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In frameworks of statistical mechanics of lattice gas model, it is calculated the free
energy and the specific heat of binary alloys in the case when their atoms have a
long-rang interaction. The calculation method is based on the use of connection between
the statistical system of alloy atoms and the so-called lattice gas model. For the analysis
of temperature dependence of each term in lattice gas virial expansion it is applied its
decomposition on Ursell’s function degree. Such an approximation method represents a
modification of high temperature expansions of various model thermodynamic charac-
teristics.
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B paMrax paBHOBECHOH CTATHCTHUYECKOH MeXaHWKH BEIUMCIfAETCH CBODOJHAS DHEPruUs U
VAeJbHASA TeIIOEMKOCThL OMHAPHBIX CIUIABOB MeTAJJIOB, ATOMBI KOTOPHIX 00JIaJaloT JaJEHO-
IeHCTBYIOIIUM IIOTEHIMAJIOM B3auMMOIelcTBMA. MeTo BBEIUMCIEHHS OCHOBAH Ha HMCIIOJB30Ba-
HUSA CBASHU MeMIY CTATHCTUYECKON CHCTeMOH aTOMOB CIJIaBa M T.H. PeIIeTOYHBIM rasom. s
aHAIN3a TeMIePaTYPHO! 3aBHCHUMOCTH YJEHOB BHPHUAJIBHOTO PAB3JIOKEHHUS PelIeTOYHOTO Iasa
NPUMeHAeTCH WX PABJIOKeHMe II0 CTeleHsM BXOMIeHMsA (GyHKnum Ypceana. Takoil metor
npubIMKeHUH pecTaBiaseT co0od MOIU(PHUKAIMIO BEICOKOTEMIIEPATYPHEIX PAas3JIOMKeHNH Tep-
MOJVHAMHYECKHX XaPAaKTePHUCTHK MOJIeJH.

Tepmoninamika GiHapHEX cIIaBiB i3 B3aeMogi€lo, M0 Ma€ BEJWKHH pajgiyc, y pamMKax
craTucTHaHoro miaxonpy. J1.I1./Janiaosa, IO.I1.Bipuenko.

V paMkax piBHOBa)KHOI CTATHCTHYHOI MeXaHiKM OGYMCIIOETHCS BiJIbHA eHeprif Ta MUTo-
Ma TeNJIOEMHICTh y OiHApPHMX MeTaJIeBUX CILIABAX, ATOMU fKMX MAIOTh B3AaEMOJiI0 ¢ BelH-
kuM pazaiycom. Meron oO04yucieHHS 3aCHOBAH HA 3B fBKY MIMK CTATUCTUYHOI CHUCTEMOIO
aTOMiB CILIaBY Ta TaK 3BAHMM TPATKOBHMM rasoMm. [[1a amanmsy TeMImepaTypHOI 3aJIe’KHOCTL
yJieHIB BipiaJBHOrO POSKJALY YV MOJeJi I'PAaTKOro rasy 3aCTOCOBYETHCHA POSKJAJ 32 CTYHEHS-
My BxoJKeHHA (QyHKnil ¥Ypcensna. Takmit Mmeton yapase coborwo mMomidikanino BHcoKoTeMmIte-
PaTypPHHUX PO3KJIAJiB TePMOJHMHAMIUHMX XapaKTePUCTHK MOJeJi.

1. Introduction

Investigation of alloys thermodynamics in frameworks of statistical physics always attracted attentior
of theoreticians due to availability of structural phase transitions in such systems. In binary alloys, ir
particular, it is observed phase transition of the «order-disorders» type when the temperature is decreasec
(see, for example,[1], [2]). Such a transition is observed experimentally by the Bragg scattering of X-rays
in crystal. Namely, in the ordered state, X-rays scattering detects the availability of two systems of atom-
ic planes divided some distance. In contrary, in unordered state, there is only one system of scattering
planes which are separated by doubly less distance. Besides, the transition has been accompanied a sin-
gularity in the temperature 7" dependence of the heat heat Cy (1) so, that it increases unboundedly wher
temperature is approached to its critical value.
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Theoretical study of thermodynamics with the goal of setting of media thermodynamic characteristics
dependencies on some control intensive thermodynamic parameters which are determined by media mi-
croscopic characteristics should be based with inevitability on the approach connected with application
of equilibrium statistical mechanics methods. This approach is based on determination of each medium
microscopic state energy, i.e. it should be defined by the hamiltonian of relevant physical system consist-
ing of any large number of atoms. Usually (see [1], [2]), one is restricted to account only the interaction
between nearest neighbors in crystal lattice, when the interaction between atoms of two binary alloy
components is defined. Its magnitude is determined by lattice distribution of different atoms.

Let us consider the crystal sample A that is described by the set of three-dimensional vectors
X = mieq + ngey + nzes, where ny,ng, n3 are numbers n; = 0,1,2,..., L — 1. For simplicity, we sup-
pose that crystal lattice constants are physically dimensionless and so they are equal to one.

We introduce the sign function o(z) on the crystal lattice. Such a function takes values £1 in each
lattice site z. If there exist atoms of two kinds A and B. Then, o(z) = 1, when the atom has the type A in
the site z, and o(z) = —1, when it has the type B in this site. Suppose that V7 1 is equal to the interaction
energy of two A atoms in nearest lattice sites. Similarly, V_; _1 is equal to the interaction energy of two
B atoms and, correspondingly, Vi _1 = V_1 1 is equal to the interaction energy of two different atoms,
i.e. A and B kinds. Then, one may write down the model hamiltonian in the following form:

H[U(Z)] - Z Va(x),a(y) 3 (1)

{%,¥:/x—y|=min}

The sum in Eq. (1) is extened on all pairs {x,y} of site radius vectors in the crystal lattice, which are
located at the minimum distance. If V4 _1 > (Vi1 + V_q1 _1)/2, two A atoms as well as two B atoms
prefer to be near similar atoms. Conversely, if V1 _1 < (Vi1 +V_1 _1)/2, all atoms of the same kind repel
apart each other and prefer to alternate its location in the lattice. Just, such a situation is realized at
low temperatures. The ordered phase state of the medium arises. Atoms tends to be distributed by «the
chess order» on the lattice.

Statistical study of the system containing a large number of metallic atoms of two kinds which are
filled in crystal lattice and, consequently, the study of phase transition in such a system is based on the
hamiltonian (1). It is done in a large number of theoretical researches. Usually, all such investigations
are inevitably accomplished with application of some approximations with an accuracy that is poorly
controlled. In particular, we note that the system with the hamiltonian (1) is reduced to so-called the
Ising model. In three-dimensional case, there are not some explicit expressions based on standard special
functions for temperature dependencies of its physical characteristics. Such an above-described situation
leads to the use some approximations for the obtaining of concrete results. In connection with this sit-
uation, approximate methods acquire the special signification when we may control their accuracy. It
determines their relevance.

Besides the general theoretical interest connected with the study of thermodynamics binary alloys
with the view pointed out, there is also an interest connected with some applications, since, at last time,
there are appeared some experimental data concerning with such alloys, which one may not describe on
the basis of the statistical system with hamiltonian (1), when the interaction between nearest neighbors
on the crystal lattice is taken into account only. In connection with such a situation, we do an attempt
of constructing and research such a theoretical model wherein this drawback is eliminated.

In next section, we propose the hamiltonian of binary alloy when atoms have interaction with long-
range radius, and we reduce the study of such a system to the so-called «lattice gas». Further, in the
section 3, we apply the method of virial decomposition [3] that is known in statistical mechanics, in order
to study thermodynamics of binary alloy with such a long-range interaction potential. At first, we find
the explicit view of all expansion coeflicients ¢, (1), n = 2,3, .... It is done in the first approximation on
Ursell’s function degree. In section 4 we calculate the specific heat of binary alloy.

2. Statistical mechanics system of binary alloy type

We note that the model with hamiltonian (1), despite its great difficulty of correct mathematical
research, is still very primitive from the view of binary alloy description. At least, it is connected with
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that interactions between atoms located on large distances is not taken into account in frames of such a
system. However, lately, it is appeared theoretical interest to study some systems with such a character
of interactions (see, for example, experimental works [4]-[7]).

For theoretical description of thermodynamics of above mentioned alloys in the framework of statis-
tical mechanics, the hamiltonian (1) should be replaced presumably by the following:

H [U] - Z Va(x),a(y) (X - y) (2)
{x,y}CA

where the sum is extended on all pairs of crystal sites in A, and introduced energies Vi 1(z), V_1 _1(2),
V_1.1(2z) describe interactions between pairs of lattice sites with radius vectors x u y. They depend only
on the mutual spatial arrangement z = x — y of these sites. So, they do not change their meaning, if
these sites are translated to an arbitrary vector. The sum in Eq.(2) applies to all pairs of the lattice
sites of crystal sample with corresponding radius vectors x and y. In this case, each random function
o(+) = %1 describes the state of lattice sites. Introduced functions V, ,-(z) have the symmetry property:
Vo or(—2) = Vo 0(2) at 0,0 = £1. In addition, it is supposed that V, ,(0) = 0 and functions V, , are
summable

> Voo (x)] < o0 (3)

PRSYA

As in the case of statistical model of binary alloy with the nearest neighbors interaction, we introduce
(see, for example, [2]) some functions I, I’, I” on the radius vector z according to following formulas (this
argument is omitted for all functions in them) by means of equations:

Vipg=I1+I+1", Vi a=I1-I'+1" Vi =—-I+1". (4)
Their solution are
1 /V Vi _ 1 1 /V Vo1
I= 5 (% - V1,1> , I'= 3 Vig=Voy ), I"= 5 (% +V1,1> . (5)

Using introduced functions, the interaction between any two atoms of the alloy is written in the form:

Vo(x),ov)(2) = 1(z)o(x)o(y) + %I’(Z) (0(x) +o(y)) +1"(z). (6)

Then the hamiltonian (2) takes the following view:

Hol= > I(X—Y)U(X)U(Y)Jr% Yo I'x=y)ex) toy)+ > 'x-y)=

{x,y}CA {x,y}CA {x,y}CA
= Y Ix-yox)oly) +v' Y o(x)+v"|A| (7)
{x,y}CA xEA
where
v=> Iz), v=> I, vV=>YI0. (8)
zEZ3 zceZ? z€Z3

The thermodynamics of system with the hamiltonian (7) is determined by its specific free energy (here
and below, we measure the temperature 7' by energy units)

with the partition function
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where the sum is done for all the realization of random sign function o(x), x € A. Respectively, specific
internal energy and specific heat (at constant volume) are defined by formulas
O(F/T) ou 5 OU

s =5 =T (11)

u(T) = oT a(T-1)

In the case of the structural order-disorder phase transition, the binary alloy crystal lattice does not
rebuilt. Atoms filling its unchanged structure may be located with the presence of spatial ordering or
without it. The phase transition consists in that, it is appear a periodic component in the observed
averaged value (p(x)), that is the values

51 (k z(kx

are nonzero at some wave vectors k from the inverse crystal lattice.
This function characterize the phase transition, but it is difficult to observe them experimentally.
Therefore, it is better to observe the manifestation of phase transition by the so-called structure factor

pal) = Tim 3" ((p(x)p(0)) — pR)e 0

A
Al =0 =2

where pp = p1(0). Some peaks appear at values k = +kom /2, if m runs through a finite set.

3. Lattice gas

We now introduce occupation numbers p(x) = 0,1 of lattice sites according to formula o(x) =
2p(x) — 1. After that, we express the hamiltonian (7) in terms of them:

Hiol = 5 32 @ —y)p(x)ply) — 1 32 p(x) + <A (12)

x,yEA xEA

where 2v—v’ = u, 41(z) = $(z), and the additive constant € = v’ —v’/24+v/2 does not contribute a value
to the specific heat Cy (T'), as it will be clear later. The first sum in Eq.(12) is realized independently on
sites x and y of A. "The interaction potential"® has the property ®(0) = 0 and, owing to Eq.(3), the

sum
Z |P(x)| < o0 (13)
x€Z3
is finite.
Substitution of expressions v and v’ into the definition of x gives the formula
p= > (Vo a(x) = Vi a(x)). (14)
x€Z3

It is asymmetric with respect to the replacement of indices 1 and -1 that is a result of asymmetric selection
of substitution o = 2p — 1. This choice is done due to the choice of sign p < 0, since, according to the

definition of p, the inequality holds
Z Vi1 Z Vi—1(x (15)

x€Z3 x€Z3

If it does not take place, but the inequality

Y Vi) < > Viax) (16)

x€Z3 xEZ3

holds, then one should be put o(x) = 1 — 2p(x) and, therefore,

p=2w+v = (Via(x) = Vi 1(x).
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If Eq.(15) and Eq.(16) are not satisfied simultaneously, then the "order-disorder" phase transition does
not occur in the alloy.
The partition function is defined by the following formula on the basis of the hamiltonian (12)

Z=Y e (-2 Hp) (17)
{p(x)}

where the sum is done on all possible realizations p(x).

The hamiltonian (12) is defined on the phase space which consists of all two-valued functions p(x), i.e.
0 and 1. It defines the system of statistical mechanics, which is called "the lattice gas". In terms of this
model, each microscopic state of the alloy is described by the values 0 or 1, which correspond to the filling
of lattice sites by atoms of first and second kinds respectively. In this case, the "order-disorder" phase
transition within the framework of such a model corresponds formally to the "liquid-gas" phase transi-
tion. Thus, for constructing of a quantitative theory in the framework of equilibrium statistical mechanics
which describes thermodynamic behavior of binary alloy and, in particular, describes the "order-disorder"
phase transition in it, it is sufficient to solve the problem of thermodynamic behavior of lattice gas. The
parameter p corresponds to the gas chemical potential.

4. Construction of the virial expansion

To calculate the thermodynamic characteristics of binary alloy we apply the so-called virial expansion
which is well-known in the gas theory (see, for example, [3]). We write down the hamiltonian (1) in such
a form which is similar to that it is studied in this theory. Firstly, for each realization p(x), we introduce
the set A C A of those sites where it takes the value 1, A = {x : p(x) = 1}, we write formulas (12) and
(17) in the form

HIAl = —plAl+ ) dx-y), (18)
{x,y}CA
7= Zexp(—%H[A]). (19)
ACA

Here, the sum is done over all subsets of A. Assuming A = {1, z9, ..., z, }, we rewrite the formula (19)

in the following form:
AL,

an%% i exp(—%zn:q)(xi—xj)), (20)

X1,eeXn €A i<j

where z = /T Similarly, the sum is done here over all ordered collections (X1, ..., Xy} of points from A
with mismatched components.

In order to present of the partition function (20) in the form analogous to the large partition function
which is used in the theory of monatomic gases, we introduce another potential ®(x) which is equal to the
potential ®(x) at all nonzero points x and $(0) = co. In terms of this potential, the partition function

(20) takes the form:

[es] Sn 1 n ~

Z:ZH Z eXp(—TZqD(Xi—Xj)): (21)
n=0 X1y, X EZ3 <]

that differs from the formula of large partition function of monatomic gas system continuously distributed
in a fixed volume only by the fact that, instead of integrals over the atoms radius vectors, the sum (21)
is done here.

This circumstance makes it possible immediately to write down the main term of the asymptotical
formula of the partition function logarithm in the thermodynamic limit |A| — oo. It is performed by the
power series using the so-called Mayer graphs (see, for example, [3])

1 o 2"
I mZ=3 — > Yulxi..x) (22)

n=1 (X100 Xn—1)EZ3

Functional materials, 25, 2, 2018 333



L.P.Danilova, Yu.P.Virchenko / Statistical mechanics ...

where Wy (x) = 1 and the translational invariant multi-point Meyer functions ¥(xy, ..., X, ) are defined by

Vo(xy,ox) = > [ Ui —x3) (23)

Pn {i,j}€ln

Here, ¥y (x,y) = \i!(x —y), and the sum is done over all different connected graphs with vertices tagged
indices with values from I,, = {1, ...,n} The product is computed over all edges {,7} admissible by the
graph I',, in each summand of the sum (23).

As it is known (see, for example, [3]), the logarithm of partition function determines the "pressure" P
of lattice gas P/T = In Z/|A| as a function of the parameters z and 7T'. In this way, due to the connection
of lattice gas model with the statistical system of binary alloy, we have F' = —P. From this and from the
well-known power expansion of pressure (see, for example, [8]), we find that the free energy is determined
by Eq.(22) where it is necessary to take the opposite sign.

5. Specific heat of binary alloy

In this communication, we present asymptotic formulas of F'//T" and Cy (T') at high temperature region
(in the disordered state) or, more strictly, we propose first two terms of the total asymptotic expansion
of these physical values. This problem is solved on the basis of the expansion (22). The function ¥(x —y)

has a "singularity" at x = y in the proposed formalism. Namely, assuming ¥(x) = exp (— d(x)/ T) -1,

we have ~
\I[(X - Y) = \If(X - Y) - 6x,y (24)

where the first term becomes small when 7" tends to infinity at all values of vectors x and y in contrast to
the second one. In connection with this situation, to solve the problem, it is necessary such a rearrange-
ment of the series when, firstly, all sums leading to the disappearance of all Kronecker symbols should
be produced. These symbols are included in Ursell’s functions ¥(x —y). At such a rearrangement of the
series, we construct the high-temperature expansion of above-mentioned physical values on the basis of
Ursell’s functions ¥(x — y) such that we consider them as small values when 7" — co. However, we avoid
trivial expansions of these functions using series on 1/7" powers of them. To solve the problem, we expand
the following functions

\ijm+1 Z H <\II(X1 - Xj) - 5X¢,X;’>
P41 {4,5}€ m41

according to the degree of Ursell’s function ¥ in them.
Let us find the form of coefficients of power expansion in Eq.(22) up to linear occurrence of Ursell’s
function in them. Since, there is the combinatorial relation

S (=10 = mi-nm (25)

Tmt1

({{T'm41) is the number of edges in the graph I',, 1), then, at zero approximation, we have

T, (0
Z E‘nZFl(X ): m+1 (m+1)! Z DRI |
m:O 0 Tt {4,7€ M mt1
m+1
= Z m+1 =1In(1+ 2). (26)

To calculate the next approximation, it is sufficient to take into account those graphs I',,,41 which
may be divided into two connected graphs ') and T®). We demand that, at such a division, there is
only one edge connecting I'") and T'*) in the graph I',,, ;1. In general case, all such graphs I',,, , give zero
contribution into ' when summation of corresponding expressions on X,, is done. Nonzero contribution
of pointed out graphs, which is proportional to first power of Ursell’s function, is obtained in such a
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case when Kronecker’s symbols correspond to edges in graphs I'*)| k& = 1,2 and the function ¥ (x;,,%,,)
corresponds to the unique edge {j, jg}N connecting them.
Consequently, the part of function ¥,,, 1 proportional to first power of Ursell’s function has the form:

U1 (X)) = Z Z Z (%5, X5, )%

V1,VaClmy1 1€V G2EV2

Vinve=9,
ViuVe=Int1
(e H(re
S T b ) (S0 T s
r {j,kyer® e {j,k}er®

After changing of summation variables in this expression, we obtain

> V(X)) = > S vl valx

Xm €(Z3)™ Xppo1€(Z3)ym—1 V\I/’?&I_mgl
Vi Vo [y
rw Hre
X Z(_l) : ) H 5xj7xk Z(_l) ( ) H 5xj,xk Z \Ij(xm)
r {j,k}er@ re {j,k}er® X €22
= Z Vi |V2| (Z(_l)l(m))) (Z z(p<2> ) Z \Il Xm .
V1,VaClmia ¢ T2 X, EZ3
VinVe=9g,

ViuVe=1I,11
The summation on all graphs in last expression according Eq.(25) gives

S TanXa) = D WD =) Y wa)

mE(Zs Vi, VaClmy1 273
inVe=g,
%1 UVQZIM+1

m(m + 1)!( M1Z\If

z€Z3
At last, by summation on m, from the obtained expression, we find

i m+1) Y (X)) = mzo 3" U(z) ( Z>QZ‘I’(Z)'

m=1 Xm€(Z3)™ PISVA

Consequently, according to Eq.(22) and Eq.(26),

1 z 2
o InZ =In(1+2)+ <1+—z> > U(x).

xEZ3

Then, using Eq. (9) and Eq.(11), we obtain that the specific free energy of binary alloy is

F—Tln(1+z)—T< >2¢(T)—g,

14z
R
x€Z3
the specific internal energy is defined as

A ey (L)QWT)

V) == T e
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and the specific heat is represented as

dpz
1+ 2

2022(2 — 2)
(142)?

217
0127 w4 2" (T) +

2
We note that Cy (1) = % T? at T — co, since ¢(T) — 0 at T'— oo with its derivatives.

Cy(T) = P(T) + (T
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