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An Information Theory Model for Optimizing Quantitative Magnetic

Resonance Imaging Acquisitions

Drew Palmer Mitchell, B.Sc.

Advisory Professor: David Thomas Alfonso Fuentes, Ph.D.

Quantitative magnetic resonance imaging (qMRI) is a powerful group of imaging tech-

niques with a growing number of clinical applications, including synthetic image gener-

ation in post-processing, automatic segmentation, and diagnosis of disease from quan-

titative parameter values. Currently, acquisition parameter selection is performed em-

pirically for quantitative MRI. Tuning parameters for different scan times, tissues, and

resolutions requires some measure of trial and error. There is an opportunity to quanti-

tatively optimize these acquisition parameters in order to maximize image quality and

the reliability of the previously mentioned methods which follow image acquisition.

The objective of this work is to introduce and evaluate a quantitative method for se-

lecting parameters that minimize image variability. An information theory framework

was developed for this purpose and applied to a 3D-quantification using an interleaved

Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) signal model

for synthetic MRI. In this framework, mutual information is used to measure the infor-

mation gained by a measurement as a function of acquisition parameters, quantifying

the information content of the acquisition parameters and allowing informed parameter

selection.

The information theory framework was tested on synthetic data generated from a rep-

resentative mathematical phantom, measurements acquired on a qMRI multiparametric

imaging standard phantom, and in vivo measurements in a human brain. The applica-

tion of this information theory framework resulted in successful parameter optimization

with respect to mutual information. Both the phantom and in vivo measurements

showed that higher mutual information calculated by the model correlated with smaller

standard deviation in the reconstructed parametric maps.

With this framework, optimal acquisition parameters can be selected to improve image

quality, image repeatability, or scan time. This method could reduce the time and labor

necessary to achieve images of the desired quality. Making an informed acquisition

parameter selection reduces uncertainty in the imaging output and optimizes information

gain within the bounds of clinical constraints.
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Chapter 1

Introduction

Quantitative MRI is a single MRI quantification scan which measures physical properties.[1–

5] Synthetic MRI methods allow conventional contrast images to be synthesized in post-

processing using any combination of repetition time (TR), echo time (TE), and inversion

time (TI). The ability to synthesize images reduces the scan time required to produce

multiple series of different contrast weightings. Furthermore, the quantitative images

produced by synthetic MRI provide additional diagnostic utility. Current acquisition

parameters—the quantities which determine the acquisition sequence, such as flip angle,

TR, TE, and delay times—are selected based on a combination of simple models and ex-

perience. As an alternative, this work proposes a quantitative framework using mutual

information to evaluate the information content[6] of quantitative MRI acquisitions and

to guide optimization of acquisition parameter selection for multi-parameter mapping.

In conventional MRI, diagnosis relies on comparison of relative image intensities,

since absolute image intensity cannot by itself be used for this purpose. This usually

necessitates several different contrast scans. Quantitative MRI addresses these shortcom-

ings by allowing a pixel-wise examination of pathology to determine absolute deviation

1
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from normal values.[1] It allows direct material identification by simultaneous quantifi-

cation of multiple parameters, e.g. cancer cells from T1, T2, and self-diffusion tensor

changes. However, many existing methods require clinically unacceptable scan times,

and current fast methods have a narrow range of accuracy or employ fitting algorithms

which require high SNR to obtain adequate estimates.

Information theory can address these drawbacks. This work aims to obtain a quan-

titative understanding of the information content of the acquisition parameters. Making

an informed acquisition parameter selection instead of an empirical selection reduces the

uncertainty in model output or optimizes information gain for fixed time. Measurements

of an event with less entropy are by definition more repeatable. In other words, for given

clinical constraints, acquisition parameters can be selected which maximize synthetic

MRI repeatability. This gives the greatest consistency to post-processed synthetic MR

images, automatic segmentation results, and diagnoses made from quantitative images.

Toward this goal, a quantitative framework is developed using mutual information

to evaluate acquisition parameter selection for the optimization of multi-parameter map-

ping. An important feature of this framework is that it is application agnostic. It should

be applicable to most clinical modeling problems and could provide a quantitative un-

derstanding of model parameter information content in clinical image reconstruction,

treatment planning, and other applications.

1.1 Hypothesis

The hypothesis of this research is that quantitative parameter optimization

via information theory significantly reduces the variance of reconstructed
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parametric map values in quantitative MRI. The hypothesis will be tested through

completion of the following three specific aims:

1.2 Specific Aims

Specific Aim 1: Design and validate information theory framework to quan-

tify information gain of quantitative MRI acquisitions with variable acquisi-

tion parameters.

This information theory approach models uncertainties in image subject properties

and measurement accuracy as probability distributions. These uncertainties propagate

through the model of measurement acquisition, allowing quantification of uncertainty

reduction as a function of controllable measurement parameters. This is ideally applied

to signal models which are nonlinear operators with no analytical solution to validate

the method, but it must first be validated on a model with a known analytical solution.

The working hypothesis in this aim is that mutual information can quantify the

information gain of an MRI acquisition and predict the optimal acquisition parameters

needed to maximize SNR of the measurement. To investigate this hypothesis, a spoiled

GRE sequence is modeled to compare information-optimized flip angle to the analytically

known Ernst angle, where SNR is maximum.

Specific Aim 2: Develop a computational methodology to quantify in-

formation content of 3D-QALAS acquisitions relative to a representative

synthetic brain model and validate in phantom.

To demonstrate feasibility of information optimization in 3D-QALAS, a synthetic

brain model is employed to represent the state of information in the system before image
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acquisition. Information gained through image acquisition with 3D-QALAS is computed

by Gauss-Hermite quadrature. Current 3D-QALAS reconstruction relies on empirical

parameter selection during acquisition, but these parameters can be quantitatively op-

timized by maximizing modeled information gain.

The working hypothesis of this aim is that information-optimized acquisition pa-

rameters for a 3D-QALAS signal model correlate to smaller variances in reconstructed

parametric maps. To test this hypothesis, reconstruction accuracy will be compared

between optimal and sub-optimal acquisitions of phantoms with known T1 and T2 val-

ues. Theoretical reconstruction uncertainty reduction will be quantified for information-

guided acquisition parameters.

Specific Aim 3: Develop a computational methodology to optimize con-

ditional information gain of 3D-QALAS acquisitions relative to low-information

tuning acquisitions of the image subject and validate both in phantom and

in vivo.

A more flexible and accurate implementation of this information optimization must

select a more representative model of the state of information in the system before image

acquisition. A low-resolution tuning acquisition provides such a model. The conditional

form of mutual information is computed to allow optimization of subsequent measure-

ments with independent acquisition parameters. Conditional mutual information opti-

mization will be used to locate the most informative points in parameter space. The

information theory framework will quantify the information content of full-resolution

3D-QALAS acquisitions with updated acquisition parameters.

The working hypothesis of this aim is that information-optimized acquisition pa-

rameters for a 3D-QALAS signal model result in reduction of reconstructed parametric



Chapter 1. Introduction 5

map variance. To test this hypothesis, the variability of reconstructed parametric maps

as a function of acquisition parameters will be predicted by conditional mutual informa-

tion in a phantom with known T1 and T2 values. Additionally, an information-optimized

acquisition of a human brain will be compared to an acquisition with default clinical

parameters.

1.3 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 covers background infor-

mation about synthetic MRI, the role of quantitative MRI in diagnostic imaging, and

the importance of reproducibility testing for quantitative imaging modalities. Chapter

3 reviews relevant concepts from information theory. Chapters 4, 5, and 6 detail the

completion of Specific Aims 1, 2, and 3, respectively. Chapter 7 draws conclusions from

this work. Appendix A defines important terms used throughout this work. Appendix

B defines mathematical symbols and conventions used consistently across chapters. Ap-

pendix C gives mathematical derivations omitted from the main chapters.



Chapter 2

Quantitative MRI

2.1 Introduction

Quantitative magnetic resonance imaging refers to the parametric mapping of mean-

ingful physical or chemical properties, such as proton density, relaxation times, and B1

inhomogeneity.[1–5, 7] This differs from the qualitative images of conventional MRI,

the image values of which possess no inherent meaning except relative to one another.

When combined with other techniques like image synthesis and automatic segmentation,

it is sometimes referred to as SyMRI.[8] Quantitative MRI is poised to bring numerous

improvements to patient care through quantitative disease diagnoses, more robust au-

tomatic segmentation, and generation of synthetic images in post-processing.[1]

2.2 Relaxometry

The principles of quantifying relaxation times have been employed for decades.[9] Dozens

of studies and methods have been performed to achieve rapid quantification of proton

6
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density (PD), R1, R2, or R2* individually.[10–22] Several recent methods have simul-

taneously quantified PD, R1, and R2, including quantification of relaxation times and

proton density by multiecho acquisition of a saturation-recovery using turbo spin-echo

readout (QRAPMASTER),[1, 23] magnetic resonance fingerprinting,[24] and inversion-

recovery true fast imaging with steady state precession (IR TrueFISP).[25]

The most significant hurdles to widespread clinical implementation have been ex-

cessive scan time and lack of clinical experience with directly interpreting absolute PD,

T1, and T2 maps. Previous multi-parameter mapping approaches have required 20–25

minutes to perform with partial parallel imaging.[26, 27] Substantial progress in recent

years has allowed the absolute quantification of T1, T2, proton density, and B1 inhomo-

geneity in 5 minutes.[1, 28, 29] However, fast methods must employ fitting algorithms

that require a high signal-to-noise ratio to produce acceptable results and are accurate

only within a limited range of inputs.[30]

2.2.1 QRAPMASTER

QRAPMASTER is a widely used quantitative MRI pulse sequence that functions by re-

peating two phases: a slice-selective saturation pulse followed by spoiling acting on one

slice and a slice-selective turbo spin-echo acquisition of a second, different slice. Variable

delays between the execution of each phase on one specific slice render a matrix of mea-

surements that is used to retrieve R1 and R2 relaxation times through a least squares

fit. Local B1 field estimation is also possible due to the use of the saturation pulse (R1

curve position depends on B1). R1, R2, and B1 are then used to estimate unsaturated

magnetization M0.[1] Simultaneous quantification of these parameters results in para-

metric maps which are automatically coregistered with one another, which is a distinct

advantage over earlier methods that required separate scans for each parameter. The



Chapter 2. Quantitative MRI 8

QRAPMASTER reconstruction assumes monoexponential decay for the computation

of R1 and R2, but multiexponential decay may cause errors near CSF interfaces.[31]

Nevertheless, the method meets accuracy and reproducibility requirements for clinical

use.[23]

2.2.2 3D-QALAS

A pulse signal of particular interest and used as a signal model in this work is 3D-

QALAS (3D-Quantification using an interleaved Look-Locker acquisition sequence with

T2 preparation pulse).[32] 3D-QALAS is a novel technique based on a multi-acquisition

3D gradient echo sequence. The sequence takes place in a T2 sensitization phase and

a T1 sensitization phase. During the T2 sensitization phase, a series of pulses encode

T2 relaxation on the Mz axis, and a gradient echo acquisition is performed. In the T1

sensitization phase, an inversion pulse is applied, and then four gradient echo acquisitions

are performed as the longitudinal magnetization relaxes. M0, T1, and T2 parametric

maps are fitted to these measurements from the five gradient echo acquisitions. The

original application of 3D-QALAS is rapid cardiac mapping, but it may be adapted for

3D multi-parameter quantification in the brain with different timing constraints.

2.3 Post-Processing Utility

In addition to the diagnostic benefits, synthetic 3D MRI could fundamentally alter MRI

workflow.[29] Ideally, only a single quantification scan is required, replacing survey and

reference scans, as well as various contrast images at different orientations, potentially

reducing MRI scanning and planning times. As with CT, images with the preferred

contrast and orientation would be generated in post-processing.
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2.3.1 Tissue Segmentation

Absolute parametric maps have also led to improvements in automatic tissue segmen-

tation. Accurate segmentations for volume calculations are important in several dis-

eases, including multiple sclerosis,[33] Alzheimer disease,[34] and vascular dementia.[35]

Quantitative MR images have been found to make automatic segmentation results more

robust.[36, 37] There is no need to normalize signal intensities as with segmentation

done from conventional MR images,[38–40] and furthermore, absolute parametric maps

are not affected by several machine and pulse sequence imperfections.[1] Segmentations

performed with multiple contrasts[39] can model intra-voxel tissue type mixtures, which

mitigates partial volume errors.[41] An automatic segmentation method is currently in

use that uses quantitative outputs from the QRAPMASTER sequence[42] and has been

found to have good repeatability.[43] It uses absolute parametric maps to develop lookup

tables of tissue values corresponding to mixtures of brain tissues.[42] Addition of artifi-

cial noise gave relaxation times and proton density representative distributions in order

to define confidence intervals.[44] Separate lookup tables are needed for 1.5T and 3.0T

scanners, but segmentations from the two methods showed good agreement.[45–47]

2.3.2 Synthetic Image Synthesis

PD, T1, and T2 parametric maps are unlikely to be used clinically as the sole diagnostic

tool for the time being simply because there is little experience making diagnoses from

these images.[1] However, synthetic image synthesis can mimic the contrast weight-

ings that radiologists see routinely, and studies have shown good agreement between

diagnoses made on synthetic and conventional MRI.[48, 49] A wide range of contrast

weightings can be achieved, as well as inversion recovery and double inversion recovery
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images.[50–52] Contrasts can be customized to specific diseases[51] or to highly variable

tissue properties, such as developing brains in pediatric imaging.[48] Synthetic MRI can

allow shorter scan times by replacing multiple conventional acquisitions selected to pro-

vide multiple contrast weighting of diagnostic interest. This can be particularly useful

when imaging time is limited or when patients require shorter scan times.[53] Rapid gen-

eration of synthetic images in post-processing is now possible and has greatly improved

the clinical feasibility of this approach.[49, 54]

2.3.3 Magnetic Resonance Spectroscopy

Absolute metabolite concentrations cannot be calculated from conventional magnetic

resonance spectroscopy. Instead, the ratios of metabolite concentrations relative to

creatine are usually produced.[55] Quantification of spectroscopy results is valuable,

because it reduces variations in the relative ratios as a function of age and other factors

such as multiple sclerosis,[56, 57] as well as obviating the need for external reference

phantoms.[58, 59] It is possible to calibrate magnetic resonance spectroscopy results

using quantitative MRI by exploiting correlations of various metabolites with relaxation

parameters and water concentration.[60]

2.3.4 Physical Models

Absolute-valued PD, T1, and T2 from quantitative MRI can be used to construct more

complex models of physical tissue properties. Of particular importance are models

of myelin content and edema, which are useful in the evaluation of multiple sclerosis.

Several methods exist to construct such models,[48, 61, 62] and efforts have been made

to include myelin modeling in the SyMRI workflow.[63] Quantitative comparison of brain
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anatomy is also made possible through spatial normalization of parametric maps into a

standardized stereotactic space.[64] This allows development of a repository of healthy

brain data for which anatomical differences are eliminated. Such an approach could

improve automated diagnosis of disease.

2.4 Clinical Applications

Magnetic resonance imaging methods that simultaneously quantify multiple parame-

ters enable new diagnostic approaches—for example, the identification of cancer cells

on the basis of T1, T2, and self-diffusion tensor changes.[24] Normal brain tissues pos-

sess relatively small ranges of T1, T2, and PD values,[65, 66] but pathological tissues

deviate significantly from normal values.[1] Dozens of diagnostic applications have been

investigated across a wide range of diseases.

2.4.1 Brain Metastases

Quantitative MRI has been used previously in the evaluation of brain metastases.[67] T1-

weighted and T1-weighted inversion recovery images have historically had the greatest

diagnostic utility for this purpose.[68] Hagiwara[50] et al. have compared diagnoses

of brain metastases between synthetic and conventional MR images and found that

more lesions were detected with synthetic T1-weighted inversion recovery than with its

conventionally acquired counterpart.
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2.4.2 Multiple Sclerosis

Multiple sclerosis is perhaps one of the diseases most amenable to analysis by quanti-

tative MRI. Detection and evaluation of multiple sclerosis via quantitative imaging has

already been achieved in several studies.[30, 69, 69–72] Treatment effectiveness is often

evaluated by detecting new or progressing focal lesions.[73] Compared to conventional

methods, synthetic MRI has been found to enable detection of a greater number of

multiple sclerosis plaques.[37, 74–76] Two contrasts that are known to be effective for

locating multiple sclerosis plaques—phase-sensitive inversion recovery and double inver-

sion recovery images—are often not acquired due to time constraints. However, they

can be synthetically generated in post-processing from absolute parametric maps.[51]

Analyses of brain tissue segmentations have found that brain parenchymal fraction is

an important biomarker in multiple sclerosis.[77–79] It is a predictor of patient out-

come, including disability and relapsing-remitting disease,[80] and thus accurate and

reproducible volumetric analysis is critical.

2.4.3 Other Diagnostic Utilities

The quantification of tissue relaxation times and proton density has been used in the de-

tection and staging of many other diseases: epilepsy,[81] Parkinson disease,[82] Alzheimer

disease,[29] meningitis,[83–85] thalassemia,[86, 87] Sturge-Weber syndrome,[50, 52, 88,

89] and idiopathic normal pressure hydrocephalus.[90–92] It has also been utilized in the

general characterization of lesions[93, 94] and trauma,[95] for monitoring response to

radiation therapy[96], for assessment of atherosclerotic plaques,[97] and for rapid quan-

tification of metabolites in spectroscopic imaging.[98] Additionally, postmortem imaging

is most commonly performed with CT,[99] but whole-body quantitative MRI[100] offers
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better soft tissue discrimination.[101] It is necessary to perform temperature corrections

so the tissue properties of dead tissues approximate those of tissues in living patients

before synthetic images are generated.[102–105]

2.5 Performance of Quantitative Imaging

Synthetic MRI is an important technology with promising diagnostic applications, and

it is imperative to quantitatively address of images produced by this method. This work

addresses variability in 3D-QALAS, in particular. In general, the framework developed

herein may be used to predict repeatability or reproducibility as a function of manually

selected acquisition parameters for a wide range of imaging modalities and acquisition

schemes.

Variability is a key concern in all quantitative imaging modalities. It is central to

the mission statement of the Quantitative Imaging Biomarkers Alliance[106, 107], which

is to ”improve the value and practicality of quantitative imaging biomarkers by reduc-

ing variability across devices, patients, and time.”[108] The metrology papers[108–112]

put forth by QIBA outline terminology and methods for standardizing and optimizing

performance evaluations of quantitative imaging biomarkers (QIBs).

Two accepted metrics of QIB performance are repeatability and reproducibility. Re-

peatability concerns measurement precision under identical testing conditions, whereas

reproducibility concerns measurement precision under varying testing conditions, e.g.

scanner, location, operator, or institution.[113]

The standardized metrics of repeatability and reproducibility suggested by Raunig[111]

et al. include the repeatability coefficient (RC) and the reproducibility coefficient (RDC).
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These coefficients are defined as the least significant difference between two measure-

ments in a repeatability or reproducibility experiment, respectively. Alternatively, they

can be understood as the width of the 95% confidence interval on the measurement

distribution in these experiments. The repeatability coefficient (RC) is given by

RC = 1.96
√

2s2
w = 2.77sw, (2.1)

where s2
w is an estimate of σ2

w, the within-subject variance.[111] The reproducibility

coefficient (RDC) is given by

RDC = 2.77
√
σ2
δ + σ2

γδ + σ2
ε , (2.2)

where σ2
δ is the site variance, σ2

γδ is the case by site variance, and σ2
ε is the variance

between replicates within site and case.[111]

The guiding principles of QIBA have been implemented in variability studies across

many quantitative imaging modalities, including dynamic contrast-enhanced (DCE)

MRI,[114, 115] functional MRI (fMRI),[116, 117] MR elastography,[118] computed to-

mography (CT),[119–129] fluorodeoxyglucose 18F positron emission tomography (FDG

PET),[130, 131] PET/CT,[132–137] and ultrasound elastography.[138, 139] Additional

studies have demonstrated that variability in imaging protocols impacts reported progression-

free survival results[140] and used Monte Carlo simulation to determine the threshold

between measurement error and real change in the patient.[141]
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2.6 Application of Information Theory

Acquisition parameters—the quantities that determine the acquisition sequence, such

as excitation angle, TR, TE, and delay times—are currently selected on the basis of a

combination of simple models and experience. As an alternative, this work develops a

quantitative framework using mutual information to evaluate the information content[6]

of quantitative MRI measurements and to guide acquisition parameter selection for the

optimization of multi-parameter mapping.

The information theory framework addresses the accuracy requirements of fast

methods and seeks to improve reproducibility. Development of this framework involved

derivation of a numerical method to compute mutual information of a complex MRI

pulse sequence model as well as an optimization method for parameter selection.

In this work, a quantitative understanding is obtained of the effect of information-

theory-optimized acquisition parameters on the accuracy and reproducibility of quanti-

tative tissue measurements. It was found that making an informed acquisition parameter

selection instead of an empirical selection reduces uncertainty in model output and op-

timizes information gain for fixed time. These improvements are relevant to the clinic:

for given clinical constraints, acquisition parameters can be selected that maximize syn-

thetic MRI reproducibility, increasing the confidence with which one can make diagnoses

based on quantitative images. Finally, the information theory framework is application

agnostic: it is expected to be applicable to most clinical modeling problems as well as

to clinical image reconstruction and treatment planning.
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Information Theory

3.1 Introduction

Information is often understood as the resolution of uncertainty.[142] The information

entropy of an event is a measure of how much information it contains. An event that is

nearly certain to occur possesses very little information, so greater information gain re-

sults from events with greater information entropy. These quantities have long been used

in myriad signal processing and communications applications. Unsurprisingly, informa-

tion theory intersects with imaging science and imaging physics as well, and its tools

find a natural place in many imaging modeling problems. Mutual information[143] is the

optimization metric used in conjunction with stochastic modeling[144] of the magnetic

resonance imaging acquisitions in this work.

16
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3.2 Mutual Information

The reduction in variance from a measurement is quantified using an information theory

concept called mutual information. Mutual information is a quantity which describes

the amount of information one random variable contains about another random variable.

More intuitively, it is the reduction in one random variable’s entropy due to knowledge

of another variable. It is helpful to visualize mutual information as a Venn diagram of

entropies for simple distributions (Figures 3.1 and 3.2). Generally, for some total entropy

of a joint probability function of measurements and parametric maps, the entropy of the

parametric map distribution is reduced by a known measurement to a smaller entropy.

This reduction is mutual information.

Mutual information can be understood intuitively by applying it to a simple exam-

ple, such as flipping two coins. Consider two fair coins flipped one after another (Figure

3.1). It is assumed that the second coin is equally likely to land on either side. Flipping

the first coin gives no information about the outcome of the second coin flip. Thus,

mutual information between the two is zero.

Now, consider two unfair coins flipped one after another (Figure 3.2). These coins

land on one side 75% of the time. It is not known beforehand which side they favor, so

it can only assumed that both outcomes are equally likely. Because landing on one side

is actually more probable, the first coin flip gives some information about the second.

So, mutual information is greater than zero.

In imaging, acquiring a measurement is like flipping the first coin. The goal is

to learn as much as possible about the distribution of image values, or analogously the

distribution the second coin flip results, despite having an imperfect measurement due to

machine noise and other factors. Acquisition parameters should be selected that are akin
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Figure 3.1: Fair coin flip example. Two coins are flipped sequentially, both with equal
probability of landing on either side. The first coin provides no information about the

second, so mutual information between the events is zero.

Figure 3.2: Unfair coin flip example. Two coins are flipped sequentially, both with
75% chance of landing on one side. The favored side is not known beforehand. The
first coin flip now provides some information about the second, so mutual information

between the two events is greater than zero.
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to flipping the most unfair coin possible. Recall that information can be defined as the

resolution of uncertainty.[142] Information known about an event reduces its uncertainty.

In imaging applications, mutual information measures how much the measured signal

reduces entropy of reconstructed image parameters, which correlates with reduction of

the variance of reconstructed image parameters.

For an uninformative set of acquisition parameters, mutual information is small,

and the variance of reconstructed parametric maps is large. Figure 3.3 illustrates a

scenario in which a suboptimal 3D-QALAS acquisition is performed. Figure 3.3a shows

a representation of the longitudinal magnetization in a 3D-QALAS acquisition with

suboptimal acquisition parameters. Each of the five measurements is shown as a red x.

The machine noise that corrupts the measurements is represented as a set of error bars

on each measurement. The second, third, fourth, and fifth measurements are used to fit

the longitudinal relaxation curve and determine T1. The fact that the third, fourth, and

fifth measurements occur after most of the longitudinal relaxation has already occurred

make this acquisition spacing highly suboptimal. The Venn diagram in Figure 3.3b shows

the relationships between entropies resulting from the information theory modeling of

the acquisition depicted in Figure 3.3a. In Bayesian terms, the entropy of the prior

distribution of quantitative parameters of the image subject is illustrated by the red

outline. These are the assumed distributions of the quantitative parameters before any

imaging information is acquired. The entropy of the posterior distribution of quantitative

parameters of the image subject is illustrated by the red filled portion of the circle. These

are the information-model-predicted distributions of the quantitative parameters after

imaging information is acquired. This entropy is reduced increasing mutual information

(the purple filled portion of the circle). Thus, mutual information acts as a measure

of acquisition optimality by its relationship to predicted entropy of the quantitative
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parameters of the image subject. Figure 3.3c shows a synthetic reconstruction of the

T1 map (right) from the previous suboptimal acquisition in Figure 3.3a. The image is

visibly noisy. It is important to note that this is the result of relatively high uncertainty

in the reconstruction of the quantitative parameters of the image subject and not a

result of increased electronic or machine noise. The probability density functions (left)

show the spread of reconstructed M0, T1, and T2 values in gray matter for the synthetic

reconstruction. The spread of these values can be quantified by standard deviation (or

higher order moments for more general distributions). The entropy of these distributions

for one acquisition relative to another is predicted by the mutual information of the

information theory model for that acquisition relative to the other.

Alternatively, the greatest mutual information exists for the set of acquisition pa-

rameters for which a measurement produces M0, T1, and T2 maps with the least entropy.

Mutual information can be optimized over this acquisition parameter space to find the

optimal set of parameters. Figure 3.4 illustrates a scenario in which an optimal 3D-

QALAS acquisition is performed. Figure 3.4a shows a representation of the longitudinal

magnetization in a 3D-QALAS acquisition with optimal acquisition parameters. Each

of the five measurements is shown as a red x. The machine noise that corrupts the

measurements is represented as a set of error bars on each measurement. The second,

third, fourth, and fifth measurements are used to fit the longitudinal relaxation curve

and determine T1. The fact that the second, third, fourth, and fifth measurements

are well-spaced across the relaxation curve make this acquisition spacing more optimal

than the suboptimal acquisition example. The Venn diagram in Figure 3.4b shows the

relationships between entropies resulting from the information theory modeling of the

acquisition depicted in Figure 3.4a. In Bayesian terms, the entropy of the prior distri-

bution of quantitative parameters of the image subject is illustrated by the red outline.
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(a) (b)

(c)

Figure 3.3: Representation of a suboptimal 3D-QALAS acquisition. (A) Longitudinal
magnetization in a 3D-QALAS acquisition with suboptimal acquisition parameters.
Each of the five measurements is shown as a red x. The machine noise that corrupts
the measurements is represented as a set of error bars on each measurement. (B) Venn
diagram showing the relationships between entropies resulting from the information
theory modeling of the acquisition depicted in (A). In Bayesian terms, the entropy of
the prior distribution of quantitative parameters of the image subject is illustrated by
the red outline. The entropy of the posterior distribution of quantitative parameters
of the image subject is illustrated by the red filled portion of the circle. This entropy
is reduced increasing mutual information (the purple filled portion of the circle). (C)
Synthetic reconstruction of the T1 map (right) from the previous suboptimal acquisition
in (A). The probability density functions (left) show the spread of reconstructed M0,

T1, and T2 values in gray matter for the synthetic reconstruction.
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These are the assumed distributions of the quantitative parameters before any imaging

information is acquired. The entropy of the posterior distribution of quantitative pa-

rameters of the image subject is illustrated by the red filled portion of the circle. These

are the information-model-predicted distributions of the quantitative parameters after

imaging information is acquired. This entropy is reduced increasing mutual information

(the purple filled portion of the circle). Thus, mutual information acts as a measure of

acquisition optimality by its relationship to predicted entropy of the quantitative pa-

rameters of the image subject. Compared to the previous figure, mutual information

is greater, and the entropy of the posterior distribution is lesser. Figure 3.4c shows a

synthetic reconstruction of the T1 map (right) from the previous suboptimal acquisition

in Figure 3.4a. The image is visibly less noisy than the corresponding image in the pre-

vious figure. It is important to note that this is the result of relatively low uncertainty in

the reconstruction of the quantitative parameters of the image subject and not a result

of decreased electronic or machine noise. The probability density functions (left) show

the spread of reconstructed M0, T1, and T2 values in gray matter for the synthetic

reconstruction. The spread of these values can be quantified by standard deviation (or

higher order moments for more general distributions). The entropy of these distribu-

tions for one acquisition relative to another is predicted by the mutual information of

the information theory model for that acquisition relative to the other.

3.3 Information Theory Metrics

3.3.1 Mutual Information

Mutual information can be understood as the expected value of the Kullback-Leibler

divergence between two distributions[143]. For two discrete random variables, X and
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(a) (b)

(c)

Figure 3.4: Representation of an optimal 3D-QALAS acquisition. (A) Longitudinal
magnetization in a 3D-QALAS acquisition with optimal acquisition parameters. Each
of the five measurements is shown as a red x. The machine noise that corrupts the
measurements is represented as a set of error bars on each measurement. (B) Venn
diagram showing the relationships between entropies resulting from the information
theory modeling of the acquisition depicted in (A). In Bayesian terms, the entropy of
the prior distribution of quantitative parameters of the image subject is illustrated by
the red outline. The entropy of the posterior distribution of quantitative parameters
of the image subject is illustrated by the red filled portion of the circle. This entropy
is reduced increasing mutual information (the purple filled portion of the circle). (C)
Synthetic reconstruction of the T1 map (right) from the previous optimal acquisition
in (A). The probability density functions (left) show the spread of reconstructed M0,
T1, and T2 values in gray matter for the synthetic reconstruction. The dashed lines
show the probability distribution functions resulting from the suboptimal acquisition

in Figure 3.3.
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Y , with joint probability distribution p(x, y) and marginal probability distributions p(x)

and p(y), mutual information between X and Y is defined

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
. (3.1)

Similarly, if X and Y are continuous random variables, mutual information between X

and Y is

I(X;Y ) =

∫
y

∫
x
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy. (3.2)

Mutual information may also be defined in terms of the difference of entropies:

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ). (3.3)

This definition is the most closely related to the qualitative understanding of mutual

information as the reduction of uncertainty in one random variable given knowledge of

another random variable. The derivation for this definition is shown in Section C.1.1 in

Appendix C.

3.3.2 Joint Mutual Information

It is also necessary to define the joint mutual information between one random variable,

X, and a pair of random variables, Y and Z. For discrete random variables, the joint

mutual information is

I(X;Y,Z) =
∑
z∈Z

∑
y∈Y

∑
x∈X

p(x, y, z) log

(
p(x, y, z)

p(x)p(y, z)

)
. (3.4)
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For continuous random variables, the joint mutual information is

I(X;Y, Z) =

∫
z

∫
y

∫
x
p(x, y, z) log

(
p(x, y, z)

p(x)p(y, z)

)
dxdydz. (3.5)

A similar definition in terms of the difference of entropies is again possible:

I(X;Y, Z) = H(Y, Z)−H(Y,Z|X) = H(X)−H(X|Y,Z). (3.6)

The derivation for this definition is shown in Section C.1.2 in Appendix C.

3.3.3 Conditional Mutual Information

Finally, it is necessary to define the conditional mutual information between random

variables X and Y given random variable Z. For discrete random variables, the condi-

tional mutual information is

I(X;Y |Z) =
∑
y∈Y

∑
x∈X

p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
. (3.7)

For continuous random variables, the conditional mutual information is

I(X;Y |Z) =

∫
y

∫
x
p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
dxdy. (3.8)

A similar definition in terms of the difference of entropies is again possible:

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) = H(X|Z)−H(X|Y,Z). (3.9)

The derivation for this definition is shown in Section C.1.3 in Appendix C.
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3.3.4 Conditional Mutual Information Relationships

Several generalized conditional mutual information relationships can be derived for a

new measurement, z, given N previous measurements, d1, . . . , dN .

I(η; z|d) = H(η|d)−H(η|z, d) (3.10)

I(η; z|d) = H(η)− I(η; d1)−
N∑
i=2

I(η; di|di−1, . . . , d1)−H(η; z, d) (3.11)

I(η; z|d) = I(η; z, d)− I(η; d1)−
N∑
i=2

I(η; di|di−1, . . . , d1) (3.12)

I(η; z|d) = I(η; z, d)− I(η; d) (3.13)

These relationships are derived in full in Section C.1.4 in Appendix C.

3.4 Numeric Methods

The information theory framework uses mutual information as an objective function.

Computation of mutual information is an expensive high-dimensional integration prob-

lem requiring careful consideration of available numeric methods. Numerical integration

of multivariate functions has been accomplished by several methods which are largely

independent of the problem dimension, each of which is well-suited to certain function

classes.[145] These methods include Monte Carlo and Quasi-Monte Carlo[146], lattice

rules[147], adaptive subdivision[148, 149], and neural network approximation[150].

For mutual information calculation in particular, several integration and sampling

methods have been employed. For special cases and simplified parameter estimation

problems, conjugate priors [151], binary models[152], and linear Gaussian models[153]
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have been used to compute evidence analytically. Numerical quadrature [154] has been

used to approximate the posterior and evidence in order to calculate mutual information.

Sequential Monte Carlo algorithms have been used to approximate the posterior and

evidence for parameter estimation problems[155]. Importance sampling has been used

in a computationally expensive method to determine Kullback-Leibler distance between

prior and posterior distributions [156]. The same Kullback-Leibler distance has also

been calculated by polynomial chaos approximation[157, 158] and nested Monte Carlo

integration[159, 160].

Calculation of posterior variance can be accomplished through filters for param-

eter and state estimation. This has already been accomplished using the Kalman

filter[6]. Several additional filters could be applied to this problem[161], including lin-

ear Gaussian filters (modified Kalman filter[162]), nonlinear Gaussian filters (extended

Kalman filter[163], unscented Kalman filter[164], Gauss-Hermite filter[165, 166], quadra-

ture Kalman filter[165], cubature Kalman filter[167]), adaptive filtering (adaptive filter

with gain adaptation [168, 169], multiple models adaptive filtering [170–172]), and robust

filtering (robust Kalman filter[173], variable structure filtering, H∞ filtering[174]).

The dimensionality of problems can be mitigated by Smolyak’s construction (also

called discrete blending method, Boolean method, or sparse grid method) for special

function classes. Cubature can be performed by combinations of tensor products of one-

dimensional quadrature formulas. This allows the number of function evaluations to be a

logarithmic function of the problem dimensionality[145]. Different one-dimensional basis

rules have been used to accelerate numerical integration, including the midpoint rule, the

rectangle rule [175], the trapezoidal rule, the Clenshaw-Curtis rule [176, 177], and Gauss

rules[145, 178]. The Newton-Cotes formulas use equidistant abscissas. Weights are
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obtained from integrating Lagrange polynomials. For large numbers of points, Newton-

Cotes formulas become numerically unstable. Because of this, the usual application

is iterated versions of low degree formulas[175]. Clenshaw-Curtis formulas use non-

equidistant abscissas obtained from the Chebyshev polynomials and are numerically

more stable. If extreme points are used, the quadrature formulas are nested[179]. For

Gauss formulas, the abscissas are determined from Legendre polynomials and the weights

from integrating associated Lagrange polynomials. They are usually not nested, but they

have the maximum possible polynomial degree of exactness[145]. Patterson[180] iterated

Kronrod’s Gauss quadrature extension formula recursively to retain maximal degree of

exactness. The result was a sequence of nested quadrature formulas. It is not clear

whether Patterson extensions exist for large numbers of cubature points.

Approximation of posterior distributions can be accelerated by combining varia-

tional inference and Markov Chain Monte Carlo[181]. Multi-index Monte Carlo (MIMC)

is an extension of multilevel Monte Carlo (MLMC) and a stochastic version of a sparse

combination technique[182]. Multifidelity methods have been applied to several prob-

lems in uncertainty propagation and optimization. Low-fidelity methods include sim-

plified models (natural problem hierarchies, early-stopping criteria, coarse-grid approx-

imations), projection-based models (proper orthogonal decomposition (POD), reduced

basis method, Krylov subspace methods), and data-fit models (interpolation/regression,

kriging, support vector machines)[183]. Multifidelity model management uses adaption,

fusion, or filtering to either combine information from low- and high-fidelity models or re-

duce the number of high-fidelity model computations required. Efficient global optimiza-

tion (EGO) is a multifidelity method used in optimization problems. The low-fidelity

model is a kriging method. Kriging approximates a high-fidelity model as a stochas-

tic process fhi ≈ b + ε(z). b ∈ R is either the mean of the stochastic process or some
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function depending on the input. ε(z) is a normally distributed stochastic process. ε sim-

ulates uncertainty caused by limited samples from the high-fidelity model[184]. Efficient

global optimization employs surrogate-based optimization and multifidelity trust-region

methods[185–190].



Chapter 4

Development and Verification of

an Information Model

4.1 Introduction

In this chapter, an information theory framework for quantifying information content of

imaging acquisitions is designed and introduced. This approach is verified on a spoiled

gradient echo sequence, which is well-understood. The flip angle which maximizes signal

intensity, called the Ernst angle, is known analytically. Thus, flip angle is a prime

candidate for optimization by maximizing information gain of the acquisition. The

information-optimized flip angle is compared to the analytically calculated Ernst angle,

and their agreement is analyzed.

30
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4.2 Theory

This section will describe in general terms the framework used to model an image subject

and an image acquisition method. It will then demonstrate two methods of computing

mutual information between modeled biological uncertainties in the image subject and

measurement uncertainties in the acquisition method as a function of acquisition pa-

rameters.

For brevity and clarity, throughout this work the function N (x|m,Σ) will be used

to represent a multivariate normal probability density function of N -dimensional random

vector X with mean m and covariance matrix Σ.

N (x|m,Σ) =
exp

(
−1

2(x−m)TΣ−1(x−m)
)√

(2π)N |Σ|
(4.1)

4.2.1 General Problem Statement

Consider image subject x on image domain Ω:

x ∈ Ω. (4.2)

The image subject on domain Ω is defined by N mutually disjoint tissue labels, each of

which occupy their own subdomain, Ωn.

N⋃
n=1

Ωn = Ω (4.3)

Ωn ∩ Ωm = ∅ for n 6= m (4.4)
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Each tissue label has associated with it some multivariate distribution of physical tissue

properties, η. Thus, the distribution of physical tissue properties in the image subject

is

η(x) =

N∑
n=1

ηnUn(x), (4.5)

where Un is the indicator function for tissue label n:

Un(x) =


1 if x ∈ Ωn

0 if x /∈ Ωn

. (4.6)

Physical tissue properties are modeled based on the signal model selection for image

acquisition. For example, in a quantitative MRI acquisition η(x) = [M0(x), T1(x), T2(x)].

These physical properties may be selected to simulate independent tissues of interest

(white matter, gray matter, CSF, etc.) in each subdomain Ωn. The physical property

distributions are normally distributed about literature valuesmη with covariance matrix

Ση to simulate biological uncertainty in tissue properties.

p(η) = N (η|mη,Ση) (4.7)

mη =


mη1

...

mηN

 (4.8)
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Ση =



σ2
η1 0 . . . 0 0

0 σ2
η2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
ηN−1

0

0 0 . . . 0 σ2
ηN


(4.9)

These distributions are meant to encompass a range of feasible values that could be

measured in any human brain. They may be thought of as the distributions of parameter

values over a large population of human brains. Any individual brain likely has narrower

distributions of these parameter values, i.e. smaller “biological uncertainty.” If patient-

specific estimates of these distributions were known beforehand, they could serve as

assumed prior distributions. Because this is not possible, it is most appropriate to

model prior distributions after the range of values expected from a large population. 3D-

QALAS measurement data is used to justify the assumed form of the prior distribution

later in this chapter. It should be noted that the distribution of parameter values

retrieved by measurement can never be less than that resulting from the combined effects

of the true patient-specific biological uncertainty and the measurement uncertainty.

Image measurements z are generated by operating on the modeled physical prop-

erties of the image subject with the signal model G at some set of acquisition parameters

µ.

z = Gµ(η(x)) + ν = gµ + ν (4.10)

The modeled measurement gµ is corrupted by simulated measurement noise ν. Zero-

mean, normally distributed measurement noise is sufficient for many applications.

p(ν) = N (ν|0,Σν) (4.11)
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Σν =



σ2
ν1 0 . . . 0 0

0 σ2
ν2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
νN−1

0

0 0 . . . 0 σ2
νN


(4.12)

4.2.2 Gauss-Hermite Quadrature

The multi-dimensional integration required by mutual information is computed using

Gauss-Hermite quadrature. The dimensionality of this application is on the cusp of

what is computationally feasible for quadrature, but a deterministic method allowed

development of intuition for the quantities involved. More complex applications will

require stochastic methods, such as Markov chain Monte Carlo, to be computationally

feasible.

Gauss-Hermite quadrature approximates integrals of the form
∞∫
−∞

e−x
2
f(x)dx:

∞∫
−∞

e−x
2
f(x)dx ≈

N∑
i=1

ωif(xi). (4.13)

For n quadrature points, the function f is evaluated at xi, the roots of the physicists’

Hermite polynomial Hn. The associated Gauss-Hermite weights are defined

ωi =
2n−1n!

√
π

n2[Hn−1(xi)]2
. (4.14)

To numerically compute mutual information of high-dimensional uncertainties, it

is necessary to perform high-dimensional integration. Because uncertainties are often

modeled as normal distributions, it will be necessary to approximate the integration
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of the product of a multivariate normal probability density function and an arbitrary

function. If the change of variables

x =
1√
2

Σ−1(ξ − µ)⇔ ξ =
√

2Σx+ µ (4.15)

is made, the form of integrals approximated by Gauss-Hermite quadrature can be written

∞∫
−∞

(
(2π)2|Σ|

)−1/2
exp

(
−1

2
(ξ − µ)TΣ−1(ξ − µ)

)
h(ξ)dξ. (4.16)

In particular, it can be shown that integrating the product of some function h(ξ) and

an N -dimensional multivariate normal distribution with independent variables results

in the Gauss-Hermite quadrature approximation

∫
f(ξ|µ,Σ)h(ξ)dξ ≈ π−N/2

N∑
i1=1

ωi1 . . .

N∑
iN=1

ωiNh
(√

2Σx+ µ
)
. (4.17)

This approximation allows the computation of mutual information for models in which

uncertainties can be modeled as multivariate normally distributed random variables.

4.2.3 Linear Approximation

Computational expense can be saved by making the (often poor) assumption that the

signal model operator G is a linear operator. If this is true, the distribution p(z) may

be treated as normal.

I(η; z) = H(z)−H(z|η) =
1

2
ln
(
(2πe)2 · |Σz|

)
− 1

2
ln
(
(2πe)2 · |Σν |

)
(4.18)
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Conditional entropy H(z|η) is trivial to compute from the problem definition:

|Σν | =
D∏
i=1

σ2
ν,i. (4.19)

The full derivation of the covariance matrix of the evidence Σz is left for Section

C.2.1 in Appendix C, but the quadrature approximation of Σz is

Σz =

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))(√

2Σνxk + Gµ
(
ηq
))T

−
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))

·

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))T .

(4.20)

Approximation of mutual information is straightforward once the covariance matrix

Σz is known.

I(η; z) = H(z)−H(z|η) =
1

2
ln
(
(2πe)D · |Σz|

)
− 1

2
ln

(
(2πe)D

D∏
i=1

σ2
ν,i

)
(4.21)

For a scalar-valued measurement z, Equation 4.21 simplifies to the following:

I(η; z) =
1

2
ln

2πe

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

(√
2Σνxk + Gµ

(
ηq
))2

−

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

(√
2Σνxk + Gµ

(
ηq
))2

− 1

2
ln
(
2πeσ2

ν

)
.

(4.22)
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4.2.4 Nonlinear Computation

The signal model z is a nonlinear function of parameters η.

z = Gµ(η(x)) + ν (4.23)

The conditional probability p(z|η) is defined as a multivariate normal distribution

N(ξ|µ,Σ), a function of ξ with mean µ and covariance Σ, in the problem statement.

p (z|η) = N (z|Gµ(η(x)),Σν) (4.24)

Similarly, the probability p(η) is defined as another multivariate normal distribution in

the problem statement.

p (η) = N (η|mη,Ση) (4.25)

It is most straightforward to begin with mutual information defined as the difference in

entropies:

I(η; z) = H(z)−H(z|η) (4.26)

The entropy of a multivariate normal distribution is H(N) = 1
2 ln

(
(2πe)D det(Σ)

)
, so

the term H(z|η) can be immediately written

H(z|η) =
1

2
ln

(
(2πe)D

D∏
i=1

σ2
ν,i

)
. (4.27)

The term H(z), however, must be approximated through multiple applications of Gauss-

Hermite quadrature. This approximation is possible because H(z) may be represented
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in terms of distributions defined to be normal in the problem statement:

H(z) =

∫
p(z) ln (p(z)) dz

=

∫ (∫
p(z|η)p(η)dη

)
· ln
(∫

p(z|η)p(η)dη

)
dz

=

∫ (∫
N (z|Gµ(η),Σν)N (η|mη,Ση) dη

)
· ln
(∫

N (z|Gµ(η),Σν)N (η|mη,Ση) dη

)
dz.

(4.28)

The full derivation of the evidence entropyH(z) is left for Section C.2.2 in Appendix

C. The final result of quadrature approximation of H(z) is

H(z) = π−N/2−P/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 · · ·
KP∑
kP =1

ωkP

· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N
((√

2Σνxk + Gµ(ηq)
)∣∣∣Gµ(ηs),Σν

))
.

(4.29)

Thus, the computation of mutual information takes the following form:

I(η; z) = H(z)−H(z|η)

= π−N/2−P/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 · · ·
KP∑
kP =1

ωkP

· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N
((√

2Σνxk + Gµ(ηq)
)∣∣∣Gµ(ηs),Σν

))

− 1

2
ln

(
(2πe)D

D∏
i=1

σ2
ν,i

)
.

(4.30)
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For a scalar-valued measurement z, Equation 4.30 reduces to

I(η; z) = H(z)−H(z|η)

= π−N/2−1/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N
((√

2σνxk + Gµ(ηq)
)∣∣∣Gµ(ηs), σν

))

− 1

2
ln
(
2πeσ2

ν

)
.

(4.31)

4.3 Methods

4.3.1 Verification of Information Theory Framework

Linear and nonlinear methods for calculating mutual information are developed in Sec-

tion 4.2. Mutual information is used as the objective function in an acquisition parameter

optimization for a spoiled GRE pulse sequence. This sequence was selected to enable

comparison to an analytical optimum value and analysis of error in the information

optimization results.

The spoiled GRE pulse sequence is described mathematically by

g = M0
sinα(1− e−TR/T1)

(1− (cosα)e−TR/T1)
e−TE/T

∗
2 , (4.32)

where M0 is the fully relaxed longitudinal magnetization, α is the flip angle, TR is

repetition time, T1 is longitudinal relaxation time, TE is echo time, T ∗2 is effective

transverse relaxation time. The flip angle at which signal intensity is maximized is

called the Ernst angle.[191] This can be determined analytically by setting dg
dα = 0 from
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Equation 4.32. The result is

αE = arccos(e−TR/T1). (4.33)

Figure 4.1a shows the well-known relationship between the Ernst angle and the ratio

between TR and T1. Figure 4.1b shows signal intensity as a function of flip angle for two

different T1 relaxation times representative of white matter and cerebrospinal fluid. The

Ernst angles are located at the maxima of the two functions and can be seen to differ

for different tissue T1 values. Ernst angle can be calculated iteratively by maximizing

signal intensity, or equivalently if assuming constant noise, by maximizing SNR. Because

mutual information measures uncertainty reduction in the measured signal, it is inversely

correlated with noise and positively correlated with SNR. Thus, mutual information may

be used as the objective function in a flip angle optimization for a spoiled GRE sequence,

and the result can be expected to agree with the analytical Ernst angle.

(a) (b)

Figure 4.1: (A) Plot of the well-known relationship between the Ernst angle and the
ratio of TR and T1 for a spoiled GRE sequence. (B) Plot of the signal intensity in a
spoiled GRE sequence as a function of flip angle for characteristic values of two brain
tissues. T1 for white matter was set to 1000 ms. T1 for cerebrospinal fluid was set to

4000 ms. TR for the acquisition was selected to be 500 ms.

Figure 4.2 shows a flowchart illustrating the process by which information-optimized

flip angles are obtained. The image subject is simplified to a single tissue label consisting



Chapter 4. Development and Verification of an Information Model 41

Figure 4.2: Flow chart for the mutual information-based optimization of flip angle in
a spoiled GRE pulse sequence.

of a single voxel. The only relevant material properties for this acquisition model are the

longitudinal relaxation time T1 and the effective transverse relaxation time T ∗2 . Thus,

the general vector of material properties η is reduced to a two-dimension vector

η(x) =

 T1

T2

 . (4.34)

The prior uncertainty is generally described by the covariance matrix of the physical

properties η in all tissue labels. T1 and T ∗2 are assumed to be uncorrelated, so the
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covariance matrix is

Ση =

 σ2
T1

0

0 σ2
T ∗
2

 , (4.35)

where σ2
T1

is the T1 variance and σ2
T ∗
2

is the T ∗2 variance of the image subject. Signal

intensity is a function of three acquisition parameters:

µ =


α

TR

TE

 . (4.36)

Flip angle α is optimized for various fixed values of TR and TE. The signal model is

given previously in Equation 4.32. Because signal intensity is a real-valued scalar, the

measurement uncertainty is given as

Σν = σ2
ν , (4.37)

where σ2
ν is the variance of the simulated signal intensity due to modeled acquisition

error. The optimization itself is written

α∗(T1, TR) = argmin
α

I (η; z(µ))

= argmin
α

I (T1, T2; z(α, TR, TE))

≈ αE(T1, TR),

(4.38)

where α∗ is the information-optimized flip angle. The optimization was performed using

an interior point method with parameter values listed in Table 4.1. Mutual information

is calculated using Equation 4.21 for the nonlinear approximation or Equation 4.30 for

the full nonlinear solution.
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Optimization Parameter Value

mT ∗
2

(ms) 100

σT1 (ms) 100
σT ∗

2
(ms) 10

M0 1
TE (ms) 100
σν 0.05
Termination tolerance 1.0× 10−20

Optimality tolerance 1.0× 10−20

Finite difference step size 2.0× 10−26

Table 4.1: Optimization parameters used in calculating information-optimized flip
angle for both linear and nonlinear approaches.

Information-optimized flip angle and analytical Ernst angle are calculated for 81

T1 relaxation times evenly spaced between 600 ms and 1400 ms, inclusive, and 81 TR

values evenly spaced between 100 ms and 500 ms, inclusive. This results in 6561 points

of comparison with the known solution for each optimization method. The relative error

is plotted for the linear optimization for visual inspection of trends. The trends and

biases of optimization errors are analyzed more thoroughly through linear regression

and Bland Altman analysis.[192] The Bland Altman plot is recommended in QIBA

metrology by Raunig et al.[111] in order to show trends in variability of measurements

over the measuring interval.

4.3.2 Justification of Model Assumptions for 3D-QALAS

The assumption of independence between the nine variables of the prior distribution

(M0, T1, and T2 for gray matter, white matter, and CSF) is tested with simulated and

measured data. Given the multivariate normal prior distribution described previously,

the posterior distribution was sampled using ellipsoidal nested sampling.[193, 194] The

Pearson correlation coefficient is used to evaluate the strength of the correlation between

parameters:

ρi,j =
cov (ηi, ηj)

σηiσηj
. (4.39)
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Correlations between parameters are compared between simulated posterior distribu-

tions and real measurements from a 3D-QALAS acquisition.

4.4 Results

The information theory framework was successfully verified using a spoiled GRE signal

model. Simulated measurements made with the assumptions about the prior distribution

are shown to agree well with actual measured data.

4.4.1 Linear Approximation

To visualize the relationship between SNR and mutual information as functions of a

single acquisition parameter for a spoiled GRE sequence, a global search of these quan-

tities was performed over flip angles between 0◦ and 90◦. Figure 4.3a shows these results

for a single scenario with fixed T1 and TR at 1000 ms and 500 ms, respectively. The

analytical solution which maximizes SNR is 52.66◦, given by Equation 4.33. Maximum

mutual information was achieved at 53◦. Precision was limited by search grid resolution.

The correlation between SNR and mutual information is shown in Figure 4.3b. SNR

and mutual information are positively correlated.

Figure 4.4 shows a comparison of Ernst angle (Figure 4.4a) and information-

optimized flip angle (Figure 4.4b) for T1 values between 600 ms and 1400 ms and TR

values between 100 ms and 500 ms. The Ernst angle maximizes spoiled GRE signal

intensity for given T1 and TR, and it is calculated analytically from Equation 4.33.

Information-optimized flip angles are computed by solving the optimization problem



Chapter 4. Development and Verification of an Information Model 45

(a) (b)

Figure 4.3: (A) Comparison between SNR calculated from a spoiled GRE signal
model and mutual information calculated from an information theory model of the
spoiled GRE sequence. Calculations are performed for a single scenario where T1 is
1000 ms and TR is 500 ms. The signal model SNR is plotted against the left ordinate,
and the information model mutual information is plotted against the right ordinate.
The maxima of both are located at approximately 53◦. (B) Correlation between SNR

and mutual information. SNR and mutual information are positively correlated.

in Equation 4.38 and calculating mutual information as in Equation 4.21. Informa-

tion gain is quantified by mutual information between measurement and tissue property

uncertainties. Greater information gain corresponds to greater measurement SNR.

(a) (b)

Figure 4.4: (A) Theoretical Ernst angle calculated over a range of T1 and TR values.
Ernst angle values are calculated from the deterministic equation which maximizes
spoiled GRE signal intensity for the flip angle. (B) Optimal flip angle selected by
linear approximation of information gain from spoiled GRE acquisitions over a range
of T1 and TR values. Information gain is quantified by mutual information between
measurement and tissue property uncertainties. Greater information gain corresponds

to greater measurement SNR.

Figure 4.5 shows the relative error between the analytical Ernst angle (Figure
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4.4a) and the linear information-optimized flip angle (Figure 4.4b). Mean relative error

is approximately 0.79%, and maximum relative error is approximately 2.12%. Relative

error displays a clear trend and is inversely correlated to both T1 and TR.

Figure 4.5: Relative error between analytical Ernst angle and flip angle optimization
using information theory.

Figure 4.6 shows the regression line between the analytical Ernst angle and the

linear information-optimized flip angle in a spoiled GRE pulse sequence over the same

range of T1 and TR values. Each plotted point corresponds to the analytical Ernst

angle (abscissa) and the information-optimized flip angle (ordinate) at identical T1 and

TR. The regression line slope and intercept are 1.0143 and 0.2538, respectively. The

adjusted coefficient of determination (r2) is 0.9997. The sum of squared errors (SSE)

and root-mean-square error (RMSE) are 162.67 and 0.1575, respectively.

Figure 4.7 shows a Bland Altman plot of the analytical Ernst angle and the non-

linear information-optimized flip angle measurement pairs plotted in Figures 4.4 and

4.6. The mean measurement difference, d, is 0.3426◦. The bounds of the 95% confi-

dence interval (defined by d± 1.96s, where s is the standard deviation of measurement
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Figure 4.6: The regression line between 6561 measurement pairs of the analytical
Ernst angle and the linear information-optimized flip angle in a spoiled GRE pulse
sequence over a range of T1 and TR values. Each measurement pair is plotted with
a red dot. The regression line is shown in black. Fit parameters and goodness of fit

metrics are displayed in the upper left corner.

differences) are -0.0577◦ and 0.7429◦. If these measurement differences were normally

distributed, 95% of all information-optimized flip angles obtained with the nonlinear MI

model will differ from the analytical Ernst angle by between -0.0577◦ and 0.7429◦.

Figure 4.8 shows a histogram of the distribution of measurement differences (ordi-

nate of Figure 4.7). The distribution is highly non-Gaussian and has a long tail in the

direction of larger negative flip angle differences.

4.4.2 Nonlinear Model

Figure 4.9 shows a comparison of Ernst angle (Figure 4.9a) and information-optimized

flip angle (Figure 4.9b) for T1 values between 600 ms and 1400 ms and TR values

between 100 ms and 500 ms. The Ernst angle maximizes spoiled GRE signal intensity

for given T1 and TR, and it is calculated analytically from Equation 4.33. Information-

optimized flip angles are computed by solving the optimization problem in Equation 4.38
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Figure 4.7: The Bland Altman plot of 6561 measurement pairs of the analytical Ernst
angle and the linear information-optimized flip angle in a spoiled GRE pulse sequence
over a range of T1 and TR values. Each measurement pair is plotted with a red dot.
The mean measurement difference, d, is shown as a black line. The bounds of the 95%
confidence interval assuming normally distributed measurement differences are shown

as black dash-dot lines.

Figure 4.8: Histogram of differences between measurement pairs of the analytical
Ernst angle and the linear information-optimized flip angle in a spoiled GRE pulse

sequence over a range of T1 and TR values.
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and calculating mutual information as in Equation 4.30. Information gain is quantified

by mutual information between measurement and tissue property uncertainties. Greater

information gain corresponds to greater measurement SNR. The maximum relative error

is approximately 0.005%.

(a) (b)

Figure 4.9: (A) Theoretical Ernst angle calculated over a range of T1 and TR values.
(B) Optimal flip angle selected by nonlinear model of information gain from spoiled

GRE acquisitions over a range of T1 and TR values.

Figure 4.10 shows the regression line between the analytical Ernst angle and the

nonlinear information-optimized flip angle in a spoiled GRE pulse sequence over the

same range of T1 and TR values. Each plotted point corresponds to the analytical

Ernst angle (abscissa) and the information-optimized flip angle (ordinate) at identical

T1 and TR. The regression line slope and intercept are 0.9999 and 0.0009, respectively.

The adjusted coefficient of determination (r2) is 1.0000. The sum of squared errors

(SSE) and root-mean-square error (RMSE) are 0.0015 and 0.0005, respectively.

Figure 4.11 shows a Bland Altman plot of the analytical Ernst angle and the non-

linear information-optimized flip angle measurement pairs plotted in Figures 4.9 and

4.10. The mean measurement difference, d, is -0.0018◦. The bounds of the 95% confi-

dence interval (defined by d± 1.96s, where s is the standard deviation of measurement
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Figure 4.10: The regression line between 6561 measurement pairs of the analytical
Ernst angle and the nonlinear information-optimized flip angle in a spoiled GRE pulse
sequence over a range of T1 and TR values. Each measurement pair is plotted with
a red dot. The regression line is shown in black. Fit parameters and goodness of fit

metrics are displayed in the upper left corner.

differences) are -0.0033◦ and -0.0003◦. Thus, 95% of all information-optimized flip an-

gles obtained with the nonlinear MI model will differ from the analytical Ernst angle by

between -0.0033◦ and -0.0003◦.

4.4.3 Justification of Model Assumptions for 3D-QALAS

The multivariate normal prior distribution is shown in Figure 4.12. The sampled poste-

rior distribution is shown in Figure 4.13. The QALAS signal model introduces some co-

variance between the parameters. The Pearson correlation coefficient is used to evaluate

the strength of the correlation between parameters. The matrix of Pearson correlation

coefficients is shown below for the simulated posterior distribution resulting from the

multivariate normal prior distribution.
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Figure 4.11: The Bland Altman plot of 6561 measurement pairs of the analytical
Ernst angle and the nonlinear information-optimized flip angle in a spoiled GRE pulse
sequence over a range of T1 and TR values. Each measurement pair is plotted with a
red dot. The mean measurement difference, d, is shown as a black line. The bounds of

the 95% confidence interval are shown as black dash-dot lines.

ρnormal =

1.000 0.918 −0.353 0.001 0.005 0.003 0.030 0.018 −0.052

0.918 1.000 −0.239 −0.003 −0.004 −0.007 0.004 −0.006 −0.044

−0.353 −0.239 1.000 −0.050 −0.035 0.016 −0.011 0.004 0.020

0.001 −0.003 −0.050 1.000 0.904 −0.227 0.050 0.056 0.031

0.005 −0.004 −0.035 0.904 1.000 −0.166 0.054 0.057 0.018

0.003 −0.007 0.016 −0.227 −0.166 1.000 −0.008 0.001 −0.016

0.030 0.004 −0.011 0.050 0.054 −0.008 1.000 0.940 −0.213

0.018 −0.006 0.004 0.056 0.057 0.001 0.940 1.000 −0.132

−0.052 −0.044 0.020 0.031 0.018 −0.016 −0.213 −0.132 1.000


(4.40)
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Figure 4.12: Assumed normal prior distributions of M0, T1, and T2 for gray matter,
white matter, and cerebrospinal fluid. Ellipsoidal nested sampling is used to sample the
posterior distributions resulting from these prior distributions. Diagonal entries on the
correlation matrix show distributions of each combination of parametric map value and
tissue type. Non-diagonal lower-triangular entries show a two-dimension scatter plot
of the joint distribution between the parameters labeled on the same row and column.
Non-diagonal upper-triangular entries show a two-dimensional histogram of the joint

distribution between the parameters labeled on the same row and column.

Figure 4.13: Posterior distributions of M0, T1, and T2 for gray matter, white mat-
ter, and cerebrospinal fluid resulting from ellipsoidal nested sampling and normal prior
distributions shown in Figure 4.12. Diagonal entries on the correlation matrix show dis-
tributions of each combination of parametric map value and tissue type. Non-diagonal
lower-triangular entries show a two-dimension scatter plot of the joint distribution
between the parameters labeled on the same row and column. Non-diagonal upper-
triangular entries show a two-dimensional histogram of the joint distribution between

the parameters labeled on the same row and column.
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In particular, there are strong correlations between M0 and T1 values for iden-

tical tissues. There are no significant correlations between other parameters and tis-

sues. This process was repeated for independent uniform prior distributions, where

ρ (ηi) ∼ U (−2σηi , 2σηi). The uniform prior distributions are shown in Figure 4.14. The

sampled posterior distribution is shown in Figure 4.15. Again, the QALAS signal model

introduces some covariance between the parameters. The matrix of Pearson correlation

coefficients is shown below for the multivariate uniform prior distribution.

ρuniform =

1.000 0.927 −0.370 0.043 0.031 −0.094 0.023 0.018 −0.019

0.927 1.000 −0.303 0.050 0.044 −0.104 0.038 0.029 −0.021

−0.370 −0.303 1.000 −0.031 −0.020 0.015 0.034 0.047 0.024

0.043 0.050 −0.031 1.000 0.908 −0.238 0.019 0.035 −0.016

0.031 0.044 −0.020 0.908 1.000 −0.159 −0.008 0.012 −0.013

−0.094 −0.104 0.015 −0.238 −0.159 1.000 −0.002 −0.003 0.029

0.023 0.038 0.034 0.019 −0.008 −0.002 1.000 0.963 −0.321

0.018 0.029 0.047 0.035 0.012 −0.003 0.963 1.000 −0.254

−0.019 −0.021 0.024 −0.016 −0.013 0.029 −0.321 −0.254 1.000


(4.41)

Strong correlations exist between M0 and T1 values for identical tissues. No other

significant correlations exist between other parameters and tissues. Furthermore, the

sampled posterior distribution is nearly identical to that resulting from the multivariate

normal prior distribution.
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Figure 4.14: Assumed uniform prior distributions of M0, T1, and T2 for gray matter,
white matter, and cerebrospinal fluid. Ellipsoidal nested sampling is used to sample the
posterior distributions resulting from these prior distributions. Diagonal entries on the
correlation matrix show distributions of each combination of parametric map value and
tissue type. Non-diagonal lower-triangular entries show a two-dimension scatter plot
of the joint distribution between the parameters labeled on the same row and column.
Non-diagonal upper-triangular entries show a two-dimensional histogram of the joint

distribution between the parameters labeled on the same row and column.

Figure 4.15: Posterior distributions of M0, T1, and T2 for gray matter, white mat-
ter, and cerebrospinal fluid resulting from ellipsoidal nested sampling and uniform prior
distributions shown in Figure 4.14. Diagonal entries on the correlation matrix show dis-
tributions of each combination of parametric map value and tissue type. Non-diagonal
lower-triangular entries show a two-dimension scatter plot of the joint distribution
between the parameters labeled on the same row and column. Non-diagonal upper-
triangular entries show a two-dimensional histogram of the joint distribution between

the parameters labeled on the same row and column.
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Finally, the distribution of parametric map values taken from in vivo data is com-

pared to the simulated posterior distributions. Figure 4.16 shows the distribution of

measured parameter values. The matrix of Pearson correlation coefficients is used to

evaluate correlation between parameters and is shown below for in vivo 3D-QALAS

measurements:

ρmeasured =

1.000 0.722 −0.073 −0.016 −0.012 0.023 −0.031 −0.043 0.027

0.722 1.000 0.031 0.023 0.042 0.004 −0.001 −0.056 0.068

−0.073 0.031 1.000 −0.026 −0.021 −0.095 0.092 0.055 −0.029

−0.016 0.023 −0.026 1.000 0.970 −0.121 −0.041 0.002 −0.009

−0.012 0.042 −0.021 0.970 1.000 −0.084 −0.057 −0.006 −0.010

0.023 0.004 −0.095 −0.121 −0.084 1.000 −0.001 0.048 −0.001

−0.031 −0.001 0.092 −0.041 −0.057 −0.001 1.000 0.777 −0.029

−0.043 −0.056 0.055 0.002 −0.006 0.048 0.777 1.000 −0.057

0.027 0.068 −0.029 −0.009 −0.010 −0.001 −0.029 −0.057 1.000


(4.42)

Significant correlation exists only between M0 and T1 for identical tissues. This

agrees very well with correlations observed in the simulated posterior distributions.

4.5 Discussion

In this aim, a general information theory framework for the optimization of acquisi-

tion parameters in MR pulse sequences was developed. The objective function for this
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Figure 4.16: Correlation matrix for M0, T1, and T2 values measured from in vivo
data in gray matter, white matter, and cerebrospinal fluid. Diagonal entries show dis-
tributions of each combination of parametric map value and tissue type. Non-diagonal
lower-triangular entries show a two-dimension scatter plot of the joint distribution
between the parameters labeled on the same row and column. Non-diagonal upper-
triangular entries show a two-dimensional histogram of the joint distribution between

the parameters labeled on the same row and column.

optimization was mutual information between subject T1 uncertainty and acquisition

uncertainty. Both a linear approximation and a full nonlinear computation of mu-

tual information were verified on a simulated spoiled GRE pulse sequence in which the

optimized acquisition parameter was flip angle. Selection of a relatively simple signal

model enabled optimization results from the information theory framework to be directly

compared to a known analytical optimum value. Model assumptions were justified for

3D-QALAS by comparison to actual 3D-QALAS measurements.

Figure 4.3a illustrates suitability of mutual information for maximizing information

gain. Mutual information correlates with SNR, suggesting that information content of

an image acquisition, as measured by mutual information, is a predictor of image quality.

This is potentially invaluable as a tool for optimization of image quality before imaging

occurs in scenarios where scanner time is limited or opportunities for rescanning do not

exist.
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The information-optimized flip angles relying on the linear approximation to mutual

information show fairly good agreement with the known Ernst angle (Figure 4.4). The

maximum relative error is slightly greater than 2% (Figure 4.5). However, the relative

error shows concerning bias and appears to be a function of T1 and TR. The regression

line and Bland Altman plot (Figures 4.6 and 4.7) confirm the bias of linear method.

Mean optimization error is 0.3426◦, which is non-negligible. Furthermore, optimization

error is not normally distributed (Figure 4.8).

The nonlinear mutual information calculation is more computationally expensive,

but it allows the model evidence to take any general non-Gaussian form. This results

in the elimination of bias from the information optimization. Figure 4.9 shows the

nonlinear solution also agrees reasonably well with analytical values. The regression

line between information optimized flip angles and Ernst angles in Figure 4.10 shows an

improvement of agreement with the analytical solution compared to that of the linear

approximation. This is reflected in the regression line parameters and goodness of fit

metrics. The adjusted r2 value was used to attempt to compensate for the large number

of points fit by the regression line. Even so, the difference in adjusted r2 between the

linear (r2 = 0.9997) and nonlinear (r2 = 1.000) methods is quite small. SSE and RMSE

both decrease multiple orders of magnitude—a more appreciable difference between the

two results. SSE decreases from 162.7 to 0.0015, and RMSE decreases from 0.1575 to

0.0005.

The Bland Altman plot for the nonlinear method in Figure 4.11 shows near elimi-

nation of bias, a significant reduction in error, and elimination of non-Gaussian behavior

in error. These results suggest that the more computationally intensive approach is nec-

essary to capture nonlinearities in even the simplest signal models. It is likely that a
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linear approximation to mutual information would introduce error and bias in analyses

of more complex signal models as well.

Strong correlations can be seen between M0 and T1 values for identical tissues in

Figures 4.13 and 4.15. No other significant correlations exist between other parameters

and tissues. Furthermore, the sampled posterior distribution is nearly identical to that

resulting from the multivariate normal prior distribution. This suggests that there is

at least some degree of robustness to the selection of prior distribution. For real 3D-

QALAS data, significant correlation exists only between M0 and T1 for identical tissues,

as seen in Figure 4.16. This agrees very well with correlations observed in both of the

simulated posterior distributions. These results suggest that correlation is introduced

by the 3D-QALAS signal model (in particular, the curve fitting during which M0 and T1

are simulataneously determined) and justifies using prior distributions with independent

variables.



Chapter 5

Information Quantification of

Acquisition Parameters for

3D-QALAS in Phantom

5.1 Introduction

In this chapter, the feasibility of the information theory framework is tested on 3D-

QALAS acquisitions, a signal model with significantly increased complexity. A com-

putational methodology is developed to quantify information content of 3D-QALAS

acquisitions relative to a representative synthetic brain model and validated in phantom

measurements. The hypothesis that information-optimized acquisition parameters for

a 3D-QALAS signal model correlate to smaller variances in reconstructed parametric

maps is tested.
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5.2 Theory

5.2.1 3D-QALAS Signal Model

The signal model of interest is 3D-QALAS (3D-Quantification using an interleaved

Look-Locker acquisition sequence with T2 preparation pulse).[32] 3D-QALAS is de-

scribed briefly in Section 2.2.2. The pulse sequence can be generally divided into a

T2-sensitization phase and a T1-sensitization phase. The longitudinal magnetization

over the two phases is modeled mathematically in the next section (Section 5.2.2). M0,

T1, and T2 parametric maps are fitted to measurements from five gradient echo ac-

quisitions over the two phases. The original application of 3D-QALAS is rapid cardiac

mapping, but an adaptation for 3D multi-parameter quantification in the brain, which

has different timing constraints, is used in this work.

The QALAS forward solve, Qµ, describes the set of Nacq measurements, M , re-

trieved at a combination of acquisition parameters, µ, for a subject with properties

η = [M0(x), T1(x), T2(x)] in image space x ∈ Ω, where Ω is the synthetic phantom

domain:

M(µ,x) = Qµ(M0(x), T1(x), T2(x)) = Qµ(η(x)). (5.1)

Acquisition parameters can generally include flip angle, TR, TE, TET2prep, TI, number

of acquisitions, acquisition times, and delay times. The QALAS inverse solve describes

the fitting of the parametric map values, η, such that the norm of the difference between

the measurements, Mmeas, and the modeled signal, Q(η), is minimized:

ηmeas = argmin
η

(‖Mmeas −Q(η)‖2) . (5.2)
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The QALAS signal model used in this work, z, is the Fourier transform of the QALAS

forward solve, subsampled by subsampling mask S, which may generally be a function

of subsampling parameters θ, and subjected to normally distributed noise ν:

z(µ,θ,k) = Sθ �
∫
Ω

M(µ,x)e−2πik·xdx+ ν(k) = Sθ �FQµ(η) + ν(k)

ν ∼ N (0,Σν)

Σν =

 σ2
ν,r 0

0 σ2
ν,i

 .
(5.3)

The model is defined such that the real and imaginary components of the noise are

independent and identically distributed (σ2
ν,r = σ2

ν,i).

The probability of observing a measurement z made in tissue with properties η,

then, is normally distributed about the model evaluation S �Q with covariance Σν :

p(z|η) ∼ N (Sθ �FQµ(η),Σν). (5.4)

Because the noise components are independent and identically distributed, the multi-

variate distribution p(z|η) is equal to the product of the univariate distributions p(zr|η)

and p(zi|η):

p(z|η) ∼ N (Sθ �FQµ(η),Σν)

= Nzr(Sθ �<(FQµ(η)), σνr) · Nzi(Sθ �=(FQµ(η)), σνi)

∼ p(zr|η)p(zi|η).

(5.5)
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5.2.2 3D-QALAS Operator

The QALAS forward solve operator, Q, mentioned previously is defined by a series of

recursive equations describing the longitudinal magnetization during various points in

the acquisition. During delay, the longitudinal magnetization relaxes according to the

following equation:

Mn+1 = M0 − (M0 −Mn) · e−∆t/T1 . (5.6)

During signal acquisition the longitudinal magnetization relaxes toward M∗0 at rate T ∗1

according to the following two equations:

T ∗1
T1

=
M∗0
M0

=
1− e−TR/T1

1− cos(α) · e−TR/T1
≡ S (5.7)

Mn+1 = M∗0 − (M∗0 −Mn) · e−∆t/T ∗
1 = SM0 − (SM0 −Mn) · e−∆t/ST1 . (5.8)

Figure 5.1 shows the full QALAS acquisition sequence.

Figure 5.1: Diagram of QALAS acquisition sequence. The longitudinal magnetization
is shown in red as a function of time. The five acquisition and delay times are labeled

at the bottom.
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5.2.3 Mutual Information

In general, measurement errors, noise, and other perturbations usually make it impos-

sible to know inputs to systems exactly. For this reason, inputs can often be modeled

as random variables, and the propagation of this uncertainty also makes the output of

the system a random variable. For this model, the five 3D-QALAS acquisitions are the

random variables inputted into the system. Their distributions are selected to simulate

machine noise that would cause uncertainty in the measurements. This uncertainty is

propagated through the model, resulting in uncertainty in the M0, T1, and T2 maps,

which are the system outputs. The uncertainty of the system outputs is inversely related

to the reproducibility of the parametric maps. The goal is to minimize the uncertainty

of these system outputs by taking a measurement with the optimal parameters.

The information gain is quantified from a measurement using mutual information.

Mutual information is a quantity that describes the amount of information one random

variable contains about another random variable. Alternatively, it is the reduction in one

random variable’s uncertainty owing to knowledge of another variable, i.e. the difference

between the marginal entropy and the conditional entropy:

I(z;η) = H(z)−H(z|η). (5.9)

In this framework, mutual information measures the reduction in uncertainty of the

parametric maps resulting from the 3D-QALAS signal model owing to knowledge of the

measured signal.

For some total entropy of a joint probability function of measurements, z, and

parametric maps, η, the entropy of η, H(η), is reduced by a known measurement to the
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entropy of η given z. The measurement of this reduction is mutual information. The

optimization problem to find the best set of acquisition parameters, µ∗, is written

µ∗ = argmax
µ

I(z(µ);η) = argmax
µ

(H(z(µ))−H(z(µ)|η)) . (5.10)

In this equation, H(z|η) is known and is a function only of the normally distributed

model machine noise:

H(z|η) =
1

2
ln
(
(2πe)2 · |Ση|

)
=

1

2
ln
(
(2πe)2σ2

ν,rσ
2
ν,i

)
. (5.11)

The difficulty is in calculating the entropy H(z) of the non-Gaussian distribution p(z),

which is a function of a nonlinear signal model. A detailed description of the mutual

information computation is in Appendix C.

Mutual information for a set of acquisition parameters corresponds to this uncer-

tainty reduction for a signal measurement at this set of acquisition parameters. The

greatest mutual information exists for the set of acquisition parameters for which a

measurement produces M0, T1, and T2 maps with the least uncertainty. Thus, mutual

information can be optimized over this acquisition parameter space to find the optimal

set of parameters.

5.3 Methods

Experiments were performed on both synthetic phantom data and the ISMRM NIST

qMRI Multiparametric Imaging Standard phantom (QalibreMD, Boulder, CO).[195] The

synthetic phantom data were used to optimize the selected acquisition parameters (five

independent delay times) with respect to mutual information. Multiple measurements of
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the ISMRM NIST system phantom with different combinations of the selected acquisi-

tion parameters were used to validate the synthetic phantom mutual information model

by measuring the correlation between mutual information and reconstruction variance.

These processes are detailed below and shown schematically in Figures 5.2 and 5.3.

Figure 5.2: Flowchart for the mutual information-based optimization of acquisition
parameters in a synthetic model.

5.3.1 Synthetic Phantom Definition

To test the information theory framework, measurements were simulated on a math-

ematical phantom segmented into gray matter, white matter, and cerebrospinal fluid
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Figure 5.3: Flowchart for the application of the synthetic model to real-world mea-
surements in the System Standard Model 130 phantom is shown on the right.

(CSF). A two-dimensional cross-section of this synthetic phantom is shown in Figure

5.4. Gold standard measurements were synthesized using literature values for proton

densities and relaxation times, as well as acquisition parameter values from the current

evaluation point in acquisition parameter space. To support the assumption that this

model is a representative population average, mutual information sensitivity to geometry

was approximated by dilating and eroding tissue boundaries.
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The synthetic phantom on domain Ω is defined by N mutually disjoint tissue labels:

η(x) =
N∑
n=1

ηnU(x− Ωn)

N⋃
n=1

Ωn = Ω

Ωn ∩ Ωm = ∅ for n 6= m

U(x− Ωn) =


1, x ∈ Ωn

0, otherwise

(5.12)

Physical tissue properties, η(x) = [M0(x), T1(x), T2(x)], for tissue n (white matter, gray

matter, CSF, etc.) are normally distributed about literature valuesmη,n with covariance

matrix Ση,n:

pn(η) ∼ N (mη,n,Ση,n)

mη,n =


mη1

...

mηN



Ση,n =



σ2
η1 0 . . . 0 0

0 σ2
η2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
ηN−1

0

0 0 . . . 0 σ2
ηN



(5.13)

The acquisition parameters explored were flip angle and four independent delay

times between the T1 sensitization phase acquisitions during which the longitudinal

magnetization relaxes. The dimensionality of the acquisition parameter space can be

increased by including TR, TE of the T2 preparation pulse, acquisition length, and



Chapter 5. Information Quantification for 3D-QALAS in Phantom 68

Figure 5.4: A two-dimensional axial slice of the tissue labels used to define the syn-
thetic phantom. Tissue label 1 is gray matter, 2 is white matter, and 3 is cerebrospinal

fluid.

various parameters defining the subsampling strategy, but for the sake of computation

time, these parameters were held constant. Optimization was performed over this ac-

quisition parameter space using an interior point method with mutual information as

the objective function to be maximized. For a full derivation of the mutual information

calculation used, see Appendix C.

To validate the optimization, a clustered ellipsoidal nested sampling method was

used to sample the distributions of the parametric map values after simulating a mea-

surement. Greater uncertainty reduction should result in narrower distributions. The

prior distributions for T1 and T2 in gray matter, white matter, and CSF are shown in

Table 5.1. Several acquisition parameters are fixed to constant values (TR = 2.6 ms, TI

= 30 ms, T2 preparation pulse echo time (TET2prep) = 100 ms, acquisition time (Tacq)

= 338 ms, number of gradient echo acquisitions (Nacq) = 5).
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Parameter GM WM CSF

T1 (ms) Mean 1400 1000 4000
Std. dev. 100 100 100

T2 (ms) Mean 100 75 600
Std. dev. 5 5 30

M0 Mean 0.8 0.8 1.0
Std. dev. 0.1 0.1 0.1

Table 5.1: Prior distributions for tissue properties (M0, T1, and T2) in three tissues
(gray matter, white matter, and cerebrospinal fluid).

5.3.2 Phantom Acquisitions

To validate the mutual information model, it was applied to actual measurements of

the ISMRM NIST system phantom (Figure 5.5). This phantom has 14 T1 elements

and 14 T2 elements with well-characterized relaxation times. The phantom also has

14 proton density elements with known material properties. Two scans were performed

with different sets of acquisition parameters using a 3.0T MR 750W MRI scanner (GE

Healthcare, Waukesha, WI). Reconstruction was performed using geOrchestra and the

Berkeley Advanced Reconstruction Toolbox (BART, The University of California, Berke-

ley, Berkeley, CA), with L2 regularization (Figure 5.6).[196] The acquisition parameters

are listed in Table 5.2.

Parameter Scan 1 Scan 2

Flip angle (◦) 4 4
TR (ms) 6.6 6.6
TI (ms) 100 100
TET2prep (ms) 100 100
Tacq (ms) 674.8 674.8
Nacq 5 5
TD1a (ms) 230.6 500
TD2a (ms) 325.2 142.6
TD3a (ms) 325.2 142.6
TD4a (ms) 325.2 142.6
TD5a (ms) 221.6 500.0

Table 5.2: Acquisition parameter values for two scans performed on ISMRM NIST
system phantom. aTD1 is the time between the T1 sensitizing pulse and the first
acquisition, TD2 is the time between the end of the first acquisition and the start of

the second acquisition, and so on.
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Figure 5.5: Measurements of the ISMRM NIST phantom with each of the 42 phantom
elements segmented. The three layers of elements (PD, T1, and T2) are labeled. There

are 14 elements in each layer.

Figure 5.6: Example T1 parametric map reconstructed from measurements of the
ISMRM NIST phantom.
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5.4 Results

5.4.1 Synthetic Model

For a fixed set of acquisition parameters, dilating and eroding the tissue boundaries by

one voxel resulted in relative changes in mutual information of less than 1%. For fixed

geometry and a variable flip angle, mutual information decreased by almost 7% and

increased by more than 2% for flip angles between 2◦ and 6◦. For fixed geometry and

variable delay times, mutual information increased by almost 2% and decreased by more

than 2% for fixed delay times between 100 ms and 500 ms. This exercise demonstrates

that the mutual information computed using the synthetic phantom model was much

more sensitive to the acquisition parameters being optimized than the geometry of the

tissue labels, which suggests that the synthetic phantom is adequately representative of

a population average.

The calculation of mutual information in the synthetic phantom was used to opti-

mize acquisition parameter selection. The acquisition parameter optimization history is

displayed in Figure 5.7. The optimal parameters were approximately the following: flip

angle = 5◦, delay 2 = 1050 ms, delay 3 = 450 ms, delay 4 = 330 ms, and delay 5 = 125

ms. Delay 2 is the time between the T1 sensitizing pulse and the second acquisition,

and the other delays are the times between the start of the corresponding acquisition

and the end of the previous acquisition.

Ellipsoidal nested sampling was also used to generate and compare two posterior

distributions from reconstructions of two measurements—one with acquisition parame-

ters from a non-optimal point in parameter space and one with acquisition parameters
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(a)

(b)

Figure 5.7: Evolution of acquisition parameters over the course of an optimization
(A), and the optimization objective function, mutual information (B).

from the optimal location in parameter space, where mutual information and, conse-

quently, the information gain from a measurement are greatest. As expected, narrower

distributions were observed, which resulted from greater uncertainty reduction in all

three parametric maps for all three tissues (Figure 5.8).

To better visualize the impact of the result of reducing the parametric map un-

certainties, a reconstruction was simulated using a measurement with the initial, non-

optimized acquisition parameters and the absolute error was calculated between these
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Figure 5.8: The red histogram shows the final distribution resulting from a measure-
ment at the optimal location in parameter space. This is the location where mutual
information and, consequently, the information gain from a measurement are greatest.
The blue histogram shows the final distribution from a measurement at the initial point

in parameter space.

parametric maps and the ground truth maps (Figure 5.9, top). A second reconstruction

was then simulated using a measurement with the optimized acquisition parameters.

The absolute error between these parametric maps and the ground truth was much

smaller than that for the first reconstruction (Figure 5.9, bottom). This finding il-

lustrates how the reproducibility of these images is improved by optimal selection of

acquisition parameters.
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Figure 5.9: We simulate a reconstruction using a measurement with the initial, non-
optimized acquisition parameters. The absolute error between these parametric maps
and the ground truth maps is shown on the top row. We simulate a second reconstruc-
tion using a measurement with the optimized acquisition parameters. The absolute

error between these parametric maps and the ground truth is on the bottom row.

5.4.2 ISMRM NIST Phantom

Two scans were performed on the ISMRM NIST system phantom with different sets of

acquisition parameters. Using the model derived from the synthetic phantom with pa-

rameter values listed in Table 5.1, the mutual information of the first scan was calculated

to be 7.29×105. The mutual information of the second scan was 7.49×105. The M0, T1,

and T2 parametric maps were reconstructed for the phantom’s 14 T1 elements. Figure

5.10 shows the distributions of the M0, T1, and T2 values, reconstructed from the first

scan, for the PD, T1, and T2 elements. Omitting T1 and T2 elements 1 and 2 owing to

poor reconstruction, nine of 12 T1 elements displayed less variable reconstructions for

the higher mutual information scan, and nine of 12 T2 elements displayed less variable

reconstructions for the higher mutual information scan. Figures 5.11, 5.12, and 5.13

show a comparison of reconstructed T1 values and 95% confidence intervals between

3D-QALAS and variable flip angle (VFA) T1 mapping in the ISMRM NIST phantom
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PD, T1, and T2 elements, respectively. True T1 values and standard deviations are

taken from the ISMRM NIST phantom manual.

Figure 5.10: Distribution of reconstructed M0, T1, and T2 values in the 14 T2
elements of the System Standard Model 130 phantom for the second set of acquisition
parameters. The first row shows the distribution of the absolute M0, T1, and T2 values.
The second row shows the M0, T1, and T2 values normalized by the element mean. The
red bars represents the median M0 value. The blue boxes are the middle two quartiles,

and the black lines are the outer two quartiles. A red plus denotes an outlier.

Figure 5.11: Comparison of T1 mapping performance between a variable flip angle T1
mapping sequence and 3D-QALAS on the PD elements of the ISMRM NIST phantom.
T1 means and standard deviations for these elements are not available in the phantom

manual.

Adjusting the T1 and T2 relaxation times of the synthetic phantom to match those
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Figure 5.12: Comparison of T1 mapping performance between a variable flip angle T1
mapping sequence and 3D-QALAS on the T2 elements of the ISMRM NIST phantom.
True T1 values use the T1 means and standard deviations listed for these elements in

the phantom manual.

Figure 5.13: Comparison of T1 mapping performance between a variable flip angle T1
mapping sequence and 3D-QALAS on the T1 elements of the ISMRM NIST phantom.
True T1 values use the T1 means and standard deviations listed for these elements in

the phantom manual.

of the various ISMRM NIST system phantom elements allowed the calculation of an

independent mutual information value for each phantom element and each set of ac-

quisition parameters. Figure 5.14 shows the reconstructed M0, T1, and T2 standard

deviations as a function of the independent mutual information calculated for 12 T1

elements and 12 T2 elements for the two scans. Relative variance was negatively cor-

related with mutual information, as expected. This result suggests that higher mutual

information calculated by this model corresponds to lower standard deviation in the

reconstructed image.
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Figure 5.14: Reconstructed M0, T1, and T2 standard deviation in each of the 36
analyzed phantom elements for both scans as a function of mutual information. For
reconstructed M0, T1, and T2 values, standard deviation is negatively correlated with

mutual information across all data sets.

5.5 Discussion

The synthetic phantom results show that this mathematical model can minimize QALAS

reconstruction uncertainty by optimizing mutual information as a function of acquisition

parameters. The optimization is stable in a parameter space of flip angle and four delay

times (Figure 5.7). The optimized parameter values differ substantially from the initial

values, which are currently used for QALAS acquisitions. The high-information and low-

information acquisitions also show substantially different distributions (Figure 5.8). The

distributions of parametric map values resulting from a point in acquisition parameter

space with greater mutual information are narrower than the distributions resulting from

a point with less mutual information. Reduced reconstruction uncertainty corresponds

directly to reduced variability (Figure 5.9). This method for quantitatively optimizing

reproducibility could have a significant impact on the reliability of quantitative MRI as

diagnostic tool.

The ISMRM NIST system phantom measurements demonstrate that the mathe-

matical model tested on the synthetic phantom is applicable to real-world measurements.
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The mutual information model can quantify the potential of various combinations of ac-

quisition parameters to reduce QALAS reconstruction uncertainty in phantom measure-

ments. The 3D-QALAS model reconstructed parametric maps from the two acquisitions

reasonably accurately (Figure 5.10), with the exception of proton density elements 1 and

2, T1 elements 1 and 2, and T2 elements 1 and 2. These elements were excluded from

further analysis. The distribution width indicates how well suited the scan parameters

are to reconstructing tissues with the properties of a given element—i.e., optimal scan

parameters for an element result in narrower distribution of reconstructed values for that

element. The elements of the ISMRM NIST system phantom cover a wide range of M0,

T1, and T2 values, including several outside the normal range of human brain tissue.

Using literature M0, T1, and T2 values for human brain tissue in the construction of

the synthetic phantom may not be representative for ISMRM NIST system phantom

elements with properties significantly different from those of human brain tissue. Fur-

thermore, it is expected that different acquisition timings are optimal for different tissue

properties, so comparing the performances of two scans across widely differing phantom

elements may not be informative. For this reason, mutual information was calculated

independently for each element by adjusting the model tissue properties to match the

phantom element properties. Mutual information is then a function of the scan param-

eters and the phantom element properties. Scan parameters that are well suited for

reconstructing parametric maps for tissue properties similar to a particular element will

then result in greater mutual information. This model showed success when applied to

real data (Figure 5.14). The reconstruction performance, measured by standard devia-

tion of the voxel values within the phantom element, was clearly negatively correlated

with the mutual information modeled for the element. This result suggests that as long

as the model is representative of the subject, mutual information is an accurate predictor
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of reconstruction performance.



Chapter 6

Conditional Mutual Information

Generalization and In Vivo

Model Validation

6.1 Introduction

In this chapter, the information theory framework is validated on in vivo data from a

human brain. It is also generalized to include conditioning on previous measurements.

This allows additional flexibility for application to real-world problems. The feasibility

of the conditional information theory framework is tested on 3D-QALAS acquisitions

conditioned on low-resolution pre-scan acquisitions with independent acquisition param-

eters. A computational methodology is developed to quantify information content of

3D-QALAS acquisitions relative to a representative synthetic brain model and validated

80
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in phantom measurements. The hypothesis that information-optimized acquisition pa-

rameters for a 3D-QALAS signal model result in reduction in reconstructed parametric

map variance is tested.

6.2 Theory

6.2.1 Conditional Mutual Information Relationships

The low-resolution pre-scan measurement d is acquired with subsampling parameters

θ1 and acquisition parameters µ1. The QALAS operator Qµ is a nonlinear operator

representing the solution of the QALAS forward problem with pulse sequence parameters

µ.

d = Sθ1(k)�
(
FQµ1

(η(x)) + ν(k)
)

= Sθ1(k)�
(
Gµ1

(η)) + ν(k)
)

(6.1)

The optimized scan z is acquired with subsampling parameters θ2 and acquisition pa-

rameters µ2.

z = Sθ2(k)�
(
FQµ2

(η(x)) + ν(k)
)

= Sθ2(k)�
(
Gµ2

(η)) + ν(k)
)

(6.2)

Conditional probability of the low-resolution pre-scan measurement p(d|η) is normally

distributed about the signal model evaluation with subsampling parameters θ1, acqui-

sition parameters µ1, and measurement variance Σν1 .

p(d|η) = N
(
d
∣∣Sθ1(k)� Gµ1

(η(x)),Σν1

)
(6.3)

Similarly, conditional probability of the high-resolution full scan p(z|η) is normally
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distributed about the signal model evaluation with subsampling parameters θ2, acqui-

sition parameters µ2, and measurement variance Σν2 .

p(z|η) = N
(
z
∣∣Sθ2(k)� Gµ2

(η(x)),Σν2

)
(6.4)

Because measurements z and d are independent, the joint conditional probability dis-

tribution p(z,d|η) is the multivariate normal distribution

p(z,d|η) = N


 z
d


∣∣∣∣∣∣∣∣
 Sθ2(k)� Gµ2

(η(x))

Sθ1(k)� Gµ1
(η(x))

 ,
 Σν2 0

0 Σν1


 . (6.5)

Recall the generalized mutual information relationships for a new measurement, z, given

N previous measurements, d1, . . . ,dN :

I(η; z|d) = H(η|d)−H(η|z,d) (6.6)

I(η; z|d) = H(η)− I(η;d1)−
N∑
i=2

I(η;di|di−1, . . . ,d1)−H(η; z,d) (6.7)

I(η; z|d) = I(η; z,d)− I(η;d1)−
N∑
i=2

I(η;di|di−1, . . . ,d1) (6.8)

I(η; z|d) = I(η; z,d)− I(η;d) (6.9)

If the measurement parameters are explicitly written out, conditional mutual informa-

tion takes the following form:

I
(
η; z(µN+1,θN+1)|d1(µ1,θ1), . . . ,dN (µN ,θN )

)
= I

(
η; z(µN+1,θN+1),d1(µ1,θ1), . . . ,dN (µN ,θN )

)
− I (η;d1(µ1,θ1))

−
N∑
i=2

I
(
η;di(µi,θi)|di−1(µi−1,θi−1), . . . ,d1(µ1,θ1)

)
.

(6.10)
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For the case where d is one low-resolution pre-scan with sub-optimal parameters, con-

ditional mutual information simplifies to

I (η; z(µ2,θ2)|d1(µ1,θ1))

= I (η; z(µ2,θ2),d1(µ1,θ1))− I (η;d1(µ1,θ1))

= H(z,d)−H (z,d|η)− (H(d)−H (d|η)) .

(6.11)

Because the conditional probability functions p(d|η) and p(z,d|η) are defined to be

normally distributed, their respective entropies, H(d|η) and H(z,d|η), are known ana-

lytically.

H(d|η) =
1

2
ln
(

(2πe)2σ
2Nacq,d
ν

)
(6.12)

H(z,d|η) =
1

2
ln
(

(2πe)2σ
2(Nacq,d+Nacq,z)
ν

)
(6.13)

6.2.2 Mutual Information for Jointly Gaussian Measurements

For measurements which are jointly Gaussian, conditional mutual information can be

approximated by Gauss-Hermite quadrature. This derivation is given in Section C.3.1

in Appendix C, but the general forms of H(d), H(z,d), and I(η; z|d) used in the

computation of conditional mutual information are shown below.
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Conditional mutual information I(η; z|d) requires approximation of entropies H(d)

and H(z,d). The approximation of H(d) can be computed by

H(d) ≈ π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
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The approximation of H(z,d) can by computed by

H(z,d) =

∫ ∫
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After computing H(d) and H(z,d), conditional mutual information is straightforward

to determine:

I(η; z|d) = H(η|d)−H(η|z,d) = H(z,d)−H(z,d|η)− (H(d)−H(d|η))

= H(z,d)−H(d) +
1

2
ln
(

(2πe)2σ
2Nacq,d
ν

)
− 1

2
ln
(

(2πe)2σ
2(Nacq,d+Nacq,z)
ν

)
= H(z,d)−H(d) +

1

2
ln(σ

−2Nacq,z
ν ).

(6.16)

6.2.3 Mutual Information for Independent Subsampling Masks

When optimizing k -space subsampling approaches, the inclusion of new subsampling

locations conditional upon existing subsampled measurements can be represented by

independent subsampling masks in this model. Computation of conditional mutual

information is simplified significantly for this special case.

For FFT reconstruction, the FFT operator is not a function of the subsampling

mask like the BART reconstruction operator. Let gµ be a fully-sampled, noiseless set of

measurements resulting from FQµ(η(x)).

z(µ,θ,k) = Sθ � (FQµ(η(x)) + ν(k)) = S(θ,k)� (gµ + ν(k)) (6.17)

Subsequent measurements, z1 and z2, with separate acquisitions, Gµ1
and Gµ2

are de-

fined as follows:

z1 = Sθ1 �
(
FQµ1

(η(x)) + ν1(k)
)

= Sθ1 �
(
Gµ1

(η) + ν1(k)
)

z2 = Sθ2 �
(
FQµ2

(η(x)) + ν2(k)
)

= Sθ2 �
(
Gµ2

(η) + ν2(k)
)
.

(6.18)
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Now, subsequent subsampling realizations, ξ1 and ξ2, of the same fully-sampled mea-

surement, gµ, are defined as follows:

ξ1|gµ = Sθ1 � (FQµ(η(x)) + ν(k)) = Sθ1 � (gµ + ν(k))

ξ2|gµ = Sθ2 � (FQµ(η(x)) + ν(k)) = Sθ2 � (gµ + ν(k))

(6.19)

The subsampled ξ1 and ξ2 are independent for the same measurement gµ. However, z1

and z2 are not independent.

The joint mutual information of these subsampling masks is equal to the sum of

the independent mutual information terms.

I(η; ξ1, ξ2) = I(η; ξ1) + I(η; ξ2) (6.20)

The derivation of this relationship is shown in Section C.3.2 in Appendix C. It is straight-

forward to show through induction that

I(η; ξ) =
N∑
i=1

I(η; ξi). (6.21)

An expected result of the independence of subsampling masks is that conditional mutual

information reduces to mutual information:

I(η; ξ2|ξ1) = I(η; ξ2, ξ1)− I(η; ξ1)

= I(η; ξ2) + I(η; ξ1)− I(η; ξ1)

= I(η; ξ2).

(6.22)



Chapter 6. Conditional Mutual Information and In Vivo Model Validation 87

Thus, the general result for conditional mutual information of independent subsampling

masks is

I(η; ξM |ξN ) =
∑
i∈M

I(η; ξi) for M ∩N = ∅. (6.23)

To compute conditional mutual information from Equation 6.23, the difference of

entropies is used.

I(η; ξM |ξN ) =
∑
i∈M

I(η; ξi) =
∑
i∈M

(H(ξi)−H(ξi|η)) (6.24)

As previously, the probability density functions p (ξ1|η), p (ξ2|η), and p (η) are assumed

to be normal.

p (ξ1|η) = N (ξ1|Sθ1(k)� gµ(k),Σν)

p (ξ2|η) = N (ξ2|Sθ2(k)� gµ(k),Σν)

p (η) = N (η|mη,Ση)

(6.25)

The conditional entropy term is again known from the problem statement.

H(ξi|η) =
1

2
ln
(

(2πe)2σ
2Nacq,i
ν

)
(6.26)
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H(ξi) can be approximated via Gauss-Hermite quadrature.

H(ξ) ≈ π−N/2−P
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(6.27)

The derivation of this relationship is shown in Section C.3.3 in Appendix C. The complete

form of conditional mutual information for independent subsampling masks is

I(η; ξM |ξN ) =
∑
i∈M

I(η; ξi) =
∑
i∈M

(
H(ξi)−

1

2
ln
(

(2πe)2σ
2Nacq,i
ν

))
. (6.28)

6.3 Methods

Proof-of-concept experiments were again performed on both synthetic phantom data

and the ISMRM NIST qMRI Multiparametric Imaging Standard phantom (QalibreMD,

Boulder, CO).[195] The synthetic phantom data were used to demonstrate the range

of optimized acquisition parameter values compared to the static empirical parameter

selection currently implemented clinically. Multiple measurements of the ISMRM NIST

system phantom at high and low resolutions and with different combinations of the

selected acquisition parameters were used to validate the conditional mutual information

model. The correlation between mutual information and reconstruction variance was

measured.
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6.3.1 Synthetic Model

To demonstrate potential clinical usefulness of real-time parameter tuning, measure-

ments are simulated on a cohort of ten synthetic brain phantoms (Figure 6.1). The

tissue label boundaries are eroded and dilated to create anatomically distinct synthetic

patients. Additionally, the patient-specific biological uncertainty was randomly assigned

by sampling the population distribution of tissue properties (Table 5.1).

Conditional mutual information was calculated conditioned on synthesize low-resolution

measurements (using tissue labels in Figure 6.2) made with all delay times set to 500 ms,

which are the current clinically implemented values of these parameters. The optimized

values of these delay times are then compared to the current clinical value.

Figure 6.1: High-resolution tissue label maps of ten synthetic brain models.

6.3.2 Phantom Acquisitions

To validate the mutual information model, we applied it to actual measurements of the

ISMRM NIST system phantom (Figure 5.5). Multiple measurements were acquired at

high (Figure 6.3a) and low resolutions (Figure 6.3b) and with different combinations of

the selected acquisition parameters using a 3.0T MR 750W MRI scanner (GE Healthcare,
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Figure 6.2: Low-resolution tissue label maps of ten synthetic brain models.

Waukesha, WI). The acquisition parameters are shown in Table 6.1, and the physical

properties of the 42 ISMRM NIST phantom elements are shown in Tables 6.2, 6.3,

and 6.4. Reconstruction was performed using geOrchestra and the Berkeley Advanced

Reconstruction Toolbox (BART, The University of California, Berkeley, Berkeley, CA),

with L2 regularization (Figure 5.6).[196] Correlation between mutual information and

reconstruction variance was measured.

(a) (b)

Figure 6.3: (A) Example longitudinal magnetization of ISMRM NIST phantom from
high-resolution acquisition. (B) Longitudinal magnetization of same view from ISMRM

NIST phantom from low-resolution acquisition.

The ISMRM NIST phantom contains 42 elements with differing material proper-

ties. This provides 42 data points of well-characterized physical properties. Conditional
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Parameter Scan 1 Scan 2

Flip angle (◦) 4 4
TR (ms) 6.6 6.6
TI (ms) 100 100
TET2prep (ms) 100 100
Tacq (ms) 674.8 674.8
Nacq 5 5
TD1a (ms) 230.6 500
TD2a (ms) 325.2 142.6
TD3a (ms) 325.2 142.6
TD4a (ms) 325.2 142.6
TD5a (ms) 221.6 500.0

Table 6.1: Acquisition parameter values for two scans performed on ISMRM NIST
system phantom. aTD1 is the time between the T1 sensitizing pulse and the first
acquisition, TD2 is the time between the end of the first acquisition and the start of

the second acquisition, and so on.

Contrast ID Concentration H2O mass (g) D2O mass (g)
(% Water)

PD-1 5 0.746 15.758
PD-2 10 1.491 14.932
PD-3 15 2.238 14.106
PD-4 20 2.238 13.279
PD-5 25 3.731 12.451
PD-6 30 4.478 11.624
PD-7 35 5.226 10.796
PD-8 40 5.974 9.968
PD-9 50 7.470 8.310
PD-10 60 8.968 6.651
PD-11 70 10.468 4.990
PD-12 80 11.968 3.328
PD-13 90 13.470 1.668
PD-14 100 14.973 0.000

Table 6.2: ISMRM NIST phantom proton density sphere properties.

mutual information was calculated for the physical properties of each phantom element

between a low-resolution acquisition at one set of acquisition parameters and a theoreti-

cal high-resolution acquisition at the other set of acquisition parameters. In other words,

one data point would result from the calculation of conditional mutual information us-

ing the physical properties of element T1-4, conditional on the low-resolution acquisition

with Scan 1 parameters, and assuming a theoretical high-resolution acquisition with Scan

2 parameters. Then, the difference in standard deviations of reconstructed M0, T1, and
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Sample Name T1 (ms) T1 Standard T2 (ms) T2 Standard
Devation (ms) Deviation (ms)

T1-1 1989 1.0 1465 1.0
T1-2 1454 2.5 1076 1.8
T1-3 984.1 0.33 717.9 1.12
T1-4 706 1.5 510.1 1.36
T1-5 496.7 0.41 359.6 0.22
T1-6 351.5 0.91 255.5 0.07
T1-7 247.13 0.086 180.8 0.04
T1-8 175.3 0.11 127.3 0.14
T1-9 125.9 0.33 90.3 0.14
T1-10 89.0 0.17 64.3 0.05
T1-11 62.7 0.13 45.7 0.12
T1-12 44.53 0.090 31.86 0.02
T1-13 30.84 0.016 22.38 0.02
T1-14 21.719 0.0054 15.83 0.03

Table 6.3: ISMRM NIST phantom T1 contrast sphere properties at 3.0 T.

Sample Name T1 (ms) T1 Standard T2 (ms) T2 Standard
Devation (ms) Deviation (ms)

T2-1 2480 10.8 581.3 0.39
T2-2 2173 14.7 403.5 0.55
T2-3 1907 10.3 278.1 0.28
T2-4 1604 7.2 190.94 0.011
T2-5 1332 0.8 133.27 0.073
T2-6 1044 3.2 96.89 0.049
T2-7 801.7 1.70 64.07 0.034
T2-8 608.6 1.03 46.42 0.014
T2-9 458.4 0.33 31.97 0.083
T2-10 336.5 0.18 22.56 0.012
T2-11 224.2 0.09 15.813 0.0061
T2-12 176.6 0.09 11.237 0.0057
T2-13 126.9 0.03 7.911 0.0037
T2-14 90.9 0.05 5.592 0.0055

Table 6.4: ISMRM NIST phantom T2 contrast sphere properties at 3.0 T.

T2 values in element T1-4 between low-resolution Scan 1 and high-resolution Scan 2

can be used to evaluate the success of the performance prediction made by conditional

mutual information. By using all phantom elements, a correlation between the stan-

dard deviation differences and conditional mutual information is used to evaluate model

prediction performance.

In order to more strongly corroborate the trend seen in image quality prediction
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with the available data, predictions are also made between NIST phantom elements for

constant scan parameters. This is equivalent to changing the image subject properties

between scans instead of the acquisition parameters. While this is obviously not a realis-

tic scenario, it provides further validation of the predictive capabilities of the conditional

mutual information model.

6.3.3 In Vivo Acquisitions

In vivo 3D-QALAS measurements were acquired on one volunteer patient. Two scans

were performed, one with default clinical acquisition parameters and one with an opti-

mized set of acquisition parameters. Optimized parameters were determined similarly

to the optimization performed in Section 5.4. The five delay times were optimized as

shown in Figure 6.4. Because it was not feasible to implement the exact delay times

selected via optimization at the time of acquisition, a set of delay times were chosen that

were acceptably close in order to demonstrate the differences in reconstruction. These

three sets of acquisition parameters are displayed in Table 6.5.

Parameter Default Optimized Theoretical
Acquisition Acquisition Optimum

Flip angle (◦) 4 4 4
TR (ms) 6.684 6.684 6.684
TI (ms) 100 100 100
TET2prep (ms) 100 100 100
Tacq (ms) 871 871 871
Nacq 5 5 5
TD1a (ms) 23.4 500.0 625.5
TD2a (ms) 117.4 150.0 71.3
TD3a (ms) 117.4 0.5 0.0
TD4a (ms) 117.4 0.5 198.0
TD5a (ms) 0.0 500.0 1608.6

Table 6.5: Acquisition parameter values for in vivo 3D-QALAS acquisitions. aTD1
is the time between the T1 sensitizing pulse and the first acquisition, TD2 is the time
between the end of the first acquisition and the start of the second acquisition, and so

on.
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(a) (b)

Figure 6.4: (A) Optimization history of acquisition parameters. Five delay times
are shown over the course of 14 optimization iterations. (B) Optimization history of
mutual information over the course of 14 optimization iterations. Mutual information

is the objective function to be maximized during optimization.

Performance of these acquisition parameters is prospectively evaluated by sampling

the posterior distributions resulting from each set of parameters using ellipsoidal nested

sampling.[193, 194] Standard deviation of the posterior distributions was used to pre-

dict relative performance between the scans. Mutual information was calculated using

Equation 4.30 for scans acquired with current clinical parameters, optimized acquisition

parameters, and theoretical optimum parameters.

Two scans were performed with acquisition parameters listed in Table 6.1 using

a 3.0T MR 750W MRI scanner (GE Healthcare, Waukesha, WI). Reconstruction was

performed using geOrchestra, the Berkeley Advanced Reconstruction Toolbox (BART,

The University of California, Berkeley, Berkeley, CA), and a fitting algorithm for the

3D-QALAS signal model developed for use in this work.

ROIs were drawn manually in gray matter and white matter in the frontal, pari-

etal, temporal, and occipital lobes, as well as cerebrospinal fluid in the ventricles. ROI

selection was performed manually in order to exclude interfaces between tissue types.

This minimizes the effects of partial voluming, for which the model did not account.

ROIs were analyzed in the four lobes of the cerebral cortex in both hemispheres in order
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to minimize sensitivity to ROI selection. Summary statistics were calculated for the

parameter value distributions in gray and white matter in each of the four lobes, as well

as CSF. The change in standard deviation between the reconstructions of the default

and optimized scans was evaluated. Two-sample F-tests for equal variances were used

to determine the significance of the change in standard deviation.

6.4 Results

6.4.1 Synthetic Model

Figure 6.5 shows the wide range of optimal parameter values that arise from realistic

perturbations of the synthetic brain model. Optimal delay time varied from 280 ms

to 480 ms. The currently implemented clinical value is 500 ms. Thus, patient-specific

anatomical and tissue property perturbations resulted in an optimized delay time up to

44% less than the clinical value. The range of optimized parameter values indicates that

this method may result in significant information gain in clinical settings.

6.4.2 Phantom Acquisitions

Figure 6.6 shows the change in M0 standard deviation in NIST phantom elements be-

tween a low-resolution pre-scan at one set of acquisition parameters and a high-resolution

scan at a second set of acquisition parameters as a function of conditional mutual infor-

mation. It can be seen that the change in M0 standard deviation is negatively correlated

with conditional mutual information. For conditioning on the low-resolution acquisition

at Scan 1 parameters, the adjusted r2 from a robust linear regression is 0.3436. The

root-mean-squared error is 0.0108. For conditioning on the low-resolution acquisition at
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(a)

(b)

Figure 6.5: (A) Conditional mutual information between simulated high- and low-
resolution acquisitions in the ten synthetic brain models (Figures 6.1 and 6.2) as a
function of variable delay times. Delay times are fixed equal to one another. Posi-
tive CMI predicts an improvement in image quality, whereas negative CMI predicts a
decrease in image quality. Optimum delay times are selected by maximizing CMI. Op-
timum values are marked by a red x for each synthetic brain model. (B) CMI between
simulated high- and low-resolution acquisitions as a function of delay times, zoomed

around optimum values.
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Scan 2 parameters, the adjusted r2 from a robust linear regression is 0.0176, and the

root-mean-squared error is 0.0210.

(a)

(b)

Figure 6.6: Inter-scan differences in reconstructed M0 standard deviations as a
function of conditional mutual information between low-resolution pre-scan and high-
resolution scan. (A) Low-resolution pre-scan at scan 1 acquisition parameters and
high-resolution scan at scan 2 acquisition parameters (Table 6.1). (B) Low-resolution
pre-scan at scan 2 acquisition parameters and high-resolution scan at scan 1 acquisition

parameters (Table 6.1).

Similar trends are seen in T1 reconstruction in Figure 6.7. For conditioning on the

low-resolution acquisition at Scan 1 parameters, the adjusted r2 from a robust linear

regression is 0.5503. The root-mean-squared error is 0.0205. For conditioning on the
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low-resolution acquisition at Scan 2 parameters, the adjusted r2 from a robust linear

regression is 0.3790, and the root-mean-squared error is 0.0150.

(a)

(b)

Figure 6.7: Inter-scan differences in reconstructed T1 standard deviations as a
function of conditional mutual information between low-resolution pre-scan and high-
resolution scan. (A) Low-resolution pre-scan at scan 1 acquisition parameters and
high-resolution scan at scan 2 acquisition parameters (Table 6.1). (B) Low-resolution
pre-scan at scan 2 acquisition parameters and high-resolution scan at scan 1 acquisition

parameters (Table 6.1).

Once more, similar trends are seen in T2 reconstructions in Figure 6.8. For condi-

tioning on the low-resolution acquisition at Scan 1 parameters, the adjusted r2 from a
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robust linear regression is 0.6107. The root-mean-squared error is 0.0.0068. For condi-

tioning on the low-resolution acquisition at Scan 2 parameters, the adjusted r2 from a

robust linear regression is 0.7211, and the root-mean-squared error is 0.0056.

(a)

(b)

Figure 6.8: Inter-scan differences in reconstructed T2 standard deviations as a
function of conditional mutual information between low-resolution pre-scan and high-
resolution scan. (A) Low-resolution pre-scan at scan 1 acquisition parameters and
high-resolution scan at scan 2 acquisition parameters (Table 6.1). (B) Low-resolution
pre-scan at scan 2 acquisition parameters and high-resolution scan at scan 1 acquisition

parameters (Table 6.1).

Finally, Figure 6.9 shows the same trends for inter-element calculations with un-

changed acquisition parameters. A robust linear regression of M0 predictions resulted
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in an adjusted r2 of 0.0161 and RMSE of 0.0243. A similar fit of T1 predictions yielded

an adjusted r2 of 0.0261 and RMSE of 0.0342. Another fit of T2 predictions produced

an adjusted r2 of 0.0665 and RMSE of 0.2445.

6.4.3 In Vivo Acquisitions

Three acquisitions were simulated with scan parameters listed in Table 6.5. For scan

1, mutual information was 1090210, for scan 2 it was 1108215, and for the theoretical

optimum parameters it was 1112305. The standard deviations of the simulated poste-

rior distributions from these acquisitions are shown in Figure 6.10. Additionally, the

posterior distribution resulting from no uncertainty in the prior distribution is shown in

Figure 6.10 and labeled as theoretical minimum. This is the smallest possible standard

deviation of the posterior distribution, and all uncertainty results from uncertainty in

the measurement itself. This serves as an approximation to the minimum detectable

change in standard deviation from optimization, i.e. the smallest improvement in re-

construction that is differentiable from variance introduced by machine noise. It should

be noted that the sampled posterior distributions are meant to predict relative changes

in standard deviation, rather than accurately predict the magnitude of the standard

deviations of measured distributions.

Reconstructed parametric maps from an acquisition with default clinical acquisi-

tion parameters are shown in Figure 6.11a, and reconstructed parametric maps from

an acquisition with optimized acquisition parameters are shown in Figure 6.11b. The

analysis of parameter value distributions from these two acquisitions is shown in Figure

6.12. The difference in standard deviations in M0, T1, and T2 distributions between the

reconstructions from the two acquisitions is shown, where negative values correspond
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(a)

(b)

(c)

Figure 6.9: Inter-element differences in reconstructed M0 (A), T1 (B), and T2 (C)
standard deviations as a function of inter-element conditional mutual information. Pos-
itive CMI predicts decrease in reconstructed parametric map value standard deviation
between different ISMRM NIST phantom elements in the same scan. Negative CMI

predicts increase in standard deviation.
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to an improvement in performance for an acquisition with optimized parameters. Dis-

tributions were analyzed from gray and white matter in the frontal, parietal, temporal,

and occipital lobes, as well as cerebrospinal fluid in the ventricles. Distributions from

nearly all ROIs showed improvement, with the exception of T2 in occipital lobe white

matter. Table 6.6 shows p-values from two-sample F-tests for equal variances between

distributions from the default and optimized acquisitions. Six out of nine changes in

standard deviation were statistically significant in M0 maps. All changes in standard

deviation were statistically significant in T1 maps. Four out of nine changes in standard

deviation were statistically significant in T2 maps.

Figure 6.10: Standard deviations of simulated posterior distributions. Clinical default
is obtained by sampling with clinical default acquisition parameters (scan 1). Clinical
optimized is obtained by sampling with implemented optimal acquisition parameters
(scan 2). Theoretical optimal is obtained by sampling with calculated optimal acqui-
sition parameters that could not be feasible tested in vivo. Theoretical minimum is

obtained by sampling with no biological uncertainty.
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(a)

(b)

Figure 6.11: (A) Reconstructed parametric maps from acquisition with default clin-
ical parameters (scan 1). (B) Reconstructed parametric maps from acquisition with

optimized parameters (scan 2).

M0 T1 T2

Fr. WM 0.0150 0.0000 0.1547

Fr. GM 0.0014 0.0000 0.0000

Pa. WM 0.0000 0.0000 0.9792

Pa. GM 0.0000 0.0005 0.0000

Tm. WM 0.0000 0.0000 0.0000

Tm. GM 0.4567 0.0029 0.6346

Oc. WM 0.5353 0.0476 0.8956

Oc. GM 0.0002 0.0000 0.5565

CSF 0.5559 0.0000 0.0007

Table 6.6: The p-values from two-sample F-tests for equal variances between dis-
tributions from the default and optimized acquisitions. Entries outlined in green are
significant at the p < 0.05 level. Entries outlined in red are nonsignificant at the

p < 0.05 level.
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Figure 6.12: Change in standard deviation in several tissues between two in vivo
scans. Negative change in standard deviation denotes an improvement in reconstruction
going from the default clinical parameters to the optimized parameters. Analysis was
performed in frontal lobe white matter (Fr. WM) and gray matter (Fr. GM), parietal
lobe white matter (Pa. WM) and gray matter (Pa. GM), temporal lobe white matter
(Tm. WM) and gray matter (Tm. GM), occipital lobe white matter (Oc. WM) and
gray matter (Oc. GM), and cerebrospinal fluid (CSF). Change in standard deviation

is shown separately for M0, T1, and T2 maps.

6.5 Discussion

Figure 6.5 shows the potential value of information optimization. Ten realistic scenarios

produced optimum delay times ranging from 280 ms to 480 ms. Current empirical

delay times are selected to be 500 ms. Additionally, this does not account for further

improvements through independent delay time optimization.

It should be noted that the low-resolution simulation is performed with acquisition

spacing of 500 ms. Conditional mutual information is larger for scenarios in which

the magnitude of the difference between the optimal delay time and 500 ms is larger.
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This behavior is expected, because a highly sub-optimal first acquisition leaves more

information unknown before for a second, optimized acquisition. Conversely, scenarios

in which the optimal acquisition spacing is near 500 ms show very nearly zero conditional

mutual information between the first and second acquisitions. Finally, for delay times

outside the advisable range, conditional mutual information becomes negative, denoting

a loss of information for extremely poor parameter selection.

Figure 6.6 shows a clear trend in the difference in standard deviation for recon-

structed M0 values as a function of conditional mutual information between a low-

resolution scan at scan 1 parameters and a high-resolution scan at scan 2 parame-

ters (Figure 6.6a) and between a low-resolution scan at scan 2 parameters and a high-

resolution scan at scan 1 parameters (Figure 6.6b). Positive conditional mutual infor-

mation indicates an improvement in the information content of the acquisition, whereas

negative conditional mutual information indicates a worsening. The fact that the linear

regression intercept is approximately zero is evidence that the information framework

accurately captures this behavior. As expected, the change in standard deviation is neg-

atively correlated with conditional mutual information. The significance of this trend

is that positive conditional mutual information predicts a decrease in reconstruction

variance, and negative mutual information predicts an increase. These results demon-

strate that conditional mutual information is a feasible metric for use in image quality

prediction given a quickly acquired pre-scan.

Figures 6.7 and 6.8 show the same results for standard deviation in reconstructed

T1 and T2 values, respectively. These parametric maps displayed the same trends with

respect to conditional mutual information. The correlation is stronger for the T1 and

T2 results.
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Generally, these figures indicate that conditional mutual information is predictive

of the change in image variability. Reconstruction uncertainty is negatively correlated

with conditional mutual information. Positive conditional mutual information corre-

sponds to decreased reconstruction standard deviation, while negative CMI corresponds

to increased reconstruction standard deviation.

In order to more strongly corroborate the trend seen in image quality prediction

with the available data, predictions are made between NIST phantom elements. Figure

6.9 shows the additional data analysis used to confirm the relationship observed in the

previous figures. Here, conditional mutual information is calculated between the physical

properties of two different phantom elements while the scan parameters are unchanged.

This is equivalent to changing the image subject properties between scans instead of

the acquisition parameters. While this is obviously not a scenario encountered in the

clinic, it still provides further validation of the predictive capabilities of the conditional

mutual information model. A similar trend can be seen in this data, where an increase in

conditional mutual information predicts better performance, i.e. a decrease in standard

deviation of reconstructed values, and vice versa.

For the predicted in vivo performance, mutual information correlated with the

standard deviation of simulated posterior distributions in the expected manner. The

default clinical parameters resulted in the smallest mutual information among the three

configurations simulated. In turn, the standard deviations of the posterior distribu-

tions of M0, T1, and T2 values in gray matter, white matter, and cerebrospinal fluid

for an acquisition with default clinical parameters were the greatest among the three

configurations. The theoretically optimal acquisition parameters reached through inte-

rior point optimization of mutual information of course resulted in the greatest mutual

information. The standard deviations of the posterior distributions for an acquisition
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with the optimum acquisition parameters were the smallest. The practical optimized

acquisition parameters that were employed in the acquisition of in vivo data resulted in

mutual information greater than an acquisition with default parameters, but less than

that of the theoretically optimal acquisition. As expected, the standard deviations of the

simulated posterior distributions from this acquisition fall between the default clinical

acquisition and the theoretically optimal acquisition. Furthermore, the magnitude of the

theoretical minimum standard deviation resulting solely from measurement uncertainty

is more than an order of magnitude smaller than the differences in posterior distri-

bution standard deviations between default and optimized acquisitions. This suggests

performance improvement through optimization is distinguishable from the variance in-

troduced through machine noise.

Information optimization of acquisition parameters resulted in decreases in stan-

dard deviation of reconstructed M0, T1, and T2 distributions in all but one case. Nine-

teen out of 26 of these improvements were statistically significant. The one increase in

standard deviation was not statistically significant. These results confirm the hypothesis

of this work.



Chapter 7

Conclusion

The information theory analysis described in this work allows quantitative guidance of

synthetic MRI acquisition parameters across multiple applications. The results represent

an advanced quantitative understanding of the relationship between acquisition param-

eters and reproducibility of parametric maps, which in quantitative imaging is especially

critical for reliable diagnosis. The major contribution of this research is the quantitative

assessment of the impact of acquisition parameter selection on reconstructed parametric

map uncertainty, which is currently understood only empirically. The tool described

in this work guides the optimized selection of acquisition parameters for a given appli-

cation, and it may be useful in the evaluation of repeatability and reproducibility in

clinical settings.

This information theory approach becomes increasingly valuable for increasingly

complex acquisition signal models. For the simplest possible signal models, optimal

parameters are either known analytically or readily intuited. Complex signal models,

such as 3D-QALAS, benefit greatly from quantitative optimization, but there is no ex-

isting analytical optimum against which to validate the information optimization. For

108
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this reason, in specific aim 1 the information optimization framework was tested and

validated on a spoiled GRE acquisition signal model. The optimal flip angle is known

analytically and defined by the Ernst angle equation. A nonlinear mutual information

optimization of the flip angle showed near perfect agreement with the analytical solution,

giving confidence to the application of this approach to more complex signal models. In

specific aim 2, the model was applied to acquisitions of an ISMRM NIST phantom.

The results showed that acquisitions with greater mutual information resulted in recon-

structed parametric maps with smaller standard deviations. In specific aim 3, the model

was extended to consider conditional mutual information and applied to in vivo data. It

was demonstrated that information theory optimization of acquisition parameters led to

a statistically significant improvement in the standard deviations of reconstructed para-

metric maps in nearly all of the sampled regions of the in vivo images. This confirms

the hypothesis defined in Chapter 1.

Conditional mutual information has potential applications in corrective updates

to acquisitions in real time. Real time updates could range in complexity from up-

dating k -space locations of new measurements in undersampled acquisitions to altering

pulse sequence parameters mid-scan to maximize information acquired within clinical

constraints. Another important feature of this framework is that it is application ag-

nostic. It should be applicable to most clinical modeling problems and could provide

a quantitative understanding of model parameter information content in clinical image

reconstruction, treatment planning, and other applications.

Another approach to quantitative imaging, called magnetic resonance fingerprint-

ing, boasts high accuracy and robustness to parameter variance.[24, 197, 198] In finger-

printing, reproducibility is a function of the dictionary and randomization of parameters,
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rather than fixed parameter selection. It may be possible to apply an information the-

ory approach to quantifying magnetic resonance fingerprinting accuracy as a function

of dictionary selection, or to inform randomization of parameters based on information

content.

Compressed sensing is also based on information theory principles, but it is not mu-

tually exclusive with this approach. Compressed sensing allows measurement of a small

number of signal samples without previous knowledge of the signal or image, whereas the

technique described in this work provides a method to quantitatively optimize acquisition

parameters given knowledge of the signal or imaging location.[6, 199–201] Furthermore,

compressed sensing can be included in the signal model, so optimal acquisition parame-

ters can be obtained for such acquisitions, and compressed sensing parameters can even

be included in the optimization space.

Model complexity is currently a limiting factor in this work. These results have

demonstrated the importance of a representative model, but in cases where modeling a

subject requires high-dimensional parameter spaces, the current method struggles with

computation time. Using Gauss-Hermite quadrature becomes prohibitively expensive

as the problem dimensionality increases. In future work, Markov chain Monte Carlo

integration will be implemented to calculate mutual information for higher-dimensional

problems.

For the development of new protocols, this method could determine a theoretical

optimal set of parameters for image quality faster than an empirical approach comprising

the iteration of scans with different sets of parameters. Currently, some amount of trial

and error is unavoidable when tuning parameters for different scan times, tissues, and

resolutions. Depending on the availability of machines, volunteers, and patients, this
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process can even span days or weeks. A quantitative parameter optimization method

reduces the logistical burden of developing new protocols by minimizing scanner time

and labor. A promising example application would be determining the set of optimized

parameters for a target range of T1 or T2 values. With a short enough computation

time, an information theory analysis could be run ad hoc at a scanner and acquisition

parameters could be tailored to any given situation. A brief computation time also

enables the alteration of existing protocols through informed adjustments that ensure

consistent image quality. For example, acquisition parameters change when coverage

or field of view is adjusted, but there is not always enough scan time to optimize pa-

rameters again empirically. Furthermore, evaluation of image quality during parameter

tuning is almost always visual and subjective. Mutual information is a useful metric

for quantitative evaluation of measurement quality and possibly for standardization of

parameter tuning processes.

This mutual information framework could also prove valuable in model-based re-

construction for several other modalities. The framework is applicable to any other

method with an acceptable model, including most magnetic resonance pulse sequences

and reconstructions. The physics model will determine the prior and posterior statis-

tics, and the mutual information framework can be used to similarly determine the most

informative data to be used in reconstruction.

Overall, these results show that more informative acquisition parameters, which are

quantified by mutual information, can be selected to reduce output uncertainty. In the

case of 3D-QALAS, selecting a more informative combination of acquisition delay times

in the sequence can reduce M0, T1, and T2 parametric map uncertainty. Thus, an infor-

mation theory analysis of the construction of parametric maps in synthetic MRI using
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mutual information shows promise for quantifying and guiding selection of acquisition

parameters in synthetic MRI.



Appendix A

Important Terms

Herein is a list of important terms and their definitions used throughout this work.

Coefficient of repeatability: The least significant difference between two measure-

ments in a repeatability experiment.

Coefficient of reproducibility: The least significant difference between two measure-

ments in a reproducibility experiment.

Differential entropy: A measure of average self-information of a random variable.

Information: The resolution of uncertainty. Information known about an event reduces

uncertainty and entropy.

Information entropy: A measure of how much information an event contains. An

event that is nearly certain to occur possesses very little information, so greater

information gain results from events with greater information entropy.

Moment: The nth moment is the expectation value of the nth power of the difference

between x and the mean.
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Mutual information: The amount of information one random variable contains about

another random variable. Equivalently, it is the reduction in one random vari-

able’s entropy due to knowledge of another variable. Alternatively, it is also

the expected value of the Kullback-Leibler divergence between the probability

distributions of the two random variables.

Noise: The random variation in image intensity that is often the result of electronic

noise.

Population variance: The expectation value of the squared difference between a ran-

dom variable and the population mean. It is also the second central moment.

Repeatability: Repeatability concerns measurement precision under identical testing

conditions.

Reproducibility: Reproducibility concerns measurement precision under varying test-

ing conditions, e.g. scanner, location, operator, or institution.

Sample variance: The estimation of population variance from a sample of finite size.

Signal-to-noise ratio (SNR): The ratio of average signal intensity in the foreground

to background noise.

Standard deviation: The square root of the variance.

Uncertainty: The absence of information or knowledge of a random variable. It is

quantified by entropy.



Appendix B

Mathematical Symbols

Herein is a list of symbols used in derivations and model descriptions throughout this

work.

α Flip angle or excitation angle.

η General tissue properties of the image subject. In the case of

quantitative MRI in brain, this is usually a vector of M0, T1, and

T2 values, i.e. η(x) = [M0(x), T1(x), T2(x)].

F Discrete Fourier transform.

G Signal model operator. In this work, it is often shown as Gµ(η),

which denotes the signal model with acquisition parameters, µ,

operating on physical tissue properties of the image subject, η, to

create signal values z.
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µ General acquisition parameters. These are used in the optimiza-

tion of acquisition parameters. For example, if the signal model is

a spoiled GRE sequence, one subsampling parameter may be flip

angle. If the signal model is 3D-QALAS, µ may be a vector of five

delay times which partly define acquisition spacing.

Ω Image subject domain. The nth tissue label of the image subject

is described by x ∈ Ωn.

σ Standard deviation.

Σ Covariance matrix.

θ General subsampling parameters. These are used if optimizing the

k -space subsampling trajectory. For example, if variable density

Poisson disc subsampling is used, one subsampling parameter may

be acceleration of variable spacing in the x-direction, and another

may be the same in the y-direction.

I(X;Y ) Mutual information between random variable X and random vari-

able Y .

N (x|m,Σ) Multivariate normal probability density function of x with mean

m and covariance Σ.
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R1 Longitudinal relaxation rate. This is the inverse of T1.

R2 Transverse relaxation rate. This is the inverse of T2.

R∗2 Effective transverse relaxation rate. This is the inverse of T ∗2 .

T1 Longitudinal relaxation time.

T2 Transverse relaxation time.

T ∗2 Effective transverse relaxation time.

x Position in image space.

z Signal value. This is complex valued in k -space for 3D-QALAS.



Appendix C

Mathematical Derivations

This appendix contains mathematical derivations omitted from the main body for brevity

and clarity. Derivations are organized into appropriate sections and referenced in the

main text where relevant.

C.1 Chapter 3 Derivations

C.1.1 Mutual Information

Derivation of relationship to entropy:

I(X;Y ) =

∫
y

∫
x
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy

=

∫
y

∫
x
p(x, y) log

p(x, y)

p(x)
dxdy −

∫
y

∫
x
p(x, y) log p(y)dxdy

=

∫
y

∫
x
p(x, y) log p(y|x)dxdy −

∫
y
p(y) log p(y)dy

= H(Y )−H(Y |X)

(C.1)
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Symmetric case:

I(X;Y ) =

∫
y

∫
x
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy

=

∫
y

∫
x
p(x, y) log

p(x, y)

p(y)
dxdy −

∫
y

∫
x
p(x, y) log p(x)dxdy

=

∫
y

∫
x
p(x, y) log p(x|y)dxdy −

∫
x
p(x) log p(x)dx

= H(X)−H(X|Y )

(C.2)

C.1.2 Joint Mutual Information

Derivation of relationship to entropy:

I(X;Y,Z) =

∫
z

∫
y

∫
x
p(x, y, z) log

(
p(x, y, z)

p(x)p(y, z)

)
dxdydz

=

∫
z

∫
y

∫
x
p(x, y, z) log

p(x, y, z)

p(x)
dxdydz −

∫
z

∫
y

∫
x
p(x, y, z) log p(y, z)dxdydz

=

∫
z

∫
y

∫
x
p(x, y, z) log p(y, z|x)dxdydz −

∫
z

∫
y
p(y, z) log p(y, z)dydz

= H(Y,Z)−H(Y, Z|X)

(C.3)

Symmetric case:

I(X;Y,Z) =

∫
z

∫
y

∫
x
p(x, y, z) log

(
p(x, y, z)

p(x)p(y, z)

)
dxdydz

=

∫
z

∫
y

∫
x
p(x, y, z) log

p(x, y, z)

p(y, z)
dxdydz −

∫
z

∫
y

∫
x
p(x, y, z) log p(x)dxdydz

=

∫
z

∫
y

∫
x
p(x, y, z) log p(x|y, z)dxdydz −

∫
x
p(x) log p(x)dx

= H(X)−H(X|Y,Z)

(C.4)
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C.1.3 Conditional Mutual Information

Derivation of relationship to entropy:

I(X;Y |Z) =

∫
y

∫
x
p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
dxdy

=

∫
y

∫
x
p(x, y|z) log

p(x, y|z)
p(x|z)

dxdy −
∫
y

∫
x
p(x, y|z) log p(y|z)dxdy

=

∫
y

∫
x
p(x, y|z) log p(y|x, z)dxdy −

∫
y
p(y|z) log p(y|z)dy

= H(Y |Z)−H(Y |X,Z)

(C.5)

Symmetric case:

I(X;Y |Z) =

∫
y

∫
x
p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
dxdy

=

∫
y

∫
x
p(x, y|z) log

p(x, y|z)
p(y|z)

dxdy −
∫
y

∫
x
p(x, y|z) log p(x|z)dxdy

=

∫
y

∫
x
p(x, y|z) log p(x|y, z)dxdy −

∫
x
p(x|z) log p(x|z)dx

= H(X|Z)−H(X|Y, Z)

(C.6)

C.1.4 Conditional Mutual Information Relationships

Conditional mutual information relationships derived for three measurements, z1, z2,

and z3, and parametric maps η = [M0, T1, T2]:

I(η; z1) = H(η)−H(η|z1)

I(η; z2|z1) = H(η|z1)−H(η|z2, z1)

I(η; z3|z2, z1) = H(η|z2, z1)−H(η|z3, z2, z1)

(C.7)
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I(η; z3|z2, z1) = H(η|z2, z1)−H(η|z3, z2, z1)

= H(η|z1)− I(η; z2|z1)−H(η|z3, z2, z1)

= H(η)− I(η; z1)− I(η; z2|z1)−H(η|z3, z2, z1)

(C.8)

I(η; z3|z2, z1) = I(η; z3, z2, z1)− I(η; z1)− I(η; z2|z1)

= I(η; z3, z2, z1)− I(η; z2)− I(η; z1|z2)

= I(η; z3, z2, z1)− I(η; z2, z1)

(C.9)

Generalized mutual information relationships for a new measurement, z, given N

previous measurements, d1, . . . ,dN :

I(η; z|d) = H(η|d)−H(η|z,d) (C.10)

I(η; z|d) = H(η)− I(η;d1)−
N∑
i=2

I(η;di|di−1, . . . ,d1)−H(η; z,d) (C.11)

I(η; z|d) = I(η; z,d)− I(η;d1)−
N∑
i=2

I(η;di|di−1, . . . ,d1) (C.12)

I(η; z|d) = I(η; z,d)− I(η;d) (C.13)
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C.2 Chapter 4 and 5 Derivations

C.2.1 Linear Approximation

The distribution p(z) is assumed to be normal.

I(η; z) = H(z)−H(z|η) =
1

2
ln
(
(2πe)2 · |Σz|

)
− 1

2
ln
(
(2πe)2 · |Σν |

)
(C.14)

Recall conditional entropy H(z|η) from the problem definition:

|Σν | =
D∏
i=1

σ2
ν,i. (C.15)

The covariance matrix of the evidence is defined as

Σz = cov[z, z] = E
[
(z −mz)(z −mz)T

]
= E

[
zzT

]
−mzmT

z , (C.16)

or, in matrix form,

Σz =



E[z1z1]−mz1mz1 E[z1z2]−mz1mz2 . . . E[z1zn]−mz1mzn

E[z2z1]−mz2mz1 E[z2z2]−mz2mz2 . . . E[z2zn]−mz2mzn

...
...

. . .
...

E[znz1]−mznmz1 E[znz2]−mznmz2 . . . E[znzn]−mznmzn


. (C.17)
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The mean of z can be computed with Gauss-Hermite quadrature.

mz = E[z] =

∫
zp(z)dz

=

∫
z

(∫
p(z|η)p(η)dη

)
dz

=

∫
z

(∫
p (z|η)N (η|mη,Ση) dη

)
dz

=

∫
z

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z
∣∣ηq)

 dz

=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

∫
zp
(
z
∣∣ηq) dz

=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

∫
zN

(
z
∣∣Gµ(ηq),Σν

)
=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkNzq,k

=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))

(C.18)

ηq = [ηq1 , . . . , ηqN ] =
√

2Σηxq +mη (C.19)

zq,k =
√

2Σνxk + Gµ
(
ηq
)

(C.20)
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Likewise for the term E[zzT ]:

E[zzT ] =

∫
zzT p(z)dz

=

∫
zzT

(∫
p(z|η)p(η)dη

)
dz

=

∫
zzT

(∫
p (z|η)N (η|mη,Ση) dη

)
dz

=

∫
zzT

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z
∣∣ηq)

 dz

=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

∫
zzT p

(
z
∣∣ηq) dz

=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

∫
zzTN

(
z
∣∣Gµ(ηq),Σν

)
=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkNzq,kz
T
q,k

=

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

·
(√

2Σνxk + Gµ
(
ηq
))(√

2Σνxk + Gµ
(
ηq
))T

.

(C.21)

Thus, the quadrature approximation of the covariance matrix of the evidence Σz is

Σz =

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))(√

2Σνxk + Gµ
(
ηq
))T

−
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))

·

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 . . .

KN∑
kN=1

ωkN

(√
2Σνxk + Gµ

(
ηq
))T .

(C.22)
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Approximation of mutual information is straightforward once the covariance matrix

Σz is known.

I(η; z) = H(z)−H(z|η) =
1

2
ln
(
(2πe)D · |Σz|

)
− 1

2
ln

(
(2πe)D

D∏
i=1

σ2
ν,i

)
(C.23)

For a scalar-valued measurement z, Equations C.18, C.21, and C.23 simplify to the

following:

mz =

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

(√
2Σνxk + Gµ

(
ηq
))

(C.24)

E[z2] =

Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

(√
2Σνxk + Gµ

(
ηq
))2

(C.25)

I(η; z) =
1

2
ln

2πe

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

(√
2Σνxk + Gµ

(
ηq
))2

−

 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

(√
2Σνxk + Gµ

(
ηq
))2

− 1

2
ln
(
2πeσ2

ν

)
(C.26)

C.2.2 Nonlinear Computation

The signal model z is a nonlinear function of parameters η.

z = Gµ(η(x)) + ν (C.27)

The conditional probability p(z|η) is defined as a multivariate normal distribution

N(ξ|µ,Σ), a function of ξ with mean µ and covariance Σ, in the problem statement.

p (z|η) = N (z|Gη(η(x)),Σν) (C.28)
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Similarly, the probability p(η) is defined as another multivariate normal distribution in

the problem statement.

p (η) = N (η|mη,Ση) (C.29)

It is most straightforward to begin with mutual information defined as the difference in

entropies:

I(η; z) = H(z)−H(z|η) (C.30)

The entropy of a multivariate normal distribution is H(N) = 1
2 ln

(
(2πe)D det(Σ)

)
, so

the term H(z|η) can be immediately written

H(z|η) =
1

2
ln

(
(2πe)D

D∏
i=1

σ2
ν,i

)
. (C.31)

The term H(z), however, must be approximated through multiple applications of Gauss-

Hermite quadrature. This approximation is possible because H(z) may be represented

in terms of distributions defined to be normal in the problem statement:

H(z) =

∫
p(z) ln (p(z)) dz

=

∫ (∫
p(z|η)p(η)dη

)
· ln
(∫

p(z|η)p(η)dη

)
dz

=

∫ (∫
N (z|Gµ(η),Σν)N (η|mη,Ση) dη

)
· ln
(∫

N (z|Gµ(η),Σν)N (η|mη,Ση) dη

)
dz.

(C.32)
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The first quadrature iteration is performed by making the substitution η =
√

2Σηx+

mη.

H(z) =

∫
p(z) ln (p(z)) dz

=

∫ (∫
p(z|η)p(η)dη

)
ln (p(z)) dz

=

∫ (∫
p (z|η)N (η|mη,Ση) dη

)
· ln (p(z)) dz

≈
∫ π−N/2 Q1∑

q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z|ηq

) · ln (p(z)) dz

(C.33)

The resulting quadrature points are defined ηq = [ηq1 , . . . , ηqN ] =
√

2Σηxq +mη, where

xq = [xq1 , . . . , xqN ] is the combination of roots of the physicists’ Hermite polynomial

Hn corresponding to the indices q1 through qN . The second quadrature iteration is

performed almost identically and approximates the integral inside the natural logarithm

by making the substitution η =
√

2Σηx+mη.

H(z) =

∫ π−N/2 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z|ηq

) · ln (p(z)) dz

=

∫ π−N/2 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z|ηq

) · ln(∫ p(z|η)p(η)dη

)
dz

=

∫ π−N/2 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z|ηq

) · ln(∫ p(z|η)N (η|mη,Ση) dη

)
dz

=

∫ π−N/2 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z|ηq

)
· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN · p (z|ηs)

)
dz

(C.34)
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The resulting quadrature points are defined ηs = [ηs1 , . . . , ηsN ] =
√

2Σηxs +mη. The

third quadrature iteration is performed by making the substitution z =
√

2Σνx+Gµ (η).

H(z) =

∫ π−N/2 Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqNp
(
z|ηq

)
· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN · p (z|ηs)

)
dz

= π−N/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

·
∫
N
(
z
∣∣Gµ(ηq),Σν

)
· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N (z|Gµ(ηs),Σν)

)
dz

= π−N/2−P/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 · · ·
KP∑
kP =1

ωkP

· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N
((√

2Σνxk + Gµ(ηq)
)∣∣∣Gµ(ηs),Σν

))

(C.35)

Thus, the computation of mutual information takes the following form:

I(η; z) = H(z)−H(z|η)

= π−N/2−P/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1 · · ·
KP∑
kP =1

ωkP

· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N
((√

2Σνxk + Gµ(ηq)
)∣∣∣Gµ(ηs),Σν

))

− 1

2
ln

(
(2πe)D

D∏
i=1

σ2
ν,i

)
.

(C.36)



Appendix C. Mathematical Derivations 129

For a scalar-valued measurement z, Equation C.36 reduces to

I(η; z) = H(z)−H(z|η)

= π−N/2−1/2
Q1∑
q1=1

ωq1 . . .

QN∑
qN=1

ωqN

K1∑
k1=1

ωk1

· ln

(
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN ·N
((√

2σνxk + Gµ(ηq)
)∣∣∣Gµ(ηs), σν

))

− 1

2
ln
(
2πeσ2

ν

)
.

(C.37)

C.3 Chapter 6 Derivations

C.3.1 Conditional Mutual Information for Jointly Gaussian Measure-

ments

The signal model z is a nonlinear function of parameters η.

z(η,θ,k) = S(θ,k)�FQ(η,k) + ν(k) (C.38)

The conditional probability p(z|η) is defined as a multivariate normal distribution

N(ξ|µ,Σ), a function of ξ with mean µ and covariance Σ, in the problem statement.

p (z(η,θ,k)|η(x)) = N (z(η,θ,k)|S(θ,k)�FQ(η,k),Σν) ∼ N (S(θ,k)�FQ(η,k),Σν)

(C.39)

Similarly, the probability p(η) is defined as another multivariate normal distribution in

the problem statement.

p (η(x)) = N (η(x)|mη,Ση) ∼ N (mη,Ση) (C.40)
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The derivation begins with mutual information defined as the difference in en-

tropies:

I(η; z) = H(z)−H(z|η) = H(z)− 1

2
ln
(

(2πe)Nmeasσ2Nmeas
ν,r σ2Nmeas

ν,i

)
. (C.41)

The entropy of a multivariate normal distribution is H = 1
2 ln

(
(2πe)N det(Σ)

)
, so the

term H(z|η) can be immediately written

H(z|η) =
1

2
ln
(

(2πe)Nmeasσ2Nmeas
ν,r σ2Nmeas

ν,i

)
. (C.42)

The term H(z), however, must be approximated through multiple applications

of Gauss-Hermite quadrature. This approximation is possible because H(z) may be

represented in terms of distributions defined to be normal in the problem statement:

H(z) =

∫
p(z) ln (p(z)) dz

=

∫ (∫
p(z|η)p(η)dη

)
· ln
(∫

p(z|η)p(η)dη

)
dz

=

∫ (∫
f (z|S �FQ(η),Σν) f (η|mη,Ση) dη

)
· ln
(∫

f (z|S �FQ(η),Σν) f (η|mη,Ση) dη

)
dz.

(C.43)
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The first quadrature iteration is performed by making the substitution η =
√

2Σηx+

mη.

H(d) =

∫
p(d) ln (p(d)) dd =

∫ (∫
p(d|η)p(η)dη

)
ln (p(d)) dd

=

∫ (∫
p(d|η)f(η|mη,Ση)dη

)
· ln (p(d)) dd

≈
∫ π−N/2 Q1∑

q1=1

ωq1 · · ·
QN∑
qN=1

ωqNp(d|ηq)

 · ln (p(d)) dd

ηq =
√

2Σηxq +mη

(C.44)

The resulting quadrature points are defined ηq = [ηq1 , . . . , ηqN ] =
√

2Σηxq +mη,

where xq = [xq1 , . . . , xqN ] is the combination of roots of the physicists’ Hermite polyno-

mial Hn corresponding to the indices q1 through qN . The second quadrature iteration

is performed similarly by making the substitution zq =
√

2Σνx+ S �FQ
(
ηq
)
.

H(d) = π−N/2
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

∫
p(d|ηq) · ln(p(d))dd

= π−N/2
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

∫
f(d|S �Q(ηq),Σν) · ln(p(d))dd

≈ π−N/2
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

·

π−P K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i
· ln(p(dk))


dk =

√
2Σνxk + S �Q(ηq)

(C.45)

The resulting quadrature points are now zq,k =
√

2Σνxk+S�FQ
(
ηq
)
. The second

term is evaluated for the quadrature point ηq before a second combination of roots of

Hn (assuming n quadrature points are also used for this step) are computed for indices
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k1,r through kP,r and k1,i through kP,i. The third quadrature iteration approximates

the integral inside the natural logarithm by making the substitution η =
√

2Σηx+mη

again.

H(d) = π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i

· ln
[∫

p(dk|η)p(η)dη

]

= π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i

· ln
[∫

p(dk|η)f(η|mη,Ση)dη

]

≈ π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i

· ln

[
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsNp(dk|ηs)

]

= π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i

· ln

π−N/2 S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN

P∏
p=1

p(dkp,r |ηs)p(dkp,i |ηs)


ηs =

√
2Σηxs +mη

(C.46)

The third set of quadrature points are ηs =
√

2Σηxs +mη. The probability distri-

bution p(z|η) is normal and can be evaluated at each quadrature point.

p
(
zq,kp,r

∣∣ηs) = N
(
zq,kp,r |S(θ)�FQ(ηs),Σν

)
= N

(√
2Σνxkp,r + <

(
S(θ)�FQ

(√
2Σηxq +mη

))
∣∣∣S(θ)�FQ

(√
2Σηxs +mη

)
,Σν

)
(C.47)
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p
(
zq,kp,i

∣∣ηs) = N
(
zq,kp,i |S(θ)�FQ(ηs),Σν

)
= N

(√
2Σνxkp,i + =

(
S(θ)�FQ

(√
2Σηxq +mη

))
∣∣∣S(θ)�FQ

(√
2Σηxs +mη

)
,Σν

)
(C.48)

The entropy approximation is then

H(d) ≈ π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i

· ln

[
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN

·
P∏
p=1

p(
√

2Σνxkp,r + Sθ1 �FQµ1
(
√

2Σηxq +mη)|
√

2Σηxs +mη)

· p(
√

2Σνxkp,i + Sθ1 �FQµ1
(
√

2Σηxq +mη)|
√

2Σηxs +mη)

]
.

(C.49)
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Entropy of the joint distribution is approximated by the same process.

H(z,d) =

∫ ∫
p(z,d) ln (p(z,d)) dzdd

≈ π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN ·
J1,r∑
j1,r=1

ωj1,r

J1,i∑
j1,i=1

ωj1,i · · ·
JP,r∑
jP,r=1

ωjP,r

JP,i∑
jP,i=1

ωjP,i

·
K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i
· ln

{
π−N/2

S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN

·
P∏
p=1

p

√2Σν

 xjp,r

xkp,r

+

 Sθ2 �FQµ2
(
√

2Σηxq +mη)

Sθ1 �FQµ1
(
√

2Σηxq +mη)


∣∣∣∣∣∣∣∣
√

2Σηxs +mη



·p

√2Σν

 xjp,i

xkp,i

+

 Sθ2 �FQµ2
(
√

2Σηxq +mη)

Sθ1 �FQµ1
(
√

2Σηxq +mη)


∣∣∣∣∣∣∣∣
√

2Σηxs +mη




(C.50)

Thus, the computation of mutual information takes the following form:

I(η; z|d) = H(η|d)−H(η|z,d) = H(z,d)−H(z,d|η)− (H(d)−H(d|η))

= H(z,d)−H(d) +
1

2
ln
(

(2πe)2σ
2Nacq,d
ν

)
− 1

2
ln
(

(2πe)2σ
2(Nacq,d+Nacq,z)
ν

)
= H(z,d)−H(d) +

1

2
ln(σ

−2Nacq,z
ν ).

(C.51)

C.3.2 Joint Mutual Information for Independent Subsampling Masks

For measurements with independent subsampling masks, ξ1 and ξ2, it is shown below

that the mutual information between the image subject parameters and the joint dis-

tribution of measurements is equal to the sum of the mutual information between the
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image subject parameters and each of the marginal measurement distributions.

I(η; ξ1, ξ2) =

∫
η

∫
ξ1

∫
ξ2

p(η, ξ1, ξ2) log

(
p(η, ξ1, ξ2)

p(η)p(ξ1, ξ2)

)
dηdξ1dξ2

=

∫
η

∫
ξ1

∫
ξ2

p(ξ1, ξ2|η)p(η) log

(
p(ξ1, ξ2|η)

p(ξ1, ξ2)

)
dηdξ1dξ2

=

∫
η

∫
ξ1

∫
ξ2

p(ξ1|η)p(ξ2|η)p(η) log

(
p(ξ1|η)p(ξ2|η)

p(ξ1)p(ξ2)

)
dηdξ1dξ2

=

∫
η

∫
ξ1

∫
ξ2

p(ξ1|η)p(ξ2|η)p(η) log

(
p(ξ1|η)

p(ξ1)

)
dηdξ1dξ2

+

∫
η

∫
ξ1

∫
ξ2

p(ξ1|η)p(ξ2|η)p(η) log

(
p(ξ2|η)

p(ξ2)

)
dηdξ1dξ2

=

∫
η

∫
ξ1

p(η, ξ1) log

(
p(η, ξ1)

p(η)p(ξ1)

)(∫
ξ2

p(ξ2|η)dξ2

)
dηdξ1

+

∫
η

∫
ξ2

p(η, ξ2) log

(
p(η, ξ2)

p(η)p(ξ2)

)(∫
ξ1

p(ξ1|η)dξ1

)
dηdξ2

=

∫
η

∫
ξ1

p(η, ξ1) log

(
p(η, ξ1)

p(η)p(ξ1)

)
dηdξ1

+

∫
η

∫
ξ2

p(η, ξ2) log

(
p(η, ξ2)

p(η)p(ξ2)

)
dηdξ2

= I(η; ξ1) + I(η; ξ2)

(C.52)

C.3.3 Conditional Mutual Information for Independent Subsampling

Masks

The entropy of the distribution of measurements with independent subsampling masks,

H(ξ), is approximated via Gauss-Hermite quadrature as demonstrated previously. The
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first quadrature approximation is made as follows:

H(ξ) =

∫
p(ξ) ln(p(ξ))dξ =

∫ (∫
p(ξ|η)p(η)dη

)
ln(p(ξ))dξ

=

∫ (∫
p(ξ|η)f(η|mη,Ση)dη

)
· ln(p(ξ))dξ

≈
∫ π−N/2 Q1∑

q1=1

ωq1 · · ·
QN∑
qN=1

ωqNp(ξ|ηq)

 · ln(p(ξ))dξ

ηq =
√

2Σηxq +mη

(C.53)

The second quadrature approximation is made as follows:

H(ξ) = π−N/2
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

∫
p(ξ|ηq) · ln(p(ξ))dξ

= π−N/2
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

∫
f(ξ|S �Q(ηq),Σν) · ln(p(ξ))dξ

≈ π−N/2
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

·

π−P K1,r∑
k1,r=1

ωk1,r

K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i
· ln(p(ξk))


ξk =

√
2Σνxk + S �Q(ηq).

(C.54)
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The final quadrature approximation is made as follows:

H(ξ) = π−N/2−P
Q1∑
q1=1

ωq1 · · ·
QN∑
qN=1

ωqN

K1,r∑
k1,r=1

ωk1,r

K1,i∑
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ωk1,i · · ·
KP,r∑
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ωkP,r

KP,i∑
kP,i=1
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· ln
[∫

p(ξk|η)p(η)dη

]

= π−N/2−P
Q1∑
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[∫

p(ξk|η)f(η|mη,Ση)dη
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QN∑
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ωqN
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ωk1,i · · ·
KP,r∑
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ωkP,r

KP,i∑
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ωkP,i

· ln
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π−N/2

S1∑
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ωs1 · · ·
SN∑
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ωsNp(ξk|ηs)

]
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QN∑
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K1,i∑
k1,i=1

ωk1,i · · ·
KP,r∑
kP,r=1

ωkP,r

KP,i∑
kP,i=1

ωkP,i

· ln

π−N/2 S1∑
s1=1

ωs1 · · ·
SN∑
sN=1

ωsN

P∏
p=1

p(ξkp,r |ηs)p(ξkp,i |ηs)


ηs =

√
2Σηxs +mη.

(C.55)

C.3.4 Form of the Conditional Probability Distribution

The form of the conditional probability distribution p(z|η,d) for a second measurement

z, conditional on a first measurement d and the parametric maps η is of interest. The

probability distribution of a set of measurements z with acquisition parameters µ of an

exactly known set of parametric maps η(x) have previously been defined to be normally

distributed about the forward model solution FQµ(η(x)) with covariance matrix Σν

representing the uncertainty from machine noise. Making the reasonable assumption

that measurements are independent from one another with consistent uncertainty for
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each measurement, the covariance matrix becomes diagonal, Σν = σ2
νI. It also follows

that a second set of measurements z is independent from the first set of measurements

d. Therefore, the distributions p(z|η), p(d|η), and p(z,d|η) are given as follows:

p(z|η) =

n∏
i=1

p(zi|η) ∼ N




z1

...

zn

 ,



σ2
η1 0 . . . 0 0

0 σ2
η2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
ηN−1

0

0 0 . . . 0 σ2
ηN
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p(d|η) =

m∏
j=1

p(dj |η) ∼ N




d1

...

dm

 ,



σ2
η1 0 . . . 0 0

0 σ2
η2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
ηN−1

0

0 0 . . . 0 σ2
ηN
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p(z,d|η) =
n∏
i=1

p(zi|η)
m∏
j=1

p(dj |η) ∼ N
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zn
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...

dm



,



σ2
η1 0 . . . 0 0

0 σ2
η2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
ηN−1

0

0 0 . . . 0 σ2
ηN
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The first set of measurements can also be written

d = Sθ1 �
(
FQµ1

(η(x)) + ν(k)
)

= Sθ1 �
(
Gµ1

(η(x)) + ν(k)
)
. (C.59)
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If the second set of measurements is conditional on the first, z|d, then in this model

the subsampling parameters (θ1 → θ2) and the acquisition parameters (µ1 → µ2) can

be changed as a result of acquiring the first set of measurements. The given parametric

maps, η(x), and the uncertainty from machine noise, ν(k), remain the same. Therefore,

the second set of measurements takes the form

z|d = Sθ2 �
(
FQµ2

(η(x)) + ν(k)
)

= Sθ2 �
(
Gµ2

(η(x)) + ν(k)
)
. (C.60)

where θ2 and µ2 are conditional on d. This is still a set of normally distributed, inde-

pendent measurements, and the mean is only conditional on d insofar as d affects the

selection of model parameters for the second measurement. So, p(z|η,d) is defined as

p(z|η,d) =

n∏
i=1

p(zi|η,d) ∼ N




z1(θ2,µ2|d)

...

zn(θ2,µ2|d)

 ,



σ2
η1 0 . . . 0 0

0 σ2
η2

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . σ2
ηN−1

0

0 0 . . . 0 σ2
ηN




.
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For the purposes of maximizing conditional mutual information to select an opti-

mum z given an already acquired d, it makes sense to think of z and d as independent

(which, absent selection criteria for parameters of a second measurement that depend

on the first, they are), because the model parameters are explored during optimization.

The optimization problem to select optimum model parameters θ∗2 and µ∗2 for the second

measurement z is of the form

[θ∗2,µ
∗
2] = argmax

θ,µ
I(η; z|d) = argmax

θ,µ
(I(η; z(θ,µ),d)− I(η,d)) . (C.62)
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As for the form of the conditional probability p(z|d), it cannot be computed an-

alytically, but it can be writen in terms of known probability distributions p(z,d|η),

p(d|η), and p(η) with normal distribution N :

p(z|d) =
p(z,d)

p(d)
=

∫
p(z,d|η)p(η)dη∫
p(d|η)p(η)dη

=

∫
N(Sθ1 � Gµ1

(η),Σν)N(Sθ2 � Gµ2
(η),Σν)N(mη,Ση)dη∫

N(Sθ2 � Gµ2
(η),Σν)N(mη,Ση)dη

.

(C.63)

This can be computed using Gauss-Hermite quadrature as in previous sections.

Conditional mutual information can be computed through this probability distri-

bution in the following way:

I(η; z|d) = H(z|d)−H(z|η,d)

= H(z|d)−H(η, z,d) +H(η,d)

= H(z|d)−H(z,d|η)−H(η) +H(d|η) +H(η)

= H(z|d) +H(d|η)−H(z,d|η).

(C.64)

Then, known entropies can be substituted.

H(z|d) +H(d|η)−H(z,d|η)

= −
∫ ∫

p(z,d) ln(p(z|d))dzdd+
1

2
ln
(

(2πe)2σ
2Nacq,d
ν

)
− 1

2
ln
(

(2πe)2σ
2(Nacq,d+Nacq,z)
ν

)
= −

∫ ∫
(p(z,d|η)p(η)dη) ln(p(z|d))dzdd+

1

2
ln(σ

−2Nacq,z
ν )

(C.65)
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Finally, in terms of known normal distributions N , conditional mutual information is

I(η; z|d) = −
∫ ∫ ∫

N(Sθ1 � Gµ1
(η),Σν)N(mη,Ση)dη

· ln
(∫

N(Sθ1 � Gµ1
(η),Σν)N(Sθ2 � Gµ2

(η),Σν)N(mη,Ση)dη∫
N(Sθ2 � Gµ2

(η),Σν)N(mη,Ση)dη

)
dzdd

+
1

2
ln(σ

−2Nacq,z
ν ).

(C.66)
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[91] Ullrich Meier, S. Paris, A. Gräwe, D. Stockheim, A. Hajdukova, and S. Mutze. Is

there a correlation between operative results and change in ventricular volume after

shunt placement? A study of 60 cases of idiopathic normal-pressure hydrocephalus.

Neuroradiology, 45(6):377–380, 2003.



Bibliography 156

[92] J. Virhammar, M. Warntjes, K. Laurell, and E. M. Larsson. Quantitative MRI

for rapid and user-independent monitoring of intracranial CSF volume in hydro-

cephalus. American Journal of Neuroradiology, 37(5):797–801, 2016.

[93] Janne West, Anne Aalto, Anders Tisell, Olof Dahlqvist Leinhard, Anne Marie
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