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The aging population of the United States is expanding at an alarming rate.  The 

Center for Disease Control and Prevention estimates that the population of those age 

65 years and older will reach over 50 million by 2020 and will double to 100 million by 

2060.  This will not only put a massive strain on national healthcare resources, but will 

also increase the number of those who are not able to live and function independently.  

It is becoming increasingly vital to understand how the brain changes with age and 

mechanisms to possibly protect and rejuvenate the aged brain to a younger, healthier 

phenotype to promote healthy aging. 

In this work, we found that there is an increase in the number and amount of 

pro-inflammatory cytokines in the brain with age, demonstrating that the brain becomes 

progressively pro-inflammatory with age.  Notably, we observed an increase in IFNγ 

and GM-CSF which are two cytokines implicated in the detrimental priming phenotype 

of the aged brain.  Additionally, we found that the aged brain becomes epigenetically 

dysregulated, with an increase in Ezh2 function and simultaneous loss of the opposing 

function of Jmjd3, thereby leading to a respective increase in H3K27me3 and decrease 

in H3K27me1 in the brain with age.  Furthermore, when we examined the role of Ezh2 

in primary microglia cultures in vitro, we found that inhibition of Ezh2 could 
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simultaneously abrogate pro-inflammatory polarization and enhance anti-inflammatory 

polarization.  Together, this data suggests that increasing function of Ezh2 may directly 

contribute to the pro-inflammatory phenotype of the brain with age. 

We also found that culturing primary microglia with plasma from healthy aged 

mice resulted in up-regulation of pro-inflammatory cytokines Il1b and Il6 in vitro, 

suggesting that circulating peripheral factors may directly influence the transition of the 

brain to a pro-inflammatory phenotype with age.  We tested if the age-associated 

epigenetic dysregulation and pro-inflammatory phenotype could be reversed by utilizing 

the surgical model of heterochronic parabiosis.  In this model, a young and aged animal 

are surgically attached so that the two come to share a common blood supply.  Using 

young-young and aged-aged isochronic surgical controls, we found that young blood 

rejuvenates the levels of H3K27me3 to those of a younger animal.  Additionally, when 

we induced a neuroinflammatory response in the heterochronic and aged isochronic 

parabionts, we found that the neuroinflammatory response of aged heterochronic 

animals was rejuvenated and reduced compared to aged isochronic controls. 

This work is the first to investigate the role of epigenetic dysregulation of Ezh2 

and Jmjd3 in the brain with age.  Additionally, this is the first work to examine the ability 

of the circulating peripheral immune system to rejuvenate the epigenetic landscape of 

the aged brain and functional response to a pro-inflammatory stimulus.  Future 

identification of the specific circulating peripheral factor(s) responsible for brain aging 

and rejuvenation may allow for therapeutic intervention to promote healthy brain aging 

in older individuals.  
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Chapter 1: 
Introduction 

 
 
 
 
This chapter is based upon: 
Koellhoffer, Edward C., Louise D. McCullough, and Rodney M. Ritzel. "Old Maids: 
Aging and Its Impact on Microglia Function." International journal of molecular sciences 
18.4 (2017): 769. 
Reprinted with permission.
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Introduction 

By 2050 the global life expectancy is expected to increase by nearly eight years.  

However, the quality of life of the estimated ~17% of world’s population soon to be over 

65 years will not necessarily be any better due to the increasing burden of age-related 

diseases such as stroke and other neurodegenerative diseases.  The rate of dementia 

will increase from 9.4% to 23.5% by the mid-century, and the number of people living 

with Alzheimer’s disease in the U.S. is expected to grow by nearly 10 million (1).  By 

2030, nearly 4% of the U.S. population is projected to have had a stroke, straining our 

already limited resources and health infrastructure (2). Our scientific understanding of 

normal aging processes is incomplete and the mechanisms leading to age-related 

disability with the advent of age-mitigating/rejuvenation therapies needs further 

exploration. 

The effects of aging on the central nervous system (CNS) are widespread, as 

are systemic changes in peripheral tissues.  The importance of communication 

between the CNS and the periphery is increasingly recognized, and may be mediated 

by systemic factors, the autonomic nervous system, commensal bacteria (i.e., the 

microbiome) and/or the neuro-immune axis.  Age-related changes in CNS homeostasis 

are not solely intrinsic in nature, but are mediated through bidirectional communication 

between the CNS and the systemic environment (Figure 1.1).  Differences in neuronal 

function have been observed in the CNS with age, but it is becoming increasingly 

apparent that it is possible to slow, or even reverse, aging by restoring “youthful” 

peripheral tissue compartments (3, 4).  This includes the bone marrow niche that gives 

rise to the body’s immune system, which can have a beneficial positive feedback effect 

on distant areas including the CNS.  
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Figure 1.1. The impact of aging on microglia function and its systemic regulation. 

Young microglia (in pink) gradually transition from a ramified morphological state to a 

deramified, spheroid formation with abnormal processes with chronological age.  

Several cytoplasmic features are hallmarks of microglial senescence including 

increased granule formation, autofluorescent pigments such as lipofuscin, and process 

fragmentation.  Age-related neuronal loss (in red) reduces the overall level of 

immunoinhibitory molecules (e.g., CD200, CX3CL1) required to maintain microglia in a 

quiescent state.  Basal increases in inflammatory signaling are associated with 

enhanced ROS production which results in the generation of free radicals, lipid 

peroxidation, and DNA damage.  This positive feedback loop is further compounded by 

defects in lysosomal digestion and autophagy, resulting in the potentially toxic buildup 

of indigestible material.  Concurrent reductions in process motility and phagocytic 

activity lead to decreased immune surveillance and debris clearance, resulting in 

plaque formation (beige).  In turn, microglia activation triggers astrocyte activation (in 

orange) and promotes the recruitment of T cells (in blue) into the aging brain.  These 

pathological features of microglial aging are highly influenced by the systemic 
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environment.  Diminished levels of circulating anti-aging factors in conjunction with 

increased concentrations of pro-aging factors are critical drivers of microglial 

senescence.  For example, diminished estrogen levels in older (menopausal) females 

are associated with elevated expression of macrophage-associated genes in the brain.  

Therapeutic interventions intended to increase anti-aging factors and decrease pro-

aging factors appear to be able to halt or delay microglia aging, enhance neurogenesis, 

and improve cognitive function. 
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Inflammation is viewed as a central driver of aging and/or age-related 

dysfunction.  The term ‘inflamm-aging’ was coined to describe the ever subtle but 

gradual increase in inflammatory signaling with age (5, 6).  Although inflamm-aging is 

primarily macrophage-driven, the accrued effects of this are widespread, affecting 

nearly all cells at either the intrinsic or extrinsic level—to an extent that fundamentally 

alters normal physiological behavior—as evidenced by the overall age-related decline 

in normal function.  Characteristics of the aged brain such as gray matter loss and 

cortical thinning, shrinkage in hippocampal volume, deficits in learning and memory, 

and decreased remyelination (see Figure 1.2) are all processes that have been 

empirically proven to involve inflammation, the severity of which likely depends on the 

level of degeneration and how it is modulated.  
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Figure 1.2. A: MRI of a normal 32-year-old woman.  There is no evidence of atrophy or 

white matter disease. B: MRI of a 78-year-old woman with mild cognitive impairment.  

There is considerable frontal temporal atrophy as seen by an enlarged Sylvian fissure 

(asterisks) and white matter disease (white arrow). 
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No cell is protected from the detrimental effects of aging, and this includes the 

primary immune cell of the CNS, the resident tissue macrophages known as microglia.  

These cells represent 5-15% of all brain cells, and are considered to be the 

housemaids of the CNS, providing nourishment and support to neighboring neurons, 

clearing debris, and being the first responders to foreign stimuli (7).  Like their neuronal 

counterparts, microglia are believed to be post-mitotic and long-lived, with minimal, if 

any, turnover.  Although recent depletion studies imply the existence of latent microglia 

progenitors, it is not clear what role this proposed population of cells may have in 

replenishing microglia populations under normal homeostatic conditions across the 

lifespan (8).  Thus, these cells may still be viewed as especially vulnerable to the 

cumulative effects of aging, and thus, poised to negatively impact the neurovascular 

niche as a result of a compromised ability to perform essential ‘house-keeping’ 

functions.  While the role of aging on circulating macrophages and other lymphoid-

associated myeloid cells has received significant attention in recent years, our 

understanding of the age-related changes in the function of CNS-resident microglia is 

less clear.  This review highlights current findings and concepts on the effects of aging 

on microglia and stresses their potential contribution to inflamm-aging and age-related 

stress. 

 

Age-related changes in microglia phenotype 

Aged microglia exhibit increased soma volume, a retraction in processes, and a 

loss in uniform tissue distribution (9).  Moreover, microglial process speed is 

significantly slower with age in healthy and injured animals, resulting in less active 

tissue sampling and impaired synaptic contact (10).  These age-related abnormalities in 
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cytoplasmic structure, deramification, and process fragmentation were collectively 

termed ‘microglial dystrophy’, and are more indicative of a senescent rather than 

classical activation phenotype (11, 12).  The newly coined ‘dark’ microglia phenotype 

defined by condensed electron-dense cytoplasm and nucleoplasm, nuclear chromatin 

remodeling, and high levels of synaptic stripping activity and oxidative stress applies 

not only to microglia populations associated with pathological states such as chronic 

stress and Alzheimer’s disease, but to the microglia that are observed in normal aging 

(13).  While these alterations at the ultrastructural level are only now beginning to be 

described, it has been well known that aged microglia are highly granular and atypically 

dark in appearance in immunohistological preparations.  Defects in lysosomal digestion 

can result in the progressive accumulation of indigestible material largely composed of 

lipofuscin and other autofluorescent pigments (14, 15).  Researchers studying protein 

expression in aged microglia using immunofluorescence or flow cytometry techniques 

are likely familiar with the high degree of autofluorescence in these cells.  Age-related 

microglia-associated autofluorescence is often viewed as a technical nuisance as it is 

difficult to differentiate changes in the normal CNS or those due to severe injury.  The 

accumulation of lipofuscin and other non-degradable autofluorescent byproducts is 

believed to be due to impairment in disposal mechanisms and has also been implicated 

in several neurodegenerative diseases including Alzheimer’s disease (16, 17).     

 

Strategies to investigate functional characteristics of microglia 

Not all aged microglia exhibit an “aged” phenotype, and it is unclear whether 

autofluorescence is confined to dystrophic (i.e., dysfunctional) microglia populations in 

select regions or if it is a more widespread phenomena, as it is currently difficult to 
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isolate these cells and evaluate their function relative to their non-autofluorescent 

counterparts.  Using flow cytometry, our lab has recently identified a significant 

population of side scatter-high microglia in the aged brain that exhibit a surprising level 

of both granular content and autofluorescence background (18).  These cells display 

functional abnormalities when compared to young microglia and more importantly, to 

side scatter-low microglia that co-exist alongside them in the aged CNS (see Figure 

1.3). These functional abnormalities include higher production of reactive oxygen 

species (ROS) and pro-inflammatory cytokines, increased mitochondrial content, and 

poor phagocytic ability—all features of a senescent or dystrophic macrophage 

phenotype. However, if the proper precautions are not taken, aged microglia can 

appear to stain positive for nearly any antibody or fluorescent label. Because of this 

artifact, the high level of background exhibited by aged microglia requires the use of 

fluorescence-minus one (FMO) or isotype controls specifically using aged brains and 

subsequently gating on aged microglia to determine the true background level—which 

in studies from our laboratory appear to be greater than that of any other immune cell in 

the body. Other methods of masking or quenching autofluorescence such as Sudan 

Black B have been developed and are often employed during histological preparations 

(19).  Given the clinical ramifications of lipofuscin accumulation in both neurons and 

glia, future efforts to develop brain-imaging techniques which can exploit the naturally 

occurring level of autofluorescence (i.e., lipofuscin-like material) in the CNS may prove 

highly useful in predicting or diagnosing neurological disease states in humans.  
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Figure 1.3. Age-related microglial dystrophy. Confocal microscopy images of DAPI-

counterstained (blue) Iba1-positive cortical microglia (pink) highlight the enlarged soma 

and abnormal, twisted cytoplasmic processes of aged microglia (A).  Flow cytometry 

preparation of CD45intCD11b+Ly6C- microglia demonstrate a significant increase in 

cellular granularity and size with age (B).  A population of side scatter-high aged 

microglia exhibits high levels of autofluorescence (FITC channel) compared to their 

younger counterparts and is indicative of lysosomal dysfunction (C). 
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Despite several reports demonstrating prolonged maintenance of aged microglia 

in vitro (20, 21), for many, the long-term culture of microglia isolated from aged brains 

can be technically challenging if not impossible.  These methods are invaluable to the 

study of intrinsic age-related changes in microglia function.  One alternative approach 

is the immediate ex vivo functional assessment of freshly harvested cells.  Although 

some activation is induced during the mechanical/enzymatic digestion procedure via 

crude extraction from their native microenvironment (e.g., loss of contact-inhibitory 

signaling), this confounder is seen by many to be unavoidable and perhaps necessary 

in order to understand their functional activity.  Ex vivo functional testing is 

advantageous for aging studies because it allows the investigator to probe for intrinsic 

microglia activity in a very acute time window (within hours), obtaining as close to their 

presumed in vivo functional identity as possible with minimal artifact introduced by 

standard cell culture systems.  Indeed, a recent report suggests that neonatal microglia 

undergo dramatic ‘age-like’ changes in as short of time from 2 days in vitro to 16 days 

in vitro (22).  Nonetheless, in vitro approaches are currently indispensable and the 

advent of more efficient long-term culture methods will hopefully allow researchers to 

address many important questions that ex vivo testing is not well suited for.   

Another issue regarding the activation status of microglia is the suitability of the 

existing nomenclature and its application to age-related microglial phenotypes.  The 

long-held M1/M2 convention for describing macrophage polarization may be more 

applicable to in vitro systems than for far more complex in vivo environments, as mixed 

phenotypes are commonly seen (23).  The M1/M2 in vitro paradigm, originally premised 

on infection studies, attempts to explain the predisposition for peripheral macrophages 

to respond as either ‘inflammatory’ (M1) or ‘reparative’ (M2) subsets depending on their 

exposure to the cytokine byproducts of polarized T cell subsets (Th1: IFNγ or Th2: IL-
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4).  Subsequent transcriptomic profiling has demonstrated significant differences 

between bone marrow-derived monocyte populations and CNS-resident microglia, 

which may be due in part to the age (high vs. low turnover) and environment 

(circulation vs. brain) of the cells being profiled, and any interactions between the two.  

An expert analysis of this controversy was recently discussed by Ransohoff (24).  

Among the many salient points expressed was the lack of predicted transcriptional 

organization found between polarization states induced in several disease models as 

demonstrated by ex vivo expression profiling of microglia, indicating that microglial 

reactivity is multifactorial and injury-specific, and thus, unlikely even to fall along a 

linear continuum.  The application of M1/M2 markers for the in vivo description of 

microglia activation states is then seemingly inadequate in defining the injury-resolving 

capacity of these cells and their associated functions.  Thus, it would seem that 

attempting to classify the pro-inflammatory phenotype of aged microglia as M1 may be 

too simplistic in that it ignores the adaptive requirement of these cells to respond to the 

demands of a changing microenvironment over the lifespan (25).  In recent years, the 

senescence-associated secretory phenotype, or SASP, has been utilized to more 

accurately describe aged senescent cells, however these criteria may vary depending 

on cell type, especially as not all aged cells are senescent per se (26, 27).  Aged 

microglia are likely to exhibit many of the same phenotypic features as other aged post-

mitotic tissue-resident macrophages.  Although SASP criteria have yet to be 

established specifically for microglia, emerging studies suggest a framework for one will 

emerge in the next few years.  

 

Reactive oxygen species-mediated damage in the aging brain: 
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One of the most profound changes that occurs with aging is the gradual increase 

in reactive oxygen species (ROS) generation.  Indeed, glial cell activation and elevated 

oxidative stress burden are hallmarks of CNS aging and manifest during the course of 

many if not all neurodegenerative diseases (Figure 1.4).  As the predominant myeloid 

cell in the nervous system, microglia are the main source of oxidation products and 

inflammatory mediators during aging.  Elevated microglia ROS production (e.g., 

superoxide anion, hydroxyl radical, and lipid hydroperoxides) can impose a hazard to 

nearby neurons either through direct release (i.e., neurotoxicity) or via second 

messenger signaling pathways such as PKC, MAPK, and NF-κB activation which serve 

to intensify the pro-inflammatory response (28).  The importance of ROS to age-related 

neuropathology is evidenced in its key capacity to mediate the detrimental effects of 

amyloid beta (Aβ) and lipopolysaccharide (LPS)-induced CNS injury (29, 30).  LPS 

induces the generation of ROS from the actively respiring mitochondria as well as 

NADPH oxidase (NOX).  Superoxide production via NOX has been shown to be the 

main contributor of ROS in several age-related neurodegenerative diseases and is 

linked to the classical activation of microglia (31).  Ansari and Scheff reported an 

inverse correlation between NOX activity and cognitive impairment, in which higher 

NOX activity was associated with worse cognitive performance in individuals of all 

stages of Alzheimer’s disease (32).  Indeed, NOX2-deficiency has been shown to 

reduce oxidative stress, leading to improved cerebrovascular function and behavior in a 

mouse model of Alzheimer’s disease.  For example, chronic treatment of apocynin, a 

NOX inhibitor, reduced plaque size and microglia number in hAPP(751)(SL) mice (33). 
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Figure 1.4. Imbalance between oxidative stress and antioxidant defenses in 

the aging brain. Oxidative stress arises when there is an excess of free radicals 

over antioxidant defenses.  This imbalance leads to an inability to detoxify the 

reactive intermediates and results in oxidative damage of genes and proteins.  

Oxidative stress is a consequence of the aging process and is involved in many 

diseases such as Alzheimer’s disease, stroke, and atherosclerosis.  Stress-

activated pathways impact gene expression and alter the normal function of 

cells, often resulting in respiratory chain dysfunction, altered proteostasis, 

telomere shortening, apoptosis, and cellular senescence. 
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One of the hallmarks of Alzheimer’s disease is cerebral amyloid angiopathy 

(CAA), which is characterized by the deposition of Aβ within the walls of cerebral 

arterioles.  Treatment with apocynin and tempol, a non-specific ROS scavenger, 

attenuated ROS production and improved cerebrovascular function in aged Tg2576 

mice (34).  Treated mice exhibited a reduction in CAA formation and CAA-related 

microhemorrhages, indicating that NADPH oxidase-derived ROS are a key contributor 

to CAA formation and associated vascular dysfunction.  Together these findings 

suggest that the age-related increase in microglial ROS production has widespread 

effects on the neurovascular niche and may be a key accelerant of neurodegenerative 

disease and cognitive impairment. 

Microglia are thought to be the main mediator of ROS-induced neuronal injury 

and several studies have demonstrated that NADPH oxidase-deficient primary 

microglia exhibit blunted levels of intracellular ROS, extracellular superoxide, TNF 

expression, and neurotoxicity following LPS stimulation in vitro (30, 35).  NOX may 

even play a critical role in the development of chronic inflammation as previous work 

has shown that NOX2-deficient mice exhibit less dopaminergic neurodegeneration in 

the substantia nigra 10 months after a single systemic LPS injection compared to 

NOX2+/+ controls (35).  It is possible that loss of NOX function attenuates ROS 

production by the infiltrating neutrophils and monocyte-derivatives in the hours and 

days following injury.  Interestingly though, microglia from NOX2-deficient mice fail to 

show any increase in activation morphology as early as 1 hour following injection, 

implying that it is the early wave of ROS production that determines the severity of 

disease course. 

As noted above, both NOX and ROS levels increase in the CNS with normal 

aging and following injury.  ROS production and lipid peroxidation is significantly 
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elevated in older mice after contusion spinal cord injury compared to young controls 

(36).  NOX2 expression was greater in ROS-producing microglia/macrophages in the 

lesion site of older mice.  Interestingly, aging is also associated with a loss of free 

radical scavenging mechanisms.  Antioxidant defenses have been shown to be 

attenuated in aged microglia, as evidenced by reduced cellular levels of glutathione 

and dysregulation of heat shock proteins such as heme-oxygenase 1 (37, 38).  The 

potential for antioxidant therapy to improve microglia aging and, in turn, brain aging has 

recently been reviewed (39).  As of yet it is still unclear whether worsening injury with 

age is primarily a result of exacerbated or chronic microglial production of ROS or if 

aging neurons are just more susceptible to ROS-mediated damage. 

 

Neuronal-glial interactions and immunoinhibitory signaling in the aging brain: 

In addition to intrinsic age-related stress, microglia are highly responsive to 

environmental stimuli throughout the lifespan, including extrinsic immunological 

stressors.  As guardians and primary caretakers of the more vulnerable neuronal 

populations, the manner in which microglia respond to these stressors is critical for 

normal neuronal function.  Activated microglia exhibit augmented production of 

inflammatory cytokines, ROS, and metabolic byproducts known to be neurotoxic.  

Thus, given their complex array of activation-sensing receptors and complementary 

inhibitory receptors, microglia are tightly regulated to deliver calibrated responses to 

any given stimulus across space (gradient effects) and time (from pathogenesis to 

resolution phase).  To avoid over-activation and any resultant bystander damage, the 

requirement for microglial inhibitory receptors is essential to not only prevent the 

generation of unwanted inflammation, but to also ramp down injury-driven inflammatory 
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responses once they are largely resolved.  However, with age, the ability of these 

inhibitory receptors to maintain microglial quiescence is impaired in part due to 

reductions in the expression of their cognate ligands.  

 

CD200/CD200R1: 

The CD200-CD200R1 immunoinhibitory signaling axis in the CNS is comprised 

of gray matter neurons that ubiquitously express CD200 both stably on their surface 

and in secreted form, and microglia/macrophages which express the receptor for this 

ligand, CD200R1.  Microglia/macrophage immune responsiveness is believed to be 

constitutively down-regulated under normal conditions via direct interactions with 

neighboring neurons, leading to microglial quiescence.  Interestingly, young adult mice 

that are deficient in CD200, exhibit many features seen in normal aging mice such as 

basal increases in microglia activation, T cell infiltration, blood-brain barrier 

permeability, impaired long-term potentiation (LTP), and exacerbated responses to 

injury and disease (18, 40–42) implying that CD200 levels may naturally diminish with 

normal aging (43).  Concomitant increases in transcriptional expression of pro-

inflammatory genes and decreases in anti-inflammatory genes such as Cd200 have 

since been demonstrated in the substantia nigra and hippocampus of older animals 

(44, 45) leading one to speculate that the lack of microglia inhibition leads to greater 

inflammation which is detrimental to learning and memory.   

CD200 expression is decreased in the brain of Alzheimer’s patients and Aβ-

challenged mice (46).  Subsequent in vivo studies demonstrated that intrahippocampal 

administration of CD200 fusion protein decreased microglial activation and decreased 

LTP deficits in both aged and LPS-treated rats (47).  Activation of CD200R1 by CD200 
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fusion protein inhibited Aβ-induced increases in IL-1β, TNF, CD40, and CD68 (48).  

Moreover, Aβ-induced deficits in LTP were attenuated by CD200 fusion protein in 

hippocampal slice culture.  Consistent with these findings, the delivery of an adeno-

associated virus expressing CD200 into the hippocampus of APP mice for a period of 6 

months restored neurogenesis and reduced diffuse plaques in 12-month-old mice (49).  

Additionally, the authors found that in vitro stimulation of microglial CD200R1 promoted 

neuronal growth and despite being anti-inflammatory, resulted in greater Aβ 

internalization.  This is in contrast to a new report that has shown microglia from 

CD200-deficient mice exhibit increased lysosomal and phagocytic activity in response 

to Aβ challenge (50).  This effect was mediated in part by mTOR inhibition and implies 

that CD200 normally functions to suppress immune functions such as phagocytosis.  

Alternatively, it is possible that the chronic loss of functional CD200 in these knockout 

models over the lifespan could prime microglia to respond in a manner that is not 

consistent or comparable to microglia from otherwise normal, healthy wildtype mice.  

As is the delicate balance of any regulatory system, the potential to increase inhibitory 

signaling may be offset the adaptive requirement for activation (e.g., injury-

sensing/stimulus recognition, migration to injury sites, debris clearance and phenotype 

switching).  Thus, it is not yet clear whether pro-inflammatory-induced activation of 

microglia is required to drive phagocytic activity and a return to homeostasis or if 

chronic inflammation impedes normal function as appears to be the case in the aging 

brain. 

 

CX3CL1/CX3CR1: 
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The chemokine fractalkine (CX3CL1) which is expressed on neurons in 

membrane-bound form or secreted by neurons functions similarly to CD200, 

suppressing activation by binding to its receptor, CX3CR1, expressed on microglia.  

This interaction is important for downregulating microglial activation and maintaining 

CNS homeostasis (51, 52).  Fractalkine signaling is similarly impaired with normal 

aging, following LPS challenge, and in APP(swe) transgenic mice, as expression levels 

for both the ligand and the receptors have been shown to be significantly decreased 

and inversely associated with inflammatory activity (52–55).  The age-related loss of 

fractalkine ligand in the rodent hippocampus is associated with decreased 

neurogenesis; however the survival and proliferation of neuronal progenitor cells was 

restored by exogenous fractalkine, an effect that was not seen in young animals 

suggesting that this was an age-dependent mechanism (56).  Protracted 

downregulation of the fractalkine signaling pathway is associated with delayed recovery 

from sickness behavior, elevated IL-1β levels, and decreased TGFβ production in the 

aged brain (57).   However predictable the outcome of fractalkine receptor activation on 

microglia might seem, several reports highlight the complex nature of this immune 

inhibitory signaling.  For example, intrahippocampal injection of Aβ fibrils was found to 

upregulate CX3CR1 expression on activated microglia and increase synaptic 

dysfunction and cognitive impairment (58).  It is not surprising that CX3CR1 expression 

was enhanced by Aβ stimulation, as many immune inhibitory receptors are known to 

upregulated in classically activated microglia/macrophages in an effort to counteract 

the pro-inflammatory state.  Both CX3CL1- and CX3CR1-deficiency have been shown 

to reduce Aβ deposition in APPPS1 mice, and an increase in microglial p38MAPK 

activation and cytokine production (59, 60).  In other studies, CX3CR1-deficiency 

resulted in worsened neuronal and memory deficits in hAPP mice independent of 
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plaque load (61).  Despite the reduction in Aβ plaque deposition, CX3CR1-deficient 

mice exhibited exacerbated Tau pathology, an effect that was subsequently shown to 

be suppressed by fractalkine overexpression (62).  Together, these findings suggest 

that a delicate balance of activating and immunoinhibitory signaling is likely required to 

perform the full spectrum of function required to maintain homeostasis in the aged CNS 

environment. 

 

Phagocytosis in the aging brain: 

Debris clearance is an essential role of microglia.  Normal aging has significant 

effects on endocytic pathways, including the phagocytic uptake of debris.  

Transcriptional analysis of acutely isolated microglia from APPswe/PS1dE9 

Alzheimer’s disease (AD) mice reveal diminished expression of genes associated with 

phagocytosis (63).  At the functional level, young microglia (1 month old mice) 

internalize ~50% more Aβ42 than aged microglia (15 month old mice), demonstrating 

an age-related decrease in phagocytic behavior beginning at birth (< 8 days old mice) 

(37).  Data from our laboratory has shown age-related deficits in the phagocytosis of 

physiological (Aβ) and non-physiological (latex beads) cargo not only at baseline, but 

also following ex vivo stimulation with PMA/ionomycin (18).  While aging negatively 

affects the ability of microglia to phagocytose Aβ, it does not appear to limit their ability 

to adhere to amyloid plaques or in vitro fibrillized Aβ (64).  Moreover, aging did not 

affect the functional uptake of bacterial bioparticles, and others have reported that aged 

microglia exhibit greater uptake of quantum dots (65), implying that aging may 

differentially affect phagocytic pathways at various stages (adherence, internalization, 

digestion, etc.) or with different substrates.  In an interesting study by Hendrick in 2014, 
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the authors showed that while aging enhanced microglial capacity for myelin 

phagocytosis, it simultaneously reduced myelin’s susceptibility for uptake, suggesting 

that age-related phagocytic impairment may be mediated both by intrinsic and extrinsic 

factors, depending on the nature of the substrate (66). 

Inhibitory ‘don’t eat me’ signals that prevent host attack such as CD47 have also 

been shown to prevent microglia phagocytosis of healthy cells via activation of the 

immune inhibitory receptor signal regulatory protein-α (67), although it is unclear what 

role if any molecules like these have in aging.  The ability of a given phagocytic 

substrate to induce microglia activation either through toxicity or via receptor-mediated 

signaling may in turn alter the phagocytic potential of that cell (68).  For example, aging 

decreases microglia and monocyte uptake of α-synuclein oligomers and is associated 

with increased TNF secretion (69).  The age-related increase in microglia cytokine 

production, specifically TNF family members, has been demonstrated numerous times 

and is a hallmark of CNS aging.  However, the nature of the relationship between 

increased TNF production and microglia phagocytosis is one that warrants greater 

examination, as several studies support an inverse relationship with age.  For example, 

TGFβ-induced phagocytosis is abolished in aged microglia compared to their younger 

counterparts, indicating that receptor-signaling pathways are significantly altered with 

age and may underlie endocytic impairment (70).  The interactions between cytokine 

signaling and phagocytosis have proven to be highly complex and provocative, as 

newly emerging data suggests that microglial phagocytosis and plaque clearance may 

be suppressed as result of an overproduction of anti-inflammatory molecules such as 

IL-10 and arginase-1, rather than mediated by pro-inflammatory dysfunction (71–73).  

While our understanding of age-related changes in microglial phagocytosis and 

changes in the expression of scavenger receptors (i.e., CD36) is infancy, the 
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development of novel drugs that are capable of directly modulating phagocytic activity 

and reducing plaque load is becoming a realistic goal.  

 

Microglial depletion and implications to aging: 

Just as conditional genetic targeting approaches have advanced our 

understanding of the molecular mechanisms underlying microglial activation, recent 

pharmacological and genetic microglia depletion studies have aided our understanding 

of the net effect of these cells on aging and age-related cognitive decline.  These 

innovative strategies take advantage of several known aspects of microglial identity 

and requirements for survival.  For instance, colony-stimulating factor 1 receptor 

(CSF1R) is essential for the growth and survival of microglia and other monocyte-

derived cells.  CSF1R blockade with PLX5622 eliminates microglia for sustained 

periods of time, allowing for the long-term investigation of microglia in 

neurodegenerative disease models (74).  PLX5622-induced depletion of microglia 

prevented their association with plaques, but did not alter amyloid-β levels or plaque 

load.  Importantly, this strategy was able to reduce overall neuroinflammation and 

attenuated contextual memory deficits in 10-month-old 3xTg-AD mice, without having 

any overt effect on behavior or cognition in normal adult wild type mice.  It is unclear 

whether microglial depletion in wild-type aged animals has the potential to have a 

positive cognitive benefit.  Administration of the CSF1R inhibitor PLX3397 improved 

functional recovery and spared neuronal loss in part by reducing chronic inflammation 

in 5-8 month old mice following a hippocampal lesion induced by diphtheria toxin 

exposure (75).  This strategy, similar to what was seen with other CSF1R treatments, 

was accompanied by an increase in dendritic spine density, suggesting these cells 
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have critical roles in sculpting synapses even after development.  PLX5622 also 

prevented whole-brain irradiation-induced memory deficits in young mice in part by 

limiting microglia proliferation and monocyte infiltration (76, 77).  These studies have 

enhanced our knowledge of both the homeostatic role of microglia and their functional 

contribution to disease pathology.  Insights into the global effects of dystrophic 

microglia in normal aging using similar depletion approaches could prove extremely 

useful to our understanding of the contribution of microglial senescence to age-related 

cognitive decline.   

 

Systemic regulation of microglia aging: 

Although it is true that the CNS is largely protected from the systemic 

environment, it is not impermeable to it.  Indeed, systemic administration of LPS has 

been found to induce microglia activation, neurodegeneration, and sickness behavior 

(78).  Thus, it is evident that the brain is influenced by changes in peripheral 

homeostasis.  Although the brain is protected by the blood-brain barrier, there are 

several conduits through which systemic messages reach the CNS, including the 

vascular and lymphatic networks, and via the choroid plexus and cerebrospinal fluid.  

These anatomical interfaces, which likely convey vital information under healthy 

conditions, may also predispose the brain to the detrimental effects of systemic aging.  

Work by Baruch et al demonstrated that aging induces a type I interferon (IFN)-

dependent gene expression profile in the choroid plexus (79).  Interestingly, blocking 

IFN-I signaling in the aged brain down-regulated IFN-I-dependent gene expression in 

the choroid plexus, restored hippocampal neurogenesis, improved cognitive function, 

and partially reversed age-related glial activation.  These findings suggest that age-
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related microglial dystrophy (i.e., senescence) can be reversed by external modulation.  

Other blood-brain borders may similarly affect microglia function with age in a location-

dependent fashion.  Regional heterogeneity in microglia function and differences in 

immune vigilance are likely to become exacerbated with age as neurovascular function 

and blood vessel integrity has been reported to be selectively compromised in the 

hippocampus and frontoparietal cortex (80–82).  Pioneering studies using 

heterochronic parabionts and plasmapheresis support a strong link between the 

systemic environment and brain aging.  Systemic immune factors such as CCL11 and 

β2-microglobulin are elevated in an age-dependent manner in the plasma and 

hippocampus, and impair neurogenesis and cognitive function (83, 84).  Systemic 

exposure to either molecule induced similar deficits in learning and memory that were 

reversed by antibody blockade.  These studies convincingly demonstrate the important 

link between the brain and the periphery.  How this bi-directional communication occurs 

is a very active and novel area of research, as drug and antibody delivery is much 

easier in the periphery due to poor blood-brain penetrance. Manipulating systemic 

factors to influence brain inflammation in very appealing for therapeutic development.    

One example of bidirectional communication is illustrated by studies examining 

the gut-brain axis.  Recent work has demonstrated a modulatory effect of gut 

microbiota on microglia function (85).  Germ-free mice exhibited altered microglia 

morphology and impaired responses to LPS stimulation and viral infection (86).  Similar 

changes in microglial phenotype were seen following partial ablation of microbiota by 

oral antibiotics that were normalized following recolonization with microbiota from 

specific-pathogen free mice.  Mice deficient in the short-chain fatty acid (SCFA) 

receptor FFAR2 had similar deficits in microglia function as did germ-free mice, 

suggesting that microbiota-derived SCFA exert systemic control over microglial 
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development and homeostasis.  While compositional shifts in microbiome complexity 

have been shown to occur with age, the significance of these changes and their effect 

on microglial behavior remains to be seen.  Nevertheless, these studies highlight a 

critical role for the systemic environment in regulating microglia activity and even 

suggest that brain aging may be mitigated by healthy lifestyle choices and dietary 

manipulations (87–90). 

 

The role of aging on the microglial response to brain injury and disease 

As reviewed above, microglia undergo drastic phenotypic changes with age.  

These molecular and cellular changes are many, and their summation leads to a 

dysregulated microglia phenotype.  Additionally, these phenotypic changes may be 

influenced by the changes in the periphery, including microbiome changes (86), age-

associated perfusion deficits within the brain itself (91), and even diet (92).  Aging is, no 

doubt, a complex process and takes its toll on microglia phenotype and function in 

homeostasis.  What is also crucial to consider are the effects of aged microglia in the 

context of injury and disease in both humans and the animal models we use to study 

them.  Here we now review the effects and noteworthy issues raised by these age-

associated changes in microglia function in a number of neurological injuries and 

diseases. 

 

Aging exacerbates lipopolysaccharide-induced pro-inflammatory microglial response: 

As animals and humans age, there are notable changes in cognition and 

reaction times even in healthy subjects, and may be an unavoidable consequence of 
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aging (93).  However, studies in animals have shown that age-related cognitive decline 

is correlated with higher levels of pro-inflammatory cytokines produced by microglia 

and that the aging brain is sensitized to immune challenges (94).  Aged individuals are 

more susceptible to delirium when ill with a peripheral infection, stress, or following 

surgery, recently reviewed elsewhere (95–98).  This is also observed in animal models 

(see Table 1.1).  These symptoms are associated with activation of the peripheral 

innate immune system, and in turn leads to an exacerbated inflammatory responses in 

the aged brain (99–101). 
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Stressor Study Animals Age(s) Sex Model Notable findings 
Peripheral 
infection 

(99) BALB/c 
mice 

Young 3-6m 
Aged 20-24m 

Male LPS i.p. 
injection 

• Exaggerated ↑ IL-1β, IL-6, lipid peroxidation 
in aged brain  

• ↓ social behavior, food intake, weight loss in 
aged 

(102) F344XBN 
rats 

Young 3m 
Aged 24m  

Male Live E. coli i.p. 
injection 

• At baseline:  ↑ hippocampal HMGB1 protein,  
mRNA in aged; ↑ HMGB1 protein in CSF of 
aged 

• Following i.p. E. coli injection: Prolonged ↑ 
expression of IL-1β, IL-18, TNF in aged; 
prolonged sucrose anhedonia (depression) 
and ↓ juvenile social exploration in aged  

• Inhibition of HMGB1: abrogated primed 
phenotype of aged brain to peripheral E. coli 
injection, restoring behavior to that of young 
animals 

Central 
innate 
immune 
activation 

(103) BALB/c 
mice 

Young 3-4m 
Aged 20-22m 

Male LPS i.c.v. 
injection 

• Prolonged ↓ locomotor activity, social 
behavior, and food intake in aged 

• ↑ cerebellar and hippocampal IL-1β, IL-6, 
and TNF expression in aged 

Surgery (104) BALB/c 
mice 

Young 4-6m 
Aged 23-25m 

Male 1.5 cm 
abdominal 
incision and 
gentle 
manipulation 
of internal 
organs for 1 
min 

• Anesthetic and analgesics: no effect on 
hippocampal IL-1β, IL-6 and TNF mRNA 
expression 

• Surgery: ↑ IL-1β expression in aged 
hippocampus; locomotor activity unchanged 
in in young or aged mice  
 

(105) C57Bl6/J 
mice 

4m Female 0.5cm 
abdominal 
incision  

• Surgery ↑ anxiety, ↓ special memory 

(106) C57Bl6/J 
mice 

2m-8m Female Simple 
laparotomy 

• Surgery ↑ total alpha-synuclein and 
S100beta in the cortex, ↓ attention  

Stress (107) BALB/c 
mice 

Young 3-5m 
Aged 22-24m 

Male 30min 
restraint 
stress daily for 
4d 

• Stress ↑ weight loss, exaggerated ↑ 
hippocampal and hypothalamic IL-1β mRNA 
expression in aged; exaggerated ↑ 
corticosterone in aged  

• Higher hippocampal MHCII mRNA and IHC 
staining in aged mice at baseline, and 
increased in aged mice following stress 

 
Table 1.1. Summary of animal studies comparing young and aged differences in 

cognitive function following stress.  Various models of stress and immune system 

activation examined in young and aged animals show that aged animals have an 

exaggerated neuroinflammatory response and prolonged behavioral deficits compared 

to young animals. 
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Peripheral infection may be modeled in rodents using intraperitoneal injections 

of lipopolysaccharide (LPS), which is a component of the cell wall of gram-negative 

bacteria and a potent stimulator of Toll-like receptor (TLR) 4 signaling.  This model 

rapidly induces a pro-inflammatory response.  Additionally, some labs have begun 

modeling infection with peripheral injection of Escherichia coli to control for weight-

dependent dosing, as aged mice are heavier and require larger quantities of LPS (102).  

LPS can be injected peripherally and rapidly induces a neuroinflammatory response 

with associated sickness behaviors in rodents, characterized by lethargy, reduced 

activity, fever, and social withdrawal (108). This behavior is an evolutionarily preserved 

response, as social withdrawal during infection is a protective mechanism to prevent 

the spread of illness to others.   This behavioral response may be in part due to the 

elevated production of cytokines and systemic stress factors that enter the brain 

parenchyma via the circumventricular organs or indirectly through activation of 

endothelial cells and nearby perivascular macrophages.  While this is a seemingly 

positive protective mechanism, the CNS of aged animals respond in an exaggerated 

manner to peripheral LPS injection, with higher immediate expression of pro-

inflammatory genes and delayed behavioral recovery (99).  This demonstrates that 

aged microglia are “primed” to respond more robustly to a pro-inflammatory stimulus.   

While the phenomena of microglia priming with age has been well-established, 

the molecular mechanisms underlying this phenotype have only recently been 

investigated.  Recently, it was found that high mobility group box 1 (HMGB1) protein 

levels are elevated in the hippocampi and cerebrospinal fluid (CSF) of aged rats.  

HMGB1 is secreted by various immune cells including microglia as a danger signal 

(102) and in turn stimulates cells via the TLR4 and receptor for advanced glycation 

end-products (RAGE) receptors to activate pro-inflammatory gene expression.  



 29 

Blockade of HMGB1 with a pharmacological inhibitor, Box-A, was able to abrogate the 

priming phenotype of microglia in aged rats in vivo through reductions of MHCII and 

TLR4 expression in the hippocampus (102), two notable molecules up-regulated in 

microglial priming.  Treatment with Box-A also improved functional recovery in social 

exploration tasks in aged animals (102) and enhanced freezing behavior in contextual 

fear conditioning tests, showing an improvement in cognitive function (102).  Further 

work examining strategies to reverse the primed phenotype of aged microglia will 

provide novel targets to reduce dysfunctional neuroinflammatory responses in the 

elderly after neurological injury. 

 

Aged microglia contribute to enhanced pathology following traumatic brain 

injury (TBI): 

Elderly patients are more vulnerable to traumatic brain injury (TBI), with a 

doubling of TBI incidence every 10 years beginning at the age of 65, mostly related to 

increased falls (109, 110).  Age is an independent predictor for mortality after TBI (111, 

112) and older patients that survive their injury have reduced functional recovery 

compared to younger individuals (113, 114).  Additionally, adults age 55 years or older 

suffering a moderate to severe TBI or those 65 or older suffering a mild TBI have an 

increased risk of developing dementia compared to younger patients (115).  Together, 

these clinical findings suggest that the brain becomes more sensitive to TBI as we age, 

and that the pathological consequences of injury are much graver. Many factors 

contribute to this age-related vulnerability including increased amyloid deposition (116), 

however, it is not clear whether inflammation drives the exacerbation of injury or if it is 

secondary or correlative to the increase in neuronal death seen in older individuals. 
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TBI may be modeled in animals using a variety of methods (117–119).  In 

rodents administered a controlled cortical impact (CCI), microglia are activated and 

express higher levels of pro-inflammatory genes and lower or undetectable levels of 

anti-inflammatory genes even months after the initial injury, suggesting an overall shift 

in microglia phenotype toward a pro-inflammatory status with time following TBI.  Aged 

mice that underwent CCI displayed higher MHCII expression (120) and had higher 

expression of NADPH oxidase subunits p22phox and gp91phox Aged mice also had a 

corresponding reduction in the expression of antioxidant enzymes superoxide 

dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1) following TBI compared to 

young mice, indicative of higher ROS production in aged mice.  These results 

corresponded with larger lesion volume and reduced cellular density in the 

hippocampus and thalamus of aged mice 7 days after CCI (120).  Together, these 

results suggest that microglia in the aged brain are more detrimental in TBI and may 

predispose the aged to impairments in phagocytosis and increased accumulation of 

toxic waste products such as amyloid. 

In addition to contributing to the excessive pro-inflammatory status in the aged 

brain, microglia have been shown to be directly involved in post-TBI recovery, including 

neurite outgrowth.  Nogo receptor 1 (NgR1) signals through the RhoA-ROCK pathway 

and results in the collapse of the growth cone of neurites (121).  Thus, higher levels of 

NgR1 are associated with reduced neurite outgrowth.  NgR1 was found to be highly 

expressed in Iba1+ microglia in the cortex and basal forebrain beginning at P1 and 

declined until stable baseline adult levels were achieved by P21 (122).  However, 

expression levels were increased in mice at 17 months of age (122), suggesting that 

aged microglia may predispose the aged brain to decreased neurite outgrowth 

following an acute injury.  In young animals with TBI from a stab wound model, the 
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number of Iba1+ NgR1+ microglia increased relative to sham controls, although total 

levels of NgR1 measured by Western blot did not increase 7 days post-injury (122).  

However, given the different phenotype of microglia in the aging brain, future studies in 

aged mice will be necessary to confirm the effects of elevated NgR1 in aged microglia 

following TBI. 

It is not difficult for one to imagine the synergistic effects of aging and a prior 

TBI, as aging itself primes microglia in a similar manner as TBI.  Thus, the response to 

TBI in aged animals is noticeably worse, and the response of repetitive TBI in aged 

animals is worse still.  With the observation of increased incidence of TBI with each 

decade of life after the age of 65, repetitive TBIs are not only more common, but the 

consequences of each additional TBI are likely more severe than the previous TBI, 

leading to progressive deficits and cerebral atrophy.  

 

Aged microglia contribute to worse recovery and functional outcomes following 

stroke: 

Age is the leading non-modifiable risk factor for stroke.  While preclinical studies 

in animal models have mostly been performed in young animals, there are many 

laboratories that are now transitioning their studies into aged animals.  Popa-Wagner’s 

group in particular has demonstrated profound changes in microglia activation after 

stroke with age (123, 124).  While more expensive and surgically challenging, this is an 

increasingly important consideration as the response to stroke differs in young and 

aged animals (18, 125, 126).  Perhaps most importantly, aged animals have 

comorbidities that resemble those seen in clinical populations, including obesity (127) 

and hypertension.  Thus, modeling stroke in aged animals allows for a more accurate 
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modeling of stroke (124).  However, variations in stroke models (e.g. transient vs. 

permanent occlusion of vessels, time duration of infarction, age of “aged” animals, 

strain of mice, etc.) make it difficult for laboratories from different groups to compare 

studies. 

Interestingly, despite the high level of cell death that occurs following cerebral 

ischemia, one study reported that microglia have a more anti-inflammatory phenotype 

with higher expression of CD206, IL-10, YM1/2, TGFβ, ARG1, and CCL22 in the first 3 

to 5 days following stroke, with a transition to higher expression of pro-inflammatory 

genes CD16, CD32, and iNOS at 7 and 14 days post-stroke (128).  While this study 

examined RNA expression from an entire stroke hemisphere, the phenotype of 

microglia following stroke is likely influenced by their relative location to the infarcted 

region where cell death and pro-inflammatory stimuli are abundant. However, these 

authors found corresponding patterns of expression of CD16/32+ Iba+ and CD206+ 

Iba1+ microglia using immunofluorescence in the peri-infarct region of the stroke 

consistent with their gene expression findings (128).  The timing of phenotype switching 

likely depends on the stroke model used, and the brain area assessed.  

Similar findings were also found in aged animals, with higher Iba1+ CD206+ 

microglia peaking at 7 days post-stroke, and then transitioning to elevated Iba1+ 

CD16/CD32+ microglia at 14 days post-stroke (129).  However, despite this pattern of 

early anti-inflammatory polarization followed by delayed pro-inflammatory polarization 

in both young and aged mice, aged mice had reduced anti-inflammatory polarization 

relative to young animals (129).  The authors also found a positive correlation between 

the number of Iba1+ CD206+ microglia and improved cognitive and motor performance, 

suggesting that the reduced ability of aged microglia to efficiently polarize to an anti-

inflammatory phenotype may be responsible for poorer functional recovery following 
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stroke (129).  However, the exact mechanism linking the inflammatory status of 

microglia to functional outcomes remains to be elucidated. 

As noted earlier, microglia of aged animals have reduced cellular motility and 

phagocytosis, and augmented production of pro-inflammatory cytokines.  These 

baseline differences have implications for microglial activation after stroke.  In a distal 

MCAO (dMCAO) model of stroke, aging increased microglial proliferation in the peri-

infarct area (130).   Additionally, while aging was not shown to reduce proliferation of 

neuroblasts within the subventricular zone, there was an age-related reduction of 

migration of these neuroblasts to the peri-infarct area (131).  Perhaps the enhanced 

proliferation of microglia (and astrocytes) in the peri-infarct area of aged animals is 

detrimental to neuronal repair processes following stroke leading to worse behavioral 

outcomes. 

Interestingly, aging is associated with an accumulation of resident memory CD8 

T cells in the brain parenchyma (42).  At baseline, higher numbers of CD8 T cells 

correlate with reduced pro-inflammatory functions of microglia in the aged brain; 

however, following tMCAO these CD8 T cells had increased TNF, IFNγ and CCL2 as 

determined by intracellular cytokine staining (42).  Together, these results suggest that 

CD8 T cells within the aging brain modify microglia homeostasis under naïve conditions 

but may be another source of priming the aging brain and potentiating damage 

following tMCAO.  The role of these resident memory CD8 T cells in the aging brain will 

need to be evaluated in other disease models to determine their importance and 

relevance to disease. 

It has also become increasingly apparent that inflammatory changes following 

ischemic stroke are not limited to the CNS but are evident throughout the body, 

including peripheral immune organs like the spleen.  Following tMCAO both young and 
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aged mice have elevated gut permeability and translocation of intestinal microbes, but 

aged mice had prolonged loss of body weight, severe hypothermia, and persistent 

elevation of plasma IL-6 production at 72 hours post-stroke indicating that aged 

animals were not able to resolve the infection (132). While not directly assessed in this 

study, bacterial byproducts themselves (e.g. LPS) may be elevated in the blood of aged 

mice following stroke and, given the increased level of blood-brain barrier breakdown 

after ischemic injury, may directly activate microglia and further potentiate the pro-

inflammatory polarization of microglia in the aged brain.  Further studies investigating 

these mechanisms are necessary to understand how peripheral factors could influence 

microglia polarization and function, both under healthy conditions and in response to 

injury and disease. 

 

The role of aged microglia in Alzheimer’s disease: 

Alzheimer’s disease (AD) is a neurodegenerative disease primarily affecting 

older individuals and is the most common cause of dementia (133, 134).  The earliest 

clinical manifestation of AD is memory impairment, and this is usually present at the 

time of clinical presentation/diagnosis of the disease.  Currently available treatments 

only target the symptoms of AD, as there are no disease-modifying therapies available 

for the treatment of AD.  New therapeutic approaches include vaccines targeted 

against Aβ and infusions of antibodies targeting Aβ such as Bapineuzumab; however, 

these approaches have failed in clinical trials to improve clinical outcomes (135) 

despite being well-tolerated by patients (136–138).  While these results were 

disappointing, there is renewed hope in the clinical effectiveness of aducanumab, an 

antibody that selectively targets aggregated Aβ which appears to show promise in 
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preclinical studies and clinical trials (139).  However, even if these new biological 

therapeutics slow or even halt the progression of AD, aged patients have other 

etiologies for cognitive decline beyond amyloid-beta pathology, such as vascular 

dementia, for which these drugs are likely to be less effective. 

The AD brain has many specific pathological findings (140).  These include 

aggregations of Aβ, hyperphosphorylated tau, neurofibrillary tangles, and glial cell 

activation.  While the exact cause of Alzheimer’s disease pathogenesis remains 

debatable, it is becoming clear that microglia play a crucial role in disease pathology, 

which has been recently reviewed elsewhere (141–143).  The hippocampus is the area 

of the brain most densely populated by microglia, and is also one of the brain regions 

that is affected early in AD and leads to many of the clinical symptoms (38, 134, 144).  

The exact trigger for microglia activation remains unclear, but Aβ itself is capable of 

directly activating microglia (145–147).  Accumulation of extracellular Aβ may be due to 

impaired phagocytosis of abnormal proteins by aged microglia. Aged microglia have 

poorer phagocytosis compared to microglia from young mice (18), potentially leading to 

accumulation of Aβ in the extracellular environment, further formation of Aβ 

aggregates, and a subsequent further activation of microglia (64, 148).  

The reduced ability of microglia to phagocytose Aβ may be due to a decreased 

ability of microglia to directly bind and degrade Aβ.  One study specifically comparing 

phagocytosis of Aβ by microglia in young and aging PS1-APP mice found that 

microglia from 8-month-old PS1-APP mice demonstrated significantly reduced RNA 

expression of Aβ binding receptors SRA, CD36, and RAGE relative to age-matched 

wildtype littermates, and levels declined even further by 14-months of age (149).  

Furthermore, reduced expression of Aβ degrading enzymes insulysin, neprilysin, and 

MMP9 was seen by 14-months of age (149).  These findings suggest that in the setting 
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of AD, microglia become increasingly inefficient at their ability to clear Aβ with age, 

highlighting yet another functional failure of aged microglia. 

The inflammatory nature of aged microglia likely also plays a role in AD 

pathogenesis.  Microglia in naïve wildtype aged mice express elevated levels of IL-1β 

and TNF (18) compared to young microglia, suggesting that the pro-inflammatory 

“activated” phenotype occurs in the absence of AD or any other pathology and are a 

hallmark of aging in the CNS. In the setting of AD pathology, microglia PS1-APP mice 

were found to have elevated RNA expression of IL-1β and TNF at 8-months of age with 

further elevation in expression by 14-months (149).  N9 microglia cells treated with TNF 

were found to have decreased expression of phagocytic receptors SRA and CD36, and 

in turn also had decreased uptake of Aβ (149).  This suggests that elevation of 

inflammation from microglia within the aging brain reduces their ability to effectively 

phagocytose Aβ, thereby contributing to the pathogenesis and/or progression of 

Alzheimer’s disease. 

Recently, experiments have been performed using plasma transfers and 

parabiosis models to examine the contribution of peripheral cells and circulating factors 

in AD pathology, as summarized in Table 2.   



 37 

 
Study Strain Age(s) Model Duration Notable findings 
(150) APP on 

C57Bl/6 
background 

Young 2-3m 
Aged 16-20m 

Heterochronic 
parabiosis 
• Aged APP – 

Young WT 
• Aged APP – 

Aged APP 
• Aged WT – 

Aged WT 

5 weeks • In the hippocampus: rejuvenation of 
synaptophysin and calbindin 
immunoreactivity; no change in total Aβ 
or Aβ-42 levels; no effect of CD68 
immunoreactivity  

Plasma transfer 
• PBS 
• Young plasma 

Administration 
twice weekly 
for 4 weeks 

• In the hippocampus: rejuvenation of 
synaptophysin and calbindin 
immunoreactivity; no effect of CD68 
immunoreactivity 

• Improved memory, spatial learning 
memory with young plasma transfer 

(151) APPswe/PS1d
E9 Tg 

Young 3m 
Tg 3m 

Heterochronic 
parabiosis 
• Young Tg – 

Young WT 
• Age-matched Tg 
• Age-matched 

WT 
 

6 months In heterochronic Tg parabionts:  
• ↓ Aβ-40, Aβ-42, total Aβ, and Congo 

Red plaques in brain 
• ↓ CAA vessel number and area 
• Alleviation of neuronal degeneration 

and apoptosis 

(152) B6.CD45.1 
5XFAD 
(CD45.2) 

4m or 8m Parabiosis 
B6.CD45.1 - 
5XFAD 

4 weeks • No recruitment of CD45.1 WT 
monocytes to brains of 5XFAD 
parabionts 

• Brain-resident microglia associate with 
amyloid plaques, not peripheral 
monocytes 

B6.CD45.1 
APP-PS1 
(CD45.2) 
 

3.5m Parabiosis 
B6.CD45.1 - APP-
PS1 
 

9 weeks • No recruitment of CD45.1 WT 
monocytes to brains of APP-PS1 
parabionts 

 

Table 1.2:  Summary of studies examining the role of the peripheral immune 

system on AD pathology.  Recent experiments utilizing models of parabiosis and 

plasma transfers are beginning to address the role of and extent that the peripheral 

immune system and soluble plasma factors may be manipulated in modifying AD 

pathology and cognition. 
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The most recent study utilized a model of heterochronic parabiosis to explore 

the possibility that circulating factors in young blood may prevent AD pathology and 

progression.  Heterochronic parabiosis is a model in which a young animal is surgically 

attached to an aged animal and through anastomoses of the wound healing process 

come to share a common blood supply.  This model has been shown to have 

significant effects on neurogenesis and identified circulating molecular markers of 

aging, particularly CCL11 and β2-microglobulin (83, 153).  Heterochronic parabiosis 

with young 2-3-month-old wildtype mice and old 16-20-month-old APP transgenic mice 

showed that after 5 weeks of shared circulation, no reduction in total Aβ or Aβ-42 was 

seen in the hippocampus of aged APP heterochronic mice compared to APP isochronic 

mice (150).  Interestingly, there was no difference in CD68 immunoreactivity (a 

lysosomal protein enriched in myeloid cells including microglia (154)) in the hippocampi 

of these mice, suggesting that once pathology is established the potential for reducing 

progression or reversing plaque burden may be limited.  However, despite the inability 

of heterochronic parabiosis to delay or reverse disease pathology, APP mice had 

increased synaptophysin and calbindin immunoreactivity in the hippocampus, 

suggesting that circulating factors in young blood may at least be able to restore 

synaptic protein levels despite a lack of reduction in total Aβ or Aβ-42 plaque levels 

(150).  While behavioral outcomes cannot be assessed in parabionts due to the 

surgery, these may be more accurately assessed in similar studies using plasma 

transfer experiments (83, 153).  Similar to heterochronic parabionts, APP mice 

receiving blood from young wildtype donors also demonstrated increased 

synaptophysin and calbindin immunoreactivity relative to APP mice receiving PBS.  

APP mice receiving plasma from young wildtype donors were shown to have improved 

performance on Y-maze and contextual fear conditioning tests (150).  Together, these 
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results suggest that factors from young healthy donors may be able to improve 

functional performance in diseased animals despite the inability to delay or reverse 

disease progression.  Further investigation of potential “rejuvenation factors” in young 

plasma will be necessary to determine which factors may be responsible for these 

changes. 

 

Epigenetic regulation of microglia polarization 

As microglia are cells poised to respond to changes in their environment, 

determination of the overall phenotype of microglia is multifactorial and complex.  

Numerous environmental factors play a role.  More specifically, damage associated 

molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs), ionic 

imbalances, and signals through various Toll-like receptors (TLRs) are all 

independently capable of initiating signaling cascades. 

Additionally, while microglia phenotypes were initially believed to be analogous 

to those of peripheral macrophages of the hematopoietic myeloid lineage, it has been 

more recently believed that microglia phenotypes should not be thought of as mutually 

exclusive pro-inflammatory or anti-inflammatory phenotypes.  Instead, many authors 

believe that microglia should be defined by the inciting stimulus to allow the scientific 

community to interpret results appropriately (155).  Such definitions of specific stimuli, 

concentrations, or design and duration of exposures in vivo will allow for others to 

interpret and replicate the results (155, 156). 

Depending on the signaling molecules present and the amount likely determine 

the overall phenotype of microglia.  Thus, if predominantly TLR4 signaling molecules 

are present in the surrounding microenvironment, those microglia will be predominantly 

pro-inflammatory. However, if a mixture of pro- and anti-inflammatory signaling 
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molecules are simultaneously present in the microenvironment (which is more 

indicative of what occurs in the in vivo environment) a single microglia cell may 

simultaneously express both pro- and anti-inflammatory genes. However, the overall 

phenotype of microglia may be generalized by examining the levels of common 

markers of both pro- and anti-inflammatory phenotypes.   

However, while the more realistic polarization of microglia occurs in vivo, the 

need to manipulate the microenvironment to elicit precise conditions is ideal for 

studying molecular mechanisms in vitro.  While a number of stimuli may be used to 

manipulate the microenvironment, lipopolysaccharide (LPS) and interferon (IFN)-γ are 

commonly used in combination to stimulate a pro-inflammatory phenotype polarization 

whereas interleukin (IL)-4 is used to stimulate an anti-inflammatory phenotype (155).  

Using these conditions, one may specifically isolate microglia and polarize their 

phenotypes to better understand the molecular mechanisms of microglia phenotype 

polarization. 

Epigenetic regulation is becoming increasingly implemented in the regulation of 

phenotype polarization of T cells (157, 158), B cells (159–162), and more recently 

identified in macrophages and microglia (61, 163–168).  The term “epigenetics” is 

derived from Greek, and in translation means “above the gene.”  As such, epigenetics 

refers to the study of changes in gene expression that occur outside of the DNA 

sequence itself, and include methods of modifying the physical chromatin structure 

which may allow for transcriptional activation or suppression (169).  Understanding the 

role of epigenetic regulation in microglia phenotype polarization is particularly intriguing 

because many times a single epigenetic regulator may simultaneously regulate the 

expression of sets of genes (163, 169, 170).  Thus, the potential to target one molecule 

to control the expression of an entire phenotype is particularly attractive. 



 41 

There are many elements to epigenetic regulation, including methylation of DNA 

strands themselves, modifications of histone tails, and nucleosome positioning.  The 

modification of histone tails provides an elaborate “histone code,” allowing cells to gain 

control of their gene expression over a wide range of conditions (169, 171, 172).  

However, as each nucleosome can be composed of various types of histones, and 

each histone tail may have numerous modifications simultaneously, understanding the 

effective summation of various combinations of modifications in various specific cell 

types is only beginning to be understood. 

Recently it was discovered that epigenetic regulation plays an essential role in 

microglia polarization.  Tang et al discovered that Jumonji Domain Containing 3 (Jmjd3) 

was essential to microglia anti-inflammatory polarization (163).  Jmjd3 is a histone 

lysine demethylase that specifically removes methyl groups from transcriptionally 

repressive histone H3 lysine 27 trimethylation (H3K27me3) marks to monomethylation 

marks (H3K27me1) (173).  The histone modification H3K27me1 established by Jmjd3 

allows for transcriptional activation (173).   Tang et al found that when Jmjd3 was 

inhibited there was a significant reduction in H3K27me1 levels at the promoter of Irf4, a 

transcription factor heavily involved in microglia anti-inflammatory polarization (163, 

174, 175).  Furthermore, inhibition of Jmjd3 they found a significant reduction in the 

expression of Irf4 (163).  These authors concluded that Jmjd3 is essential for microglia 

to fully polarize to an IL-4-induced anti-inflammatory phenotype (163). 

Interestingly, contrasting the enzymatic effects of Jmjd3 is Enhancer of Zeste 

Homologue 2 (Ezh2).  Ezh2 is a histone lysine N-methyltransferase that establishes 

H3K27me3 marks (176).  This particular histone modification represses gene 

transcription by condensing the chromatin structure and preventing RNA Polymerase II 

and transcription factors from interacting with promoters (176–178).  As Ezh2 and 
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Jmjd3 perform antagonizing functions, we hypothesize that while Jmjd3 is essential for 

anti-inflammatory polarization that Ezh2 may be essential for pro-inflammatory 

polarization (Fig. 1.5). 
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Figure 1.5.  Functional epigenetic antagonism of Ezh2 and Jmjd3.  Ezh2 deposits 

methyl groups to establish H3K27me3 marks, leading to compaction of chromatin and 

displacement of RNA Polymerase II transcription complex to repress gene 

transcription.  In contrast, Jmjd3 demethylates H3K27me3 marks to H3K27me1 which 

allows for chromatin relaxation and the ability for RNA Polymerase II complex to 

activate gene transcription. 
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As discussed above, microglia phenotype changes drastically with age and 

acquires a pro-inflammatory phenotype at baseline.  Additionally, we understand that 

epigenetic regulation plays a significant role in microglia polarization.  We hypothesize 

that peripheral factors in aged mice are responsible for increasing Ezh2 function in the 

brain with age, causing the aged brain to acquire a dysfunctional pro-inflammatory 

aged phenotype.  We further hypothesize that these epigenetic modifications, which by 

definition are reversible, may be rejuvenated through manipulation of the circulating 

peripheral immune system. 

 

Conclusion 

The U.S. population is aging at an alarming rate and the increase in age-related 

diseases such as stroke, TBI, and Alzheimer’s disease will place an increasing strain 

on our healthcare system.  Chronic age-related increases in inflammation exist in both 

the periphery and CNS. Microglia, like other long-lived cells may be especially 

vulnerable to the detrimental effects of aging, as reflected by changes in their molecular 

and cellular phenotype, decreased phagocytic potential, and increased production of 

ROS.  These pro-inflammatory and primed microglia play a substantial role in the 

pathogenesis and progression of age-related neurological diseases and in the 

exaggerated response to injury and infection seen in the aged. Understanding the 

mechanisms by which microglia age will enhance the identification and development of 

novel intervention strategies to reduce the burden of age-related neurological diseases. 
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Mice 

All animal experiments and terminal endpoints were conducted in compliance with 

approved protocols from the Institutional Animal Care and Use Committee of the 

University of Texas Health Science Center.  Animal numbers of each group were 

calculated by power analysis and animals were randomly assigned to each group 

where applicable.  All animals were either bred in-house or were allowed to rest for at 

least one month prior to experimentation.  For naïve aging studies, C57Bl/6 mice at 3-, 

6-, 12- (Charles River), 18-, or 24-months of age (NIA) were used.  For parabiosis 

surgeries, young 2- to 3-month-old GFP mice (C57BL/6-Tg(UBC-GFP)30Scha/J, Stock 

004353, Jackson Labs) or wildtype C57Bl/6 mice (Charles River) were used, as well as 

aged 18- to 20-month-old wildtype C57Bl/6 mice (NIA).  For primary microglia cell 

culture, C57Bl/6 (Charles River) P0.5-P3 mouse pups were used.  Sex was determined 

using the black dot method and confirmed with DNA from tail snips.  Tails were 

genotyped for SRY, the male-specific testis determining gene, and MYOG was used as 

a positive PCR genotype control. 

 

Parabiosis Surgery 

For parabiosis surgeries, pairs consisted of young (2- to 3-month) GFP and young WT 

(young isochronic), young GFP and aged (18- to 20-month) WT (NIA) (heterochronic), 

and aged WT and aged WT (aged isochronic).  Parabiosis was performed as 

previously described with some modifications (83, 179) .  Briefly, animals were 

randomly assigned to surgical groups and pair-housed 1 pair per cage for at least 1 

week prior to surgery.  Pairs noted to have excessive fighting were excluded from the 

study.  Mice were anesthetized with isoflurane, ophthalmic ointment was applied, and 

mice were administered slow-release buprenorphine pre-operatively (Buprenorphine 
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SR-LAB, 1mg/mL, 5mL, ZooPharmBZ8069317).  Fur of adjacent surgical sides was 

clipped.  Mice were transferred to a disinfected surgical station where they were 

aseptically prepared. Identical skin incisions were made on opposing flanks from the 

olecranon, along the length of the side, to the just anterior to the patella.  4-0 nylon 

sutures (Ethicon) were used to secure the humerus and femur of parabionts.  Skin flaps 

of parabionts were joined using 6-0 Vicryl sutures (Ethicon) with simple continuous 

stitching.  Prior to final skin closure, wounds were flushed with 5mL sterile saline.  

Stitches were secured with 9mm wound clips (Reflex) placed at regular intervals.  In 

our model design, parabionts were not administered antibiotics in an attempt to 

maintain the integrity of the intestinal microbiome.  Pairs were administered 1mL of 

sterile saline subcutaneously for 7 days following surgery, and were given softened 

food in their cages.  Paired weights were monitored daily for 7 days, and then twice a 

week thereafter.  Chimerism was confirmed by cheek bleed and analysis of percent 

GFP+ cells by flow cytometry after 2 weeks. This control was not possible for aged 

isochronic pairs as aged GFP mice are not commercially available, although others 

have reported efficient chimerism in aged isochronic pairs (180).  Pairs were humanely 

euthanized after 8 weeks and samples were collected for further analysis. 

 

Multiplex cytokine analysis 

Deeply anesthetized mice were perfused with ice-cold 1X PBS and whole hemispheres 

were extracted and flash frozen.  Tissue samples were homogenized in NP-40 lysis 

buffer (Thermo Fisher) and sonicated for 6 cycles of 5” on, 5” off on ice at 60% 

amplitude (QSonica). Lysates were centrifuged for 20 minutes at 4°C, 28,000rpm 

(Thermo Fisher).  Supernatants were aliquoted and frozen at -80°C.  Samples were 

thawed once for use in assays.  Protein concentration was determined by BCA 
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(Thermo Fisher).  The following multiplex immunoassays were used: Bio-Plex Pro 

Mouse Chemokine 33-plex Assay (Bio-Rad, 12002231), Bio-Plex Pro Mouse Cytokine 

23-plex Assay (Bio-Rad, M60009RDPD), Bio-Plex Pro Mouse Cytokine Group II 9-plex 

Assay (Bio-Rad, MD000000EL), Bio-Plex Pro Mouse Cytokine Group III 8-plex Assay 

(Bio-Rad), Bio-Plex Pro Mouse TGFβ 3-plex Assay (Bio-Rad, 171W4001M), Milliplex 

MAP Mouse Kidney Injury Magnetic Bead Panel 2 (MKI2MAG-94K, Millipore), Milliplex 

MAP Mouse MMP Magnetic Bead Panel 3 (MMMP3MAG-79K, Millipore), Milliplex MAP 

Mouse Angiogenesis/Growth Factor Magnetic Bead Panel (MAGPMAG-24K, Millipore), 

Milliplex MAP Mouse Soluble Cytokine Receptor Magnetic Bead Panel (MSCRMAG-

42K, Millipore).  Samples were run in duplicate and assays were performed according 

to the manufacturer’s protocols with some minor modifications.  Assays were analyzed 

using a Bio-Plex 200 (Bio-Rad) with a minimum of 50 beads per bead region required 

for a valid read.  Samples with a percent coefficient of variation >15% were excluded 

from analysis. 

 

Primary microglia culture 

P0.5-P3 mouse pups were humanely euthanized on ice and brains were removed for 

dissection.  Cortices were isolated and enzymatically digested in 1.5mL sterile tubes 

using an enzymatic digestion kit (Neural Dissociation Kit (P), Miltenyi Biotec).  Cortices 

were homogenized using sterile 1000uL and then 200uL pipet tips (USA Scientific).  

Individual cortices were plated in 25cm2 flasks (Falcon) coated with poly-D-lysine 

(PDL)-coated (Millipore) in 4mL of media and cells were allowed to adhere overnight.  

To study sex differences, cells were cultured in Sex Differences Murine Microglia Media 

(SD mMG Media: phenol red-free DMEM (Gibco), 10% charcoal-stripped fetal bovine 

serum (Sigma), glutamine (Gibco), and 1% penicillin / streptomycin (Gibco).  After 24hr 
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media was aspirated, adherent cells were gently rinsed in 1mL of media to remove 

debris, and 4mL of fresh media was added.  On day in vitro (DIV) 5 and DIV 10, L929 

conditioned media was added to 30%.  On DIV 14, cultures were supplemented with 

HEPES and sodium bicarbonate to maintain pH while shaking at 150rpm for 2-3 hours 

on a 37°C incubated shaker.  Microglia were counted and plated at 60-80,000 cells / 

well of PDL-coated 24-well plates (Corning) in L929 conditioned microglia media and 

allowed to rest for at least 2 days prior to experimentation.   

 

BV-2 microglia cell culture 

BV-2 murine microglia cell line cultures were maintained in Dulbecco’s Modified Eagle’s 

Medium, 10% heat-inactivated fetal bovine serum, and 1% penicillin / streptomycin 

(Gibco).   

 

L929 conditioned media 

L929 cell line (ATCC) were cultured to full confluency on 75cm2 flasks (Corning) in 

DMEM, 10% heat-inactivated FBS, 1% penicillin / streptomycin.  Media was removed, 

cells were rinsed in SD MMG Media, and then cultured in 35mL of SD mMG Media. 

After 2 weeks, L929 conditioned media was collected, filtered, and frozen at -80°C. 

 

Stimulation of primary microglia with young or aged murine plasma 

Primary microglia were obtained and cultured as above.  Plasma was isolated and 

pooled from 3 healthy male C57Bl/6J mice of 3 months or 18 months of age.  SD mMG 

media was prepared substituting 10% FBS with 10% murine plasma, and cultures were 

stimulated for 96 hours before isolating cells for RNA for RT-PCR analysis as described 

below.  
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RNA Isolation and Reverse Transcription PCR (RT-PCR) 

For RT-PCR analysis, RNA was isolated using the RNEasy Micro Plus kit (Qiagen) 

RNEasy Lipid Mini Kit (Qiagen) and RNA purity was assessed by Nanodrop (Thermo).  

RNA was DNase-treated (NEB) and cDNA and no reverse transcriptase controls were 

prepared using iScript cDNA Synthesis Kit (Bio-Rad).  Samples were diluted and 

PrimePCR Arrays (Bio-Rad) were performed according to the manufacturer’s 

instructions using (Supermix name) Bio-Rad on a CFX384 Touch (Bio-Rad).  Genes of 

interested were validated by individual real-time PCR (RT-PCR) using (Supermix 

name) (Bio-Rad) on a CFX96 Touch or CFX384 Touch (Bio-Rad).  Primer sequences 

were designed using the PrimerQuest Tool available from IDT DNA 

(https://www.idtdna.com/Primerquest/Home/Index) with attempts to design primer pairs 

around exon boundaries.  Sequences were validated and are listed in Table 2.1.  Data 

was analyzed using the ΔΔCt method.   
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Target Forward primer Reverse primer Accession 

Il1b GGCAGGCAGTATCACTCATT GAGGATGGGCTCTTCTTCAAA NM_008361 

Il6 AGGAGACTTCACAGAGGATACC GAATTGCCATTGCACAACTCTT NM_031168 

Tnfa CCTCTTCTCATTCCTGCTTGT TGGGAACTTCTCATCCCTTTG NM_019467 

Nos2 CCACAGTCCTCTTTGCTACTG TGCAGACAACCTTGGTGTT NM_010927 

Arg1 CACCCTGACCTATGTGTCATTT TCTGGGAACTTTCCTTTCAGTTC NM_007482 

Aif1 GAAGCCTTCAAGGTGAAGTACA TTCAGCTCTAGGTGGGTCTT NM_019467 

Itgam CCGGAAAGTAGTGAGAGAACTG ATCCAAGGGATCACCGAATTT NM_001082960 

 

Table 2.1.  RT-PCR primers used for gene expression analysis. 
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Western Blotting 

Protein samples were prepared using Lamelli buffer (Bio-Rad) supplemented with beta-

mercaptoethanol, heated, and loaded onto 4-15% TGX polyacrylamide gels (Bio-Rad) 

and transferred onto PVDF (Bio-Rad).  Blots were blocked using 5% milk in Tris-

Buffered Saline with Tween-20 (TBS-T).  Blots were probed with anti-histone H3 

(Abcam), anti-beta-actin-HRP (Sigma), anti-H3K27me1 (Millipore), anti-H3K27me3 

(Millipore), anti-Jmjd3 (Abcam), anti-Ezh2 (Cell Signaling).  Horseradish peroxidase-

conjugated secondary antibodies were used to detect primary antibodies (Vector Labs).  

Images were taken using a (Bio-Rad G-box) (Bio-Rad).  Selected images were 

quantified using Image Lab (Bio-Rad, Version 5.2.1). 

 

Statistics 

Statistics are presented as mean ± standard error of the mean (SEM) for all experiments 

using Prism 7 (GraphPad).  Interval power analysis was performed to determine group 

size.  For comparisons between 2 groups, Student’s t-test was performed.  For 

comparisons of multiple groups in naïve aging experiments, one-way ANOVA was 

performed using the youngest 3-month-old animal group as a control group.  If an 

interaction was statistically significant, then Dunnett post-hoc test was performed.  For 

comparisons involving multiple groups in heterochronic parabiosis experiments, two-way 

ANOVA was performed.  If an experiment was found to be statistically significant, then 

Tukey post-hoc test was performed.  For evaluation of mortality and weight loss of our 

model of parabiosis, log-rank Mantel Cox analysis was performed.   
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Chapter 3: 
The Aging Brain is Epigenetically Dysregulated 
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Rationale 

Other labs have shown that the histone demethylase Jmjd3 is essential for microglia 

anti-inflammatory polarization by demethylating H3K27 modification to a 

transcriptionally active H3K27me1 modification (163, 173).  However, Ezh2 is a histone 

lysine N-methyltransferase which performs opposing functions to Jmjd3 by establishing 

transcriptionally repressive H3K27me3 histone modifications (176).  Dr. Rodney Ritzel 

from our laboratory has shown that microglia become more pro-inflammatory in the 

brain with age (181).  We hypothesized that Ezh2 function may be enhanced in the 

brains of mice with age and may be associated with the pro-inflammatory phenotype of 

the naïve aged brain.  We first investigated the brains of aged mice to determine if the 

brain becomes epigenetically dysregulated with age. 

 

Ezh2 and Jmjd3 become imbalanced in the brain with age 

To investigate if levels of Ezh2 and Jmjd3 change in the brain with age, we analyzed 

protein levels of Ezh2 and Jmjd3 relative to β-actin by Western blot in whole murine 

brains at 6, 12, 18, and 24 months of age (Fig. 3.1).  Relative to 6-month-old mice, 

Jmjd3 was significantly decreased by 12 months and remained decreased at 18 and 24 

months (Fig. 3.1B).  Ezh2 decreased by 12 months but levels of Ezh2 at 18 and 24 

months of age were not significantly different from the levels of 6-month-old mice (Fig. 

3.1C).  Additionally, as Ezh2 and Jmjd3 perform antagonizing functions, we analyzed 

the ratio of Ezh2 levels relative to Jmjd3 levels.  Our analysis revealed that Ezh2 was 

significantly elevated relative to Jmjd3 by 18 months and remained increased at 24 

months (Fig. 3.1D).  Additionally, the ratio of Ezh2:Jmjd3 demonstrated a progressive 

stepwise increase with age (Fig. 3.1D).  Furthermore, the level of Ezh1 does not 
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change with age (Fig. 3.2).  These findings suggest that the brain becomes 

epigenetically dysregulated in regards to Ezh2 and Jmjd3 with age. 

 
  



 56 

 
 
Figure 3.1.  Jmjd3 decreases with aging and results in an increased Ezh2:Jmjd3 

ratio with age.  (A) Western blot of Whole brain protein extracts of naïve 6-, 12-, 18-, 

and 24-month-old male mice of Jmjd3, Ezh2, and β-actin loading control 

immunoreactivity.  Quantification of Jmjd3 (B), Ezh2 (C), and calculated ratio of 

Ezh2:Jmjd3 quantification (D).  Data are presented as the mean +/- SEM, one-way 

ANOVA with Dunnet post-hoc test, n = 6/group, * p<0.05, ** p<0.01, *** p<0.005, **** 

p<0.001. 
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Figure 3.2.  Ezh1 levels do not change in the brain with age.  Western blot of Whole 

brain protein extracts of naïve 6-, 12-, 18-, and 24-month-old male mice of Ezh1 and β-

actin loading control immunoreactivity.  Quantification of Ezh1 relative to β-actin.  Data 

are presented as the mean +/- SEM, one-way ANOVA with Dunnett post-hoc test, n = 

6/group, n.s. not significant. 
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H3K27me3 and H3K27me1 become imbalanced in the brain with age 

We then examined the levels of the histone modifications established by Ezh2 and 

Jmjd3, H3K27me3 and H3K27me1, respectively. Western blot analysis of whole brain 

murine protein samples revealed that with age mice undergo a decrease in H3K27me3, 

H3K27me2, and H3K27me1 relative to total histone H3 (Fig. 3.3).  The levels of 

H3K27me3 and H3K27me1 correspond with the changes in the levels of Ezh2 and 

Jmjd3, respectively.  Analysis of the ratio of H3K27me3:H3K27me1 demonstrates that 

the amount of H3K27me3 relative to H3K27me1 significantly increases by 18 months 

and remains elevated at 24 months (Fig. 3.3).  Together, these results suggest that the 

brain becomes epigenetically dysregulated with age. 
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Figure 3.3.  The brain becomes epigenetically dysregulated with age.  Western 

blot of whole brain protein extracts of naïve 3- and 18-month-old male mice for 

H3K27me3, H3K27me1, and H3 total loading control.  Quantification of H3K27me3, 

H3K27me1, and calculated ratio of H3K27me3:H3K27me1.  Data are presented as the 

mean +/- SEM, Student’s t-test, n = 3/group, * p<0.05. 
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The brain becomes progressively inflammatory with age 

To examine if the baseline inflammatory status changes in the brain with age, we 

examined whole brain protein extracts of 3-, 6-, 12-, 18-, and 24-month-old mice by 

multiplex cytokine analysis.  Analysis revealed that the levels of 24 cytokines, 

chemokines, and other analytes begin to be elevated at 6 months of age and 

progressively accumulate at 12, 18, and 24 months of age (Fig. 3.4A).  Additionally, 

within our data analysis, we found it particularly notable that IFNγ and GM-CSF, which 

are implicated in the primed phenotype of microglia, were found to be significantly 

elevated in the brain with age (Fig. 3.4B, 3.4C).  Overall, this analysis demonstrates 

that the brain acquires an inflammatory status that progressively increases with age 

and may promote a primed phenotype of microglia with age. 
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Figure 3.4.  Age-associated increase in inflammatory cytokines in the naïve 

murine brain.  (A) Whole brain extracts were examined in the brains of naïve mice at 

3, 6, 12, 18, and 24 months of age by multiplex cytokine analysis.  Each circle 

designates the age of the mice examined, and the analytes significantly elevated at that 

age are present in the circle and remain significantly elevated at later ages.  The 

individual plots for IFNγ (B) and GM-CSF (C) are shown.  Data are presented as the 

mean +/- SEM, one-way ANOVA with Dunnett post-hoc test, n = 5-9/group, * p<0.05, ** 

p<0.01, *** p<0.005.  
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The circulating peripheral factors  

We wanted to examine if the circulating peripheral factors also increased in naïve mice 

across the healthy aging lifespan.  We isolated plasma from naïve 3-, 6-, 12-, 18-, and 

24-month-old mice and examined levels of circulating peripheral factors by multiplex 

cytokine ELISA analysis.  We found a that mice demonstrate a significant increase in 

CXCL13, CCL11, CX3CL1, monocyte chemoattractant proteins MCP-3 and MCP-5, 

and macrophage inflammatory proteins MIP-1α, MIP-2, and MIP-3α.  Notably, our 

results independently replicate those of the Wyss-Coray laboratory which found an 

increase in circulating CCL11 with age (180).  Moreover, our results also demonstrate 

that circulating IFNγ does not increase with age, and levels of circulating GM-CSF were 

undetectable.  This suggests that the age-associated increase of these two cytokines 

observed in the brain are not directly due to increased circulating levels of these 

factors. 
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Figure 3.5.  Increase in circulating plasma factors with age.  Multiplex cytokine 

ELISA analysis of plasma isolated from naïve 3-, 6-, 12, 18-, and 24-month old mice.  

Significant results were found for elevations in circulating (A) CXCL13, (B) CXCL1, (C) 

CCL11, (D) MIP-1α, (E) MIP-2, (F) MIP-3α, (G) MCP-3, and (H) MCP-5.  Levels of IFNγ 

(I) were not significantly different from levels at 3 months of age. Data are presented as 

the mean +/- SEM, one-way ANOVA with Dunnett post-hoc test, n = 5-9/group, * 

p<0.05, ** p<0.01.  
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The aged hippocampus has elevated expression of Aif1 and Itgam 

Iba1 and CD11b and encoded by genes Aif1 and Itgam, respectively, and in the 

absence of injury and peripheral cellular infiltration are two microglia-specific genes.  

Age-associated microglia priming is associated with up-regulation of both Aif1 and 

Itgam.  We found that the expression of Aif1 and Itgam increase in the hippocampus of 

mice with age (Fig. 3.6).  This further supports our observation that the aged brain 

becomes progressively inflammatory with age. 
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Figure 3.6.  Aif1 and Itgam expression increases in the hippocampus of naïve 

mice with age.  RT-PCR analysis using the ΔΔCt method for Aif1 and Itgam 

expression in the hippocampus of naïve mice at 6 and 24 months of age.  Data are 

presented as the mean +/- SEM, Student’s t-test, n = 6-8/group, * p<0.05, ** p<0.01.   
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Aged plasma factors directly influence microglia phenotype in vitro 

To determine if peripheral factors can influence microglia phenotype, we cultured 

primary microglia cultures using plasma isolated from young 3-month-old or aged 18-

month-old mice.  We found that the microglia stimulated with aged plasma 

demonstrated up-regulation of pro-inflammatory genes Il1b and Il6, but not Tnfa (Fig. 

3.7).  This demonstrates that an aged plasma factor(s) may be directly responsible for 

influencing a pro-inflammatory phenotype microglia in the brain with age. 
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Figure 3.7.  Aged plasma increases expression of Il1b and Il6 in primary 

microglia in vitro.  Primary microglia were cultured in serum-free media containing 

plasma isolated from young 3-month-old or aged 18-month old male mice.  RT-PCR 

analysis using the ΔΔCt method was performed.  Data are presented as the mean +/- 

SEM, Student’s t-test, n = 4/group, * p<0.05.   
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Conclusions 

This work provides valuable insight into how the brain and periphery change with 

healthy aging in the absence of any inciting stimulus.  First, this data demonstrates that 

the brain becomes epigenetically dysregulated and pro-inflammatory with age.  The 

aged brain exhibits higher levels of ratio of Ezh2:Jmjd3 and corresponding increase in 

H3K27me3 and decrease in H3K27me1 with age.  Additionally, the brain becomes 

more pro-inflammatory with age and increases progressively throughout the lifespan of 

the healthy naïve mouse.  This suggests that the aging process is cumulative and 

consistently progresses with time.  Additionally, our corresponding studies of aging 

plasma demonstrates that some factors increase in the circulating periphery with age, 

but these do not directly reflect those that increase in the brain.  Of those elevated in 

the circulating periphery, notably macrophage inflammatory proteins and monocyte 

chemoattractant proteins, suggests a progressive inflammatory environment.  However, 

levels of major pro-inflammatory cytokines were not significantly elevated.  For 

example, levels of IL-1β, IL-6, and TNF-α were not significantly elevated in the 

circulating plasma with age.  When examining the plasma and brain multiplex cytokine 

ELISA data together, this suggests that the pro-inflammatory environment of the aging 

brain is potentially an independent inflammatory process and not reflective of ongoing 

systemic inflammation. 

Furthermore, we questioned whether circulating peripheral factors may influence 

the inflammatory phenotype of the aging brain.  We cultured primary microglia and 

stimulated cells with plasma isolated from naïve young or aged mice.  Of those cultured 

with plasma from aged animals, there was increased expression of pro-inflammatory 

Il1b and Il6.  This suggests that circulating peripheral factors may directly influence the 
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phenotype of the aged brain.  Together, this work demonstrates that there is an 

imbalance in epigenetic regulation between Ezh2 and Jmjd3 and this is accompanied 

by a significant transition of the aged brain to a pro-inflammatory phenotype.  
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Chapter 4: 
Ezh2 is Essential for Pro-Inflammatory Microglia Polarization 
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Rationale 

Being the resident innate immune cells of the central nervous system, microglia 

have the potential to initiate immune responses through polarization of their phenotype.  

While multiple phenotypes have been characterized in response to particular stimuli, 

the two predominant phenotypes are the pro-inflammatory and anti-inflammatory 

phenotypes.  As we age, Dr. Rodney Ritzel from our laboratory has shown that 

microglia in the brains of aged mice become more pro-inflammatory at baseline and 

produce more IL-1β and TNFα (181).  However, how these aged microglia become 

more pro-inflammatory remains unknown.  

Many laboratories have investigated if microglia turnover in the brain throughout 

the healthy lifespan of an individual, but it is largely believed that the microglia that 

populate our CNS during embryonic development may reside there for the lifetime of 

the mouse and even for several decades in humans (182, 183).  Essentially, as we age 

so do the microglia in our CNS.  These microglia, however, alter their gene expression 

with age to assume a more pro-inflammatory phenotype at baseline in a naïve CNS 

(181).  We hypothesized that microglia alter their epigenetic regulation to assume a 

pro-inflammatory phenotype with age.   

It has been shown that epigenetic regulation is essential to appropriate microglia 

phenotype polarization.  The histone demethylase, Jumonji Domain Containing 3 

(Jmjd3, Kdm6b), is essential for anti-inflammatory phenotype polarization (163).  Jmjd3 

functions by removing histone H3 lysine 27 trimethylation (H3K27me3) marks to a 

monomethylation mark (H3K27me1).  This modification allows chromatin to go a from a 

condensed structure with H3K27me3 marks to a more relaxed chromatin structure with 

H3K27me1 (173).  This change in chromatin structure allows for RNA Polymerase II 

and transcription factors to bind to promoters and transcribe anti-inflammatory genes.  
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The function of Jmjd3 is antagonized by Enhancer of Zeste Homologue 2 (Ezh2), which 

is a histone lysine N-methyltransferase that functions to transfer methyl groups from 

SAM molecules to H3K27me1 modifications to establish H3K27me3 marks (176).  In 

theory, this would reverse the effects of Jmjd3 to repress gene targets.  Thus, we 

hypothesize that Ezh2 and Jmjd3 lie in a functional antagonism and that Ezh2 is 

essential for pro-inflammatory phenotype polarization.   

 

Pro-inflammatory polarization of microglia results in increased deposition of 

H3K27me3 

We hypothesized that Ezh2 is essential to microglia pro-inflammatory polarization.  We 

first wanted to examine the possible role for Ezh2 in polarization of microglia.  We 

cultured BV-2 microglia cell line and then stimulated cells with LPS+IFNγ, IL-4, or PBS 

vehicle control.  We then collected cells 4 hours and 24 hours after stimulation for 

analysis by Western blot.  We found that following 24 hours of stimulation that there 

was significant increase in H3K27me3 (Fig. 4.1).  Additionally, we did find a significant 

decrease in Ezh2 but not homologue Ezh1 at 24 hours of stimulation with LPS+IFNγ 

(Fig. 4.1).  We also further examined if LPS and/or IFNγ were independently 

responsible for the increased H3K27me3 deposition that we observed following 24hr of 

stimulation, however, we found H3K27me3 to be similarly increased at 24 hours of 

stimulation with either LPS alone, IFNγ alone, or LPS+IFNγ combined (Fig. 4.2).  Thus, 

our results demonstrate that Ezh2 function may play a role in pro-inflammatory 

polarization of microglia. 
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Figure 4.1.  Stimulation of BV-2 microglia with LPS+IFNγ results in increased 

deposition of H3K27me3.  BV-2 microglia cultures were stimulated with vehicle 

control, 100ng/mL LPS + 10ng/mL IFNγ, or 20ng/mL IL-4 for 4 or 24 hours.  

Representative Western blot of Jmjd3, Ezh2, Ezh1, H3K27me3, and β-actin loading 

control immunoreactivity of 3 independent experiments.    
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Figure 4.2.  Stimulation of BV-2 microglia with LPS, IFNγ, or combined LPS+IFNγ 

results in increased deposition of H3K27me3.  BV-2 microglia cultures were 

stimulated with vehicle control, 100ng/mL LPS + 10ng/mL IFNγ, or 20ng/mL IL-4 for 24 

hours.  Representative Western blot of Jmjd3, Ezh2, Ezh1, H3K27me3, and β-actin 

loading control immunoreactivity of 3 independent experiments.    
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Inhibition of Ezh2 results in abrogation of pro-inflammatory polarization 

We wanted to investigate if inhibition of Ezh2 could block pro-inflammatory polarization 

of microglia.  Primary microglia were cultured and pre-treated with GSK343 or DMSO 

vehicular control, and subsequently stimulated with LPS+IFNγ, IL-4, or 0.1% PBS 

vehicular control.  RT-PCR analysis demonstrated that inhibition of Ezh2 abrogated 

LPS+IFNγ-induced up-regulation of pro-inflammatory genes Il1b, Tnfa, Il6, and Nos2 

(Fig. 4.3).  Additionally, inhibition of Ezh2 resulted in enhanced up-regulation of IL-4-

induced anti-inflammatory gene Arg1 (Fig. 4.4).  These results suggest that Ezh2 is 

essential for microglia pro-inflammatory phenotype polarization and may be involved in 

repressing genetic transcription of anti-inflammatory genes. 
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Figure 4.3.  Pharmacological inhibition of Ezh2 results in decreased expression 

of pro-inflammatory molecules.  Primary microglia were cultured with 6uM GSK343 

or DMSO vehicle control for 24 hours prior to stimulation with 100ng/mL LPS + 

10ng/mL IFNγ, or 20ng/mL IL-4 for 24 hours in the presence of 6uM GSK343 or DMSO 

vehicle control.  Data are presented as the mean +/- SEM, n = 6/group, * p<0.05. 
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Figure 4.4.  Pharmacological inhibition of Ezh2 results in increased expression of 

anti-inflammatory marker and Arg1.  Primary microglia were cultured with 6uM 

GSK343 or DMSO vehicle control for 24 hours prior to stimulation with 100ng/mL LPS 

+ 10ng/mL IFNγ, or 20ng/mL IL-4 for 24 hours in the presence of 6uM GSK343 or 

DMSO vehicle control.  RT-PCR analysis using the ΔΔCt method was performed.  Data 

are presented as the mean +/- SEM, n = 6/group, * p<0.05, ** p<0.01.    
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Inhibition of Ezh2 results in decreased production of pro-inflammatory cytokines 

To determine if Ezh2 is not only responsible for increased gene expression of pro-

inflammatory genes, we cultured primary microglia as before and pre-treated with 

GSK343 or DMSO vehicular control, and subsequently stimulated with LPS+IFNγ for 

24 hours.  We then collected media for multiplex cytokine analysis.  We found that 

pharmacological inhibition of Ezh2 results in decreased production of several pro-

inflammatory cytokines, including IL-1β, IL-6, and TNFα (Fig. 4.5).  These results 

demonstrate that Ezh2 function is essential for pro-inflammatory phenotype polarization 

of microglia. 
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Figure 4.5.  Pharmacological inhibition of Ezh2 results in decreased production 

of pro-inflammatory cytokines. Primary microglia were cultured with 6uM GSK343 or 

DMSO vehicle control for 24 hours prior to stimulation with 100ng/mL LPS + 10ng/mL 

IFNγ for 24 hours in the presence of 6uM GSK343 or DMSO vehicle control.  Multiplex 

cytokine analysis was performed.  Data are presented as the mean +/- SEM, Student’s 

paired t-test, n = 6/group, * p<0.05, ** p<0.01, *** p<0.005. 
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Conclusion 

We found that polarization of microglia to a pro-inflammatory phenotype results 

in increased deposition of H3K27me3 following 24 hours of stimulation with LPS+IFNγ, 

a histone methylation mark established by Ezh2.  Additionally, we found this mark to 

increase following 24 hours of stimulation with LPS, IFNγ, or a combination of 

LPS+IFNγ.  As LPS and IFNγ are capable of independently polarizing microglia to a 

pro-inflammatory phenotype (155, 156), this suggests that H3K27me3 is important to 

the acquisition of a pro-inflammatory phenotype. 

When we inhibited Ezh2 using the functional inhibitor GSK343, we found that in 

the setting of a pro-inflammatory stimulus using LPS+IFNγ that the expression several 

major pro-inflammatory molecules were decreased, notably Il1b, Il6, Tnfa, and Nos2.  

This suggests that Ezh2 function is essential to the expression of pro-inflammatory 

genes.  Additionally, when we inhibited Ezh2 and stimulated cultures with IL-4 to induce 

an anti-inflammatory phenotype, we found a significant increase in the expression of 

anti-inflammatory marker Arg1.  This suggests that Ezh2 has a role in the expression of 

both pro- and anti-inflammatory gene sets, and functions to promote a pro-inflammatory 

phenotype by simultaneously down-regulating anti-inflammatory genes. 

When we examined the media of cultures following pro-inflammatory stimulation 

with LPS+IFNγ with or without inhibition of Ezh2 with GSK343, we found that those 

cultures with Ezh2 inhibition has significantly less pro-inflammatory cytokine production.  

Collectively, our results demonstrate that Ezh2 is essential for pro-inflammatory 

phenotype polarization of microglia.
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Chapter 5: 
Heterochronic Parabiosis Rejuvenates the Epigenetic Status of the Aging Brain 
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Rationale 

Our results have shown that Ezh2 promotes pro-inflammatory polarization in microglia 

(Chapter 4), and that the brain becomes epigenetically imbalanced with age to promote 

a predominant pro-inflammatory phenotype (Chapter 3).  Additionally, our work in vitro 

demonstrates that plasma factors may promote a pro-inflammatory polarization of 

microglia.  Epigenetic modifications are, by definition, reversible and may be influenced 

by response to the surrounding microenvironment.  We questioned if the epigenetic 

imbalance observed in the aging brain is 1) influenced by circulating peripheral factors 

and 2) is potentially reversible.  We chose to utilize a model of heterochronic parabiosis 

to investigate the role of the circulating peripheral factors on the epigenetic landscape 

of the aging brain. 

 

Characterization of murine heterochronic parabiosis model 

To determine if the epigenetic imbalance that occurs in the brains of mice with 

age can be rejuvenated through manipulations in peripheral factors, we utilized a model 

of heterochronic parabiosis in which young and aged mice are surgically joined and 

come to share a common blood supply.  This model has been well-established by other 

labs and has been shown to have significant rejuvenation effects in the aged brain (83, 

153).   

Numerous studies and work from our own laboratory have demonstrated that the 

intestinal microbiome can influence behavior tests (132, 184).  In our model, we 

perform all surgeries under strict sterile technique and intentionally do not use 

antibiotics as part of our post-operative care in an effort to preserve the integrity of the 

intestinal microbiome.  This modification allows us to effectively study the mutual 
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sharing of circulating cells, factors, metabolites from the intestinal microbiome, and the 

interplay of all of these factors together with each other rather than individually 

assessing the role of each potential factor (Fig. 5.1). 
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Figure 5.1.  Model of heterochronic parabiosis.  Young and aged animals are 

surgically attached and allowed to share a common blood supply through 

anastomoses.  The model allows for the simultaneous transfer of cells, circulating 

peripheral factors, and intestinal microbiome metabolites which provides substantial 

power in conjunction with other animal models such as bone marrow chimerism, 

plasma transfer, and microbiome transfer studies.  
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We did not observe any mortality post-operatively due to infection, but rather all 

mortality observed was due to parabiotic illness as determined by autopsy (Fig. 5.2).  

Parabiotic illness is a condition which is believed to be caused by the development of 

unequal anastomoses create an imbalance in the shared blood supply and one 

parabiont accumulates blood while the other is depleted, and is essentially analogous 

to twin-twin transfusion syndrome of monochorionic gestational twins(185).  

Interestingly, the mortality from parabiotic illness was rare in young isochronic pairs but 

equally observed between heterochronic and aged isochronics pairs (Fig. 5.2B, C).  

Additionally, we found that nearly all mortality occurred by 4 weeks after surgery, 

suggesting by this time post-operatively that anastomoses were well-established (Fig. 

5.2B).  We then allowed parabionts to live conjoined until 8 weeks post-operatively 

before use in our studies.  Weight loss of combined parabionts was highest in the aged 

isochronic mice, but they maintained their post-operative weight loss by the time of 

sacrifice (Fig. 5.2D).  This is similar to our work with aged animals, in which aged 

animals lose more weight post-operatively compared to young animals (125). 
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Figure 5.2.  Characterization of the heterochronic parabiosis model.  (A) 

Experimental timeline of the heterochronic parabiosis model.  Mice were randomly 

assigned to experimental groups and were pair-housed together for at least 1 week 

prior to surgery.  Parabionts were joined for 8 weeks prior to collection of samples for 

further investigation.  (B) Mortality of parabionts.  We found heterochronic (HET) and 

aged isochronic (A ISO) pairs to experience significant mortality compared to young 

isochronic (Y ISO) pairs.  (C) Parabiotic illness.  Autopsy of deceased parabionts 

demonstrates parabiotic illness, in which parabionts experience unequal blood 

circulation.  In the autopsy of the pair shown, the organs of one mouse were pale and 

appear depleted of circulating blood (#1, top) while the other appears saturated with 

blood (#2, bottom row), thus demonstrating an unequal share of the circulating blood 

supply.  (D) Weight loss of parabionts following surgery.  Data are presented as a (B) 

Kaplan-Meier curve, log-rank Mantel Cox analysis, ** p<0.01; (D) mean +/- SEM, log-

rank Mantel Cox analysis, ** p<0.01. 
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Heterochronic parabiosis rejuvenates H3K27me3 in the aged brain 

We investigated if heterochronic parabiosis can reverse the epigenetic 

dysregulation that occurs in the brain with age (Fig. 5.3).  Western blot analysis of 

whole brain protein extracts revealed that the age-associated increase in H3K27me3 

and decrease in H3K27me1 was maintained (Y ISO vs. A ISO, Fig. 5.3A, B).  This 

suggests that the parabiosis surgery itself does not disturb the epigenetic modifications 

that occur with age in naïve animals (Fig. 3.3).  Interestingly, we found that 

heterochronic parabionts have levels of H3K27me3 that are reduced in the brains of A 

HET mice relative to those of A ISO parabionts (Fig. 5.3A, B).  However, the levels of 

H3K27me3 were similar between Y ISO and Y HET animals, suggests that the 

rejuvenation effect observed in A HET mice is not from a dilution effect of a detrimental 

factor into Y HET animals.  Together, this suggests there is a peripheral factor from the 

young parabiont that is beneficial in reducing the levels of H3K27me3 in the aged brain.   

Examination of H3K27me1 in parabionts demonstrated maintenance of the age-

associated decrease in our parabiosis surgical model (Y ISO vs. A ISO, Fig. 5A, C).  

However, heterochronic parabiosis failed to increase levels of H3K27me1 in the A HET 

brain (i.e. failed rejuvenation effect) and also failed to decrease levels in the Y HET 

brain (i.e. failed accelerated aging effect) (A HET and Y HET, respectively, Fig. 5.3A, 

C).  This suggests that peripheral factors do not directly influence levels of H3K27me1.   
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Figure 5.3.  Heterochronic parabiosis rejuvenates age-associated increase of 

brain H3K27me3.  (A) Representative Western blot of whole brain samples of naïve 

parabionts stained for H3K27me3, H3K27me1, and H3 total.  (B) Quantification of 

intensity of H3K27me3 relative to H3 total.  (C) Quantification of intensity of H3K27me1 

relative to H3 total.  (D) Analysis of the ratio of H3K27me3 relative to H3K27me1.  Data 

are presented as the mean +/- SEM, two-way ANOVA with Tukey post-hoc test, 

n=9/group, * p<0.05, **** p<0.001.  
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Heterochronic parabiosis rejuvenates brain levels of IFNγ and GM-CSF 

The primed phenotype of microglia is characterized by an increase in receptors 

for signaling (e.g. MHC II, TLR4) and a decrease in molecules tampering the immune 

response (e.g. CX3CR1, CD200R).  However, while aged microglia are primed to 

respond to pro-inflammatory signaling, others have found that there is no substantial 

increase in basal production of inflammatory cytokines in naïve aged brains.  Our data 

presented here demonstrates that there is a significant increase in the basal levels of 

inflammatory cytokine production in naïve brains with age when comparing brains of 

mice of increasing age relative to 3-month-old mice (Fig. 3.4).  Others in our lab have 

used flow cytometry to demonstrate that aged microglia produce more TNFα and IL-1β 

at baseline.  It is important to note that these increases, while significant, are subtle and 

thus detection of these differences likely depends on both the age of the young and 

aged mice as well as the technique used.   

Thus, given our results demonstrating an increase in basal production of 

inflammatory cytokines with age, we first sought to characterize the levels of cytokines 

in naïve parabionts brain and plasma using multiplex cytokine analysis.  It is important 

to note that at the time of sacrifice the Y ISO mice are similar to a 5- to 6-month-old 

mouse and the A ISO are similar to a 20- to 22-month-old mouse.  Thus, we anticipated 

that any differences in baseline levels of cytokines in naïve parabionts would be subtle.  

However, we found that there was a significant age-associated increase in IFNγ and 

GM-CSF between Y ISO and A ISO groups (Fig. 5.4), which is consistent with our 

findings in naïve mice.  Importantly, this age-associated significant increase in IFNγ 

and GM-CSF was not observed in A HET mice (Fig. 5.4).  Thus, loss of this age-

associated increase in IFNγ and GM-CSF may suggest that the primed phenotype of 

aged brain may be reversed in the brains of aged heterochronic parabionts. 
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Figure 5.4.  Heterochronic parabiosis reverses age-associated increase in brain 

IFNγ and GM-CSF.  Multiplex cytokine ELISA analysis results for IFNγ (A) and GM-

CSF (B) levels observed in the brains of naïve parabionts.  Data are presented as the 

mean +/- SEM, two-way ANOVA with Tukey post-hoc test, n=9-10/group, * p<0.05. 
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Heterochronic parabiosis restores Aif1 and Itgam expression to younger levels 

As we have shown, the expression of Aif1 and Itgam (which encode Iba1 and CD11b, 

respectively) increase in the hippocampus of naïve mice with age (Fig. 3.5).  Increased 

expression of these molecules is associated with the primed phenotype of microglia.  

We wanted to investigate if heterochronic parabiosis could reverse the age-associated 

increased expression of these genes.  In our model of heterochronic parabiosis, we 

found that the aged hippocampus demonstrates an age-associated increase in both 

Aif1 and Itgam (Y ISO vs. A ISO, Fig. 5.5).  Interestingly, this up-regulation was not 

observed in A HET mice (Y ISO vs. A HET, Fig. 5.5).  This suggests that heterochronic 

parabiosis restores the expression of Aif1 and Itgam to those of younger animals.  This 

also suggests that heterochronic parabiosis may reverse age-associated microglia 

priming phenotype. 
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Figure 5.5.  Heterochronic parabiosis reverses age-associated increase in brain 

Aif1 and Itgam.  RT-PCR of hippocampus samples of naïve parabionts for Aif1 and 

Itgam.  Data are presented as the mean +/- SEM, two-way ANOVA with Tukey post-

hoc test, n=8/group, * p<0.05. 
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Heterochronic parabiosis reverses the primed phenotype of aged brain 

We observed rejuvenation of H3K27me3 in the A HET brain, which our in vitro 

work suggests is involved in pro-inflammatory phenotype polarization.  We also 

observed rejuvenation of age-associated increase in brain levels of IFNγ and GM-CSF 

in the A HET brain, both of which have been associated with the primed phenotype of 

aged microglia.  Together, these results suggest that the primed phenotype of aged 

brain may be rejuvenated in the brains of A HET mice.  To test this hypothesis, we 

developed a novel model of neuroinflammation in heterochronic parabiosis.  This model 

utilizes the well-characterized neuroinflammatory model of peripheral stimulation by 

intraperitoneal LPS injection.  However, LPS cannot be accurately dosed by weight in 

parabionts as the two animals are surgically attached to one another.  Instead, we used 

a consistent total amount of total LPS injected into all parabionts.  If anything, aged 

mice are heavier than young parabionts and in turn would receive a smaller dose of 

LPS by weight.  However, we hypothesize that aged animals will have a more 

exaggerated neuroinflammatory response to LPS even in the setting of a smaller dose 

by weight.  Therefore, if anything, our model is conservative. 

We injected parabionts with 100ug LPS intraperitoneally and collected samples 

24 hours later.  We found that the production of 14 of the 45 cytokines investigated 

were elevated in brains of A ISO parabionts relative to A HET parabionts (Fig. 5.6).  Of 

particular interest, heterochronic parabiosis reduced the levels of IL-1β and IL-6, two 

major cytokines involved in the pro-inflammatory response (Fig. 5.6).  GM-CSF was 

found to be significantly reduced in the brains of A HET mice following peripheral 

stimulation with LPS (Fig. 5.6).  CCL11, which has been found to be detrimental to 

neurogeneration in the hippocampus with age, was also found to be reduced in brains 

of A HET parabionts compared to A ISO surgical controls following LPS intraperitoneal 
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stimulation (Fig. 5.6).  This data suggests that heterochronic parabiosis rejuvenates the 

age-associated primed phenotype of microglia. 
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Figure 5.6.  Heterochronic parabiosis reverses the age-associated primed 

phenotype of the aging brain.  Heterochronic and aged isochronic parabionts were 

injected with 100ug LPS intraperitoneally and samples were collected 24 hours later.  

Brain protein lysates were analyzed by multiplex cytokine ELISA analysis.  The circles 

represent those that were elevated in the A HET or A ISO parabionts, and the 

overlapping region represents those analytes that were statistically similar between 

parabionts.  The 14 analytes that were found to be significantly elevated in the A ISO 

parabionts relative to the A HET parabionts are shown.  No analytes were found to be 

significantly elevated in the A HET parabionts.  Data are presented as the mean +/- 

SEM, Student’s unpaired t-test, n=4-5/group, significance defined as p<0.05. 
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Conclusions 

Being the resident innate immune cell of the central nervous, microglia have the 

potential to regulate homeostasis in the CNS as well as be some of the first cellular 

responders to neurological injury.  Microglia are plastic cells that reside in a resting, 

surveillant phenotype and monitor the microenvironment for signals that may trigger an 

immunological response.  In the setting of an appropriate stimulus, microglia may 

polarize their phenotype to a predominantly pro-inflammatory or anti-inflammatory 

state.  However, what is notable about microglia, is that they have a tendency to 

transition from a resting, surveillant phenotype toward a pro-inflammatory phenotype 

with age.  However, the molecular mechanisms underlying this transition in baseline 

phenotype with age have not been fully investigated. 

This work first examines how the environment of the brain changes with age.  

We first began by investigating how the inflammatory environment of the brain changes 

with age.  We developed a method to isolate protein samples in their native structure 

for analysis by multiplex cytokine analysis, which requires their native structure to be 

preserved for accurate and precise quantification.  When we compare the levels of 

analytes in the brains of mice across their healthy, naïve lifespan from 3-, 6-, 12-, 18-, 

and 24-months of age, we find that many inflammatory molecules increase in the brain 

over the life of mice (Fig. 3.4).  These analytes increase compared to 3-month-old 

naïve mice beginning at 6 months of age and progressively accumulate at 12-, 18-, and 

24-months of age.  These results suggest that the brain becomes progressively 

inflammatory with age.  This finding also corresponds with our finding that the brain 

becomes epigenetically imbalanced with age.  Our results demonstrate that there are 

higher levels of H3K27me3 and lower levels of the antagonizing H3K27me1 histone 

modification.  This also corresponds with our finding that there is a decrease in Jmjd3 
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levels in the brain with age, and a predominant increase in the ratio of Ezh2:Jmjd3 in 

the brain with age as well.  Together, these results suggest that the epigenetic 

imbalance between Ezh2 and Jmjd3 in the brain with age is associated with the 

accumulation of pro-inflammatory molecules in the brain. 

However, epigenetic modifications are, by definition, reversible.  Also, we found 

that plasma from aged mice could induce up-regulation of pro-inflammatory cytokines 

in primary microglia cultures (Fig. 3.7).  We hypothesized that through heterochronic 

parabiosis that the aged brain could be rejuvenated to a less pro-inflammatory status at 

baseline.  Our results demonstrate that exposure of the aged brain to young circulating 

systemic factors rejuvenates the levels of H3K27me3 in the brain.  Additionally, brain 

levels of IFNγ and GM-CSF in A HET parabionts are also statistically similar to those of 

Y ISO animals, signifying that exposure of the aged brain to the young periphery 

reduces the levels of these two particular cytokines which are involved in age-

associated microglia phenotype priming.  Finally, when we test this experimentally 

through intraperitoneal injection with LPS into heterochronic and aged isochronic 

parabionts, we find that there is a significant reduction of pro-inflammatory cytokines in 

the brains of A HET mice relative to A ISO surgical controls.  Collectively, this data 

suggests that exposure of the aged brain to young circulating systemic factors 

rejuvenates the primed phenotype of the aged brain.  Ultimately, these findings suggest 

that possible exposures in our environment may subtly  
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The United States population is aging at an alarming rate.  The Center for 

Disease Control (CDC) estimates that the population of those age 65 and older in will 

reach 30 million by 2020 and will double to 60 million by 2050 (186).  This will place a 

massive strain on the healthcare system, and interventions to assist in healthy aging 

will become of greater importance in the very near future. 

The brain withholds some of our body’s greatest functions and allows us to 

function independently as individuals.  It is the center of our thought processes and 

cognition, and allows us to function as independent adults.  However, aging exposes us 

to the risk of age-associated neurological diseases which threaten our ability to think for 

ourselves and may result in our dependence on others.  Being able to maintain healthy 

brain function will become essential to promote healthy aging in the United States and 

around the world. 

Our work investigates how the brain changes with age and possible 

mechanisms that may partially responsible for brain aging.  We are particularly focused 

on the role of microglia in brain aging, which have been implicated in numerous 

neuroinflammatory and neurodegenerative diseases, including Alzheimer’s and 

Parkinson’s diseases.  Being able to understand and potentially control microglia 

phenotype may allow us to possibly prevent, delay, and/or treat these devastating 

illnesses and allow people to age healthy and gracefully.   

This work demonstrates how the brain changes epigenetically with age.  The 

epigenetic landscape is partially responsible for regulating gene expression, and 

dysfunctional epigenetic regulation can lead to a dysfunctional and detrimental 

phenotype.  Our studies have identified that the ratio of global levels of Ezh2 and Jmjd3 

and their respective histone modifications H3K27me3 and H3K27me1 become 

imbalanced with age.  Additionally, there is age-associated inflammation in the brain 
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with age that progressively accumulates throughout the lifespan of healthy mice used in 

our studies.  Suspecting that microglia may be responsible for this dysfunctional 

phenotype, we manipulated primary microglia cells in vitro using a pharmacological 

inhibitor of Ezh2 in the setting of a pro-inflammatory stimulus.  We found that inhibition 

of Ezh2 diminishes the polarization of microglia to a pro-inflammatory phenotype and 

enhances expression of anti-inflammatory genes.  These findings suggest that Ezh2 

lies at the balance of pro- and anti-inflammatory polarization, and promotes a pro-

inflammatory phenotype by simultaneously up-regulating pro-inflammatory genes and 

down-regulating anti-inflammatory genes. 

Next, we aimed to identify if the circulating peripheral factors could influence the 

epigenetic phenotype of the aging brain.  To accomplish this, we used a surgical model 

of heterochronic parabiosis in which a young and old mouse are surgically attached 

and allow the two animals to share a common blood supply.  The benefits of this model 

are profound, and allow not only circulating peripheral factors to be examined, but also 

the circulating peripheral cells, exposure to the intestinal microbiome of the other 

parabiont, as well as the interplay of all of these factors.  Using this model, we were 

able to examine if the peripheral factors were responsible for brain aging or if 

modifications associated with brain aging could be rejuvenated. 

We found that exposure of the aged brain to a young periphery could reverse 

the levels of H3K27me3 which are associated with a pro-inflammatory phenotype in 

microglia.  Additionally, aged animals exposed to a young parabiont (A HET) had 

similar levels of IFNγ and GM-CSF in the naïve brain which are two molecules 

implicated in microglia phenotype priming.  We tested if the rejuvenation of H3K27me3, 

IFNγ, and GM-CSF were functionally significant by exposing heterochronic and aged 

isochronic parabionts to a neuroinflammatory stimulus via intraperitoneal LPS 
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injections.  We found that aged animals exposed to a young parabiont had significantly 

reduced levels of numerous cytokines in the brain following a pro-inflammatory 

stimulus.  Together, these results demonstrate that circulating peripheral factors can 

effectively rejuvenate the epigenetic landscape of the aged brain which results in 

physiological improvement in the setting of a neuroinflammatory stimulus (Fig. 6.1). 
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Figure 6.1.  Summary of conclusions.  This work demonstrates that through pro-

inflammatory stimulation with LPS+IFNγ there is increased Ezh2 activity and transition 

of microglia from a surveillant to a pro-inflammatory phenotype.  Additionally, naïve 

aging transitions the brain to a pro-inflammatory phenotype at baseline with associated 

epigenetic imbalance between H3K27me3 and H3K27me1, with a predominance for 

imbalance favoring H3K27me3.  Heterochronic parabiosis can at least partially reverse 

this effect of aging, thereby partially restoring the aged brain to a younger phenotype.  
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 Our studies are not without their limitations.  Our studies have primarily focused 

on the epigenetic changes and alterations in the environment of whole brain samples, 

and have not specifically identified the age-associated epigenetic dysregulation of 

microglia specifically.  However, our in vitro studies begin to provide insight that pro-

inflammatory polarization increases the deposition of H3K27me3 globally.  Additionally, 

we also found that inhibition of Ezh2 reduces the level of LPS+IFNγ-associated 

deposition of H3K27me3 and up-regulation of pro-inflammatory genes (Figure 4.3).   

To identify the role of H3K27me3 and its antagonizing activating histone 

modification H3K27me1 in microglia specifically, flow assisted cytometric sorting 

(FACS) analysis of these specific histone modifications in CD45int CD11b+ microglia is 

limited.  Histones interact to form an octameric nucleosome, which has been found to 

be approximately 110 Å in diameter (187).  Antibodies themselves are calculated to be 

of similar size at approximately 100 Å	(188).  Thus, it is reasonably possible that the 

physical size of antibodies (which likely have different binding affinities for their specific 

targets) may perhaps interfere with each other from binding to nearby histones.  In the 

setting of flow cytometry multiple antibodies are simultaneously competing for their 

targets.  Thus, flow cytometry would likely give inaccurate results in an attempt to 

quantify total levels of this histone proteins in microglia at the single cell level.   

 Our studies are also limited by currently available technology to identify if 

specific epigenetic modifications at promoters of particular pro- and anti-inflammatory 

genes are affected.  Ideally, we would prefer to quantify the levels of H3K27me3, 

H3K27me1, total histone H3, Ezh2, and Jmjd3 at the sites of promoters of pro-

inflammatory and anti-inflammatory associated genes using chromatin 

immunoprecipitation (ChIP).  Given that pro- and anti-inflammatory phenotypes are 
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defined by sets of genes as opposed to a single particular target, we would ideally 

utilize ChIP-sequencing (ChIP-seq) technology.  Unfortunately, these experiments are 

limited by current available methods as the scientific community strives to reduce the 

quantity of input required for ChIP-seq.   

ChIP-seq technology is currently limited by the quantity of input in two ways.  

First, one limitation is the quantity of the total input.  If there is insufficient total input 

DNA, detection of even abundant DNA-associated proteins will be difficult to detect.  In 

our lab, naïve young and aged animals have approximately 30-40,000 live CD45int 

CD11b+ microglia cells per whole brain (125, 181, 189).  Samples yielding these 

quantities of microglia are fixed with paraformaldehyde which stabilizes antibody 

binding while analyzing samples on the cytometer.  However, to sort microglia for RNA 

use (e.g. mRNA sequencing) or DNA uses (e.g. ChIP-seq), fresh cells must be used.  

Microglia, in our experience, are fragile cells and do not tolerate in vitro or artificial 

environments after extraction from the brain (18).  Given these additional challenges, 

we obtain approximately 10-15,000 live CD45int CD11b+ microglia cells per whole brain 

(data not shown), which reduces the total available input for ChIP-seq.  ChIP-

sequencing with low cellular input of approximately 10,000 cells per highly abundant 

DNA-associated target proteins (e.g. total histone H3) is just beginning to become 

possible and reliably reproducible with new techniques (190–192); however, performing 

ChIP-sequencing for multiple targets from a single 10,000 cell sample is still not within 

reach using the most up-to-date techniques at the writing of this thesis.  As such these 

experiments for our purposes are still not possible.   

A second limitation of current ChIP-seq technology is the available DNA-

associated quantity of the target molecule, such that if there is an insufficient level of 

the DNA-associated protein within the sample, then there will be insufficient associated 
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DNA to detect following immunoprecipitation. Ezh2 and Jmjd3 are likely transient DNA-

associated protein molecules, making their detection in small sample sizes especially 

challenging typically require the use of millions of cells for ChIP (163, 170).  Due to 

these cumulative limitations, we cannot directly address our hypothesis that aging 

increases Ezh2 localization to specific DNA promoters of anti-inflammatory genes to 

increase H3K27me3 locally resulting in their transcriptional down-regulation in vivo in 

naïve animals or parabionts.  Improvements in future techniques that allow for 

reduction of sample input down to approximately 1,000 cells may allow for these ChIP-

sequencing experiments to be completed and provide insight into the underlying 

molecular mechanisms of epigenetic regulation of aging.  

Additionally, the model of heterochronic parabiosis is not without complications.  

As discussed above in Chapter 5, heterochronic parabiosis is powerful in that it 

examines the roles of circulating cells, soluble factors, and the simultaneous interplay 

and interaction with each other.  However, at the same time, this is a disadvantage 

because it does not provide insight into a specific mechanism providing a significant 

effect.   

Also, as this is an in vivo surgical model, there are possible environmental 

effects that may be influencing our results.  One such possible effect may be the 

relative physical activity of the animals within parabiont pairs.  Young animals are 

physically more active than their aged counterparts (193, 194); however, the relative 

activity of young isochronic, heterochronic, and aged isochronic parabionts has not 

been evaluated in this present study.  This may be entirely plausible, as others have 

shown in mice and in humans that those who exercise are generally healthier, with 

improvements in mitochondrial function (195–197), neurogenesis (4, 193, 194, 198, 

199), clearance of amyloid (80, 200), prevention of age-associated whole brain volume 
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loss (201), and even reduction in microglia activation (88).  While this is interesting to 

speculate the role of exercise on brain aging and the possible role within the 

heterochronic parabiosis model, evaluation of the role of exercise on the epigenetic 

regulation of the aged brain is beyond the scope of this study but would be an exciting 

extension of the work presented here.    

Our studies presented did not specifically identify that the decrease in whole 

brain H3K27me3 levels in aged heterochronic parabionts was due to a soluble plasma 

factor.  To address this question, this would require plasma transfer studies in which 

the isolated plasma pooled from naïve young and naïve aged animals is transferred 

into naïve aged and naïve young animals, respectively, as well as isochronic transfer 

controls.  These experiments require an extensive supply of animal resources and 

require pooling plasma from approximately 500-2000 naïve animals of the same age 

(83, 202).  These experiments have been performed by others to demonstrate the 

specific role of circulating soluble factors in reversing some aspects of brain aging (83, 

202).  However, perhaps more interestingly, transfer of umbilical plasma from human 

samples has demonstrated a rejuvenating effect in aged mice in the setting of ischemic 

stroke (203), olfactory function (204), and hippocampal function (205).  We propose 

that it may be a more cost-efficient and translational model to isolate plasma from 

umbilical sources or healthy young donors as well as healthy aged donors to transfer 

into young and aged mice.  For the quantities of plasma required for these 

experiments, human plasma is more readily available from healthy donors and would 

also reduce the numbers of animals required for use in these studies.  The use of 

human plasma would also demonstrate a more translational approach to identify the 

role of soluble factors on brain aging. 
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 Our studies identified that the circulating peripheral environment is at least 

partially responsible for brain aging and may be a possible therapeutic route to promote 

healthy brain aging.  However, which particular factor(s) has not been identified in this 

work.  Ongoing studies are further examining plasma via mass spectroscopy, fecal 

samples via 16S rRNA sequencing and metabolomic profiling, further examination of 

the structural integrity of the intestine, as well as many others.  We hope to be able to 

identify select molecules that are responsible for brain aging that we may 

pharmacologically target, as well as those beneficial molecules that are lost with brain 

aging that we could potentially supplement. 

However, these possible weaknesses of the heterochronic parabiosis model 

could perceived as strengths.  Aging is not a homogenous process.  Most in vivo 

studies use young animals, in part because they are less costly but also because there 

is less variation in experimental values due to the homogeneity of the animals used to 

represent the population.  However, mice (as used in this study) and humans both die 

at varying ages from biological processes that are heterogenous.  Aging is complex, 

and it is doubtful that one factor is responsible for the entirety of the aging process.  

Similarly, it is equally doubtful that one factor is responsible for the maintenance of 

youth.  Thus, the model of heterochronic parabiosis may have weaknesses that may be 

interpreted as strengths, or strengths that may be interpreted as weaknesses.  

Ultimately, this is one experimental method that provides experimental evidence that 

must be interpreted and discussed by the collective scientific community.  We believe 

the power of the model lies within the interplay of all factors, and the results could be 

interpreted on a broader scale, such that being exposed to multiple youthful factors—

blood, social partner, microbiome, physical activity, etc.—may collectively be 

rejuvenating to the aged brain. 
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 We do not intend to discover the fountain of youth.  Rather we aim to identify 

mechanisms that may promote healthy aging and possibly prevent onset of 

neurological disease in high-risk individuals or those with an extensive family history.  

By enabling the aging population to maintain their cognition and recovery from possible 

neurological injuries, we may be able to enhance the quality of life and allow many to 

continue to live independently.  Life should be worth living, and maintaining healthy 

neurological functions will allow us to continue to lead productive and enjoyable lives 

until we must finally depart from this Earth. 
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List of abbreviations 
 
A HET aged heterochronic 
A ISO aged isochronic 
AD Alzheimer’s disease 
AIF-1 allograft inflammatory factor 1 
APP amyloid precursor protein 
ARG1 Arginase-1 
ATP Adenosine triphosphate 
Aβ amyloid β 
CAA Cerebral amyloid angiopathy 
CCI controlled cortical impact 
CCL chemokine (C-C motif) ligand 
CD cluster of differentiation 
ChIP chromatin immunoprecipitation 
CNS central nervous system 
CSF cerebrospinal fluid 
CSF1R colony stimulating factor 1 receptor 
CXCL chemokine (C-X-C motif) ligand 
DIV day in vitro 
DNA deoxyribonucleic acid 
EED embryonic ectoderm development 
Ezh1 enhancer of zeste homologue 1 
Ezh2 enhancer of zeste homologue 2 
FFAR2 free fatty acid receptor 2 
FMO fluorescence minus one 
GFP green fluorescent protein 
GM-CSF granulocyte macrophage colony stimulating factor 
GPX1 glutathione peroxidase 1 
H3K27me1 histone H3 lysine 27 monomethylation 
H3K27me2 histone H3 lysine 27 dimethylation 
H3K27me3 histone H3 lysine 27 trimethylation 
HDAC histone deacetylase 
HMGB1 high mobility group box 1 protein 
Iba1 ionized calcium binding adaptor molecule 1 
IFN interferon 
IL interleukin 
iNOS inducible nitric oxide synthase 
Int intermediate 
IRF4 interferon regulatory factor 4 
IRF5 interferon regulatory factor 5 
Jmjd3 jumonji domain containing 3 
KDM lysine demethylase 
LPS lipopolysaccharide 
LTP long-term potentiation 
MAPK mitogen-activated protein kinase 
MCP1 monocyte chemotactic protein 1 
MHC major histocompatibility complex 
MIP macrophage inflammatory protein 
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MMP9 matrix metalloproteinase 9 
MRI magnetic resonance imaging 
mTOR mechanistic target of rapamycin 
NADPH nicotinamide adenine dinucleotide phosphate 
NFκβ nuclear factor κ β  
NgR1 nogo receptor 1 
NO nitric oxide 
NOX NADPH oxidase 
PBS phosphate-buffered saline 
PKC protein kinase C 
PRC1 polycomb repressive complex 1 
PRC2 polycomb repressive complex 2 
RAGE receptor for advanced glycation end products 
RNA ribonucleic acid 
ROS reactive oxygen species 
ROS reactive oxygen species 
SCFA short chain fatty acids 
Seq sequencing 
SOD1 superoxide dismutase 1 
SRA scavenger receptor A 
Suz12 suppressor of zeste 12 
TBI traumatic brain injury 
TGFβ transforming growth factor β 
TLR toll-like receptor 
tMCAO transient middle cerebral artery occlusion 
TNF tumor necrosis factor 
Y HET young heterochronic 
Y ISO   young isochronic  
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