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Abstract

To date, there are very limited noninvasive, regional assays of in vivo lung

microstructure near the alveolar level. It has been suggested that x-ray phase-

contrast enhanced imaging reveals information about the air volume of the

lung; however, the image texture information in these images remains

underutilized. Projection images of in vivo mouse lungs were acquired via a

tabletop, propagation-based, X-ray phase-contrast imaging system. Anes-

thetized mice were mechanically ventilated in an upright position. Consistent

with previously published studies, a distinct image texture was observed

uniquely within lung regions. Lung regions were automatically identified using

supervised machine learning applied to summary measures of the image tex-

ture data. It was found that an unsupervised clustering within predefined lung

regions colocates with expected differences in anatomy along the cranial–cau-
dal axis in upright mice. It was also found that specifically selected inflation

pressures—here, a purposeful surrogate of distinct states of mechanical expan-

sion—can be predicted from the lung image texture alone, that the prediction

model itself varies from apex to base and that prediction is accurate regardless

of overlap with nonpulmonary structures such as the ribs, mediastinum, and

heart. Cross-validation analysis indicated low inter-animal variation in the

image texture classifications. Together, these results suggest that the image tex-

ture observed in a single X-ray phase-contrast-enhanced projection image

could be used across a range of pressure states to study regional variations in

regional lung function.

Introduction

Small rodent models have become crucial to the research

of lung physiology and pathology (Kiessling et al., 2017;

Pinar and Jones, 2018). Owing to the importance of the

pathologic changes in airflow and lung volumes in dis-

ease, there is an interest in assessing these functions in

experimental models. Because spirometry and tidal vol-

ume techniques provide only summary measurements of

the entire lungs, there is continued interest in image-

based techniques for assessing regional lung physiology

(Pinar and Jones, 2018) via assessing the physical proper-

ties of the lung microstructure under various imposed

conditions. The current reference standard for small

animal lung imaging remains computed tomography (mi-

cro-CT) (Clark and Badea, 2014; Badea, 2018). Although

this imaging modality has provided tremendous insight,

there are significant limitations. A typical micro-CT scan

requires the acquisition of hundreds of individual tomo-

graphic views. This increases the total radiation dose

delivered to the subject and thus can preclude some lon-

gitudinal experiment designs. Another key disadvantage

of micro-CT (and radiography) is that the relatively low

image contrast for soft tissue within and near the lungs

complicates the study of lung microstructure. This limita-

tion might be overcome by the development of x-ray

phase-contrast enhanced (XPCE) imaging specifically for

the lungs (Bravin et al., 2013; Dubsky and Fouras, 2015).
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The contrast in a conventional medical X-ray image

results from differences in energy absorption within the

object imaged (see Refs. [Endrizzi, (2018); Gureyev et al.,

2009; Pelliccia et al., 2018] for in-depth reviews of X-ray

phase-contrast imaging). Thus, the interpretation is that

X-rays traveling in straight lines are attenuated to varying

degrees as they pass through different parts of the object

before reaching the detector plane. However, under speci-

fic conditions on the coherence of the incident X-ray

beam, the X-rays are more wavelike and therefore can

refract within the object. Depending upon the object

properties, such refractions can be detected as a change in

the phase of the X-ray waves. Collectively, the phase

changes can yield a distinct modulation of intensity at the

detector plane but the means of isolating those phase

effects depends upon the specific imaging scenario. In a

propagation-based XPCE imaging system, the additional

phase contrast is largest at the edges of the object. Here,

an edge is any interface between materials of differing

refractive decrement (which is the real part of the com-

plex refractive index). Such interfaces are present not only

at the geometric boundary defining the lung, but at every

alveolus, acinus, and larger airway throughout the entire

organ. Thus, one expects to see more well-defined lung

structure in a high-magnification, propagation-based

XPCE image than in a traditional radiograph or single

tomographic view.

There have been several recently published studies of

XPCE imaging of small animal lungs (Garson et al., 2013;

Leong et al., 2013; Kitchen et al., 2015; Larsson et al.,

2016; Gradl et al., 2017; Lovric et al., 2017; Preissner

et al., 2018). Some have shown striking images of alveo-

lar-level structure of both intact and sectioned mouse

lungs obtained postmortem or ex vivo. Recently, dynamic

XPCE-CT images of in vivo mouse lungs have been pub-

lished (Preissner et al., 2018). Across significant variations

in animals, protocols, and imaging system parameters,

many of the published XPCE lung images exhibit a self-

evident texture. In general, “image texture” is a subjective

notion of a visibly perceptible grain, pattern or sense of

nonrandom arrangement conveyed by locally correlated

intensity variations within a larger image. Although there

is almost always some sort of texture perceptible around

every point throughout an entire XPCE image of a tho-

rax, the texture within an air-filled lung is distinct from

that of regions far outside of the lung. To the best of our

knowledge, the only published analyses of XPCE lung

image texture are based upon statistics derived from the

Fourier power spectrum of the images (Leong et al., 2013;

Leong et al., 2014; Kitchen et al., 2015). The relationship

between the power spectrum and the size of spherical

phase-altering objects has been modeled (Leong et al.,

2013), but only for very specific assumptions about the

X-ray beam, the detector, the imaging geometry, and the

material properties of the objects. The assumptions and

mathematical analyses themselves pose challenges to wide-

spread preclinical use of the image texture information

clearly visible in XPCE lung images. Furthermore, we

have found no published works describing how the dis-

tinctive image texture in XPCE lung images varies region-

ally.

We hypothesize that quantifiable differences in single,

XPCE-projection images of small animal can be detected

repeatably via a straightforward image texture analysis.

We acquired XPCE images of live, anesthetized mice in

an upright position during mechanical ventilation at vari-

ous pressures. We analyzed the observed image texture

generically, without presumption about the physical cause

of that texture or how it is sampled. Our results indicate

that the image texture observed in a single XPCE projec-

tion image of mouse lungs varies regionally, is distinct

from expected variations in X-ray attenuation, and can

indicate the expansion state of the lungs in vivo despite

the presence of strongly attenuating objects such as the

heart, mediastinum, and ribs.

Methods

Animal preparation

The Washington University Institutional Animal Care and

Use Committee approved all animal studies. Male and

female C57BL/6J mice (Jackson Laboratory), 8-12 weeks

old, were imaged. Mice were sedated with an intraperi-

toneal injection of 2,2,2-tribromoethanol in 2-methyl 2-

butanol (Avertin, Sigma), 250 mg/kg, and the hair cover-

ing the thorax was removed using containing depilatory

lotion (Nair, Church & Dwight) containing calcium and

sodium hydroxide. This was done in an effort to reduce

potentially confounding texture in our projection images.

A 20-gauge, 1 inch plastic catheter was placed into the

trachea by the oral route, aided by a fiber-optic illumina-

tor (BioLite, Braintree Scientific). The catheter was

equipped with a cone-shaped gasket to maintain proper

position in the trachea and to enhance the air seal within

the trachea and posterior pharynx (Safety Wedge, Kent

Scientific). The catheter was attached to tubing connected

to a ventilator (SAR-1000, CWE, Inc) and ventilation

supported at a rate of 120 breaths/min using a tidal vol-

ume of 15 mL/kg and 100% oxygen. Sedation was main-

tained with continuous administration of 1-3% isoflurane

at a flow rate of 1-2 L/min. The mouse was held in the

vertical position by sutures around the incisors to main-

tain the head in the upright position and each limb held

with paper tape to a custom-made acrylic frame with an

opening to allow free movement of the thorax and
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abdomen during respiration. After imaging, the mouse

was determined to still be deeply sedated by lack of reac-

tion to a toe pinch and then was sacrificed by cervical

dislocation. Lungs were then removed, fixed, and sec-

tioned into slides such that the morphology could be ana-

lyzed for any abnormalities due to the imaging

procedure. All lungs appeared to be normal (data not

shown).

Bench-top X-ray phase-contrast image
acquisition

All imaging experiments were conducted in our labora-

tory hosted at the Mallinckrodt Institute of Radiology at

the Washington University School of Medicine. The exit

window of X-ray source is mounted at one end of an

approximately 2 meter optical table (schematic, Fig. 1).

The X-ray beam was produced by a liquid-metal-jet-an-

ode, micro-focus source using an Indium-based alloy as

the anode material (MetalJet D2+, Excillum AB). The

source was operated at 100 W intensity at 70kVp and

with a Beryllium exit window. For these settings, the

effective X-ray spot size is approximately 10 lm in diam-

eter. The exposure time for a single projection image was

4 seconds. The source-to-object distance was 59 cm and

the object-to-detector distance was 177 cm. In this geom-

etry, the entire whole lungs usually are visible within the

field of view (FOV) of our 4096 9 4096 pixel CCD cam-

era (QuadRO, Princeton Instruments). Actual images out-

put are 1998x2048 pixels at 30 micron pixel pitch with

16-bit color depth. In the case of imaging an uncom-

monly large mouse, a narrow, horizontal band (� 1 mm)

within the base of the lung was excluded from the FOV.

The approximate total dose delivered to the mouse is

8.4mGy per projection image as measured via an Unfors

NED-30 dosimeter (Unfors Instruments AB).

During each 4-sec exposure, the breath was held con-

stant via the mechanical ventilator at one pressure. After

approximately 30 sec of respiration while ventilated, a

new pressure was selected and the mouse imaged again.

Projection imaging was repeated such that precisely three

images at each pressure—6, 8, 10, or 12 cm H2O—were

acquired in random order. During the total acquisition

time, the pressure at the mechanical ventilator was visu-

ally monitored and no substantial drops in pressure were

observed.

Image correction, enhancement, and
labeling

All image processing described in this subsection was

done using Fiji v1.0 (Schindelin et al., 2012) unless noted

otherwise. An image acquired with our system is saved as

a 16-bit grayscale uncompressed TIFF image to which a

standard flat-field correction is applied. For convenient

processing, all images were cropped to 1984 9 1984 pix-

els such that the cropping region was visually centered

horizontally and always included the apex of the right

lung. Due to our particular detector setup, the images

were rotated 180° such that the lungs appear upright as

the X-ray beam travels from anterior to posterior. Because

the image contrast varied considerably across mice, these

image data were standardized as follows. One key image

of subjectively good quality was selected. To remove out-

lier intensity values, the image was lower thresholded at

the 0.01th percentile of all grayscale values and similarly

upper thresholded at the 99.9th percentile. The grayscale

intensity histogram of this contrast-enhanced image was

used as the template for all other images in a histogram-

matching scheme similar to that described in Ref. Sonka

et al., (2015) that was implemented via a Python script

(www.python.org). The result is that all the images have

identical grayscale intensity distributions. Using the poly-

gon selection tool, the lowest pressure image for each

mouse was segmented manually into five distinct regions-

of-interest (ROIs): the rib cage, the right lung, the left

lung, the heart, and the diaphragm. All such defined ROI

boundaries are outer envelopes. Thus, for examples, the

rib cage includes the lungs and lungs include some ribs

appearing in projection to overlay the lungs. A Fiji macro

was run to spline-fit the ROIs and perform set arithmetic

to define additional regions of lung–heart overlap within

the rib cage. After this, the heart region was not retained

but a new region was computed to comprise all pixels

outside the rib cage, that is, the complement of the entire

image and all ROIs defined previously. For each mouse,

minor manual adjustments were made to the ROIs to

accommodate lung expansion with changing pressure.

The result is a set of 32 RGB images with each ROI dif-

ferently colored. Combinations of these ROIs were used

as training labels in various image classifiers described

below. An example for one mouse is provided (see online

Figure 1. Schematic of our propagation-based XPCE imaging

system. The extended propagation distance from the object to the

detector yields a higher magnification factor (here, 49) over

traditional radiography or CT imaging and permits resolution of the

characteristic edge-enhancement associated with X-ray phase-

contrast imaging
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Supplement https://doi.org/10.7910/DVN/WULRFA)

(Brooks, 2019).

Computation of image statistics

All computation of statistics from the images was done

using custom code written in Python v3.6.4 (www.

python.org) using recent versions of the NumPy, SciPy,

scikit-image, and Pillow packages. The computation of all

statistics described below, in total, took less than 1 min

per image on a desktop computer. Images in four differ-

ent feature modes described below were convolved with a

32 9 32-pixel window in strides of 16 pixels. We chose

the window size of 32 9 32 pixels because these windows

are large enough such that variations in texture can be

seen within them while still being small enough to fit

inside the narrow rib regions. Thus, the texture that is

observed to pass through the ribs is well-sampled by

many windows that clearly are: not rib, partially rib, or

entirely rib. Within each window, either the median and

interquartile range or the mean and standard deviation

was computed, as appropriate. The result is a set of eight

summary statistics for each window. These statistics,

along with three others also described below, serve as the

predictors in our image classification models.

The feature modes are: identity, skeleton, gradient, and

Laplacian. These modes are computed as follows. Identity

mode is the corrected and histogram-matched image data

as described previously but normalized to the range of

the grayscale common to all the images. Skeleton mode is

computed by first applying the local Otsu threshold

(square width 32 pixels) to binarize the identity mode

image and then thinning the resulting structure to single-

pixel width. The window mean of this mode is a repre-

sentation of the sparsity of local structure. Gradient mode

is the magnitude of spatial gradient of the entire identity

mode image and serves as an extensive measure of win-

dow heterogeneity. Laplacian mode is the Laplacian of

the entire identity mode image after single-pixel-radius

(r = 1) Gaussian blurring; even relatively weak edges are

highlighted in this mode.

For the identity mode images, the Fourier power spec-

trum of each 32 9 32-pixel image window was computed

and multiplied by a 32 9 32 pixel, Gaussian bandpass fil-

ter (2 < r < 8) to exclude the constant- and high-fre-

quency components. The sum of the logarithm of the

filtered power spectrum was recorded as a measure of the

total signal power and was used as a predictor.

The probability distribution function of texture orien-

tation angles was computed for the Laplacian mode

images using a directional filtering scheme similar to that

described by Chaudhuri et al. (1987). The “orientation”

was defined to be the mode of this distribution and the

“horizontality” to be the total probability of an angle

being between –45 and 45° (i.e., of being more horizontal

than vertical). This value was rescaled such that values

near zero indicate no strong texture orientation while val-

ues near –1 or 1 indicated strongly vertical or horizontal

orientations, respectively. We note that there are other

descriptions and definitions of texture orientation (Ravis-

hankar Rao, 1990; J€ahne, 2004) and that we made no dis-

tinction between angles separated by 180°. For example,

textures along 90° and –90° were considered to be equiv-

alently vertical.

Image classification

For each image, a set of summary statistics was computed

for every 32 9 32-pixel window as described above. For

our 1984 9 1984 pixel image size, and in strides of 16

pixels, there are 15129 such windows. For a given image

texture classification task, a training label was assigned to

each window using the ROIs described previously. The

windows did not always align perfectly with the smooth

boundaries of the chosen ROIs. In such cases, if a win-

dow was not at least 95% one label, that window was

excluded from training. Two distinct image texture classi-

fication tasks are described below; both were done using

the random forest algorithm as computed in R v3.5.1 (R

Core Team, 2018) via the randomForest library v4.6-14

(Liaw and Wiener, 2002). The number trees was set to

128 and all other relevant parameters left at the default

value.

The automated image segmentation of regions likely to

be lung was set up as a binary classification task. Large

regions of the image visually identified to be within the

bulk of a lung (left or right) were given label 1 and

regions certainly not-lung—such as those in the spine or

outside the rib cage—were given the label 0. On average,

there are about 3750 label 1 windows per image. Note

that label 1 includes many windows that are chiefly rib

because the ribs are seen in projection to overlap the

lungs. Image regions that could not definitively be identi-

fied as one or the other label, such as lung regions that

might partially overlap the heart or diaphragm, were

excluded from training. The summary statistics for each

image window were input as predictors into the random

forest algorithm with the lung (1) versus not-lung (0)

labels as outcome factors. The result is a trained, numeri-

cal classifier that can be applied to the same set of image-

derived statistics but computed for other, similar images.

The accuracy of the classifier was cross-validated by first

training on data from all but one “hold-out” mouse,

applying the trained classifier to the hold-out data and

then computing the percentage of correct window classifi-

cations from the previously defined ROI labels. This was
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repeated for each of the mice, in turn, resulting in eight

distinct accuracy measurements for one ventilation pres-

sure. Here, accuracy is the sum of the diagonal of the

2 9 2 confusion matrix divided by the matrix total. In

other words, the accuracy is the ratio of the number of

correct classifications (of either label) to the total number

of classifications attempted.

The relation of observed image texture to inflation

pressure was set up as a multiclass classification task.

Here, the outcome factors are the pressures 6, 8, 10, and

12 cmH2O and the predictors again are the summary

statistics previously described. Note that this is an inde-

pendent classifier which is free to use the same data in

different ways. Accuracy was defined and cross-validated

as described previously.

In every case of training, labels were balanced exactly

and all validation data were excluded from training. Addi-

tionally, although the random forest algorithm commonly

is employed without the scaling or centering of predic-

tors, we believe that both are necessary for the particular

cross-validation scheme employed. Therefore, all predic-

tors were transformed to z-scores on a per mouse basis

prior to training.

Lung texture enhancement

For illustration purposes, a texture-enhanced viewing

mode was created using Fiji, as follows. The FeatureJ

plugin (Meijering, ) (https://imagescience.org/meijer

ing/software/featurej/) was used to compute the Lapla-

cian of the grayscale image. The result was converted

to 16-bit mode and 0.1th and 99.9th percentile thresh-

olds applied to remove intensity outliers. The “Mem-

brane Projections” (Arganda-Carreras et al., 2017) filter

of the LungJ plugin (Wollatz et al., 2016) was applied

to the Laplacian image using a membrane size of 1

and patch size of 31 pixels; the maximum intensity

projection image was selected. The image contrast was

manually enhanced and a false-color look-up table

(FireLUT) was applied.

Atlas images

For another illustration, images of lung regions across dif-

ferent mice were mapped to a common lung region using

the bUnwarpJ plugin (Arganda-Carreras et al., 2006) for

Fiji. Several landmarks were placed manually on the

source image—for example, at the corners of the convex

hull of a lung region mask—and then manually moved to

the corresponding location on the target image. The

resulting B-spline transforms for each source mask were

saved to files and then applied to new images via a Fiji

macro. We note that mapping to an atlas image is for

illustration purposes only is in no way required for any

part of the method presented.

Results

XPCE lung image texture

In vivo images of the thorax of a total of eight mice

(N = 8) were obtained in the upright position using

our XPCE system (e.g., Fig. 2). The ventilation pressure

was 10 cmH2O and the vertical edge of the image cor-

responds to about 60 mm. There are several key obser-

vations to make about the projection image. Near the

right apex, for example, the edge of the lung is well-

defined as a darkened, curved boundary. This boundary

may be followed visually from the apex, along the lat-

eral edge of the rib cage, toward the base of the lung.

On the medial side of the apex, the lung boundary

may be inferred but is less well-defined as it overlaps

(in projection) with the heart and mediastinum. Within

the boundary, the image texture is manifestly distinct

from that outside the boundary. In general, the interior

texture is subjectively rougher than is the exterior tex-

ture. Note how the interior texture is uninterrupted by

the overlaying ribs and appears to uniquely colocate

only with the expected position of the lung as that is

inferred from the anatomy. This can be seen again on

Figure 2. An extended-geometry, mixed-mode, X-ray projection

image of in vivo mouse lungs imaged with breath held at

10 cmH2O. The original image is 1984 9 1984 pixels and the

vertical edge corresponds to approximately 60 mm in length

ª 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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the left side of the thorax where the rough image tex-

ture overlaps the heart which is seen as a dark, vaguely

defined region at the medial side of the left lung.

Recalling that the heart beats during the four-second

image acquisition, the darkened region represents the

average position of the heart during breath hold.

The difference between the lung texture and the tex-

tures throughout the rest of the image can be seen

near the right apex (Fig 3). The display window for

the grayscale image on the left was manually adjusted

to enhance intensity contrast. Again, the dark edge

defining the apex is clearly identifiable. Interior to that

boundary, the image intensity appears brighter and the

image texture appears rougher. Note the relative

smoothness of regions superior to the apex boundary

and those outside the rib cage at top left corner of the

image. A key observation is that the exterior smooth-

ness and interior roughness each pass through the

darkened ribs, thus indicating that the texture contrast

is distinct from the intensity contrast. The image at the

right of Figure 3 is a texture-enhanced view of the

image at the left. Note that this is an applied viewing

mode where the color intensity does not necessarily

correspond to any clinical quantity. In this viewing

mode, it is clear that the image texture is visually dis-

tinct across the lung boundary that is indicated as a

white curve. The feature modes described in the Meth-

ods section each at least partially capture different

aspects of the perceived image texture. For example,

the statistics computed for the Laplacian mode summa-

rizes the total intensity and intensity variance of persis-

tent edges of the sort that are manually enhanced in

Figure 3 (right).

Image segmentation

Automatic delineation of the image into regions of lung

or not-lung, including regions of organ overlap, was per-

formed as a binary classification task. A separate image-

segmentation classifier was trained on balanced labels for

each pressure (6, 8, 10, and 12 cmH2O) and for each

mouse (N = 8) as the single mouse held out for cross-val-

idation. Thus, a total of 32 distinct classification experi-

ments were performed. Each such training procedure

completed in approximately 30 sec on a desktop com-

puter. For each pressure, the cross-validation accuracy

was found to be 0.888 � 0.0191, 0.909 � 0.0144,

0.919 � 0.0120, and 0.922 � 0.0107, respectively. This

result indicates that misclassifications between the interior

texture (lung) and exterior texture (not-lung) are less

likely to occur at higher pressures. The corollary is that

the difference between lung and not-lung image texture is

greater for higher pressure than for lower pressure. In

other words, lung texture contrast increases with pressure.

Regardless of pressure, the overall accuracy is excellent

with only about 11% of the entire image being misclassi-

fied in the worst case. Additionally, the consistently low

standard errors indicate that relatively few animals are

required in order to train the segmentation classifier.

It was observed that the locations of misclassifications

within the images were not random. A smoothed kernel

density distribution of the distance between the center of

a misclassified image window and the center of the near-

est window known to be lung is shown as the solid curve

in Figure 4. There, it is seen that, across all mice, the

overwhelming majority of misclassifications occurred very

near a lung boundary. This indicates that the bulk of the

Figure 3. Inset from Figure 2. Shown at the left is a region near the right lung apex. In this figure, the intensity contrast is manually enhanced.

At the right, the same region but with the texture contrast enhanced via a purposely applied set of filters. The images have been rescaled; the

vertical edge corresponds to about 8 mm in length
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lungs can be identified accurately by the proposed

method.

To illustrate this more concretely, the result of applying

a trained image-segmentation classifier to an entire hold-

out image is shown in Figure 5. That is, each 32x32-pixel

window of this new image was “shown” to the classifier

trained on other images which then returns a probability

that the window corresponds to lung (as that label was

defined for training). In Figure 5, the cyan color indicates

windows declared to be lung and the white curve indi-

cates a lung boundary visually inferred from the original

image. Note that there are relatively few obvious misclas-

sifications and that those regions tend to be small and

isolated. To better illustrate this, we applied a region-size

exclusion filter to the declared lung windows. This may

be done in Fiji by first applying the “Fill Holes” algorithm

from the Binary submenu and then using “Analyze Parti-

cles” to create an exclusion mask of all remaining discon-

nected regions. Those windows included via post-

processing as being lung are indicated in magenta in Fig-

ure 5 and those windows excluded as being not-lung are

indicated in yellow. For the image shown, post-processing

increased the overall segmentation accuracy from 93.4%

to 96.1%. It is here emphasized that this post-processing

is optional and task-specific; excepting the preceding

sentence, the classification accuracies given throughout

the text are for images without post-processing. It is again

seen that the persistent misclassifications tend to occur

near the lung boundaries where there may genuinely be

lung (in projection) but can be difficult even for a human

observer to visually identify as such. Still, the cyan regions

overwhelmingly colocate only with the regions expected

to be lung according to both anatomy and previously

published XPCE imaging theory.

Regional variations

For each mouse, the texture orientation and horizontality

were computed for each square window as described in

the Methods. A spatial map of the standardized horizon-

tality was created for each right lung. For illustration pur-

poses only, each such map was registered to the same

atlas lung and averaged together. This was done for the

right lung only in an effort to minimize the potentially

confounding effects of heart motion on the regional tex-

ture differences within the left lung. The result is shown

at the left of Figure 6 where it is seen that horizontality

values above the median value (indicated by the gray

Figure 4. Nonrandom distribution of misclassifications. The

smoothed kernel density distribution of distances between lung

boundary and misclassifications is shown (solid). The distribution is

skewed such that the majority of misclassifications occur within a

few millimeters of lung boundaries, where image texture often is

visually ambiguous as well. For reference, the distribution of

distances for the scenario of randomized misclassifications is given

(dashed)

Figure 5. Automatic segmentation of a hold-out image. The white

curves indicate one possible manual delineation of regions with

distinct lung texture. The cyan overlay indicates overlapping

convolution windows predicted by the trained classifier to be lung.

The magenta and yellow overlays indicate, respectively, regions

included (as being lung) or excluded (as being not-lung) during

optional post-processing. Most of the windows overlaying the heart

are selected as are only very few windows overlaying the rib cage.

Thus, this segmentation method is expected to have both high

precision and high recall
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curve) overwhelmingly cluster in the upper and middle

portions of the lung. This unsupervised clustering of hori-

zontality values is illustrative of the image texture differ-

ence along the cranial–caudal axis. The black lines

indicate regions defined by an independent k-means clus-

tering of the window locations where the horizontality

was computed. The lines do not indicate the boundary of

any particular lobe but do indicate roughly where one

should expect to see differences in texture that potentially

correspond to the accrued projected structure of the dis-

tinct lobes. Indeed, a box plot of the standardized hori-

zontality values computed individually for all mice

imaged—prior to any image deformation or averaging of

co-registered images—indicates that the horizontality is

distinct in the upper, middle, and lower regions of the

right lung (Fig. 6, right). Additionally, the rank correla-

tion (assessed via Kendall’s Tau within the right lung at

10 cmH2O) of horizontality with the median window

intensity is only s = �0.124. Similar box plots and low

magnitude rank correlations were found for each imaging

pressure (data not shown). Taken together, these results

provide evidence that the cranial–caudal variation in

quantified image texture is a genuine feature of the pro-

jection image that is distinct from the regional attenua-

tion variances one might expect due to size or shape of

the lung.

Relation to pressure

Because increased inspiratory pressure mechanically

increases lung volume, we imaged mice at purposely cho-

sen inspiratory pressures. This was a means of repeatably

defining known states of lung expansion and, thus, well-

defined states of image texture. Here, it is not necessary

to know a precise mapping of pressure state onto texture

state but only that the texture states likely are distinct.

Each mouse was imaged in an upright position during a

4-sec breath hold. The ventilator pressure during each

breath hold was selected at random from 6, 8, 10, or

12 cmH2O. It was found that the median value of the

Laplacian mode window—which here describes the total

intensity of chiefly edges within the window—is propor-

tional, on average, to the ventilator pressure. This result

is shown as the bar plot at the top, right of Figure 7. For

comparison, a measure of the grayscale intensity over the

same regions is given at the bottom, right. To appreciate

the differences, consider the boundaries drawn on the

XPCE image of the left lung given at the left of Figure 7.

The darkened region on the medial side of the lung is the

portion of the lung that overlaps the beating heart in pro-

jection. It is seen in the bar plots that the change in the

mean texture statistic with maximal change in pressure is

about 200% whereas the analogous change in grayscale

image intensity is less than 20%. Furthermore, the large,

monotonic change in this particular texture statistic per-

sists similarly in both medial and lateral regions. This is

an important observation indicating that lung structure

expected to change with pressure can be quantified via

image texture even through substantial overlap (in projec-

tion) with other organs.

The capacity of image texture to indicate distinct

expansion states was investigated first as a binary classifi-

cation task within only the right lung such that potential

differences between lobes could be tested. It should be

emphasized that, in general, there is no single scalar that

adequately describes an image texture, and therefore

ensemble learning comprising many predictors that cap-

ture various aspects of image texture to varying degrees

was employed. As described in the Methods, a classifier

distinct from previous ones was trained to predict infla-

tion pressure—that is, a tunable surrogate measure of the

expansion state of lung microstructure—from the image

texture statistics. The binary classification results are

Figure 6. Unsupervised clustering within the right lung. For

illustration purposes, a heat map (left) of the standardized

horizontality for each right lung region image at 10 cmH2O was

mapped to a common atlas and averaged. This was done to

visualize, at once, lungs of different size and shape. Upper (U),

middle (M), and lower (L) regions are defined here as the distinct k-

means clusters and do not perfectly colocate with distinct lobes. A

box plot (right) of the horizontality in each region, prior to any

image deformations, for all mice imaged at 10 cmH2O. The dashed

line indicates the mean value of the vertical–horizontal threshold

after standardization to z-scores
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shown in Table 1. For all such comparisons, the accuracy

is greater than 50% which indicates that the collective ver-

dict of all image windows queried is the correct pressure.

Note that the prediction accuracy increases with the size

of the pressure difference. This suggests that lung image

textures are less distinguishable at lower pressure differ-

ences. A consistent finding is that the accuracy in the

lower region was slightly less than that of the upper

region. Taken together, the results indicate that even a

well-validated classifier trained specifically for one region

or for one pressure difference may not be as effective

when applied to another region or pressure difference.

The relation between image texture difference and pres-

sure difference was explored another way. A single classi-

fier was trained to identify windows within both lung

regions, including regions of possible overlap with organs

in projection, as corresponding to one of the four known

pressures. That is, the image texture statistics were the

predictors and the outcome was any one of the four dis-

crete pressure levels. Similar to previous experiments, this

was repeated once with each of the mice held out, in

turn. The ensemble-averaged confusion probabilities for

these experiments are given in Table 2 for each lung. The

rows correspond to known pressures and the columns

Figure 7. A comparison of between intensity contrast and texture contrast for the same mouse shown previously. At the left is shown the

outer boundaries of the left lung and the inner boundary defining where lung overlaps the average position of the beating heart. In the top

bar plot, the texture statistic is seen to vary monotonically, and to much greater magnitude, for both medial and lateral regions than does the

grayscale image intensity

Table 1. Accuracy of paired pressure classifications within the right lung, by region

Accuracy

Pressure (cmH2O) 6-8 8-10 10-12 6-10 8-12 6-12

Upper 0.690 0.658 0.660 0.835 0.787 0.884

Lower 0.662 0.650 0.620 0.804 0.757 0.874
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correspond to the average probability of the classifier

choosing a given pressure. For example, for the right

lung, the entry for row 6 cmH2O, column 10 cmH2O

indicates there is about 10% chance that the classifier will

declare a window to be pressure 10 cmH2O when it actu-

ally is pressure 6 cmH2O. Whenever the diagonal element

is the greatest element per row, the collective verdict of

all image windows queried is correct. This is seen to be

the case for all pressures and in both lungs, regardless of

overlap and therefore the classifier can be used to choose

the correct inflation pressure of the entire lung from fea-

sible alternatives. The previous trend in decreased mis-

classification with increased pressure difference is again

seen. For example, for the right lung, when an image win-

dow actually corresponds to pressure 10 cmH2O, there is

a substantial chance (23%) of confusing it for a typical

12 cmH2O window, but only about 4% chance of confus-

ing it for a 6 cmH2O window. This result is consistent

with visual inspection of the image texture changes with

pressure (see online Supplement https://doi.org/10.7910/

DVN/WULRFA) (Brooks, 2019).

Discussion

Relation of image texture to lung structure
and function

There are numerous examples in the literature of the

analysis of image texture as it can be seen in radiographs

and in various CT slices. The images we analyzed differ

because of the twofold effect of an extended object-to-de-

tector free-space propagation distance in the so-called

near-field regime. For our detector size, source placement

and source power, it is possible to create an imaging

geometry with a magnification factor of four on a single

laboratory table; this alone is a substantial improvement

over single tomographic views from conventional micro-

CT systems that typically have a magnification of approx-

imately one. Additionally, the extended propagation dis-

tance enables detection of the characteristic edge-

enhancement associated with XPCE imaging. Together,

the improved resolution and enhanced edges reveal struc-

ture within the lung that appears in projection as the

image texture we analyzed.

It is thus expected that as the structure of the lung

changes, so does the observed image texture. Indeed, tex-

tural changes were noted with lung inflation and with

increasing inspiratory pressure, presumably due to

expanding lung airways. Thus, for our purposes, one way

to impose a controlled change in structure is to inflate

the lungs to various known pressures. Analyzing the

appearance of defined structural changes may be an ave-

nue for assaying regional changes in physiological func-

tions. For example, because the right mouse lung

comprises four distinct lobes that can differ in compli-

ance, ventilation, and blood flow (Irvin and Bates, 2003;

Sato et al., 2015; Meyerholz et al., 2018), the capacity of

the microstructure to expand in three-dimensions varies

from lobe to lobe. One might therefore expect some cor-

responding difference in the image texture observed in a

projection image. Indeed, we observed a regional varia-

tion in image texture consistent with the known structure

of the right lung. In Figure 6, the box plot of the hori-

zontality indicates that the upper portion of the right

lung – which (in projection) corresponds most with the

cranial lobe – does not have a single, strong orientation,

and thus is more randomly oriented. In contrast, the tex-

ture orientation of the lower region is definitively more

vertical than horizontal. Furthermore, the middle region

appears as a transitional region. This is consistent with

the fact that that region comprises projections through

multiple lobes (cranial, middle, and caudal). Thus, we

observe a change in image texture for expected overlays

of the lung structure which includes large vessels and

large airways in the central region and proximal region

and small airways, capillaries, and alveoli in the distal

lung. We emphasize that this one image texture statistic

should not be thought of as a direct quantification of any

physiological function or physical property. Instead, we

claim only that the observed cranial–caudal trend is con-

sistent with known geometric differences within the

upright lung.

Table 2. Ensemble-averaged confusion probabilities for multi-class pressure classifications within each entire lung including projection-overlap

regions which can be substantial for the left lung. For each true pressure row, the probability of selecting a pressure is given in each column

Right lung Left lung

cmH2O 6 8 10 12 6 8 10 12

6 0.635 0.238 0.104 0.0230 0.645 0.245 0.0857 0.0242

8 0.271 0.354 0.294 0.0811 0.252 0.406 0.268 0.0746

10 0.0418 0.214 0.515 0.229 0.0390 0.206 0.538 0.217

12 0.0208 0.0979 0.286 0.595 0.0248 0.100 0.277 0.598
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We imaged mice in the upright position during an

inspiratory hold at various pressures. Our assumption

was that the response of the live mouse would be repeat-

ably, distinctly different at 6 cmH2O inflation that at

12 cmH2O inflation, for example. Indeed, we found that

a random forest classifier is able to reliably distinguish

these pressures solely from rudimentary image texture

statistics. We hypothesize that the textural changes are the

result of regional changes in volume, for example, as

occur with the expansion or opening of acinar units and

alveoli. We stress that all such pressure classifications are

done via plurality-vote classifiers as applied to the entire

predefined lung regions. This means that a non-negligible

percentage of the individual 32x32-pixel image windows

are misclassified but that the largest predicted class is

indeed the correct pressure class. We found that these

results hold for a wide variety of pressure classifications

and for all mice tested.

Image texture changes

The preceding arguments are not, and are not intended to

be, any quantitative definition of a specific texture–struc-
ture relationship or any assessment of the relative contribu-

tions of macroscopic versus microscopic structures to the

texture observed. Instead, the choice of inflation pressures

was an empirical one where we visually observed texture

differences in preliminary images of separate animals. We

thus used the pressure as a means of defining repeatable

“texture states” which plausibly relate to a range of physio-

logical conditions. Given that we were able to accurately

classify pressure from only the appearance of texture, a per-

tinent question then is: by how much does the image tex-

ture change for a given change in lung structure (or

pressure, for example). This question is challenging for sev-

eral reasons. In general, there is no single scalar value that

adequately conveys the notion of image texture. Addition-

ally, even when a particular numerical definition of texture

is applicable, it is often the case that commonly employed

quantification statistics depend nonlinearly upon one

another. The consequence of this is considerable difficulty

in assessing the true predictive capacity of arbitrary selec-

tions of texture statistics in regression models applied to

heterogenous populations. Furthermore, as image textures,

and texture statistics become more sophisticated, the num-

ber of realizations required to analyze them meaningfully

increases as well. Therefore, even in cases where a well-de-

fined preclinical outcome can be controlled, developing a

regression map between quantified texture, and specified

outcome can be challenging and both predictiveness and

repeatability can be low. For these reasons, we chose to

frame our analyses as categorical classifications rather than

as regression models.

Classification accuracy

To segment the entire XPCE images at once, we, in effect,

used several images to train a classifier to recognize the

low-level statistical signature of a given image texture and

then scanned a new image for that signature. The capacity

for the user to purposely define textures of interest in

some mice and then objectively identify similar regions in

new mice is a key strength of the chosen segmentation

method. For example, one might define only right lungs

as the positive training label and leave left lungs unlabeled

in order to explore the textural differences between the

lungs within a single animal. The example shown in Fig-

ures 5 is just one of many reasonable classification tasks

that could be defined for our image data.

It is important to recognize that the ability of human

observers to visually assign legitimately correct labels var-

ies with the task at hand and incorrect training labels will

reduce the discriminatory power of the classifier. For

example, if the white curves in Figure 5 define the correct

lung boundaries, then some false negatives (i.e., missed

lung texture) appear near the left lung apex and again at

the rib-spine interface near the middle portion of the left

lung. That is, the expected labels were not predicted accu-

rately in these regions. However, the given labels them-

selves may be incorrect. Consider that the visually

identified, left lung boundary (white curve) was inferred

by a human extrapolating from the apex and exploiting

anatomical knowledge of where the lung boundary might

be in projection. It is possible that the extremely faint

texture near the left apex genuinely may not correspond

to any appreciable anterior–posterior depth of lung. In

other words, in this case, it is possible that the classifier

predictions are correct where the training labels are not.

Another example of this might be where some regions of

the right lung overlying the diaphragm have been pre-

dicted to be lung. With respect to the given labels, this

prediction is a false positive; however, with respect to

anatomy, this is not necessarily incorrect; in projection,

there really can be a substantial overlap with the dia-

phragm. In other words, the diaphragm obscures the pos-

terior regions of the inferior lung and the extent to which

lung texture must be seen in order to statistically count

as lung is not known.

Once the training labels are stipulated, the choice of

image statistics becomes important to segmentation accu-

racy. There is a vast literature on image texture analysis,

computer vision and the extraction of quantifiable fea-

tures from grayscale images. Therefore, there likely are

other statistics well-suited to the analysis of lung image

texture for specific purposes. We chose the statistics that

we did precisely because they are simple and readily cal-

culable. We found (data not shown) that many, much
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more sophisticated statistics, such as those based on the

so-called structure tensor ( J€ahne, 2004) or derived from

gray-level co-occurrences matrices ( Haralick et al., 1973),

were strongly correlated with the rudimentary ones that

we ultimately employed. In contrast to their more sophis-

ticated cousins, the texture statistics chosen here are: easy

to compute in a wide variety of software packages,

straightforward to interpret in terms of the fundamental

properties of all image textures (Ravishankar Rao, 1990;

J€ahne, 2004) and generally amenable to the calculation of

confidence intervals.

That the image texture can be found and analyzed

though the ribs (in projection) is another key strength of

the ensemble learning segmentation method applied to

lung images. Even while controlling for differences in

grayscale intensity distribution, the obviously darker, and

strongly spatially correlated, rib regions effectively always

represent edges and thus, in comparison to the rest of the

image, one expects substantial differences in the spatial

derivative at and/or within the rib regions. Because the

gradient is a fundamental property of any image texture,

many texture statistics are strongly sensitive to the ribs

and therefore two-dimensional plots of said texture statis-

tics can convey a strong visual impression of ribs. In

other words, heatmap-style plots of some individual tex-

ture statistics are inconsistent with the observation that

the image texture corresponding to lung passes unim-

peded through the ribs. The well-established ensemble

learning method we employ comprises several weak learn-

ers – each of which might be “fooled” at the ribs but per-

haps in subtly different ways – into a single classifier that

correctly identifies both rib and non-rib regions within

the lung as having the same texture.

Model and predictor reproducibility and
applicability

For all classification models, we employed a cross-valida-

tion scheme that left one mouse out of training – as if we

had only N-1 mice – and then used the Nth mouse as the

validation data upon which the trained classifier was

tested. This was repeated for all mice, resulting in an

eightfold cross-validation. In this scheme, the numerical

decision boundaries for one set of mice are to be applied

to a separate mouse. Therefore, we converted all image-

derived statistics to a standardized z-score on a per mouse

basis. This way, each statistic can be compared directly,

despite any potential bias in values for individual mice

(as might occur if, for example, a mouse had uncommon

anatomical measurements).

In the case of the segmentation classifier, the mean

accuracy was very high and the standard error relatively

low, for all pressures tested. This indicates an

interchangeability of the mice in the training data, which

bodes well for the applicability of similar classifiers to

new mice. Incidentally, we also note that for the specific

purpose of image segmentation, the performance of a

classifier trained at given pressure was nearly matched by

classifiers trained at other pressures; this suggests that

once the intra/extra-lung texture difference becomes

detectable, it remains so for all pressures tested.

In the case of the intra-lung pressure classifier, regional

differences, the inflation pressure and inflation pressure

difference each are important. Our results show that dif-

ferent inflation pressures can be identified from observ-

able image texture. As the pressure difference is increased,

the distinguishability of the textures increases. Addition-

ally, a pressure difference of 2 cmH2O is less reliably dis-

tinguished at lower pressures than at higher pressures.

Together, these observations suggest that the image tex-

ture within the lung regions is not as well-defined at low

pressures than it is at higher pressures and is consistent

with both visual inspection of the images (see online Sup-

plement https://doi.org/10.7910/DVN/WULRFA) (Brooks,

2019) as well as the association of image texture with

lung microstructure which necessarily is less expanded at

lower pressures. Although the binary pressure classifica-

tion accuracy was seen to differ regionally (Table 1), this

in no way implies that the pressure differs regionally or

that we have developed a regional measure of pressure.

Instead, the classifier differs regionally. That is, the

numerical decision boundaries applicable to the upper

region may not always be applicable to the lower region.

Thus, the classifier we describe likely would have to be

retrained in order to assess mice imaged under more nat-

ural breathing conditions. A rigorous assessment of how

many mice would be required for training, for example, a

classifier capable of distinguishing various respiratory

phases during free-breathing is beyond the scope of the

present work but is a logical next test of the method pre-

sented.

Potential for physiological assay

The results given in Table 2 are encouraging for the

broader application of the image texture analysis of XPCE

projection images to lung physiology. Using only basic

texture statistics as predictors, all pressures were correctly

classified from a natural range of choices, for both lungs,

regardless of overlap with nonpulmonary structures – this

is key. One can therefore envision locally altering the lung

via a disease model such as induced chronic obstructive

pulmonary disease (Wright et al., 2008) or induced pul-

monary fibrosis (Moore et al., 2013). One then could

train a classifier on manually defined small regions of sus-

pected lung damage and then effectively scan new animals
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for that damage via statistical similarity in training tex-

ture. Because states of “normal” image texture within the

whole lungs was so reliably classified in the projection

images, we speculate that only relatively few, relatively

small regions of interest will be required to accurately

identify diseased regions in new animals. Thus, the image

texture analysis of high-magnification XPCE projection

images potentially opens a new avenue for studying the

onset and treatment of lung disease in preclinical models.

Phase-contrast enhancement

The X-ray phase-contrast enhanced (XPCE) projection

images we analyzed are mixed-mode images in the sense

that they comprise a dominant attenuation component

and an unquantified phase component. The edge-en-

hancement generally associated with propagation-based

X-ray phase-contrast imaging occurs at interfaces between

media of differing refractive decrement. In the lung, such

an interface is the boundary between the air-filled alveoli

and the surrounding capillaries and parenchymal tissue.

As the lung comprises a vast number of such interfaces,

one might expect numerous enhanced edges to be present

at the plane of the distant detector. However, because the

interfaces themselves are distributed (pseudo-)randomly

throughout the lung, it is unclear to what extent corre-

lated phase components contribute to the two-dimen-

sional intensity distribution ultimately detected.

As described in the literature, it is possible to separate

the attenuation and phase components of image intensity

for a variety of imaging scenarios. For our free-space

propagation scenario, some sort of phase-retrieval algo-

rithm is required to explicitly quantify only the phase

component (Gureyev et al., 2009; Pelliccia et al., 2018).

While a comparison of competing phase-retrieval meth-

ods is well-beyond the scope of this work ( Burvall et al.,

2011), the upshot is that so-called single-shot phase-re-

trieval methods require some a priori estimation of the

spatial distribution of the complex refractive index

throughout the object imaged. This is challenging for an

object as intricate as a real lung and further complicated

by the dependence of the complex refractive index upon

the wavelength of the X-ray beam, which is not a single

value for our polychromatic laboratory source. It is

important to note that we directly analyze the same

phase-contrast-enhanced image data that would be input

into a phase-retrieval algorithm but without imposing a

prior distribution upon the complex refractive index or,

stronger still, without making any presumptions at all

about the relative contributions of phase or attenuation

to the observed image texture. For this reason, our tex-

ture analysis is simpler, more general, and thus likely is

more reproducible across animals than if we had applied

a particular phase-retrieval method to the image data.

Conclusion

x-ray phase-contrast enhanced (XPCE) projection images

of in vivo mouse lungs were acquired using bench-top

imaging system and laboratory X-ray source. A rudimen-

tary analysis of the distinctive image texture manifest in

the XPCE projection images was performed. The image

texture statistics employed are simple and reproducible

across mice. Various image classification tasks were

designed using these statistics as predictors. The results

show that lung image texture can indicate mechanical

ventilation pressure, which was employed as a repeatable

surrogate measure of the expansion state of the

microstructure. Additionally, quantifiable differences in

lung image texture were observed to vary along the cra-

nial–caudal axis in upright mice, as is expected from

known anatomy. Importantly, the image texture-based

classifications were consistent even in areas of highly

attenuating structures such as ribs, the mediastinum and

the heart. Therefore, the analysis of lung image texture as

seen in high-magnification XPCE projection images repre-

sents a promising avenue for the low-dose, noninvasive

study of regional, in vivo lung function in preclinical ani-

mal models.
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