
Pace University
DigitalCommons@Pace

Honors College Theses Pforzheimer Honors College

2019

Drawing Parallels between Heuristics and
Dynamic Programming
Margarita M. Dominguez

Follow this and additional works at: https://digitalcommons.pace.edu/honorscollege_theses
Part of the Computer Sciences Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Pace

https://core.ac.uk/display/228022651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.pace.edu/?utm_source=digitalcommons.pace.edu%2Fhonorscollege_theses%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/honorscollege_theses?utm_source=digitalcommons.pace.edu%2Fhonorscollege_theses%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/pforzheimer?utm_source=digitalcommons.pace.edu%2Fhonorscollege_theses%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/honorscollege_theses?utm_source=digitalcommons.pace.edu%2Fhonorscollege_theses%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.pace.edu%2Fhonorscollege_theses%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages

Drawing Parallels between Heuristics and Dynamic Programming

Margarita M. Dominguez

Bachelor’s of Science in Computer Science, Psychology Minor

Seidenberg School of Computer Science and Information Systems

Advised by: Dr. Miguel Mosteiro

Presented: May 8th, 2019

Graduating: May 2019

Heuristics vs. Algorithms 1

Table of Contents

Abstract 1

Introduction 2

Literature Review 3

Research Question 12

Methodology 13

Discussion 14

Heuristic Problem-Solving 14

Algorithmic Problem-Solving 19

Drawing Parallels 22

Cognitive Limitations vs Programming Limitations 22

Memories vs Memoization 23

Heuristic Dynamic Programming 24

Discussing Algorithms 24

Conclusion 26

References 27

Heuristics vs. Algorithms 2

Abstract

Algorithms, or processes for doing something, are a topic that scholars and

mathematicians explored long before computers were invented. As humans, we look to

simplify our problems and take shortcuts. In psychology, this is called heuristic

problem-solving, where humans use the outcomes of previous situations, to breakdown

and decide how to approach new situations. This project explores the relationship

between heuristic problem-solving and a computer algorithms, dynamic programming,

in order to explore how humans rationalize these concepts and how we can extend the

discussion of algorithms outside the technology field. Dynamic programming takes on

the approach of breaking down a problem into smaller solutions, and then uses those

smaller solutions as a reference for solving other computations and the overall problem.

Those references created in dynamic programming are similar to people’s personal

memories. This project explores the relationship between heuristic problem-solving and

computer algorithms, dynamic programming, in order to explore how humans

rationalize these concepts and how we can extend the discussion of algorithms outside

the technology field.

Heuristics vs. Algorithms 3

Introduction

Heuristics and algorithms are not topics typically thought of in conjunction. The

idea of heuristics comes from the field of psychology and algorithms are discussed in

computer science with their origination coming from mathematics. As a computer

science major, I have always held a fascination for coding and the way a computer can

translate the instructions it is given. Similarly, I hold a fascination for psychology and

the way our brains work, which is how I ended up focusing on a way to compare those

two topics.

Heuristics, like algorithms, aid in problem-solving and decision making. Those

mental shortcuts guide us in our daily activities. Because of heuristics, we can usually

figure out a solution, or at the very least decide how to proceed, when faced with a new

situation. In our problem-solving, there are steps we take to assess the situation, and

heuristics are a large part of this.

When an algorithm is solving a problem, making a decision, or simply working

through a computation, it can be designed to take similar measures. Dynamic

programming specifically is an algorithm that draws on a similar approach to heuristics.

Dynamic programming algorithms are designed with the same intent to assess the

overall situation, break that down into sub-problems, and find, and store, solutions to

those sub-problems first. The storage of the sub-problem solutions is comparable to the

way we store memories.

Heuristics vs. Algorithms 4

Looking at this research in a larger context, I think that if more people began to

recognize how much of our own human thought process is in our computers, the field of

technology, and the design and engineering behind it, could be accessible to people

outside of the fields we typically regard as STEM. We can begin to discuss algorithms in

a wider range of majors in our colleges and begin to bring a broader range of

perspectives and knowledge into this topic.

Literature Review

Most of the sources I have been working with in my research have been journal

publications. From the side of the psychology research, Ebsco databases were a big help.

From the computer science side, the Institute of Electrical and Electronics Engineers

(IEEE) database was the site of most of my findings. The topic of problem-solving on its

own is one that has been explored in general. Human beings are constantly in situations

where they are faced with making a choice - whether its at work, school, or down to a

basic need such as choosing what they want to eat. For this reason, numerous

psychologists have researched how it is that humans make decisions. The three largest

contributors to this topic were Herbert Simon, Amos Tversky, and Daniel Kahneman.

The three of them conducted a series of studies in this field - specifically in heuristics.

Starting with Simon’s work, he, and his associates, wrote a paper titled “Decision

Making and Problem-Solving” (1987). In this paper, Simon et al. explore

problem-solving theory and decision making. This is important to the topic at hand

because it offers an introduction and serves as a foundation on decision making and

problem-solving. The study breaks down the importance of those two processes as

Heuristics vs. Algorithms 5

separate entities. From the decision making side, Simon et al. discuss subjective

expected utility (SEU), which is a sophisticated mathematical model of choice but could

only work in a perfect world where humans were filled with more certainty (1987). The

authors also found, through empirical research, that problem-solving is a process that is

heuristic​ - meaning that it would be difficult to assess in a straightforward, scientific

way. The empirical research was commonly conducted as asking people a series of

questions, which was then supplemented with carefully designed laboratory

experiments and observing how people make choices (Simon et. al, 1987). Similarly,

problem-solving was studied in a controlled laboratory setting. This would then be

supplemented with real-world examples such as a person playing chess. Simon et al.

then dive into how these processes affect artificial intelligence (AI) research, how to deal

with ill-structured/complex problems, the framing of problems, and then how

computers handling computations is a form of problem-solving as well. Simon et al.’s

work is very relevant and important to this analysis because he broke down the topic

into its subproblems and analyzed how they would continue to play into technology in

the future.

Additionally, Simon wrote another essay, in 1997, titled “Problem Solving”. In

this essay, he goes in depth about what it is, how problems are represented, and how

problem-solving extends beyond the human mind. It is a field in cognitive psychology,

but Simon wanted to explore other representations of problem-solving and how those

heuristic rules apply outside of psychology. He also explored how heuristic analysis

occurs and problems break down into subproblems. Both human and automated

Heuristics vs. Algorithms 6

problem solving depends on the heuristic aspect and recognition of cues to access the

knowledge necessary to solve the problem. This is an important point to note because

the process of dynamic programming that I will be exploring also breaks larger

problems into subproblems, stores the answers to those subproblems, and then uses

them to as references to solve the overall larger problem.

Moving on to Amos Tversky and Daniel Kahneman’s contributions, their focus

was on decision making. The first paper of theirs that I will be using is “The Framing of

Decisions and the Psychology of Choice” (1981). In this paper, Tversky and Kahneman

address “the psychological principles that govern perception of decision problems” and

how changing the way the problem is framed can significantly change the outcome

(1981, p. 453). Tversky and Kahneman define what a decision problem is, how it is

framed - meaning the conception of the decision maker’s acts, the outcomes of that

decision, and “contingencies associated with a particular choice” (1981). The focus in

this paper is to explore human perception and overall thought process as it serves as a

base for making decisions. They used hypothetical situations such as having subjects

decide how many people to save from a deadly disease with a small percent chance that

you could possibly save none of them at all in the process or how much money you can

choose to gain if the choice is to gain a small amount or a big amount with the

probability to actually gain nothing at all. This is a way to assess how we evaluate risk in

decision making. The ultimate conclusions in their discussion highlight how perception

is a large influence because of personal preferences, awareness of alternative solutions

and frames, and confusion in how to resolve detected inconsistencies. This paper offers

Heuristics vs. Algorithms 7

insight on the process of how humans rationalize decision making, which will be

important in discussing making choices in general in problem solving and how this

might tie into the rationalization of other concepts, such as dynamic programming.

One other work of Tversky and Kahneman is “Rational Choice and the Framing of

Decisions”. This paper similarly analyzes how people frame and evaluate outcomes, by

presenting the same types of decision making problems, but it goes deeper into the math

of the outcomes of those choices. The purpose of it was to discuss how the descriptive

theory for decision making could not be discussed solely on the foundation of the logic

of choice because actual human behavior exhibits widespread deviations. One aspect of

this publication that is very helpful is how Tversky and Kahneman breakdown the

hierarchy of normative rules for decision making, which are four approaches humans

take: cancellation, transitivity, dominance, and invariance (1981). Tversky and

Kahneman argue that it is equally difficult to confine the process to this normative

theory, but the hierarchy can still serve as a basis for human thought process even if the

actual process does not directly confine itself to such categories. The two of them do a

good job of bringing this cognitive, psychological process into a more technical light

with their findings.

One last work I would like to mention from the heuristic side is an article from

Science Direct, titled “Heuristics for Decision and Choice” (Todd, 2001). This is a short

reading that serves as a source for defining heuristics in my writing being that I would

like to provide a formal definition. “Heuristics for Decision and Choice” provides the

reader with a quick summary of the way heuristics play into decision-making. It touches

Heuristics vs. Algorithms 8

on the classical norms of rationality, how heuristics can exploit structured information,

and how they play into judgment in situations where one must decide what outcome will

occur based on the probability that it could occur.

Now, when it comes to the computer science side of this research, what literature

exists for dynamic programming is not as straightforward as what has been written for

the psychological processes. When it comes to dynamic programming, I chose two

sources regarding its history and development, one written by the creator of dynamic

programming, the other written by Stuart Dreyfus from Bellman’s perspective. I am

discussing only those two in order to provide a concise description of the subject and

address the creator’s intention and vision for it. The other sources I will mention are

about specific applications of dynamic programming.

Starting with the “History and Development of Dynamic Programming”, by

Richard E. Bellman and E.S. Lee (1984). This paper outlines the history of dynamic

programming and how it was developed. An interesting point noted in this essay is that

the formulation of a scientific process, such as this, was not one that was

straightforward; it was made to be “logical and rational” afterward, and this directly

relates to our own nonlinear thought process when discussing cognitive problem

solving. Dynamic programming was formulated as a solution to mathematical

computations. Bellman formulated this process as an approach to multistage processes.

The paper then goes on to discuss its application in deterministic problems and optimal

control, numerical solutions in practical problems, invariant embedding, and the

difficulty of dimensionality (as the variables in a problem increase). Bellman and Lee’s

Heuristics vs. Algorithms 9

essay finishes off with a short discussion and looking forward with dynamic

programming and its projected future in artificial intelligence.

The next piece of literature is titled “Richard Bellman on the birth of Dynamic

Programming” (Dreyfus, 2002). This essay was interesting because it was compiled by

Stuart Dreyfus using Bellman’s autobiography, ​Eye of the Hurricane​, from 1984.

Similar to the previous paper which discusses its origin, Dreyfus’ piece goes through

Bellman’s introduction to multistage decision problems, the origin of the name

“dynamic programming”, optimal control theory, and his systematic methodological

approach to mathematics. The whole essay is compiled of quotes directly from Bellman;

therefore, it offers great insight into his thought process as he was creating the concept

of dynamic programming and his vision for how it would play into problem solving

beyond just computations. Dreyfus’ compilation of Bellman’s ideas brings a new

perspective because he arranges Bellman’s thoughts in a cohesive way and presents that

narrative to the reader. It is interesting to see how another person is able to take

Bellman’s word and arrange them in a way that is still accurate.

Between those two pieces of writing, the reader can obtain a solid background on

dynamic programming’s beginnings from the man that created this idea. Additionally,

those sources show us how an algorithm comes to be. I limit my discussion on

background to those two sources in order to avoid repetitive information.

The next couple of readings serve as specific examples of applications of dynamic

programming. Because dynamic programming is a technique for breaking down

processes, it can be applied in endless scenarios. The method of memoizing, or storing,

Heuristics vs. Algorithms 10

smaller solutions has proven to be a helpful solution. Specifically, within the world of

programming, taking this approach to divide-and-conquer is more efficient than

attempting to tackle through a problem with brute force.

The first is, “The Application of Dynamic Programming in the Nonlinear

Programming Problems” by Qin et al. from 2010. This paper by Qin et al. which looks at

the nonlinear programming dives into the math of these problems, but through the

break down of the mathematical problems, one can compare that to the breakdown

from a psychological perspective. Ni et al.’s work looks at how heuristics are actually

used in dynamic programming. This paper is one that is far more technical than I

believe I will use as it goes into using networks and mathematical computations,

however, Ni et al. do address the structure of this type of algorithm, and looking at

nonlinear problems will be helpful in forming a comparison to psychology because our

own problem-solving and decision making does not always follow a direct path.

In relation to indirect paths, “Dynamic Programming for Fuzzy Systems with

Fuzzy Environment” by J. F. Baldwin and B.W. Pilsworth in 1982. Although dated, this

source serves as a great discussion piece when discussing how an algorithm can

approach complicated, unclear situations, similar to the way humans do. Specifically,

Baldwin and Pilsworth present us with “an equation for a multi-stage decision problem

with fuzzy dynamics and environment” (1982, p. 1). They also mention human

intelligence as part of their discussion - although they preface with writing that human

intelligence is superior to the machines, a fact that was likely true at the time (our

current machines and artificial intelligence are becoming smarter every day).

Heuristics vs. Algorithms 11

Additionally, Baldwin and Pilsworth note how human intelligence is limited in some

ways, there are times when we over-simplify problems, which is why dynamic

programming could be really useful as it could explore a wider range of solutions before

making a decision (1982, p. 1-2).

Some other papers I would like to discuss, involve a heuristic approach to

dynamic programming. This algorithm is simply called heuristic dynamic programming,

or more often shortened to be HDP, and actually feature two of the same authors, which

shows that the researchers working on this topic are working on it extensively thus the

source becomes more credible. The first is “Reinforcement Learning Control Based on

Multi-Goal Representation Using Hierarchical Heuristic Dynamic Programming” (Ne,

He, et al., 2012). In this paper, Zhen Ni, Haibo He, Dongbin Zhao, and Danil V.

Prokhorov look to create a hierarchy of heuristic dynamic programs as the way to break

down a larger problem. Their intention is to use this hierarchical approach to store

solutions, generate multiple goals, and allow the system to learn how to optimize itself

in doing so. Next is, “Heuristic Dynamic Programming with Internal Goal

Representation”, written by Zhen Ni and Jaibo He (2013). In this paper, the two

researchers analyzed another goal structure based on heuristic dynamic programming,

but this time, they specifically wanted to address the “2-D maze navigation problem” (Ni

and He, 2013, p. 2101). The latest of the ones I have chosen is “Model-Free Dual

Heuristic Dynamic Programming” by Zhen Ni, Haibo He, Xiangnan Zhong, and Danil V.

Prokhorov, written in 2015. Here the researchers ran a few studies using heuristic

dynamic programming, which they describe as a “popular approach in approximating

Heuristics vs. Algorithms 12

optimal solutions in control problems” (2015, p. 1834). The studies involved complex

mathematical equations and solve for a variable, and they compare HDP to their

proposed Dual Heuristic Dynamic Programming. Between these three sources, I am

able to obtain substantial information on the design of this type of dynamic

programming and what qualifies it to be considered “heuristic”. These different

applications of heuristic dynamic programming present us with an idea of the range of

problems this algorithm can address.

Overall, these are two topics that have been studied in detail separately. The

challenges with this research come in with finding publications from each topic that can

be compared. A majority of the written works regarding dynamic programming are

extremely technical in terms of specific programming and mathematical computation

concepts. The way dynamic programming came to be was as an idea developed by

Richard Bellman and it was defined as it was implemented. Algorithms require formulas

and numbers to be explained because it is important to mention complexity and how

optimal the method is whereas a cognitive process can be observed and described in

words. Numbers are important in psychology when it comes to discussing outcomes and

providing a statistical analysis of the findings. In order to study an algorithm, however,

researchers often, if not always, test them in mathematical scenarios.

Research Question

When learning about computer algorithms and programs, it’s interesting to think

of them from a different perspective. Beyond the programming, there are other aspects

that go into the design and implementation of algorithms. These algorithms follow

Heuristics vs. Algorithms 13

specific steps and are designed to approach specific situations. Taking a psychological

viewpoint to these algorithms, it is clear to see the human influence in these very

technical topics. When humans are faced with making decisions, they often go through

steps in outweighing the costs and mentally referencing the outcomes of previous

similar situations. There are algorithms that similarly do this and store the results of

problems as they are solved in order to apply those results to future iterations. The fact

that similarities exist between cognitive problem-solving and algorithmic

problem-solving is a given. Algorithms are created and designed by humans; therefore,

it would be impossible for an algorithm to exist without having any semblance of our

own thought processes and biases. My intention is now to draw parallels between

heuristic problem-solving and decision-making, cognitive processes, and algorithms,

with a specific look at dynamic programming.

Methodology

To explore the relationship between heuristics and algorithms, the main focus is

to explore academic research papers. In conducting a meta-analysis of the two topics, it

is important to see what professional works have been written about them. From the

psychology side, the works of Simon, Tversky, and Kahneman are most important as

they were the ones who made the most significant findings when it comes to decision

making and problem-solving. For the computer science side, it is important to explore

the beginnings and the design of dynamic programming, and how it all works to break

down and solve problems. These are two processes that are not typically compared to

one another, but there is potential to re-imagine the way we teach, discuss, and design

Heuristics vs. Algorithms 14

technological processes such as dynamic programming, when clear links are made

between the likeness they have with our own minds.

I will do an analysis of psychological works pertaining to human cognitive

processes in relation to problem-solving - specifically heuristic problem-solving.

Through the use of heuristics, which are mental shortcuts humans take to aid in daily

life and problem-solving, humans are able to rationalize and approach new situations.

Heuristics are when humans make associations to previous experiences in order to

understand how to approach unknown situations and problems. We reference our

memories in hopes of drawing comparisons. Between that and mentally breaking down

problems, we are typically able to handle the smaller issues and work our way up.

 The intention is then to analyze an algorithm called dynamic programming,

which seeks to break down problems and store solutions of those subproblems in order

to reference them later. In connecting psychology to this computational process, one can

even gain insight into how humans rationalize such a process. It is important to

remember that every aspect of technology has been designed by a human; therefore, it

should be no surprise to find a strong relationship between our cognitive processes and

a computer’s technical ones.

Discussion

 Heuristic Problem-Solving

As previously stated, heuristics help humans simplify daily life. To give a formal

definition, from the ​International Encyclopedia of the Social and Behavioral Sciences​:

Heuristics vs. Algorithms 15

Heuristics are approximate strategies or ‘rules of thumb’ for decision making and

problem solving that do not guarantee a correct solution but that typically yield a

reasonable solution or bring one closer to hand. As such, they stand in contrast to

algorithms that will produce a correct solution given complete and correct inputs.

More specifically, heuristics are usually thought of as shortcuts that allow

decisions (Todd, 2015).

Humans refer to heuristics throughout the day whether it is for basic day-to-day

decisions, such as what to eat for breakfast, or more complicated task, such as problems

we face at work. For example, we apply heuristics every day when we get dressed. If we

look at the weather and see that it is raining, we know from previous experience that we

should: grab an umbrella, wear a raincoat, put on rain boots, wear a hood, etc. We

learned in the past that the rain will make us wet and uncomfortable; therefore, we plan

ways to accommodate for it. Remembering this saves us time from trying to figure out

how to avoid the rain, or avoid getting wet, for the most part, so that we immediately

know how to handle it. Simple as that may sound, it is a heuristic.

These rules we establish for ourselves become integral to our existence. Without

the ability to find ways to apply our memories to new situations, our lives would be

exponentially much more difficult. Rather than making quick judgments, and breaking

down problems, we would spend a longer amount of time struggling to understand the

unknown, and likely spend more time in distress.

Looking first at problem-solving, a topic that many psychologists are constantly

trying to understand, one can see how the mind aims to separate what we know versus

Heuristics vs. Algorithms 16

what we do not know in order to reach some sort of resolution. “Solving a problem is

transforming a given situation into a desired situation, or goal,” (1997, p. 1) as written by

psychologist Herbert A. Simon, who was one of the top influential people when it comes

to this topic. In Simon’s essay, titled, “Problem Solving”, he breaks down the steps for

solving a problem. In order to problem solve, humans must generate a “representation”,

or reference a previously generated representation (Simon, 1997, p. 1). These

representations include a description of the situation, operators (actions) to change the

situation, and “tests” to assess “whether the goal has been achieved” (Simon, 1997, p. 1).

Using those three components we form the representation, and that representation

serves as a guide to help us figure out how we should proceed in the situation. The use of

a previously generated representation is an example of heuristics.

Although helpful, it is equally important to remember that heuristics do not

guarantee solutions - real-life situations cannot be confined to linear paths and mental

formulas. As Simon stated, “heuristics follow plausible paths that often find satisfactory

solutions” (1997, p. 3). This is not to say that heuristics are completely unreliable, it is

natural for us to apply heuristics where we can and to dissect situations in order to

identify which parts of it we do know how to handle. The heuristics we store could be

thought of as educated guesses, or running an experiment. Once we see the outcome of

that previously unknown situation, our brains will store that as new information, and

this becomes a new representation that can then be used in the future when we

encounter a new unknown problem. Humans go through life cognitively addressing

problem-solving in this way. There is an endless cycle of forming new representations in

Heuristics vs. Algorithms 17

order to rationalize the world around us. We can then continue to form heuristics

through the representations. That being said, problem-solving is not only a matter of

rationalizing the unknown.

Another aspect that is important to discuss is decision making. Problems can go

beyond finding a definite solution. It is possible that once we understand a problem, we

then have to make choices about how to proceed - whether that is choosing how to

lessen the severity of the problem or how to resolve the problem. This area of psychology

in regards to making choices was largely studied by Amos Tversky and Daniel

Kahneman. The two of them did multiple studies regarding the framing of decisions and

psychology of choice.

According to Tversky and Kahneman, humans make decisions based on the

“psychological principles that govern the perception of decision problems and the

evaluation of options” (Tversky and Kahneman, 1981, p. 453). This means our personal

preferences and biases have a large influence over the way we perceive a situation. Our

perception, and personal heuristics, ultimately explain why we make the choices we do.

As written by Tversky and Kahneman, “The frame that a decision-maker adopts is

controlled partly by the formulation of the problem and partly by the norms, habits, and

personal characteristics of the decision-maker” (1981, p. 453) - this, we will later see,

directly correlates with the biases that exist in our algorithms. It is very difficult, if not

impossible, for humans to eliminate their personal biases. This means that the same

problem presented to different people could result in completely different outcomes

Heuristics vs. Algorithms 18

from one another because it is going to be perceived from each individual’s unique

perspective.

In saying that our interpretations influence the choices we make, that does not

mean that the framing of choices is a completely random process. Humans assess both

the costs and possible outcomes in order to decide if a situation will result in an

outcome they find favorable, given the initial effort they must contribute. The outcome

is defined through the expected utility model, and people usually look to obtain the

“highest expected utility” in decision making (Tversky and Kahneman, 1981, p. 453).

The expected utility model is “based on a set of axioms” (Tversky and Kahneman, 1981,

p. 453). Those axioms are unique to each individual - we have our own preferences and

value outcomes based on our own likes and personal situation. We then use those

axioms to compare the utility of the outcome and the probability of that outcome

occurring. Research has found, however, that even so, humans do stray from this

expected utility model. The descriptive theory proposed by Kahneman and Tversky

divides the decision-making process into two phases: the initial phase where we frame

the outcomes and then the evaluation phase (1981, p. 453). This idea of two phases will

become relevant again later when discussing heuristic dynamic programming, which

similarly consists of two layers.

Going off the concept of expected utility theory, there are four principles of choice

that are said to underlie this theory: cancellation, transitivity, dominance, and

invariance. Cancellation is the action of eliminating occurrences that yield the same

outcome rather than continuing to ruminate and worry about making a choice (Tversky

Heuristics vs. Algorithms 19

and Kahneman, 1986, p. 252). Transitivity refers to the idea our preferences can change

depending on the situation and which choice will yield a greater outcome at that given

time (Tversky and Kahneman, 1986, p. 253). Dominance is simple, this is the idea that

people will choose the option that is better given the current state, and is typically better

in all other states. The last principle, invariance refers to the idea that regardless of the

description, or “representation” of the problem, we should have the same preferences,

therefore, make the same choices no matter how the problem is presented (Tversky and

Kahneman, 1986, p. 253). I would argue that these four principles do hold importance in

our decision-making, however, perceptions and heuristics do play a role. It is far too

definitive to say that we will hold the same preference because as humans we are

constantly evolving, learning, and forming new memories.

All of that being said, making choices plays into problem solvings. Even if a

problem requires some sort of computation, people can be faced with making a decision.

One could even say that problem-solving is an important step in making a choice

because we mentally apply the expected utility model to calculate which choice will reap

the greatest benefit. Where heuristics come in is in guiding us to avoid making

redundant calculations if we already know what the outcome will be from previous

experience, or help us eliminate a choice we already know we will not like the outcome

to. These shortcuts help us save time, and we actually apply heuristics constantly - they

are rules that are second-nature to us.

Heuristics vs. Algorithms 20

Algorithmic Problem-Solving

Similar to heuristics, algorithms are rules. According to Cormen et al, authors of

Introduction to Algorithms​, algorithms can be defined as:

any well-defined computational procedure that takes some value, or set of values,

as input and produces some value, or set of values, as output. An algorithm is

thus a sequence of computational steps that transform the input into the output

(2009, p. 5)

Algorithms can be applied in a wide variety of situations, whether computational or

mathematical. They define a clear procedure to follow in order to complete the task, or

problem, at hand. Algorithms can be thought of as tools that simplify the

problem-solving process and help us work through computations. They help us save

time, and often allow us to work more efficiently. In an algorithm, the input is explicitly

defined, as is the output, and algorithms are effective for this reason. With an algorithm

there is no confusion or ambiguity; in whatever algorithm you, or your computer, are

working with the steps are clearly defined. Depending on the algorithm, it is possible to

have to go through multiple iterations, repeat steps, until the outcome is obtained.

Algorithms can vary in their structure as well. An algorithm could look like a list

of steps, similar to a cooking recipe, or it can go on to be as complex as implementing

multiple loops, checking for satisfied conditions, solving multiple mathematical

equations breaking down larger problems, storing values, and going through multiple

iterations of the same steps.

Heuristics vs. Algorithms 21

That being said, algorithms should not only be thought of as big math problems.

They are embedded in all of our technology to run a multitude of tasks. Algorithms come

into play when a user is searching for an app, and they come into play when a user is

asking a voice-assist program, such as Siri, a question. There are many specialized

algorithms, but I will be focusing on one: dynamic programming.

Dynamic programming is an algorithm that can be applied to many different

problems. This algorithm implements the approach to divide-and-conquer tasks. The

problem the algorithm is trying to solve is divided into subproblems; the solutions to

those subproblems are then used to compute the overall greater problem. There are four

basic steps to follow in designing a dynamic programming algorithm:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

(Cormen et al, 2009, p. 359).

Step 1 entails analyzing the problem and establishing what the best solution would

consist of. In step 2, that solution is described recursively. Recursion is the process of

defining something using itself in the definition. This means that a recursive algorithm

iterates and repeats a part of itself until it finds the solution. Because a recursive process

repeats itself, it typically works in a bottom-up fashion. Step 4 is not always executed.

Recursion is key in dynamic programming because the program is solving the overall

larger problem by doing multiple computations of subproblems. Each time a new

Heuristics vs. Algorithms 22

solution is found, that value is then stored in a data structure - typically an array or hash

table. The process of using a data structure to store data is ​memoization. ​Some

problems are just computations to produce some value, and some other problems need

to take that value to make a cohesive solution.

Interestingly enough, dynamic programming was created as a mathematical

process by Richard Bellman, “gradually formulated” between 1948 and 1952 (Bellman

and Lee, 1984, p. 2). Dynamic programming was intended for solving random

multistage decision problem - random meaning random probability distribution

(Bellman and Lee, 1984, p. 2). The name originated from wanting to mask the fact that it

involved mathematics. The word dynamic was used because it is a dynamic process to go

through the iterations, and it would grab people’s attention. To find that dynamic

programming came from math is not entirely surprising, however, because math has

had a large impact on computer science, being that our data is processed as numbers.

Some specific examples of the applications of dynamic programming include:

searching through a binary tree, cutting a rod into pieces for the lowest total cost, and

producing values for a table. Dynamic programming is very helpful in multi-stage

processes; at each step, a decision is made in order to optimize the result (Qin et al.,

2010, p. 236). The optimized results to those subproblems are used to avoid redundant

computation. Here you can see how dynamic programming and heuristics begin to tie

together.

A heuristic form of dynamic programming has already been developed. Heuristic

dynamic programming similarly tackles on an endless range of problems.

Heuristics vs. Algorithms 23

Drawing Parallels

Both in heuristics and dynamic programming, the focus is on identifying the

problem, dividing the problem into subproblems, finding a solution to those

subproblems, and using those solutions to solve the overall. Additionally, both processes

allow the use of previously stored (sometimes calculated) information, or memories.

Cognitive Limitations vs Programming Limitations

Until now, the implications for both heuristics and dynamic programming is that

they can be applied to a multitude of problem, regardless of the structure the problem

seems to have. Both of these processes try to break up the problem to gain a better

understanding. The human brain may not so explicitly define the steps it is taking upon

encountering a new situation, but it does make some quick choices in order to choose

well and choose efficiently. One big limitation humans encounter that algorithms do not

is selective memory. Humans can be very forgetful, and as we get older, our memories

can begin to blur. It would be impossible to remember the outcome of every single

situation. This is where the algorithms can be regarded as superior. While storage and

computational capacity are limited, what information is stored is not very likely to

become blurry and unclear, but it is important to remember that our intelligence, in

general, is limited; therefore, the algorithms we design will be limited as well.

Memories vs Memoization

Our memories are comprised of the experiences we have had throughout our

lives. These memories range from precious moments with our loved ones to the subway

routes one can take to get to work to the multiplication table we memorized in the third

Heuristics vs. Algorithms 24

grade. Everything is information we can remember and use in the future when we are

uncertain about how to solve a problem and what choices to make. For example, if a

person on the subway misses their stop and they do not know how to walk to the

destination from that next stop, they know to revert back to the stop they do know, and

proceed from there. Dynamic programming implements a very similar approach. A

program does not have memories, however, it has information that is stored. In the case

of the subway example, the program would have the subway stops it has already visited

stored in the order in which they occur. From there, the program would be able to see

the link between the stops and direct the user to take a train in the opposite direction to

arrive at the desired stop. In this case, the human brain can be considered to be

equivalent to a hash table.

Heuristic Dynamic Programming

During this research, it was exciting to find that others have found a connection

between heuristics and dynamic programming as well. Even more exciting was finding

programs that implemented these two concepts together. What characterizes heuristic

dynamic programming is the use of neural networks, specifically, two of them: an action

network and a critic network (Tang and Srikant, p. 1). The use of the two networks

mimics the human process. The critic network analyzes the situation and “learns the

relationship between a set of control signals and the corresponding strategic utility

function” (Tang and Srikant, p. 1). The action network uses the feedback from the critic

network to produce the best solution.

Heuristics vs. Algorithms 25

Similar to when humans problem-solve, this type of dynamic programming will

assess the situation, compare what they do know to what they don’t, and assess the

expected utility when faced with making a choice. Heuristic dynamic programs look at

the overall costs in order to work efficiently, and these programs can be adapted to any

type of multi-stage process. It is especially useful tasks that require the program to

learn. Through the splitting of tasks and storing data, heuristic dynamic programs could

help greatly with machine learning and be applied to artificial intelligence.

Discussing Algorithms

Heuristics and dynamic programming exhibit direct correlations to one another.

It should be expected that the technology around us is going to function in a similar way

humans do - especially as it increases in complexity and is created to execute more and

more tasks for us. The devices we use every day are incredibly smart. Our smartphones

alone act as organizational planners for our entire lives. There exists an app to fill

almost any need we might have and most of us would likely have - even to do a task as

simple as reminding us to drink water. Technology is becoming deeply embedded in our

lives, beyond casual everyday uses. Computers and computer algorithms are being used

in almost every job field. If not used directly, algorithms, at the very least, run the

software behind the technology.

Because an algorithm such as dynamic programming mimics our own likeness so

well, we are able to rationalize it. It is important to acknowledge this fact and realize

that algorithms do not have to be discussed in the typically technical way they always

are. Algorithms are instructions or rules to find a solution. Yes, when it comes to

Heuristics vs. Algorithms 26

implementation, there will be math to consider because of run-time and the architecture

of the device executing the algorithm. If these algorithms are created for humans to use

them, they should be discussed outside typical STEM fields. The importance of

interdisciplinary teams should not be disregarded. Imagine an anthropologist working

with an engineering team for smart cars, or an economist developing an algorithm for

trading money and stocks. Algorithm design and analysis should be taught to a wider

range of students in order to open up the capabilities of what we can continue to do with

technology. Humans are limited by their own cognitive abilities as it is, but if a wider

range of people is given the knowledge, that increases the range of what we can

accomplish. Just from conducting this research, the vast majority, if not all, of the

paper’s regarding algorithms were very technical and dove into the complex math

behind these problems. It was impossible to read about how the algorithms in

discussion worked, without having to decipher the equations. This shows that there is an

unaddressed need for algorithms to be discussed in a new way.

Conclusion

In the end, both algorithms and heuristics are complex topics, and each one has a

likeness to the other. Heuristics are the mental shortcuts and rules of thumb we follow

on the day to day basis. They help us save time throughout our daily routines, and they

help us when we find ourselves faced with a problem or decision to make. Through

heuristics, we break down problems and reference our memories of previously

encountered events in order to see the optimal way to approach. In dynamic

programming, the algorithm proceeds in a similar way. As it executes, the program

Heuristics vs. Algorithms 27

stores the information to the smaller problems it has computed in order to use that as a

reference going forward. Those smaller references, comparable to memories, save the

algorithm time from having to compute repetitive information and serve as a guide to

complete the overall task at hand.

The clear similarities between these two topics help show us that algorithms

apply similar methods as we do because they are human created. It would be impossible

for humans to completely eliminate bias. When the algorithms are created, what is

occurring is that the creators' thought-process is now translated into a format that is

compatible with technology and coding. That being said, the discussion and teaching of

algorithms should be taught to a wider range of people outside the STEM field, and even

within the STEM field, algorithms should be more commonly discussed in a way that is

not always technical and lending itself to be occupied with math and runtime

complexities. At the end of the day, algorithms are simply instructions to follow.

Mentally, we give ourselves instructions to follow every day. There could be a great deal

of knowledge to untap if algorithms were introduced to those not involved in STEM.

Heuristics vs. Algorithms 28

References

Baldwin, J. F., & Pilsworth, B. W. (1982). Dynamic programming for fuzzy systems with

fuzzy environment. ​Journal of mathematical analysis and applications​, ​85​(1),

1-23.

Bellman, R., & Lee, E. (984). History and development of dynamic programming. ​IEEE

Control Systems Magazine​, ​4(4), 24-28.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (2009). ​Introduction to algorithms​. MIT

Press. Retrieved from http://search.ebscohost.com.rlib.pace.edu/login.aspx?

direct=true&db=cat01787a&AN=PUC.b1411869&site=eds-live&scope=site

Dreyfus, S., (2002) Richard Bellman on the Birth of Dynamic Programming.

Operations Research 50(1):48-51. https:// doi.org/10.1287/opre.50.1.48.17791

Ni, Z., & He, H. (2013). Heuristic dynamic programming with internal goal

representation. ​Soft computing​, ​17​(11), 2101-2108.

Ni, Z., He, H., Zhao, D., & Prokhorov, D. V. (2012, June). Reinforcement learning

control based on multi-goal representation using hierarchical heuristic dynamic

programming. In ​The 2012 International Joint Conference on Neural Networks

(IJCNN)​ (pp. 1-8). IEEE.

Ni, Z., He, H., Zhong, X., D. V. Prokhorov, D.V., "Model-Free Dual Heuristic Dynamic

Programming," in ​IEEE Transactions on Neural Networks and Learning

Systems​, vol. 26, no. 8, pp. 1834-1839, Aug. 2015.

doi: 10.1109/TNNLS.2015.2424971

Qin, T., Huang, W., and Wang, G., "The Application of Dynamic Programming in the

Heuristics vs. Algorithms 29

Nonlinear Programming Problems," ​2010 WASE International Conference on

Information Engineering​, Beidaihe, Hebei, 2010, pp. 236-239.

doi: 10.1109/ICIE.2010.151

Simon, H. (1955). A Behavioral Model of Rational Choice. ​The Quarterly Journal of

Economics,​ ​69​(1), 99-118. Retrieved from http://www.jstor.org/stable/1884852

Simon, H. A. (n.d.). ​Problem Solving​ [PDF]. Carnegie Mellon University Digital

Collections (pp. 1-9).

Tang, K. W., & Srikant, G. Reinforcement Control via Heuristic Dynamic Programming.

Todd, P. M. (2001). Heuristics for Decision and Choice. In ​International

Encyclopedia of the Social & Behavioral Sciences​ (Vol. 11, pp. 6676-6679).

Amsterdam: Elsevier. Retrieved from https://www.sciencedirect.com/science/

article/pii/B008043076700629X?via=ihub.

Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions.

The Journal of Business,​ ​59​(4), S251-S278. Retrieved from

http://www.jstor.org/stable/2352759

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of

choice. ​Science​, ​211​(4481), 453-458.

	Pace University
	DigitalCommons@Pace
	2019

	Drawing Parallels between Heuristics and Dynamic Programming
	Margarita M. Dominguez

	tmp.1568224152.pdf.N_YEw

