
Soft bake, 125 C 120 s
Flood Exposure 185 s
Develop, AZ400K:H2O (1:3) 105 s
Wet etching, BHF 80 nm/min
Careful Rinse, DI water
Critical point drying

Table 3.1: Recepie for under-etching mass sensor

pletely or waveguides and tiling from nearby structures will inevitably float over
and land on critical structures after they have been etched free. It does, however,
relax the demands on alignment, development and etch-time making the results
more repeatable.

3.5.3 Stiction

As the features of MEMS structures are so small surface forces are much more
important than for macroscopic devices. Thus when fabricating devices in the
micro- and nanometer size category water tension is a significant obstacle. When
drying the sample after it is under-etched, small droplets of water gets caught in
between the device and the substrate and the capillary force starts pulling them
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Figure 3.21: a) Outcome of stiction test on a group of mass sensors. Under-etched with
HF, washed with water then dried. An elastocapillary number above 1 should result in
collapse. Only one cantilever pair that should not have collaped did. b) SEM image of

collapsed mass sensor where the tips are stuck together.

together. Once they touch even stronger forces such as Van der Waals force take
over and they are very difficult to separate again.

The magnitude of the forces can be calculated from the surface energy directed
along the contact angle. The surface energy of water is 72 mJ/m2 which results
in a force, γL,water = 72 mN/m. The contact angle is more difficult to ascertain
as it depends on the surface affinity for the liquid. That affinity is affected by
many of the chemicals used in the processing i.e. HF and by the geometry. It is
about αc,si−water = 65.2 degrees at the water silicon interface after etching with
HF [11].

The resulting deflection can be calculated analytically for simpler structures
like cantilevers but it is often preferable to simulate them in a FEM solver like
COMSOL as it can include non-ideal anchoring. The result of a stiction test on
a dice full of mass sensors is shown in figure 3.21. The elastocapillary number is
the deflection caused by the liquid divided by the distance to the surface. In the
case of figure 3.21 the expected deflection is calculated from the Euler-Bernoulli
equations for cantilevers under static loads.

Ne = sin(αc)
γLL

4

2EIH
; (3.14)

If the structure does collapse due to water tension it is sometimes possible to
dry the device in another liquid such as isopropanol which has about a third of the
surface energy, γL,IPA = 23 mN/m. It is sometimes possible to avoid stiction by
clever design either by designing a stiffer structure or by minimising the contact
surface of the collapsed structure so that it can pull free by itself.

If clever design is still not enough a critical point dryer (CPD) can be used to
avoid the problem. It slowly replaces acetone with liquid CO2 under high pressure
and brings the pressure and temperature up until the CO2 is a supercritical fluid, it
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Figure 3.22: a) A measurement of the amplitude response of an optically driven cantilever.
The cantilever is driven and the vibration detected at the same frequency. b) The setup of

the optically driven measurement.

rounds the critical point an brings the pressure and temperature down until the CO2

is a gas. By transitioning via the supercritical fluid it avoids crossing the solid-gas
transition boundary and surface tension is no issue. This is how the cantilevers of
the longest mass sensors were under-etched. It is also sometimes possible to avoid
using liquids when under-etching, i.e. vapour-phase HF (VHF).

The etchant in the VHF process starts as a gas but quickly forms a thin layer
covering the dice consisting almost entirely of strong aqueous fluosilicic acid. De-
spite being in gas phase it is still a very potent etchant. After a short startup time
it is attacking oxide at about the same rate as BHF [12]. It is however very diffi-
cult to find a photoresist able to withstand it so it is therefore advisable to design
structures with that in mind.

3.6 Optically driven measurements
By driving the sensor optically we amplify the vibration way above the thermal
and electric noise floor. Figure 3.22 a) shows the result of such an experiment,
combining a probe beam at 1555 nm with an intensity modulated pump, which
excites the mechanical vibrations. The measurement setup is illustrated in figure
3.22 b). The pump laser passes through the intensity modulator (IM) that is driven
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a) b)

Figure 3.23: The amplitude response to an optical drive of the (a) second order and (b)
third order mode. The third order mode only shows one peak because the low signal from

symmetric mode disappears under to noise.

by the signal generator (SG). The probe passes through the device (DUT) in the
opposite direction and is then redirected away from the pump path by a circulator.
The reflection of the pump is filtered out in the bandpass filter (BPF) and detected
by a photodiode. The signal from the diode is then processed by the electric spec-
trum analyser (ESA).

The pump power leaving the chip is 60 µW , which corresponds to 120 µW
of peak-to-peak modulated power in the cantilevers. After the light couples out of
the chip the pump is filtered out and the probe power read by the photodiode. To
balance the extinction of the pump after the filter with the power coupled through
the grating coupler the pump wavelength is offset from the probe wavelength by
15 nm to 1570 nm.

The cantilever measured, a 6 µm long, 280 nm wide, 220 nm thick cantilever,
has an effective mass is 215 fg and the mass responsivity 146 ZHz/kg.

The higher order modes are much stiffer and have a much worse coupling to
the force. Thus the amplitude we can drive them to is much lower but we can still
measure them by post amplifying the probe with an EDFA as was done with the
thermally stimulated measurements. The results are shown in figure 3.23. The
symmetric version of the third order mode still disappears under the noise floor,
however.

Here the optical nonlinearities start to show. Two-photon absorption makes it
so that the pump imprints on the probe. The interference between that imprint and
the mechanical signal interfere and cause a Fano resonance.

3.7 Measured noise
An actual measurement of the frequency noise can be done using the same setup
as used earlier for the driven measurement. The ESA can extract the phase and
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amplitude noise from sidebands of the driven resonator.
Figure 3.24 shows a direct phase noise measurement of the cantilevers taken

with the ESA. The corresponding frequency noise gives for a 100 Hz measurement
bandwidth a mass sensitivity of 500 kDa, 3 times more than equation 3.7 would
suggest. This is comparable to a protein such as the RNA polymerase of E. coli
(450 kDa). We suspect that part of the extra noise at the lower frequency side of the
noise spectrum is due to long term thermal drifts as there is no thermal stabilisation
in the vacuum chamber. The two peaks at 20 Hz and 100 Hz are equipment related.
Finally, even though the cantilevers are separated in resonance frequency there is
still a coupling between them that is not taken in to account for the analytically
model of the noise.

This mass sensitivity is in line with published sensors [13, 14] and the calcu-
lated thermomechanical noise of previously suggested all-photonically transduced
mass sensors [10, 15], while using a significantly smaller pump power. The lower
power makes it possible to limit crosstalk via material non-linearities from the
pump onto the probe. The mass sensitivity should be possible to improve by in-
creasing optical pump power or mechanical quality factor. The optical pump power
is for the current setup limited by the tolerances of the modulator.

3.8 Conclusion
In this chapter we have discussed a demonstration of an all-photonically trans-
duced, CMOS compatible resonant mass sensor in the SOI platform. Exploiting
the strong gradient force in slot waveguides to actuate the results of the vibration in
a strong signal to noise ratio with respect to the thermomechanical noise. Relying
on in-plane vibrations makes it possible to optimize the displacement sensitivity
and mechanical mode shape in the design phase. Using 120 µW of modulated
optical power the sensors fabricated are measured to be able to resolve 500 kDa.
The displacement sensitivity is measured over a 35 nm span to strengthen the ar-
gument that it is a broadband device simplifying the calibration of the sensor and
relaxing the constraints imposed on the surrounding circuit. We have also dis-
cussed the performance of a dissipatively coupled mass sensor system, its merits
and demerits.
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Figure 3.24: (a) Phase noise and (b) Frequency noise of a 6µm cantilever. The calculated
thermomechanical noise is included in the figure as a reference. Also marked is the

mechanical decay rate ω/Qmech marking the rate with which noise decays.
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Pérez-Murano, Álvaro San Paulo, et al. Top-down silicon microcantilever
with coupled bottom-up silicon nanowire for enhanced mass resolution. Nan-
otechnology, 26(14):145502, 2015.

[15] Dmitry Yu Fedyanin and Yury V Stebunov. All-nanophotonic NEMS biosen-
sor on a chip. Scientific reports, 5:10968, 2015.



4
Designing waveguides for stimulated

Brillouin scattering with genetic
algorithms

4.1 Introduction

Genetic algorithms are designed to find a sufficiently good solution to an optimi-
sation problem often using incomplete or imperfect information or limited compu-
tation capacity. Generally, this is made more difficult by that the set of solutions is
too large to be fully sampled. Genetic algorithms are inspired by natural selection
and rely on bio-inspired operators such as mutation, crossover and selection.

4.1.1 The history of genetic algorithms

The first ideas of genetic algorithms are as old as the invention of the computer
itself. As early as 1950 Allan Turing [1] suggested a learning machine that could
search for satisfactory solutions with a process analogous to evolution. Following
that came several years when evolutionary biologists were modelling artificial se-
lection. In the 1960s Hans-Joachim Bremermann executed computer experiments
that included the elements of modern genetic algorithms such as a population of so-
lutions to the optimisation problem, recombination, mutation, and selection. Dur-
ing this time, three different implementations of the basic idea were developed in
different places. Calling the process ’evolutionary programming’, ’genetic algo-
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Figure 4.1: Optimized satellite boom [2].

rithm’ or ’evolution strategies’ the field developed separately for about 15 years.
Then in 1985, the first international conference specialising in the subject was held
in Pittsburgh and then repeated every second year for more than a decade. In 1993
the first scientific journal devoted to evolutionary algorithms, Evolutionary Com-
putation, was launched. In the early 1990s, a fourth implementation following
these general ideas called genetic programming emerged.

An example of a successful application of genetic algorithms is a satellite dish
holder boom designed by Keane et al. [2]. The latticed boom connects the satellite
with a communication dish so it is crucial that it is stable to maintain alignment.
In space there is no air damping to limit vibrations, and if they are allowed to build
up they could break the whole structure. Using genetic algorithms they managed
to design a boom that is 200 times better at damping the vibrations than tradi-
tional structures. The final design looks more like a random drawing than some-
thing intentionally designed but by iterating through a number of generations they
succeeded in generating a much more robust structure. Closer to home, genetic
algorithms has also been used to design photonic crystals with great success.

4.1.2 The language of genetic algorithms
Genetic computation as an approach lends concepts from several different fields
and ideas and as a result a lot of field specific jargon is used interchangably outside
of its regular context. The language is further complicated by the introduction of
the Brillouin scattering context our work is situated in. To avoid confusion we
define these expressions in the context of the thesis,

• Genotype refer to the whole gene string of an individual, e.g. the DNA
molecule or the integer matrix I have used to represent the waveguide cross
section. The collection of all the possible shapes is sometimes referred to as
the genotype space.

• Phenotype refers to the observable characteristics of an individual, e.g. blue
eyes or the effective refractive index of an optical mode. All the possible
variations are referred to as a phenotype space. For this work, we specifi-
cally refer to the properties of a specific optomechanical mode pair and not



DESIGNING WAVEGUIDES FOR SBS WITH GENETIC ALGORITHMS 87

Figure 4.2: Flowchart of a standard genetic algorithm.

to the waveguide in general as it is often multimode and would therefore
often have both high and low effective refractive index.

• Mapping genotype onto phenotype is often called encoding. The encoding,
in this case, is the simulation of waveguide modes and calculation of mode
parameters. Mapping phenotype on genotype is called decoding.

• A gene is the specific value in a representation of one of the individuals, i.e.
parts of the DNA string or an element in the matrix. A possible version of a
gene is called an allele which in our case referrers to the material of a part
of the waveguide, e.g. silicon.

• The fitness landscape is an illustration of the distribution of phenotypes.
Since the genotype space is generally very high-dimensional it is difficult
to actually show and instead a topographic map is used for educational pur-
poses.

4.2 The algorithm
For a genetic algorithm (GA) there are typically five phases to consider: generat-
ing the initial population, evaluating sample fitness, selection of the samples from
which to generate the next generation, crossover and mutation,

• The initial population refer to the genomes that the algorithm starts with.
They must be chosen or generated by another method than the genetic algo-
rithm.

• In the evaluation phase each sample is given a fitness score. It is from this
value it is later ranked and survival is determined. It is also possible to
constrain the values and limit the phenotype space.
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• In the selection phase it is decided which waveguides will make the parents
to the next generation. The selection phase is responsible for the incremental
improvements to the population. Without the selection phase and with only
a mutation phase the GA would be just a random search algorithm.

• The crossover phase dictates the selection process for which genes are passed
on.

• The mutation phase takes a fraction of the population and randomly intro-
duces changes to them to maintain diversity. Without it the only possible
outputs of the algorithm are those present in the initial population.

The flow of the algorithm is illustrated in figure 4.2.

4.2.1 Parallel computing

One of the critical trade-offs when choosing an optimisation method is the avail-
able processing power. Genetic algorithms are very well suited to be run in paral-
lel. For this work, the part taking the longest time is the waveguide simulations and
the gain calculations. Since these tasks are independent of the other waveguides
they can be distributed among several different computers. This give an almost
linear increase to the computation speed.

4.2.2 Choosing the right genotype space

When designing a genetic algorithm the initial step is to find a way to represent
the solution candidates in a way that a computer can work with. Getting the repre-
sentation right is one of the most challenging parts in a successful implementation
of the algorithm. This is something that comes with experience and knowledge of
the phenotype space. There are several distinct methods of representing the system
but often a combination of them give a better result than any of the individual ap-
proaches alone. The choice of representation also dictates which genetic operators
are available.

4.2.2.1 Binary representation

One of the most straightforward representations is binary representation. It is one
of the oldest representations and has found use in a wide variety of implementa-
tions. In this case, the genotype is a string of binary digits. The representation
is then dependent on the interpretation of the individual bits and the length of the
string itself. The mapping between the string and the phenotype space must be
in such a way that all of the possible configurations of the bit string give valid
solutions.
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One of the freedoms of the binary representation is that it is possible to encode
non-binary information by using several bits, an 8-bit string can represent any
integer up to 256. A problem with this representation is that the different bits have
a very different influence on the represented number. A 7 (0111) turning into an
8 (1000) requires three bits to flip while a 6 (0110) only needs a single one. By
instead using Gray coding, which is a variation of the mapping of binary to integer,
it is possible to reduce that to one bit-flip per number.

1 0 1 0 0 1 0 1 0 1

Figure 4.3: Example binary genome

The most common mutation operator for the binary representation is to give
all genes a probability to bit-flip. How high that probability should be depends on
the use case but it is often chosen so an average of one is flipped.

1 0 1 0 0 1 0 1 0 1

↓

1 0 0 0 1 1 0 1 1 1

Figure 4.4: Example binary mutation

The typical crossover operator generates two children from two parents. Fol-
lowing one or several crossover points somewhere along the genome the genome
is switched with the other sample, see figure 4.5. It has the inherent bias that
genes that are close to each other are more likely to stay together. An odd num-
ber of crossover points has a very strong bias against keeping the start and end of
the genome together. It is also an option to individually treat the genes and give
them each a probability to cross over; this would eliminate the position bias if it is
preferable. The trade-off is that it would introduce a distribution bias instead.

P1: 1 0 1 0 0 1 0 1 0 1
P2: 0 0 1 1 0 0 1 0 1 1

↓

C1: 1 0 1 1 0 0 1 0 1 1
C2: 0 0 1 0 0 1 0 1 0 1

Figure 4.5: Example binary crossover
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4.2.2.2 Integer representation

The binary representation is not always suitable for situations where genes can
take several different values. In these cases, another common representation is the
integer representation. The integers themselves can be unrestricted or be limited
to a set, e.g. one of the twenty-four hours in a day or four different colours. In
some of these cases, it can be essential to consider if there is a natural relationship
between the numbers. Something happening at 4 o’clock is more likely to relate
to what is happening at 5 o’clock than 13 o’clock. The same might not be possible
to say about the choice of colour.

1 3 2 6 2 1 9 2 4 1

’South’ ’West’ ’South’ ’North’ ’East’ ’East’

Figure 4.6: Example integer genomes

The choice of mutation operator for an integer representation has other candi-
dates than for the binary representation. Depending on the connection between the
possible integer values it might make sense for the mutation to change the value
by an increment, by a uniform probability where all values are possible or even
by a Markov chain. The crossover is often treated in a similar way to the binary
version.

4.2.2.3 Real-valued representation

Then there is the real-valued representation where the genes are represented by a
floating-point value. It is suitable when representing a continuous quantity such as
often is the case when representing physical quantities such as length and width.
The precision of the floating-point values is often limited by the implementation
of the algorithm.

1.543 2.12 2.935 6.45 2.478 1.384 9.11

Figure 4.7: Example real-valued genome

The mutation analogous to bit-flipping for the real-valued representation is to
choose a value within the allowed range randomly. Another option is to add a value
from a Gaussian distribution with an expectation value of zero. It is common to
apply it to all the genes and instead control the rate of change with the standard
deviation of the Gaussian.

There are new considerations when tuning the crossover operator, however,
since it is no longer necessarily a choice between two alleles. There are three
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common options for how to combine two real-valued strings. There is the bit
string version mentioned earlier which has the problem that new numeric values
are only introduced in the mutation step. The second method takes a random value
between the two parent values. This method ends up having an averaging effect on
the values, however. The third version chooses one of the parent values and adds
a small value to it.

4.2.2.4 Permutation representation

Many problems instead depend on the sequence of events, in which case it is possi-
ble to use a permutation representation. It is a list of events that all occur precisely
once. It is essential to keep in mind that there two kinds of problems that are rep-
resented by permutations: problems where the order of events is important and
problems where the adjacency of the genes is important. A typical order problem
is production scheduling where the goal is to optimise production time when pro-
ducing several different widgets all competing for the same equipment. A typical
adjacency problem is the travelling salesperson problem where the goal is to find
a complete tour between a series of cities at the shortest possible time.

1 2 4 3 7 9 8 6 5 0

Figure 4.8: Example permutation genome

In this case it is no longer possible to consider the genes individually, instead,
the whole genotype undergoes mutation. In its most simple version, the mutation
switches the place of two or more genes. Another option is to bring a few randomly
selected genes together. A third selects a chunk of genes and inverses the order.
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Swap Mutation
1 2 4 3 7 9 8 6 5 0

↓

1 2 4 8 7 9 3 6 5 0

Insert Mutation
1 2 4 3 7 9 8 6 5 0

↓

1 2 4 3 8 7 9 6 5 0

Inversion Mutation
1 2 4 3 7 9 8 6 5 0

↓

1 2 4 8 9 7 3 6 5 0

Figure 4.9: Three examples of permutation mutations

The permutation representation demands some more complicated crossover
methods since the order of the genes is essential. There are however some methods
in literature that aim to preserve the neighbours or the order in the parent samples
like partially mapped crossover [3], edge crossover [4] and cycle crossover [5].

4.2.2.5 Tree representation

Tree diagrams are a way to represent hierarchical structures. A tree representation
offers a general approach to express code using a formal syntax. It is, therefore,
the basis for genetic programming. The syntax consists of a set of symbolic ex-
pressions that can be divided into two categories: a function set and a terminal
set. The terminal set is allowed as leaves (e.g. the numbers in fig. 4.10) while the
functional set is the nodes (e.g. the mathematical operators in fig. 4.10).
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Figure 4.10: Example tree genome.

The mutation can be done by randomly replacing one of the elements with
another operator and the crossover can be done by taking a branch from one parent
and replacing it with a branch from another parent.

4.2.3 Parent selection
The improvements to the population originate from the parent and the survivor
selection method. It is a balancing act between maintaining a diverse population
so there are options for improvement and discarding bad solutions.

4.2.3.1 Fitness proportional selection

The parents are selected with a probability proportional to their fitness score. A
fitter parent occupies a greater proportion of the probability space and therefore
has a greater chance of being chosen. The probability of being selected as a parent
is Pi = Fi/

∑n
j=1 Fj , where Fi is the fitness of individual i out of a population

the size of n.
It is a great way to promote good solutions but it has two problems: excep-

tional individuals quickly dominate the whole population leading to premature
convergence and populations of similar fitness parameters has almost no selection
pressure.

4.2.3.2 Ranking selection

A response to the problems of fitness proportional selection is to instead bias the
selection based on the ranking of the individual. Since the range of possible ranks
are known it keeps the selection pressure within well-regulated margins. The ques-
tion instead becomes how aggressively to promote better individuals. There are
several ways to generate the probabilities but it is often a linear function depen-
dent on how many samples it ranks better than.

4.2.3.3 Uniform parent selection

Lastly there is the option of selecting the parents by giving all the surviving sam-
ples the same probability of being selected. Using a uniform selection bias might
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seem like it is a way of avoiding including a selection pressure but can be managed
by introducing a strong survivor bias instead.

4.2.4 Survivor Selection

The most important function of the survivor selection method is that it keeps the
amount of data down. Many implementations of genetic algorithms iterate through
the generations quickly and can generate significant amounts of data so that even
modern computers can have problems keeping up.

4.2.4.1 (µ + λ) selection

If there are λ offspring each generation and µ of the population survives to the next
one, then one way of selecting the survivors is to rank all of the µ+ λ individuals
and then select the µ best-ranked individuals.

As a selection method it can quickly improve the mean fitness of the population
but there is also a high risk for premature convergence. This is primarily because it
keeps the best individuals indefinitely. If a good representative of a local maximum
is generated then the algorithm is most likely going to be stuck there.

It can be managed somewhat by enforcing that there are no identical individu-
als in the current generation. The selective pressure is relative to the proportion of
the offspring to parents (λ : (λ+ µ)).

4.2.4.2 (µ,λ) selection

Another option is to discard the older generation entirely and only select the sur-
vivors from the best ranking among the λ individuals generated for this generation.
It does of course require λ > µ. This way the influence of any single individual
is limited but at the cost of losing them even if they are good candidates. The
selective pressure is now (λ : µ)

4.2.4.3 Generational selection

Lastly, one way of selecting the next generation is to remove individuals generated
n generations ago. Since there is no ranking in between the samples for the selec-
tion it moves the selective pressure over to the choice of parent selection method.

4.2.5 Parameterizing a waveguide

For a computer to be able to handle the design and evaluation of a waveguide it
needs a mathematical description. The choice of description can have a consider-
able impact on performance by disallowing certain types of shapes, changing the
sensitivity to parameter changes, making functionally similar waveguides easier
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to transition between or by influencing the speed and accuracy of the simulations.
For the work with genetic algorithms we have chosen to rasterise the waveguide,
as illustrated in figure 4.11.

Describing the waveguide as a grid where each pixel denotes the material of
a small area has many benefits. Most importantly as long as the grid is large
enough and the pixel size is small enough, it is capable of describing any possible
shape. Second, it allows us to keep the same simulation grid across all simulations.
Third, it is easy to both display and manually edit the waveguides. Lastly, it makes
detecting features that are too small or angled too sharply for fabrication easy.

A detriment is that translations and reflections of shapes end up being math-
ematically distinct while physically functioning identically. To evaluate several
of them is a waste of simulation time. To identify them as identical is however
computationally expensive. Another detriment is that many of the geometric oper-
ations traditionally used in manual design methods such as scaling the waveguide
width become impossible to do accurately for most values. Finally, and more di-
rectly relevant to how the simulations are implemented, the rasterisation causes
some practical problem for simulations of waveguides where two elements diago-
nal to each other are connected only in one of their corners. Such a connection is
non-physical so any waveguide where such a connection is generated is removed
and a new waveguide is generated.

For the simulations we have chosen to work with a 50 nm by 50 nm pixel
size. Ultimately the dimensions are decided upon because they are around the
lower limits of what we can lithographically pattern and allows for an acceptable
simulation time.

It is also worth approaching this kind of choice from if the pixel size is small
enough to resolve changes to the waveguide properties, i.e. single mode operation
or avoided mode crossings.

Wire and rib waveguides are not so sensitive to a small change in size but slot
waveguides and other more complex waveguides are often less tolerant. It is how-
ever possible to design a single (TE) mode slot waveguide with a 50 by 50 nm grid
as can be seen from figure 3.10 in the subsection about slot waveguides. Another
aspect to take into account is not accidentally to promote certain forces over others.
It is therefore convenient that a 50 nm wide slot waveguide slot generates radiation
pressure of a similar magnitude to the radiation pressure in a wire waveguide and
not overly values slot waveguides over wire waveguides.

We have chosen to work with three materials: silicon, silicon oxide and air
because it is one of the most popular material platform for integrated SBS and we
have the facilities to work with it. Here when using just three types of materials
there is no meaning to the indexes chosen for the materials. If the index is cyclic
(..., 3, 1, 2, 3, 1, ...) then the other two materials are naturally always one increment
away.
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Figure 4.11: A sample rasterized waveguide. The different colors denote different
materials.

4.2.6 Genetic operators for waveguides
We have chosen to work with two mutation operators. The first one simply ran-
domly reassigns the values of a few of the elements in the waveguide matrix. It is
there to increase diversity.

Since the dominant portion of the waveguides that have been designed are sym-
metric it makes sense to prioritise symmetric waveguides. By including an addi-
tional mutation that mirrors the waveguide along a symmetry line such waveguides
will be generated. By simultaneously generating two symmetric waveguides, one
from each side of the symmetry line, we limit the risk that the properties that make
the waveguide good are lost.

The crossover operator is a more difficult choice. Physically it makes sense
to try to preserve the waveguide shape locally. The 2-point crossover swaps the
central section of the genome and thus big sections are kept together. Since we are
using a matrix representation it is possible to use the crossover operator in both
dimensions. Therefore the crossover operator used swaps a rectangular section
between the two parent waveguides.

The waveguide simulations are slow and therefore we chose to use (µ + λ)
survivor selection. It offers quick improvements of fitness across generations while
the generations are simulated slow enough that the current results periodically can
be manually inspected and evaluated. Since the survivor selection is quite harsh we
have used a uniform parent selection to keep the algorithm as simple as possible.

4.2.7 Choosing an initial population
The initial population that forms the start of the algorithm is important and with a
good start the algorithm has a much better chance of finding a good solution. Both
the initial population size and its individual members have a significant influence
on the performance. Some authors have suggested that having large initial diversity
is of great help to avoid premature convergence. However, many parameters are
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Figure 4.12: Our mutation operators.

Figure 4.13: Our crossover operator.
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at play here, e.g. the size of the search space, the selective pressure, and fitness
function. One way of selecting the initial population is to include the information
that is already available. In our case we can use waveguides that have previously
shown good performance.

The majority of the measured SBS waveguides are either wire or rib waveg-
uides. We also know that slot waveguides can generate strong optomechanical
forces.

4.2.8 Selecting the parameters

The parameters of the algorithm were calibrated by replacing the computationally
expensive Brillouin gain simulations with a series of simpler operations ranging
from the simplest where the number of silicon pixels is maximised to much more
advanced where it minimised the number of pixels with neighbouring pixels shar-
ing the same material.

The population size was set to 100 and the parent selection to 50 % as it consis-
tently managed to turn the whole waveguide into silicon. The mutation probability
was later set to 30% to increase the level of diversity for later generations.

4.2.9 Functionalizing via context

Optical and mechanical modes are dependent on the full waveguide shape. The ef-
fect of a change of material in one pixel is dependent on the rest of the waveguide.
If an important feature passes over from one waveguide to a waveguide where that
feature does not make sense it is unlikely to yield good results. The likelihood that
two waveguides produce a functional waveguide is therefore strongly dependent
on how similar they are. Incremental changes are therefore more likely to survive
the next selection phase. As generations pass by, specific locations in the waveg-
uide matrix take on a function, e.g. slots will be found in certain rows and bulk
silicon in certain regions.

If a radically new waveguide is introduced, it is less likely to generate more
new waveguides that survive. The rasterised waveguides are unaffected by transla-
tion and mirroring but the crossover between a waveguide and its translation will
see that difference. So when generating the initial population or when introducing
a new waveguide into the database, it is important to be aware of how well the
functions of the new waveguide overlap with the functions of the old waveguide.
It will influence the speed with which these features are propagated among the new
waveguides.
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4.2.10 The importance of diversity

Maintaining a level of diversity among the samples that are passed on is key for
the algorithm to progress. Only the genes that were selected in the previous iter-
ation and the new genes that were introduced by the mutation are available. Too
harsh selection parameters can remove the genes that are underperforming on their
own but that in the right configuration of surrounding genes would perform well.
This problem is in part alleviated by the mutation phase where new genes are ran-
domly introduced. These new genes are however untested and a vast majority is
detrimental to the waveguide so it is not an equivalent replacement.

We have approached the loss of diversity by enforcing that there are no iden-
tical waveguides among those passed on and by so imposing at least a minimum
selection of genes. It can also be managed by increasing the chance of mutation.

4.3 Multiple objective optimization

The role of the evaluation function is to translate the quality of a phenotype into a
value that can be ranked and compared. Since it forms the base for the properties
that are selected for, it is essential that it values not only the best result but also the
intermediate results.

Since we are selecting for a good SBS waveguide, we are evaluating the SBS
gain. It is a parameter often used to showcase excellence in literature that we are
also able to simulate. The gain simulations are expanded upon in the next chapter.

4.3.1 Multiple objective optimization

When the goal is more complicated than what can directly be captured by a single
parameter and multiple solutions may come out as competitive, then the search is
made more complicated. One way to approach the problem is to add the numbers
together with a weighted sum. The parameters are multiplied with a weight, w,
that re-scales them according to their importance.

Ffunc =
n∑

i=1

wipi (4.1)

It is a simplistic way of dealing with the problem that often experiences prob-
lems when taken outside its expected range.

Another way is to look for the Pareto optimal solutions. It is a term mostly
used in economics that means that no solution is strictly better, that to improve one
metric another one must be sacrificed. Illustrated in figure 4.14.
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Figure 4.14: Example illustration of the pareto optimal solutions. The red line mark the
options where you can not get more without performance.

4.3.2 Constraint handling

Another way to deal with multiple objectives is to guide the solution towards the
part of the parameter space that is preferable. The preferences can be because the
evaluation of samples outside that region is difficult or because the fitness provides
very little guiding information in the region. One way to handle this is to remove
the samples that end up there. It can, however, be challenging to know where to
put such a limit on the search space. Another way is to include into the fitness
function a function that is penalising undesired solutions.

Ffunc = Foriginal(x) ∗ Fpenalty(x) (4.2)

The goal of our algorithm is to optimize the Brillouin gain over a wide range
of mechanical frequencies. In order to focus on a specific frequency range we
filter the gain function with a band-pass filter. The gain function itself will be
further expanded upon in the next chapter explicit in the gain function is that it
scales as G ∝ Ω−2

mech. For a band-pass filter to be able to suppress that it needs to
be of an even higher order (¿ω2) but if we make the filter too selective it will be
difficult to generate satisfying solutions. Another option is to compensate for how
the gain is scaling by multiplying it with the frequency squared. An extra factor
of ω0.5

mech is introduced as well based on initial tests as we need to compensate for
a fundamental frequency dependency of the electrostrictive force. The new fitness
function is,

Ffunc(ω) = Foriginal(ω)
ω2.5

(ω − ωfilt)2 + (ω/Qfilt)2
(4.3)
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where ωfilt is the central frequency of the filter and Qfilt dictates the width of
the filter. A Qfilt of 3 was found to be good enough for this work.

When the GA has converged it is then possible to re-evaluate the data for a
new filter frequency. A few generations later the algorithm converges at a new
WG allowing for a fast generation of a competitive WG in a chosen frequency
range. The re-evaluations are computationally much cheaper as it can be done
from the parameters given by the old simulation. This means that each subsequent
convergence can be sped up by an ever larger database of WGs to start from.

Ultimately however the algorithm must complement the underlying constraints
of the problem, in our case Brillouin scattering.
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5
Brillouin Scattering

5.1 Introduction

The second and third chapter focuses on mechanical resonators but an acoustic
wave does not need to be confined in a resonator. This chapter focuses on how light
interact with acoustic waves propagating in an optical waveguide. It starts with a
short description of what makes Brillouin scattering different from the resonator
case and the metrics that are used to qualify it. Then follows an analysis of the
results of the genetic algorithm, both individual waveguides it found and the more
overarching trends of the accumulated data.

5.2 Stimulated Brillouin scattering

The first significant difference between SBS and how we approached the driving of
the slot waveguide cantilever resonator is that these waveguides are much longer
than the ¡ 10 um cantilever length we have used. In the frequency space the in-
tensity modulated drive that was used in the sensor consists of two frequencies
separated by the modulation frequency. A simplified illustration placing this in the
SBS context is shown in figure 5.1. The stronger optical wave is generally referred
to as the pump. If the pump is modulated the resulting sidebands are called Stokes
if it has a lower frequency and anti-Stokes, if it has a higher frequency. Because of
the propagation speed along the waveguide change with frequency there is a spa-
tial component to the phase of the optomechanical driving force. This component
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Figure 5.1: Illustrated spectrum of Brillouin scattering process. When the beat note
between the two optical waves excite the mechanical resonance at Ω.

can be calculated by from the optical power in the waveguide,

PWG =(Epcos(ωpt− kpz) + Escos(ωst− ksz))2

=E2
p

1 + cos(2ωpt− 2kpz)

2
+ E2

s

1 + cos(2ωst− 2ksz)

2

+ EpEs

(cos((ωp + ωs)t− (kp + ks)z) + cos((ωp − ωs)t− (kp − ks)z)
2

)

(5.1)

where ks and kp are the optical wave vector of the stokes and the pump mode,
in the same way ωs and ωp are the optical frequency of the stokes and the pump
mode.

Since we are working in the infrared most of these frequency components are
far out of reach for vibrational frequencies so typically only the (ωp − ωs) term
remains relevant as a drive force and included in that term there is a spatial com-
ponent (kp − ks). The mechanical mode must match that propagation component
or the optical force will turn out of phase with the mechanical mode as it propa-
gates along the waveguide. A more fundamental way of writing this is that both
energy and momentum needs to be conserved in the scattering process. SBS is
therefore reserved for combinations of mechanical and optical modes that satisfy
these constraints, as illustrated in figure 5.2.

ks − kp = K (5.2)

ωs − ωp = Ω (5.3)
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Figure 5.2: Example dispersion diagram of an optical waveguide with a scattering event
marked by the orange arrow.

where K is the mechanical wave vector and Ω is the mechanical frequency.
These mode triplets are often talked about in terms of if they scatter the photon

within the same optical mode (intra-modal SBS) or to another mode (inter-modal
SBS) and if the pump and the Stokes waves propagate in the same direction (for-
wards SBS) or opposite directions (backwards SBS).

The backwards scattering process reflects the light and therefore act as a limit
on how much power passes through the waveguide. Forwards scattering does not
impose such a limit but it is instead often able to scatter the light several times in a
row, spreading the optical energy between more frequencies.

The second significant difference between SBS and how we approached the
driving of the slot waveguide cantilever resonator is that the transduction from
mechanical wave to the scattering of the optical wave is now due to phase modu-
lation. If the spatial and frequency components match then the Brillouin coupling
efficiency is decided by how efficiently the light generates vibrations and how the
vibrations modulate the effective refractive index of the optical mode. At the Bril-
louin frequency the gain coefficient can be reduced to [1],

G =
2ωoptQmech
ω2
mech

|〈f, u〉|2
vgsvgp〈u, ρu〉

(5.4)

where ωmech and Qmech denote the mechanical frequency and the quality factor.
Popt, ωopt, vgs and vgp are the optical power, frequency and group velocity of the
Stokes and the pump. 〈u, ρu〉 is the effective mass of the waveguide cross section.
The relevant material constants for silicon and silicon oxide can be found in the
material properties section earlier in the thesis. The optomechanical force driving
the vibration is 〈f, u〉 whereby,
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〈f, u〉 = 〈f, u〉RP + 〈f, u〉ES (5.5)

Now that we have the gain we can express the transduction between the optical
modes in the waveguide. In the case of forwards inter-modal SBS the change in
power of the stokes wave is,

dPs
dz

(z) = Ps(z)(−α+GPp(z)
(Γsbs/2)2

(Ω− ω)2 + (Γsbs/2)2
) (5.6)

dPp
dz

(z) = Pp(z)(−α−GPs(z)
(Γsbs/2)2

(Ω− ω)2 + (Γsbs/2)2
) (5.7)

Pp and Ps is the optical pump and Stokes power at a position z along the
waveguide. α is the optical waveguide loss.

5.3 Simulating the coupling
Both optical and mechanical modes are simulated in COMSOL multiphysics. The
simulated waveguide consists of a matrix (17 by 14 elements, 50 nm by 50 nm
each) centred in a circular area of air with 3 µm radius. The simulation mesh is set
to be identical for each matrix element. The outer boundary of the circle is made to
be scattering by using Robin boundary conditions with a complex coefficient. The
simulated modes are then imported via the Livelink module to MATLAB where the
relevant field overlaps are calculated. With the simulation infrastructure available
to us the full evaluation of a waveguide and its modes take about 2 min each.

In order to achieve this simulation time this work focuses on forward intra-
modal SBS. Forward SBS requires far fewer simulation steps than backwards SBS
where phase matching requires simulations at several mechanical propagation vec-
tors. As a result of limiting the simulation to forward SBS, the mechanical waves
do not propagate along the waveguide and, e.g. beam modes are not possible. For
genetic algorithms the intra-modal gain is a simpler problem to optimise than inter-
modal gain. The inter-modal coupling depends on three different mode shapes
while the intra-modal essentially on only two.

While mode simulations, eigenfrequencies and dispersion are straight forward
to simulate the losses in the waveguides are not, neither optical nor mechanical
losses. The optical losses in silicon waveguides are generally surface roughness
limited. That cannot be directly simulated since it is dependent less on the shape
and more on the fabrication process. The mechanical losses are similarly challeng-
ing to capture and is covered in the mechanical losses sections. When comparing
simulated quality factors with the literature of fabricated examples, it becomes
evident that the ultimate limits for the achievable mechanical quality factor are
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complicated, especially over a wide range of frequencies and shapes. To make the
values comparable to literature the quality factor for the gain coefficient calcula-
tions has been set to 1000. This is roughly the same value as has been measured
in suspended wire WGs and have been used for these kinds of simulations in the
past [1, 2].

For lower frequencies far higher quality factors than 103 have been demon-
strated [3]. It suggests the gain could be significantly higher for low frequencies
than our simulated results imply. Quality factors in silicon resonators at this fre-
quency are often limited not only by air damping, which is removed in vacuum,
and surface oxide [4], which can be reduced through optimised fabrication but also
by thermal material properties like Akhiezer and thermoelastic damping, which
can be reduced by cooling. Ultimately it seems that the limit for the mechanical
quality factor is inversely proportional to the mechanical frequency [3], further
favouring the low-frequency structures.

5.4 The individual waveguides generated by the al-
gorithm

5.4.1 Introduction

The shape space is large enough that it is unfeasible to explore it in its entirety
(larger than 10113) which is why we have to rely on an algorithm to guide the
search. However, regardless of which shapes the algorithm has been initiated with
it has converged towards a silicon slot waveguide with a low mechanical frequency.
The initiation condition does however reflect itself in small changes such as the
orientation of the resulting slot, horizontal or vertical. The convergence time is
also heavily influenced by not just the best of the initial waveguides but also the
diversity of the overall population.

The genetic algorithm generates a significant amount of waveguides, more than
what can manually be investigated. It is easy to find the highest gain simulated.
The highest gain is not necessarily the only interesting metric; so it is relevant to
be able to find these waveguides.

Since we are working with a significant number of metrics the data can be
expanded and displayed in many ways. Some of these are less significant for the
performance but provide an insight into the data set. An example is the way a mode
relates to the other modes guided by the waveguide. Without manual inspection
it is difficult to differentiate the spatial mode shapes but sometimes it is enough
to sort the modes according to the highest effective refractive index and lowest
mechanical frequency. The results are displayed in figure 5.3.

As an example: for a large part of the lower mechanical frequency range the
second optical mode (the slot mode) is the highest gain mode but as the mechanical
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Figure 5.3: The modes index and ranked according to (a) lowest mechanical frequency
and (b) highest effective refractive index of the waveguide. (c) the ranks of the highest gain

modes as per their respective frequency.

frequency increases the fifth optical mode (a higher order slot mode) take over as
the highest gain mode.

By including the more directly influencing parameter such as effective mass
and optomechanical force it is possible to find several clusters of waveguides that
are for some reason interesting.

5.4.2 Unique waveguides

Figure 5.4 shows the gain plotted against the mechanical frequency of all the op-
tomechanical mode pairs generated. It also marks a few interesting mode pairs,
which are displayed in detail in table 5.1 indexed by the letters a-i. These waveg-
uides have been more directly optimised. The method is described in a later sub-
chapter called local optimisation.

The highest gain mode pairs are found at the lowest frequencies simulated. Of
those the absolutely highest gain is generated by WG (a), as shown in figure 5.4
and table 5.1. It is a slot WG where the optical mode is forced into the slot between
two high refractive index sections [5]. The slot mode is beneficial in two ways: the
associated radiation pressure is high and air is less optically nonlinear than silicon,
allowing for the use of higher optical powers. In this case the two WGs are me-
chanically connected by a soft spring. The spring is made from oxide as silicon is
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Figure 5.4: The gain and frequency of all simulated mode pairs. The modes and
waveguides selected in table 5.1 are indicated by the dots labeled a-i.

stiffer, which would increase the mechanical frequency. Such an intricate mechan-
ical connection makes fabrication difficult, however. By radically simplifying the
connection we arrived at WG (c). While in this waveguide the coupling is worse
than, e.g. WG (a), it is easier to fabricate and still has a higher gain than anything
previously demonstrated.

There is also a group of highly competitive structures, which involves higher
order optical modes. For these WGs the slot is situated above and connected to a
slab of silicon. By introducing a high refractive index in the proximity of a slot
that can guide a higher order slot mode, the degeneracy of the mode is broken and
it splits up. This leaves modes, e.g. in WG (b) and WG (e), where the electric field
is confined mostly in the top part of the slot where it is overlapping well with the
mechanical mode.

A way to avoid disturbing the optical mode with the mechanical connection is
to have an identical connection on both sides, e.g. WG (d). It has the added benefit
that it confines the mechanical mode so that the overlap of optical power and me-
chanical motion is better. It does however also, unfortunately, add some effective
mass to the mode. Overall these mode combinations still result in a relatively high
gain.

WG (f) demonstrates yet another type of mechanical connection. By moving
the connecting parts towards the centre, the optical field in the slot now results
in a significant radiation pressure that has the same phase as the electrostriction.
As such, these forces can constructively add up to a respectable gain for the given
frequency. It is also possible to increase the forces by increasing the group index.
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A waveguide near the cut-off of an optical mode is usually more sensitive to the
wavelength, which in turn results in a large group index. Designing for that effect
leads to waveguides such as WG (g), which support higher order modes with very
high group index.

Finally, the highest frequency range is populated by lamb wave modes, WG
(h-i). These modes are the ones that are most common among the integrated SBS
WGs already demonstrated in the literature, such as wire WGs [6].

So far missing from our discussion in this paper are rib WGs [7] and double
slots [8]. Rib WGs are used mainly because they can have very low optical losses,
something difficult to include in the optimisation process. They do however have
a worse SBS coupling, which leaves the gain below the Pareto-curve. Double
slots do not support forward SBS as the forces in both slots pull equally on the
centre beam but in opposite directions and as such the forces cancel itself. The net
forces suggested in [8] come from inter-modal SBS where the overlap between a
symmetric and an asymmetric optical mode change the sign of the force on one
side of the symmetry line, summing up to a substantial force.

INDIVIDUAL MODES
Shape Mech. Optical Simulated Performance
Silicon Disp. Amp.
Oxide 0 1 0 1

a)

Gain: 2.5× 108 1/Wm

Freq.: 37 MHz Eff. Mass: 169 ng/m

Eff.Ind.: 1.50 Group Ind.: 3.14

RP: 29.9 mN/Wm ES: 217 nN/Wm

b)

Gain: 7.0× 106 1/Wm

Freq.: 253 MHz Eff. Mass: 103 ng/m

Eff.Ind.: 1.34 Group Ind.: 3.95

RP: 27.1 mN/Wm ES: 39.2 µN/Wm

c)

Gain: 1.5× 106 1/Wm

Freq.: 330 MHz Eff. Mass: 85.3 ng/m

Eff.Ind.: 1.38 Group.Ind.: 2.87

RP: 15.0 mN/Wm ES: 10.1 µN/Wm

d)

Gain: 8.4× 104 1/Wm

Freq.: 2.04 GHz Eff. Mass: 191 ng/m

Eff.Ind.: 1.25 Group Ind.: 4.69

RP: 29.9 mN/Wm ES: 2.86 mN/Wm

Continued on the next page
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Continued from the previous page

e)

Gain: 4.5× 104 1/Wm

Freq.: 3.27 GHz Eff. Mass: 91 ng/m

Eff.Ind.: 1.17 Group Ind.: 5.0271

RP: 22.7 mN/Wm ES: 3.90 mN/Wm

f)

Gain: 1.6× 104 1/Wm

Freq.: 7.68 GHz Eff. Mass: 163 ng/m

Eff.Ind.: 1.50 Group Ind.: 4.74

RP: 27.0 mN/Wm ES: 23.1 mN/Wm

g)

Gain: 1.9× 104 1/Wm

Freq.: 10.8 GHz Eff. Mass: 203 ng/m

Eff.Ind.: 1.31 Group Ind.: 8.58

RP: 70.9 mN/Wm ES: 13.6 mN/Wm

h)

Gain: 2.3× 104 1/Wm

Freq.: 14.6 GHz Eff. Mass: 154 ng/m

Eff.Ind.: 1.56 Group Ind.: 5.75

RP: 49.0 mN/Wm ES: 26.9 mN/Wm

i)

Gain: 1.8× 104 1/Wm

Freq.: 18.3 GHz Eff. Mass: 91.5 ng/m

Eff.Ind.: 1.44 Group Ind.: 5.57

RP: 75.6 mN/Wm ES: 18.5 mN/Wm

Table 5.1: A selection of competitive, distinct and noteworthy waveguides. They are
indicated in figure 5.4 with red points. Shown, starting from the left, in each row are:

material composition and shape, mechanical mode, optical mode and simulated
performance. The shape is shown on top of a 50 by 50 nm grid. ES and RP are the

electrostrictive and radiation pressure force. The forces are in all the given examples
interfering constructively.

5.5 Local Optimization

5.5.1 Optimising the matrix representation of the waveguide

The way we have set up the genetic algorithm is not the most effective method
for the last part of the local optimisation. The random search aspect of these op-
timisation schemes makes it difficult to exhaust the search space something that
becomes realistic to do now that we are so close at least a local maximum. For the
last step we have instead relied on deterministic methods. By following the small
changes to the waveguide shape that gives the best improvement it steps towards
an optimum.

The material interfaces are found by searching the waveguide matrix for in-
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Figure 5.5: Two different integers found next to each other indicates a boundary. That
pattern is then replaced.

teger pairs that signify a material intersection as shown in figure 5.5. Once two
different integers are found next to each other they are replaced to move the inter-
face in either direction. The list of new candidates is filtered to remove duplicates
and evaluated. As a search method, it is exhaustive under the assumptions that
reaching the optimum is not conditioned on the simultaneous introduction of sev-
eral changes. It is worth to also include candidates that symmetrically apply these
these changes on both sides of the waveguide. The results of the simulation indi-
cate it is often detrimental for the gain to break waveguide symmetry.

5.5.2 Reparametrizing the waveguide

When optimising around certain shapes it becomes clear that the resolution puts
a limit on how close the process allows us to go. The speed of the gain simula-
tion however also sets a practical limit to how fine the spatial resolution can be.
Since we expect to be close to the maximum we can also assume that there are no
drastic changes to the shape. Therefore the arguments for why we have been using
the rasterised waveguide matrix are no longer as strong. We can re-express the
waveguide as a polygon where the individual nodes can have arbitrary precision.

If we take a look at the highest gain waveguides we have found we can see
that it is a slot waveguide where the strain components of the mechanical mode
has migrated away from the optical field. The result is that the electrostrictive
coupling for this mode pair is low so radiation pressure is the dominant part of the
optomechanical coupling. Since the optic and strain fields are mostly separated it
is now easier to manually redesign the waveguide. When doing so we find that we
can push down the mechanical frequency to almost arbitrarily low values but that
the shape to get such frequencies is increasingly difficult for a genetic algorithm
to generate.

If we therefore for the moment consider the mechanical frequency and mode to
be something we can choose as we want, we can simplify the simulation goal. By
normalising the SBS gain to the mechanical frequency and assuming mechanical
mode results in a modulation of the slot width much of the complications in SBS
waveguide design disappear.
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Figure 5.6: Optimized slot when the waveguide is re-expressed as a polynomial and the
mechanical frequency independent of the optics.

We can then use a gradient descent method by approaching the coordinates of
all the vertices as a single vector and then following the steepest decent towards the
local optimum. The result is illustrated in figure 5.6, with a frequency normalized
gain of kopt = 1.45×1025m−1W−1s−2, as displayed relative to the rest of the data
in figure 5.7. With the kopt-curve as a reference it is now visible which waveguides
exceeds it. A majority of these are concentrated at higher frequencies.

To compare with earlier results in the thesis, in this metric the optimized slot
has an about 40 % higher kopt than the slot waveguide of the mass sensor, if it had
a 50 nm slot width. The improvement is in large part due to a a slightly thicker
waveguide and removing some unnecessary mass by rounding the outside of the
waveguide.

5.6 The fitness landscape
All together about 24000 waveguides were simulated to get to the individual waveg-
uides. This also means that well over 106 mode pairs were simulated and evalu-
ated. While this is far less than the more than 10113 possible waveguides it is
worth speculating on the fitness landscape, at least in the region where the algo-
rithm converged. The hope is that it can work as a background for a discussion
about the Brillouin scattering in less common frequency spans or as a part of de-
vices where other metrics than gain play an important role. In a figure showing
all the simulated results it is possible to see some of the more general trends and
limits. Figure 5.7 shows the gain as dependent on frequency. The colour indicates
the group index of the optical mode in the selected mode pair and the results are
sorted so a higher group index will cover a lower one.

Something interesting with the figure is that the highest gain mode pairs do
not have a high group index. This despite the inverse linear dependency on group
velocity and therefore group index shown in the gain equation, equation 5.4. These
high gain waveguides are slot waveguides like WG (a), table 5.1.
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Figure 5.7: The gain, frequency and group index of all simulated mode pairs. The black
line indicates the frequency normalised gain of the optimised slot waveguide shown in the

inset. The mechanical quality factor is set to 1000.

If we instead focus on the spread in group index, results shown in figure 5.8a, it
becomes apparent that while the trend is that a high group index does give a higher
gain there is a group of waveguides around a group index of three that performs
exceptionally well. It is also visible that this kind of optomechanical mode pairs
operates at mechanical frequencies below the lamb wave modes, i.e. WG (g)-(i).
Figure 5.8b show that a higher effective mass is needed for a high gain despite its
direct contribution in the gain equation, G ∝ m−1

eff . It can be explained by that
more moving mass should have a more substantial effect on the optical mode.

Figure 5.9 separates the contribution of the radiation force and the electrostric-
tion. Figure 5.9a shows the two force components with the colour gradient mark-
ing the gain. The trend in the data is that for a high gain, strong radiation pres-
sure coupling is paired with a very weak electrostrictive coupling. Achieving a
high electrostrictive coupling at a low frequency is difficult. This is because the
mechanical frequency depends on the ratio of stiffness to effective mass. The
stiffness, in turn, depends on the strain of the mechanical mode normalised to the
same point as the effective mass and the Young’s modulus. Finally the strain then
couples to the optical mode via the electrostrictive constant, so the electrostrictive
force depends on an optical overlap with the same strain the mechanical frequency
depends on. All together this means that a strong electrostrictive coupling becomes
more difficult to achieve the lower the frequency is, see figure 5.9b. The radiation
pressure, however, is not as dependent on mechanical frequency, see figure 5.9c,
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a)

b)

Figure 5.8: a) Gain as a function of group index and (b) effective mass. The color signify
mechanical frequency. The effective mass is given relative to the maximum displacement.
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Figure 5.9: The separate power-normalised force components: a) relative to each other as
well as b) electrostriction and c) radiation pressure separately. The colour signifies the

highest gain found at the indicated place in the graph.

and can be strong in lower frequency WGs.
The electrostrictive contribution is maximised in the high-frequency region,

where the highest gain is obtained for variations of wire WGs. The good coupling
is due to the excellent overlap between the optical mode and the strain distribution
of the mechanical mode as well as the high stiffness. The optomechanical coupling
is improved further by a very good radiation pressure coupling.

Figure 5.7 also shows that it is difficult to get a good gain above 20 GHz. This
is because the mechanical frequency is increased either by using smaller WGs,
where less of the light is confined in the semiconductor, or by using a higher order
mechanical mode, which has a worse overlap with the optical mode. In both cases,
the optomechanical coupling decreases.

5.7 Conclusion

In this chapter we have discussed the results of the genetic algorithm both in de-
tail about the individual waveguides and about the more general trends visible in
the data. The goal was to use genetic algorithms to find new competitive waveg-
uide geometries. Several thousands of waveguides have been simulated and many
previously not suggested waveguides have been found and analyzed. As can be
expected, slot waveguides where the mechanics and the optics can be separated
are the best performing waveguides in the lower frequency range. However, sev-
eral variations of the slot waveguide design have been shown to have their own
advantages. Some slot waveguides exhibit a high group index, others have high
electrostrictive coupling or by designing for a higher order optical mode allow to
tailor the mode for a high coupling and a lower effective mass. We show several
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waveguides that have a gain exceeding 108 1
Wm , well above any previously demon-

strated SBS WG. For higher frequencies, wire waveguides take over and generate
the highest gain as they have a better optical overlap with the strain resulting in a
much stronger electrostrictive coupling.
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6
Conclusions and perspectives

6.1 Conclusions
In this PhD research, we have investigated the potential of using slot waveguides as
inertia mass sensors and designed novel waveguides for Brillouin scattering with
the help of genetic algorithms.

In the first half, we have designed and fabricated an all-optically actuated and
transduced inertia mass sensor. Both transduction and detection is optically broad-
band and the displacement sensitivity is measured over a span of 35 nm. The fabri-
cation process has few steps, is CMOS compatible and it is able to operate without
optical amplifiers, which should make fabricating the sensor much cheaper. The
measured mass sensitivity is in line with published sensors [1, 2] and previously
suggested all-photonically transduced mass sensors [3, 4] while using a signifi-
cantly smaller pump power.

The following half, about the findings from the genetic algorithm show that this
approach can generate a wide range of competitive stimulated Brillouin scattering
waveguides. The best waveguides show a gain > 108, far beyond what previously
has been demonstrated. By filtering the fitness function for a chosen frequency
span we show that the algorithm can be altered to search a chosen parameter span
or to converge towards waveguides that otherwise would be outcompeted by more
competitive waveguides. We also provide a way to significantly speed up the op-
timization process by reusing the results of previous simulations. This way we
managed to find several novel SBS waveguides, such as waveguides with a high
group index or higher order slot modes where the radiation pressure coupling is
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better.
We also managed to show some of the overarching trends for possible Brillouin

waveguide designs, such as the difficulty of generating a high electrostrictive pres-
sure at lower mechanical frequencies while the radiation pressure is significant
down to arbitrarily lower mechanical frequencies. Plotting the gain against the
mechanical frequency shows that there us a significant bump in gain just above 10
GHz. This is largely due to the electrostrictive pressure increasing with frequency
and catching up in magnitude with the radiation pressure. It also shows the cut-
off where a smaller waveguide, with a higher fundamental mechanical frequency,
is worse at confining the optical mode and therefore reducing the electrostrictive
coupling.

In this final chapter, we summarize the main conclusions of this work and
elucidate promising roads for future research.

6.2 Future Work

6.2.1 A full integration of the mass sensor

Currently only the sensor itself and the routing to and from the sensor is on-chip.
There is work underway to also integrate light sources, both for driving the sensor
and detecting the vibration, as well as filters and photo-detectors. If successful this
demonstrates the simultaneous integration all of the associated optical components
on-chip. Avoiding the coupling losses from going in and out of the chip is expected
to result in a vast improvement in the overall performance of the sensor.

6.2.2 A more robust mass sensor

One of the main problems with the longer slot waveguide mass sensors is that they
collapse if dried in water. The narrow gap between the cantilevers is necessary
for a slot waveguide but it makes stiction a problem. This can be extended to all
demonstrated non-resonant optical drives for mass sensing as they in one way or
another rely on the attractive force between two waveguides in the optical near-
field. One option to get around this is to use the centrifugal force acting upon
the waveguide as it guides light through a waveguide bend. The forces would be
smaller but such a design with a broader waveguide would be possible to combine
with on-chip Raman sensors, e.g. [5]. It would provide a way to cross reference a
Raman signal against the deposited mass.

Another way of integrating a Raman sensing capacity to the mass sensor that
simultaneously would increase the driving force would be to coat the slot waveg-
uide in gold [6] and then with an anisotropic etch method like reactive ion etching
(RIE) remove the gold facing upwards. This removes the gold connecting the two
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sides of the slot. Even a fairly short stretch of gold gives a significant Raman sig-
nal and the broadband resonance enhances the optical field strength and thus the
force.

6.2.3 Expanding the genetic algorithm

Expanding the genetic algorithm to other material combinations would be inter-
esting. Several of the waveguides found have significant radiation pressure and
electrostriction coupling but the components are counteracting each other. A ma-
terial with a different sign of the elasto-optic coupling coefficient would perform
very differently e.g. chalcogenide. A list of elasto-optic coupling coefficients can
be found in table 2.2. Combining materials with different electrostrictive con-
stants might also allow for higher order mechanical modes to have a high gain.
By locally matching the material to the sign of the strain the force would add up
constructively.

Finally, designing waveguides for inter-modal SBS is more complex than intra-
modal SBS and there are even fewer waveguides were it has been demonstrated [7].
Since it offers a way to achieve single-sideband forward propagating SBS a good
selection of waveguides for inter-modal SBS would be a fascinating prospect for
a applications that require an energy efficient process as light is not lost to other
sidebands.
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