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Abstract

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that acutely causes fever as well

as severe joint and muscle pain. Chronic musculoskeletal pain persists in a substantial frac-

tion of patients for months to years after the initial infection, yet we still have a poor under-

standing of what promotes chronic disease. While replicating virus has not been detected in

joint-associated tissues of patients with persistent arthritis nor in various animal models at

convalescent time points, viral RNA is detected months after acute infection. To identify the

cells that might contribute to pathogenesis during this chronic phase, we developed a

recombinant CHIKV that expresses Cre recombinase (CHIKV-3´-Cre). CHIKV-3´-Cre repli-

cated in myoblasts and fibroblasts, and it induced arthritis during the acute phase in mice.

Importantly, it also induced chronic disease, including persistent viral RNA and chronic myo-

sitis and synovitis similar to wild-type virus. CHIKV-3´-Cre infection of tdTomato reporter

mice resulted in a population of tdTomato+ cells that persisted for at least 112 days. Immu-

nofluorescence and flow cytometric profiling revealed that these tdTomato+ cells predomi-

nantly were myofibers and dermal and muscle fibroblasts. Treatment with an antibody

against Mxra8, a recently defined host receptor for CHIKV, reduced the number of tdTo-

mato+ cells in the chronic phase and diminished the levels of chronic viral RNA, implicating

these tdTomato+ cells as the reservoir of chronic viral RNA. Finally, isolation and flow cytom-

etry-based sorting of the tdTomato+ fibroblasts from the skin and ankle and analysis for viral

RNA revealed that the tdTomato+ cells harbor most of the persistent CHIKV RNA at chronic

time points. Therefore, this CHIKV-3´-Cre and tdTomato reporter mouse system identifies

the cells that survive CHIKV infection in vivo and are enriched for persistent CHIKV RNA.

This model represents a useful tool for studying CHIKV pathogenesis in the acute and

chronic stages of disease.
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Arizona, UNITED STATES

Received: January 11, 2019

Accepted: July 21, 2019

Published: August 29, 2019

Copyright: © 2019 Young et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: ARY was supported by a NIGMS Cellular,

Biochemical, and Molecular (CMB) Sciences

Predoctoral Research Training Grant (T32

GM007067, https://www.nigms.nih.gov/). LEC was

supported by an NIH Postdoctoral Research

Training Grant (T32 CA009547, https://www.nih.

gov/). DJV was supported by the NIH (R01

AR070030 and R21 AR073507), as well as

http://orcid.org/0000-0001-9949-7472
http://orcid.org/0000-0002-8086-9958
http://orcid.org/0000-0001-7558-618X
http://orcid.org/0000-0002-6179-994X
http://orcid.org/0000-0002-2810-9724
http://orcid.org/0000-0001-7101-5582
http://orcid.org/0000-0002-8791-3165
http://orcid.org/0000-0002-9400-5309
https://doi.org/10.1371/journal.ppat.1007993
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007993&domain=pdf&date_stamp=2019-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007993&domain=pdf&date_stamp=2019-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007993&domain=pdf&date_stamp=2019-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007993&domain=pdf&date_stamp=2019-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007993&domain=pdf&date_stamp=2019-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007993&domain=pdf&date_stamp=2019-08-29
https://doi.org/10.1371/journal.ppat.1007993
https://doi.org/10.1371/journal.ppat.1007993
http://creativecommons.org/licenses/by/4.0/
https://www.nigms.nih.gov/
https://www.nih.gov/
https://www.nih.gov/


Author summary

Chikungunya virus (CHIKV) is spread by mosquitoes and causes severe joint and muscle

pain. Approximately 30 to 60 percent of people infected with CHIKV continue to experi-

ence joint pain for months to years after the initial infection. However, the cause of this

persistent joint pain is unclear, as replicating virus cannot be detected during the chronic

phase. We have developed a reporter virus system to permanently mark cells infected by

CHIKV. Using this system, we show in mice that marked cells surviving CHIKV infection

are present for at least 112 days after initial virus inoculation. The marked cells are a mix-

ture of muscle and skin cells. We also show that treatment of mice with an antibody that

blocks receptor engagement and CHIKV infection reduces the number of marked cells in

the muscle and skin. Finally, we have demonstrated that surviving tdTomato+ cells con-

tain most of the persistent CHIKV RNA. This reporter virus system represents a useful

tool for identifying and isolating cells that harbor chronic viral RNA in order to study

chronic disease pathogenesis.

Introduction

Chikungunya virus (CHIKV) is a globally re-emerging arthropod-transmitted virus that origi-

nally was identified in Tanzania in 1952 [1–3]. Up until the 2000s, CHIKV was considered a

self-limiting virus of relatively minimal concern; however, within the last 15 years, CHIKV has

reemerged with increased virulence and range. In 2004, an East/Central/South African

(ECSA) lineage [4] of CHIKV caused an epidemic in Kenya with over 13,000 cases, the first

large epidemic in decades [5]. By 2005, the virus spread to La Réunion Island off the east coast

of Madagascar, where it infected over 200,000 people [6,7]. The La Réunion epidemic included

the first reports of increased pathogenicity, including neurological symptoms, intrapartum

transmission, and approximately 250 deaths [8–10]. The virus subsequently established

endemic infection cycles in tropical regions including India and the South Pacific and also

caused isolated outbreaks in Europe [11]. In 2013, an Asian lineage strain of CHIKV spread to

the Americas and has caused nearly 2 million suspected cases in the Caribbean, Central Amer-

ica, and South America [11–14].

An estimated 75–95% of people who acquire CHIKV by a mosquito bite [15–17] experience

an acute disease characterized by fever, rash, arthralgia, and myalgia that lasts for approxi-

mately one to two weeks [6,18,19]. Between 30% to 60% of CHIKV infected patients develop

chronic joint and muscle pain that lasts for months to years after the acute infection [20–22].

Although CHIKV disease is rarely fatal, the acute and chronic arthritis cause substantial mor-

bidity [20]. Furthermore, there are no approved vaccines or therapeutics for CHIKV, and

over-the-counter medications provide little relief [23]. Despite its potential for causing mor-

bidity, the mechanism of chronic CHIKV pathogenesis is poorly understood.

Chronic CHIKV disease is characterized by inflammation and immune system activation.

A number of pro-inflammatory cytokines are elevated in serum during chronic CHIKV dis-

ease, including IL-1β, IL-6, and G-CSF [24–27]. CHIKV patients with chronic symptoms also

have higher levels of activated CD8+ T cells and NK cells, resembling seronegative rheumatoid

arthritis [28]. Multiple studies have attempted to identify predictive markers for CHIKV-

induced chronic arthralgia [18,29–32]. While these studies agree that chronic CHIKV patho-

genesis is characterized by a chronic inflammatory state, they do not define consistent bio-

markers or disease mechanisms.

Fibroblasts and myofibers survive chikungunya virus infection and harbor persistent RNA

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007993 August 29, 2019 2 / 30

Shriners Hospitals for Children - St. Louis (85117,

https://www.shrinershospitalsforchildren.org/st-

louis). MSD was supported by the NIH (R01

AI143673 and R01AI123348). DJL was supported

by the NIH (R01 A1127513 and R21 A1135490).

Additionally, the Washington University

Musculoskeletal Research Center received funding

from the NIH (P30 AR057235), and the

Washington University Center for Cellular Imaging

was supported by the Washington University

Rheumatic Diseases Research Resource-based

Center funded by the NIH (P30 AR073752, http://

grantome.com/grant/NIH/P30-AR073752-01). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: MSD is a consultant

for Inbios and on the Scientific Advisory Board of

Moderna, and has filed a provisional patent on

Mxra8 antibodies and related proteins.

https://doi.org/10.1371/journal.ppat.1007993
https://www.shrinershospitalsforchildren.org/st-louis
https://www.shrinershospitalsforchildren.org/st-louis
http://grantome.com/grant/NIH/P30-AR073752-01
http://grantome.com/grant/NIH/P30-AR073752-01


There is evidence that CHIKV antigen may persist chronically in tissues. CHIKV antigen

was detected in synovial macrophages of one patient 18 months after infection [18], as well as

in a human muscle specimen at least three months after acute infection [33]. Cells positive for

CHIKV antigen also can be detected in persistently-infected macaques [34] or wild-type (WT)

mice [35]. Recombinant CHIKV expressing firefly luciferase also produced detectable lumi-

nescence during the chronic stage of disease [36–38]. However, these and other studies have

not demonstrated the presence of infectious virus in the chronic phase of disease [22,39].

One hypothesis for chronic CHIKV pathogenesis is that non-infectious CHIKV RNA

remains in infected tissues, and its dsRNA intermediates act as proinflammatory pattern-asso-

ciated molecular patterns (PAMPs) [40]. Chronic CHIKV RNA can consistently be detected

by RT-qPCR in animal models, including the joints and spleen of mice and the spleen, lymph

nodes, and liver of macaques [34,41]. Detection of chronic CHIKV RNA in human samples

has been less consistent. One study reported the presence of CHIKV E1 and nsP2 RNAs in a

human synovial fluid sample, yet others have failed to detect chronic CHIKV RNA in patient

serum or synovial fluid [18,22].

The cells that harbor the CHIKV RNA during chronic disease are unknown. Immunohisto-

chemical analysis infrequently detects CHIKV antigen-positive cells in WT mice, possibly due

to the insensitivity of this technique [35]. Moreover, studies using RNA in situ hybridization

(ISH) for detection of CHIKV RNA have not been published beyond acute time points in

mice. Thus, to understand chronic CHIKV pathogenesis, there is a need to identify the cells

that harbor viral RNA and to determine why the immune response cannot clear this persistent

RNA.

To begin to address these questions, we established a model that permanently marks cells

infected by CHIKV. We engineered a recombinant CHIKV infectious cDNA clone that

encodes for Cre recombinase, as has been done previously for influenza [42,43] and herpes

simplex viruses [44,45]. We demonstrate that this CHIKV-Cre virus infects and replicates in

cell types targeted by CHIKV including myoblasts and fibroblasts and induces acute arthritis

in mice. Importantly, this virus established chronic disease with persistence of viral RNA

occurring for weeks after the acute infection. By combining this Cre expressing virus with

reporter mice, we identified infection-marked cells in the chronic phase of disease and showed

that these cells were enriched for persistent CHIKV RNA. This system provides a powerful

tool to explore chronic CHIKV pathogenesis and the host determinants that contribute to

disease.

Results

Generation and characterization of CHIKV expressing Cre recombinase

To identify cells surviving CHIKV infection, we generated a recombinant CHIKV using the La

Réunion infectious cDNA clone, LR2006 OPY1, (denoted CHIKV-WT) and engineered it to

express the bacteriophage Cre recombinase gene under control of a second subgenomic pro-

moter. Two versions of the Cre recombinase virus were generated: in one version, the second

subgenomic promoter and Cre recombinase was introduced between the non-structural and

structural genes (denoted CHIKV-5´-Cre); in the second version, the subgenomic promoter

and Cre recombinase were inserted downstream of the structural genes (denoted CHIKV-3´-

Cre) (S1A Fig). The infection of tdTomato reporter mice with our recombinant viruses results

in the expression of Cre recombinase, excision of the stop cassette within the reporter con-

struct, and constitutive expression of the fluorescent tdTomato protein. Thus, the fluorescent

reporter protein will be expressed in all cells where Cre recombinase was expressed, even when
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Fig 1. CHIKV-3´-Cre marks reporter cells in vitro and productively infects muscle cells and fibroblasts. (A) Scheme of CHIKV-3´-Cre and tdTomato

reporter mouse system. (B-C) MEFs isolated from tdTomato reporter mice were analyzed 2 days after infection. (B) Representative images of CHIKV-WT

or CHIKV-3´-Cre infected tdTomato MEFs. Blue shows DAPI staining, and red is tdTomato. (C) The percentage of total DAPI+ cells that were tdTomato+

was quantified by confocal microscopy for tdTomato MEFs that were mock-infected (mock) or infected at an MOI of 10 with CHIKV-WT (WT), CHIKV-

3´-Cre (3´ Cre), or CHIKV-3´-Cre pretreated with ~100 U IFN-β (3´ Cre + IFN-β), as described in the Methods. Representative growth curves of (D)

C2C12 myoblasts or (E) C57BL/6 MEFs infected with CHIKV-WT (green circles) or CHIKV-3´-Cre (red triangles) at an MOI of 1. Data for each condition

in C were pooled from 2–3 independent experiments; data in C were analyzed with an ordinary one-way ANOVA with Tukey’s post-test. All error bars

indicate mean with standard error of the mean (SEM). (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

https://doi.org/10.1371/journal.ppat.1007993.g001
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viral replication is abrogated (Fig 1A). This system will help determine whether individual

cells can survive the initial CHIKV infection.

We first tested the ability of CHIKV-3´-Cre to function in cell culture. Murine embryonic

fibroblasts (MEFs) from tdTomato reporter mice were isolated and inoculated with either

CHIKV-WT or CHIKV-3´-Cre. Two days post infection (dpi), a population of tdTomato+

cells was detected following CHIKV-3´-Cre infection, but not following mock treatment or

infection with CHIKV-WT (Fig 1B and 1C). Infection with CHIKV-5´-Cre also induced

reporter expression, although in a lower number of cells than CHIKV-3´-Cre, and this differ-

ence was seen across several multiplicities of infection (MOI) (S1B Fig). To determine if viral

replication was required to activate the reporter, we pretreated cells with IFN-β, which inhibits

alphavirus replication [46,47]. Pretreatment with IFN-β prevented expression of the tdTomato

reporter by cells infected with the CHIKV-3´-Cre virus (Fig 1C). Similar results were observed

with CHIKV-5´-Cre (S1C Fig). Taken together, these results suggest that viral replication and

expression of Cre recombinase in the infected cell is necessary for activation of tdTomato

expression.

We next assessed the ability of CHIKV-3´-Cre to replicate in muscle cells and fibroblasts,

two cell types that are major targets of CHIKV infection [18,19,46–50]. C2C12 myoblasts or

MEFs from WT C57BL/6 mice were inoculated with CHIKV-WT or CHIKV-3´-Cre at an

MOI of 1, and viral replication was assessed at various time points. In C2C12 myoblasts,

CHIKV-3´-Cre replicated similarly to CHIKV-WT, though with slight attenuation at some

time points (Fig 1D). CHIKV-3´-Cre also replicated in MEFs, although unexpectedly it was

more attenuated than CHIKV-WT in this cell (Fig 1E). Similar results were seen when C2C12

cells or MEFs were infected at an MOI of 0.05 and with CHIKV-5´-Cre (S1D and S1E Fig).

Therefore, the CHIKV-3´-Cre virus retains its ability to replicate in key target cells during

infection, although with variable levels of attenuation in myoblasts and fibroblasts.

CHIKV-3´-Cre retains its pathogenic properties to induce acute arthritis

A mouse model of CHIKV infection has been shown to recapitulate several aspects of human

infection [50–52]. Acute infection is characterized by foot swelling that resolves within 10–14

dpi and replication and dissemination of the virus to joint-associated tissues, muscle, spleen,

and blood. In addition, edema and immune cell infiltration into the joint and muscle are

observed. We therefore evaluated the ability of CHIKV-3´-Cre to induce acute clinical disease.

C57BL/6 mice were inoculated with either CHIKV-WT or CHIKV-3´-Cre into the foot and

analyzed for swelling, viral replication, and histopathology. Injection of each virus resulted in a

biphasic pattern of acute ipsilateral foot swelling with peaks seen at 3 and 6 dpi and resolution

by 10–14 dpi (Fig 2A). Although the initial swelling peak at 2–3 dpi, thought to be caused by

edema and monocyte infiltration [53], was reduced during CHIKV-3´-Cre infection, the latter

and more pronounced swelling peak at 6 dpi, which is driven by infiltration of monocytes and

CD4+ T cells [37,53], was equivalent between the two viruses (Fig 2A). Similar results were

seen with CHIKV-5´-Cre (S2A Fig).

We next measured viral titers in the ipsilateral ankle of infected mice. High viral loads were

detected in both the CHIKV-WT and CHIKV-3´-Cre infected mice at 1, 3, and 5 dpi, although

CHIKV-3´-Cre was mildly attenuated with ~10-fold lower levels than CHIKV-WT. Infectious

virus from either CHIKV-WT or CHIKV-3´-Cre was undetectable by 10–14 dpi (Fig 2B).

Again, similar results were seen with CHIKV-5´-Cre (S2B Fig). Infection with CHIKV-WT

also resulted in viremia and replication at distal sites including the ipsilateral quadriceps mus-

cle, contralateral ankle, and spleen. Whereas viral replication of both CHIKV-3´-Cre and
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Fig 2. CHIKV-3´-Cre retains its pathogenic properties to induce acute arthritis. (A) Swelling of the ipsilateral feet of mice inoculated with 106 PFU of

CHIKV-WT (green circles) or CHIKV-3´-Cre (red triangles). Data were pooled from two independent experiments with n = 10 for each virus. (B) Levels of

infectious virus in the ipsilateral ankle during acute infection as measured by plaque assay, normalized to gram of tissue. Each time point for each virus

represents 5–7 mice and were pooled from 2–4 independent experiments. The dashed line represents the limit of detection. (C-D) Mice were mock-

infected (mock, blue diamonds) or infected with 106 PFU CHIKV-WT (WT, green circles) or CHIKV-3´-Cre (3´-Cre, red triangles), and ipsilateral ankles

at 7 dpi were analyzed histologically after hematoxylin and eosin staining of sections. (C) Ankles were scored for histological damage as described in the

Methods. (D) Representative images of the skin, muscle, and synovium. The skin and associated tissue are divided (from left to right) into muscle (M),

hypodermis (H), dermis (D), and epidermis (E). The muscle sections are divided into tendon (T) and muscle (M). The synovium sections show synovium

(S) and bone (B), with asterisks indicating synovial inflammation and arrows indicating immune infiltrates into the synovial cavity. Samples were pooled

from two independent experiments with five mice for each condition. Data in A were analyzed with a two-way repeated measures (RM) ANOVA with

Bonferroni’s post-test. Data in B were log-transformed and then analyzed with an ordinary two-way ANOVA with Bonferroni’s post-test. Data in C were

analyzed with an ordinary one-way ANOVA with Tukey’s post-test. All error bars indicate SEM. (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

https://doi.org/10.1371/journal.ppat.1007993.g002
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CHIKV-5´-Cre was detected in these distal tissues, it was attenuated compared to CHIKV-WT

(S2C–S2F Fig).

We also utilized RNA ISH to detect viral RNA in selected tissue compartments. RNA ISH

was performed on the ipsilateral foot and ankle at 2 dpi with CHIKV-WT or CHIKV-3´-Cre.

CHIKV E1 RNA was detected for both viruses in skeletal muscle, skin, and synovium (S3A

Fig). CHIKV-3´-Cre had a similar tissue tropism to CHIKV-WT, although staining for

CHIKV-3´-Cre was less intense than with CHIKV-WT. Notwithstanding these differences,

CHIKV-3´-Cre had a similar overall tissue tropism to CHIKV-WT.

CHIKV infection results in moderate to severe arthritis that can be detected at acute and

subacute time points in animal models [39,41]. This is characterized by edema and swelling

within the skin and subcutaneous tissue and cellular infiltrates in the joint space, muscle, and

tenosynovial tissues. Specimens comprising the ipsilateral foot and ankle were harvested seven

days after mock infection or infection with CHIKV-WT or CHIKV-3´-Cre, and tissue sections

were evaluated for inflammation and acute arthritis (Fig 2C and 2D). Histopathological exam-

ination revealed substantial edema, especially in the dermis and hypodermis and inflammation

with tissue damage in the footpad, skeletal muscle, and tenosynovial joint tissues in mice

infected by either virus compared to mock-infected animals (Fig 2D). Based on histological

analysis, the overall severity of the inflammatory response in the joint space, muscle, and teno-

synovial soft tissues was indistinguishable between CHIKV-WT and CHIKV-3´-Cre at 7 dpi

(Fig 2C). Similar results were seen with CHIKV-5´-Cre at 7 dpi (S3B and S3C Fig). Thus,

CHIKV-3´-Cre retains the pathogenic potential to induce acute musculoskeletal disease.

CHIKV-3´-Cre retains its pathogenic properties to induce chronic disease

Chronic CHIKV arthritis is characterized by persistent myositis and chronic synovial inflam-

mation. In addition, persistent viral RNA can be detected in musculoskeletal tissues in mice

long after acute disease, despite the absence of detectable replicating virus [39,41]. Therefore,

we next evaluated if the CHIKV-3´-Cre virus could establish chronic disease.

Ipsilateral foot and ankle joints were harvested twenty-eight days after inoculation with

media (mock infection), CHIKV-WT, or CHIKV-3´-Cre. Compared to specimens harvested

at 7 dpi (Fig 2C and 2D), there was markedly less inflammation and tissue damage in all

groups at 28 dpi (Fig 3A and 3B), consistent with the comparatively mild histological findings

previously described in CHIKV-associated chronic arthritis in mice [39,41]. Histological

examination showed patchy areas of chronic inflammatory infiltrates within the muscle, with

some synovial proliferation within the joints, consistent with resolving arthritis in both the

CHIKV-WT and CHIKV-3´-Cre infected mice, but not in mock-infected mice (Fig 3A). The

overall severity of the inflammation in the joint space, muscle, and tenosynovial soft tissues

was indistinguishable between CHIKV-WT and CHIKV-3´-Cre at 28 dpi (Fig 3B). Similar

results were observed for CHIKV-5´-Cre (S4A and S4B Fig). Thus, CHIKV-3´-Cre establishes

chronic CHIKV arthritis.

We next evaluated if viral RNA persisted in tissues after infection with the CHIKV-3´-Cre

virus. CHIKV viral E1 RNA was detected by RT-qPCR in the ipsilateral ankles of mice infected

with either CHIKV-WT or CHIKV-3´-Cre at 28 dpi, although at this time point the level of

viral RNA was slightly decreased (~3.5-fold) in the CHIKV-3´-Cre infected mice compared to

CHIKV-WT (Fig 3C). As expected, mock infection or infection with UV-inactivated CHIKV-

3´-Cre did not result in a positive signal for viral RNA at chronic phase time points (Fig 3C).

Persistent levels of chronic viral RNA were detected through 112 dpi (16 weeks) following

infection with either virus, and both viruses established similar levels of viral RNA at late time

points (Fig 3D). Again, similar results were observed for CHIKV-5´-Cre (S4C Fig).
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Fig 3. CHIKV-3´-Cre retains its pathogenic properties to induce chronic disease. (A-B) Mice were mock-infected (mock, blue diamonds) or

inoculated with 106 PFU CHIKV-WT (WT, green circles) or CHIKV-3´-Cre (3´-Cre, red triangles), and ipsilateral ankles were taken for H&E
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At peak productive infection, engagement of the subgenomic promoter produces a subge-

nomic RNA segment encoding for the structural proteins [54–56]. As such, this results in

more copies of structural proteins, such as E1, being produced than non-structural genes, such

as nsP1, during active RNA replication. Consistent with this description and as seen previously

[41], during the first 7 days of infection, the ratio of E1 to nsP1 RNA copies was greater than 1

for both CHIKV-WT and CHIKV-3´-Cre indicating active viral replication was occurring

(Fig 3E). However, after 7 dpi the ratio of E1 to nsP1 was approximately 1, and the viral RNA

levels decreased with a similar time course for both viruses. Similar results were observed for

CHIKV-5´-Cre (S4D Fig). Thus, the subgenomic promoter likely is active only during the first

week of acute infection, which is supported by infectious virus only being detected during this

period (Fig 2B).

CHIKV-3´-Cre identifies dermal and muscle fibroblasts and myofibers as

target cells during chronic infection

Previous reports have indicated that CHIKV is highly cytopathic and induces cell death in the

majority of cells that it infects [57,58]. To test whether cells could survive CHIKV infection in
vivo, tdTomato reporter mice were inoculated with media (mock), CHIKV-WT, or CHIKV-

3´-Cre and analyzed for the presence of tdTomato+ cells at chronic phase time points. Notably,

tdTomato+ cells were observed in the ipsilateral foot 28 dpi with CHIKV-3´-Cre, but not in

WT C57BL/6 or reporter mice that were mock-infected, infected with CHIKV-WT, or infected

with UV-inactivated CHIKV-3´-Cre (Fig 4A and 4B, S5A Fig). Infection with CHIKV-5´-Cre

infection also resulted in tdTomato+ cells in the ipsilateral foot, but at a much lower level than

CHIKV-3´-Cre (S5B–S5D Fig). TdTomato+ cells were detected up to at least 112 days (16

weeks) after infection with CHIKV-3´-Cre (Fig 4C).

Closer examination of ipsilateral feet infected with CHIKV-3´-Cre revealed that the major-

ity of tdTomato+ cells were concentrated in skeletal muscle and the dermal layer of the skin

(Fig 4A). In the muscle, the tdTomato+ cells appeared to be a mixture of long, multi-nucleated

myofibers and small, uninucleated non-myofiber cells (Fig 4A). A high number of uninuclear

tdTomato+ cells also were observed in the dermis of the skin. Other connective tissues such as

bone, synovium, and tendons contained rare populations of tdTomato+ cells (S5E Fig).

To define the tdTomato+ cells, we performed co-staining studies. Since the majority of the

tdTomato+ cells were localized to muscle and the dermis, we focused our analysis on these two

areas. In the muscle, the long multi-nucleated, striated cells that histologically were consistent

with skeletal muscle fibers co-stained with sarcomeric alpha actinin (SAA) (Fig 5A), confirm-

ing that the tdTomato+ cells were skeletal muscle cells. The small, uninucleated tdTomato+

cells in the muscle were negative for SAA staining.

histology at 28 dpi. (A) Representative images of the skin, muscle, and synovium. Black ovals mark focal patches of cellular filtrates. The

synovium sections show synovium (S) and bone (B), with asterisks indicating synovial inflammation and proliferation. (B) Ankles were scored

for histological damage as described in Methods. Samples were pooled from two independent experiments with five mice for each condition.

(C-E) Mice were mock-infected (mock, blue diamonds) or inoculated with 106 PFU of CHIKV-WT (WT, green circles), CHIKV-3´-Cre (3´ Cre,

red triangles) or UV-inactivated CHIKV-3´-Cre (UV 3´-Cre, open triangles), and at the indicated times post infection RNA was isolated from

the ipsilateral ankles and viral E1 or nsP1 RNA copy number was measured by RT-qPCR. RNA levels were normalized to total μg of RNA

isolated for each sample. (C) Viral E1 RNA levels in the ipsilateral ankles were assayed at 28 dpi. Data were pooled from 3 independent

experiments. (D) Viral E1 RNA levels were measured in the ipsilateral ankles of the indicated mice at time points ranging from 0 to 112 dpi. The

dashed line for C and D represents limit of detection. (E) The ratio of viral E1 RNA to viral nsP1 RNA in the same samples as D. The dotted line

represents an E1:nsP1 ratio of 1. For D-E, each time point for each virus represents 5–20 mice and was pooled from 2–4 independent

experiments. Data in C and D were log-transformed prior to analysis. Data in B and C were each analyzed with an ordinary one-way ANOVA

using Tukey’s post-test, with only relevant comparisons shown. Data in D and E were analyzed with an ordinary two-way ANOVA using

Bonferroni’s post-test. All error bars indicate SEM. (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

https://doi.org/10.1371/journal.ppat.1007993.g003
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Fig 4. Cells are marked by CHIKV-3´-Cre at time points in the chronic phase. tdTomato mice were mock-infected (mock, blue circles) or inoculated with

106 PFU CHIKV-WT (WT, green circles), CHIKV-3´-Cre (3´-Cre, red triangles), or UV-inactivated CHIKV-3´-Cre (UV 3´-Cre, open red triangles), and

ipsilateral feet and ankles were processed at 28 dpi. (A) Representative image of frozen sections of whole ankle and foot 28 dpi with CHIKV-3´-Cre. Blue

shows DAPI staining, and red is tdTomato; scale bar represents 1000 μm. Higher magnification inset images of skin and muscle from mice infected with

CHIKV-3´-Cre. Scale bars represent 100 μm; the skin is divided into dermis (D) and epidermis (E). (B) The total number of tdTomato+ cells was quantified at
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CHIKV is known to infect fibroblasts both in vitro and in vivo [46,47], and the morphology

of some tdTomato+ cells in muscle and skin was consistent with being fibroblasts. Although

there is no specific marker for fibroblasts, tdTomato+ cells in the muscle co-stained with

vimentin, an intermediate filament that is expressed highly in fibroblasts (Fig 5A). In the der-

mis of the skin, many of the tdTomato+ cells also co-stained strongly with vimentin (Fig 5A).

Some of the tdTomato+ cells in the skin or muscle also co-stained with CD44 and CD29, addi-

tional fibroblast markers (Fig 5A). As these mesenchymal markers can be expressed in other

cell types, sections also were stained with CD31 (endothelial cell marker), CD45 (hematopoi-

etic cell marker), or smooth muscle actin (SMA, myofibroblast and smooth muscle marker).

TdTomato+ cells in the skin and muscle did not co-stain with any of these markers (Fig 5B).

We used flow cytometry to confirm the findings seen by microscopy. Since the muscle

fibers made up a significant population of the tdTomato+ cells in the ankle tissue, and these

cells could not be isolated and analyzed by flow cytometry, we initially characterized the tdTo-

mato+ cells in the skin. tdTomato+ cells were isolated from the skin taken from the ipsilateral

foot of infected reporter mice as described in the Methods. We then determined the number

of tdTomato+ live leukocytes (CD45+), endothelial cells (CD31+), and fibroblasts (CD45-

CD29+ CD44int) (gating strategy in S6A and S6B Fig). We isolated an average of 4x104 tdTo-

mato+ cells from the digested skin (Fig 6B), which constituted less than 1% of the total cells

isolated. Of these tdTomato+ cells, 70–80% of them stained positively for markers associated

with fibroblasts including CD29 and CD44 (Fig 6B and 6C). We observed that less than 5% of

the tdTomato+ cells were CD31+ endothelial cells (Fig 6B and 6C). Although we did not detect

co-staining of CD45 and tdTomato using immunofluorescence, we did detect a small popula-

tion of CD45+ tdTomato+ cells in the skin, which consisted of less than 15% of the total tdTo-

mato+ cells isolated (Fig 6B and 6C). However, the tdTomato mean florescence intensity of

the CD45+ tdTomato+ cells was about 3-fold lower than the levels seen in the CD45- tdTo-

mato+ cells (S6B and S6C Fig).

Next, we examined the uninuclear cells in the ankle tissue using similar techniques (Fig 6D,

complete gating strategy in S6D Fig). We observed approximately 8x104 tdTomato+ cells in

the ankle tissue, a two-fold increase in the total number of tdTomato+ cells compared to the

skin (Fig 6E), which constituted less than 1% of the total uninuclear cells in the ankle tissue.

Once again the majority of the tdTomato+ cells in the ankle tissue stained positively for CD29

and CD44 (approximately 50–60%), consistent with these cells being fibroblasts (Fig 6E and

6F). We observed that less than 5% of the tdTomato+ cells were CD31+ endothelial cells (Fig

6E and 6F), and less than 15% of the tdTomato+ cells stained positively with CD45, once again

displaying a lower MFI of tdTomato staining than the CD45- cells (Fig 6F, S6E and S6F Fig).

Collectively, the immunofluorescence and the flow cytometric analyses suggest that the major-

ity of the tdTomato+ cells are myofibers and dermal or muscle fibroblasts.

Mice treated with anti-Mxra8 antibodies exhibit reduced numbers of

tdTomato+ cells and levels of chronic viral RNA at chronic phase time

points

To assess if there is a correlation between the number tdTomato+ cells and persistent CHIKV

RNA levels, we utilized anti-Mxra8 monoclonal antibodies (mAbs) to block a recently reported

entry receptor for CHIKV, in combination with our reporter virus system. It was previously

28 dpi and normalized to ankle area as described in the Methods. (C) Time course of tdTomato mice infected with 3´-Cre from 1 to 112 dpi. Data from B and

C were pooled from 2–4 independent experiments. B was analyzed with an ordinary one-way ANOVA using Sidak’s post-test. All error bars indicate SEM. (�,

P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

https://doi.org/10.1371/journal.ppat.1007993.g004
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Fig 5. tdTomato+ cells colocalize with markers for myofibers and fibroblasts. tdTomato mice were infected with 106 PFU CHIKV-3´-Cre (3´-Cre), and

ipsilateral ankles were processed at 28 dpi. (A) Frozen sections were stained for markers of myofibers (SAA) or fibroblasts (vimentin, CD44, or CD29), with the

corresponding isotype control shown below each co-stain. (B) Frozen sections were stained for endothelial cell (CD31), hematopoietic cell (CD45), or smooth
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reported that treatment with anti-Mxra8 mAbs reduced CHIKV infection and foot swelling at

3 dpi during the acute phase of disease [59]. To assess the impact of anti-Mxra8 blockade on

chronic infection, tdTomato reporter mice were treated with either isotype control or anti-

Mxra8 mAbs 12 hours prior to infection and then at 4, 8, 12, 16, 20, and 24 dpi. Mice treated

muscle cell (SMA) markers, with the corresponding isotype control shown below each co-stain. Blue shows DAPI staining, red is tdTomato, and green is the

indicated co-staining marker; scale bars represent 10 or 50 μm as indicated. Images are representative of 2–3 experiments with 3–8 mice reviewed for each co-

staining.

https://doi.org/10.1371/journal.ppat.1007993.g005

Fig 6. tdTomato+ uninuclear cells isolated from the skin and ankle are predominantly CD29+ CD44int fibroblasts. tdTomato mice were infected with 105 PFU

CHIKV-3´-Cre (3´-Cre) and at 28 dpi the skin (A-C) or ankle tissue (D-F) from the ipsilateral foot/ankle were processed and analyzed by flow cytometry. (A and D)

Representative flow cytometry plots showing the tdTomato+ population of cells isolated from the (A) skin and (D) ankle and co-staining with CD45, CD29, CD44,

and CD31. (B and E) Quantification of the total number of live tdTomato+ cells isolated from the (B) skin and (E) ankle and co-staining with CD45, CD29/CD44, or

CD31. (C and F) Percentage of tdTomato+ cells isolated from the (C) skin or (F) ankle that co-stain with CD45, CD29/CD44, or CD31. Data represents three (D-F) or

four (A-C) independent experiments. Data were analyzed using an ordinary one-way ANOVA with Tukey’s post-test. All error bars indicate SEM. (�, P< 0.05; ��,

P< 0.01; ���, P< 0.001; ����, P< 0.0001).

https://doi.org/10.1371/journal.ppat.1007993.g006
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with anti-Mxra8 mAbs showed a significant reduction (73% decrease) in persistent viral RNA

detected in the ipsilateral ankle 28 dpi compared to the isotype control mAb treated mice (Fig

7A).

Consistent with this data, the anti-Mxra8 treated mice had reduced numbers (75%

decrease) of tdTomato+ cells in the ipsilateral ankle 28 days after infection as compared to the

isotype control (Fig 7B and 7C). Quantification of cell co-staining demonstrated that the most

significant reductions with anti-Mxra8 treatment were observed in tdTomato+ CD29+ fibro-

blasts in the muscle and skin (Fig 7D), with an 89% and 78% decrease, respectively. Anti-

Mxra8 mAb treatment also reduced the number of tdTomato+ SAA+ myofibers by 57%, thus

to a lesser extent than fibroblasts (Fig 7E). Overall, anti-Mxra8 mAb treatment reduced the

amount of persistent viral RNA and altered the overall numbers and distribution of tdTomato+

cells in musculoskeletal tissues during the chronic phase of disease. These findings demon-

strate a positive correlation between persistent CHIKV RNA levels and the number of tdTo-

mato+ cells suggesting that these cells may harbor chronic RNA.

tdTomato+ cells are enriched for persistent CHIKV RNA

Chronic CHIKV RNA can consistently be detected by RT-qPCR in animal models, including

the joints and spleen of mice and the spleen, lymph nodes, and liver of macaques [34,41].

However, techniques to visualize this persistent RNA have been inadequate. Previous reports

have suggested that viral RNA and proteins may reside within synovial macrophages or endo-

thelial cells [18,34,35] although the cell types harboring persistent CHIKV RNA have not been

rigorously examined. To determine if the tdTomato+ fibroblasts in the ankle and skin are

enriched for persistent CHIKV RNA, we sorted the CD45- cells isolated from the ankle and

skin at 28 dpi into tdTomato+ and tdTomato- populations, extracted the RNA from these cells,

and then performed RT-qPCR for CHIKV E1 RNA. In both the skin and ankle tissue CHIKV

RNA was enriched in the tdTomato+ population compared to the tdTomato- population (Fig

8A and 8B). In the skin, there was approximately an 8-fold enrichment for E1 RNA levels in

the tdTomato+ cells compared to the tdTomato- cells, where the RNA levels cells were near the

limit of detection (Fig 8A). Similarly, the levels of E1 RNA in the ankle were 4-fold higher in

the tdTomato+ population compared to the tdTomato- cells (Fig 8B). Overall, this demon-

strates that tdTomato+ cells in the skin and ankle that survive acute CHIKV infection harbor

persistent CHIKV RNA during chronic disease.

Since the tdTomato+ cells harbor chronic viral RNA we next evaluated these cells for sur-

face expression of the CHIKV E1 and E2 proteins. Reporter mice were infected with CHIKV-

3’-Cre and the ankle tissue was harvested at either acute (2 dpi) or chronic (28 dpi) time points.

The isolated cells were stained for CD45, CD29, CD44 and with anti-CHIKV E1 and E2 mAbs

[60] or with an anti-WNV mAb [61] as an isotype control. At 2 dpi, in the ankle we detected

between 2–6% of the CD29+CD44int fibroblasts (approx. 1.1x105 cells) that stained positively

with the anti-CHIKV E1 and E2 antibody (Fig 8C and 8E). Of the cells isolated from the skin,

less than 0.5% of cells were positive for CHIKV E1 and E2 at 2 dpi, so we focused our analysis

on the ankle. At 2 dpi, tdTomato expression was not yet detected (Fig 8C and 8F). An analysis

of CD44int CD29+ fibroblasts at 28 dpi revealed no cell surface expression of CHIKV E1 and

E2 (Fig 8D and 8E). If we gated on all of the tdTomato+ cells isolated from the ankle at 28 dpi,

which accounted for less than 1% of the cells isolated, we identified less than 1% expressing

CHIKV E1 and E2 on the cell surface, accounting for less than 0.01% of all cells isolated from

the ankle (Fig 8D and 8F). Therefore, while these tdTomato+ cells survive acute CHIKV infec-

tion and harbor persistent viral RNA, the CHIKV E1 and E2 proteins are not expressed on the

cell surface of the majority of cells.
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Fig 7. Anti-Mxra8 antibodies reduce levels of viral RNA and the number of tdTomato+ cells in the chronic phase of CHIKV infection. tdTomato mice

were treated with anti-Mxra8 mAbs (red squares) or an isotype control antibody (green circles) as described in the Methods, inoculated with 106 PFU

CHIKV-3´-Cre (3´-Cre), and at 28 dpi mice were harvested for quantification of viral RNA and histological analysis. (A) Quantification of CHIKV E1 RNA
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Discussion

CHIKV causes a debilitating acute disease that results in chronic arthralgia and myalgia in a

substantial proportion of patients. The mechanism of this chronic CHIKV pathogenesis is

unclear but may be related to persistence of viral RNA in musculoskeletal tissues. To begin to

identify the cells that contribute to chronic pathogenesis, we created a recombinant CHIKV

that expresses Cre recombinase and permanently marks infected cells in reporter mice. Using

this tool, we provide evidence that a subset of cells survive CHIKV infection, are present dur-

ing the chronic stages of disease, and harbor persistent CHIKV RNA. Previous reports have

used immunofluorescence microscopy, immunohistochemistry, or RNA quantification to

detect CHIKV antigen or RNA in animal and patient cells during the chronic phase of disease

[18,33–35]. However, CHIKV antigen-positive cells are reportedly rare in samples from the

subacute or convalescent phase, likely owing to the insensitivity of these techniques. We used

our system to elucidate the cells that survive acute infection and determine whether they are

reservoirs of chronic CHIKV RNA.

We constructed two variants of the CHIKV-Cre construct, inserting the Cre recombinase

gene under control of a second subgenomic promoter, either in between the structural and

non-structural genes (CHIKV-5´-Cre) or at the 3´ end of the genome (CHIKV-3´-Cre). As

has been reported previously with CHIKV-GFP clones [62,63], the introduction of Cre recom-

binase mildly attenuated both viruses. However, the CHIKV-Cre viruses retained sufficient

virulence to infect targets of CHIKV replication (fibroblasts and myoblasts) and induce acute

swelling and histopathology that was comparable to that induced by CHIKV-WT. The

CHIKV-Cre viruses also established chronic disease with persistence of viral RNA, chronic

myositis, and synovial inflammation. Using this CHIKV-Cre and tdTomato reporter mice, we

showed that, like viral RNA, tdTomato+ cells can be detected in the foot and ankles of infected

mice for at least 112 days (16 weeks) after infection.

One limitation of the model is that we cannot be certain at what stage a given tdTomato+

cell became infected with CHIKV. Based upon the presence of infectious viral titers and the

increased E1:nsP1 ratio that is detected only during acute infection, we favor a model in which

cells are infected during the first week of infection, survive acute infection, and persist for the

lifetime of the cell. Our current model cannot exclude other possibilities including that some

tdTomato+ cells arise as daughter cells from mitotic replication of directly infected tdTomato+

cells or that tdTomato+ cells arise throughout acute and chronic phases via ongoing infection

with low levels of replicating virus, that to date has been undetectable.

For our more detailed studies, we used the CHIKV-3´-Cre rather than CHIKV-5´-Cre, as

certain aspects of CHIKV-3´-Cre infection more closely resembled CHIKV-WT infection. For

example, the ratio of E1:nsP1 in the first seven days of infection was more similar between

CHIKV-3´-Cre and CHIKV-WT than with CHIKV-5´-Cre. This difference is likely because

the E1 gene is under the replicative direction of the subgenomic promoters; the internal geno-

mic structure of CHIKV-3´-Cre is identical to CHIKV-WT in contrast to CHIKV-5´-Cre.

Using our CHIKV-3´-Cre and tdTomato reporter mouse system, we identified cell types

targeted by CHIKV that persist into the chronic phase. In the acute phase, CHIKV has been

in the ipsilateral ankle/foot of isotype or anti-Mxra8 treated mice. Data was pooled from three independent experiments. (B-F) Ipsilateral ankles/feet were

harvested for histological analysis; data was pooled from two independent experiments. (B) Quantification of the total number of tdTomato+ cells in the

ipsilateral ankles/feet. (C) Representative images of ipsilateral feet/ankles, with higher magnifications of dotted squares inset to the right. Blue shows DAPI

staining, and red is tdTomato; scale bars represent 100 or 500 μm as indicated. (D-E) tdTomato+ cells were quantified by morphology and co-staining as

described in the Methods: (D) CD29+ muscle and skin cells, and (E) SAA+ myofibers. Data in A were analyzed with a Mann-Whitney test. Data in B and E

were analyzed with an unpaired t test. Data in D was analyzed with a two-way ANOVA using Sidak’s post-test. All error bars indicate SEM. (�, P< 0.05; ��,

P< 0.01; ���, P< 0.001; ����, P< 0.0001).

https://doi.org/10.1371/journal.ppat.1007993.g007
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shown to infect fibroblasts, synoviocytes, macrophages, skeletal muscle fibers, satellite cells,

osteoblasts, endothelial cells, keratinocytes, and neurons [19,33,47,48]. In vitro infections with

many of these cell types exhibit high levels of cytopathic effects and cell death [57,58]. Immu-

nofluorescence analysis using our reporter mice showed that the persistent tdTomato+ cells

are predominantly a mixture of SAA+ skeletal myofibers and vimentin+ CD44+ CD29+ cells

Fig 8. tdTomato+ cells harbor persistent CHIKV RNA but do not express CHIKV E1 or E2 proteins on their cell surface. tdTomato mice were infected with 105

PFU of CHIKV-3´-Cre (3´-Cre), and skin or ankle was isolated from the ipsilateral foot at either 2 or 28 dpi and processed to generate single cell suspensions. (A-B)

The CD45- cells isolated from the skin (A) or ankle (B) were sorted into tdTomato+ and tdTomato- populations and RNA was extracted, and analyzed for CHIKV E1

RNA by RT-qPCR. Each data point represents 5 pooled mice. (C, D) Representative flow plots of CD45- CD29+ CD44int fibroblasts (left panels) and tdTomato+ cells

(right panels) staining with isotype control or anti-CHIKV Ab at 2 dpi (C) or 28 dpi (D). (E, F) Quantification of the percent of CHIKV+ fibroblasts (E) and CHIKV+

tdTomato+ cells (F) normalized to the WNV isotype control mAb at 2 dpi or 28 dpi. Data represents two (C-F), three (B) or four (A) independent experiments. The

dotted line represents the limit of detection. Data in A and B were analyzed using an unpaired, two-tailed Student’s t test. All error bars indicate SEM. Data in E and F

were analyzed using an unpaired, two-tailed Student’s t test (�, P< 0.05).

https://doi.org/10.1371/journal.ppat.1007993.g008
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that are likely fibroblasts; both of these cell types have been reported as permissive for CHIKV

infection during the acute phase [46,47,49]. Identification of tdTomato+ CD44int CD29+ fibro-

blasts was confirmed by flow cytometry in both the skin and ankle tissue. In the skin, using

markers for fibroblasts, endothelial cells, and immune cells we could identify approximately

90% of the tdTomato+ cells, with CD44int CD29+ fibroblasts accounting for 70–80% of all

tdTomato+ cells isolated. In the ankle tissue, we only identified approximately 75% of the unin-

uclear cells marked during chronic CHIKV, with the majority once again being fibroblasts.

Therefore, 25% of the tdTomato+ cells are unidentified in the ankle. Our digests and prepara-

tion did not allow us to isolate the muscle fibers so they are not included in our analysis. Addi-

tional cell types such as muscle satellite cells are known to be infected by CHIKV and could

contribute to the tdTomato+ population [33]. Further studies will be needed to identify these

additional cell types.

Other cell types such as endothelial cells and macrophages also have been reported to con-

tain CHIKV antigens during chronic infection in humans, macaques, and mice [18,34,35].

Some reports also have suggested that hematopoietic cells such as monocytes or macrophages

can be directly infected by CHIKV [47,64]. In our immunofluorescence analysis, the vast

majority of tdTomato+ cells were CD31- and CD45-, which is consistent with previous reports

examining CHIKV staining in acute skin samples [46]. However, flow cytometric analysis

revealed a small population, less than 15% of all tdTomato+ cells, which were CD45+ in the

ankle and skin tissues. We also found that less than 5% of the tdTomato+ cells were CD31+.

The CD45+ tdTomato+ cells expressed a lower tdTomato MFI than the CD45- tdTomato+ pop-

ulation. The reason for the difference in MFI is unclear. There are mixed reports on whether

macrophages can be productively infected by CHIKV [47,64]. It is possible that rather than

being directly infected, these phagocytic cells have internalized viral RNA from adjacent tdTo-

mato+ cells. Further studies will be needed to evaluate this possibility.

Not all cells known to be infected by CHIKV in the acute phase were apparent as tdTo-

mato+ in our analysis at chronic time points. Few cells in the synovial membrane were tdTo-

mato+, even though synovial inflammation was present during acute disease and mild

inflammation persisted at chronic time points, as has been reported [39,41]. During the acute

stage of infection, we could detect staining for viral RNA in the synovium; however, the syno-

vial staining was less pronounced than the staining seen in the muscle or skin for both

CHIKV-WT and CHIKV-3´-Cre. These results may indicate that synovial cells are not

infected in large numbers in vivo, or that synovial cells are infected but do not survive. These

findings could explain why previous efforts to detect viral components in patient samples at

chronic phase time points generally have been unsuccessful, as they have focused on synovial

fluid analysis and occasionally synovial tissue but rarely skin or muscle biopsies. In addition to

a paucity of tdTomato+ synovial cells, few tdTomato+ cells were present in or associated with

bone. A small number of tdTomato+ cells occasionally were found associated adjacent to the

periosteum, which could represent a population of fibroblasts or osteoblasts. Previous reports

have suggested that CHIKV infection of osteoblasts can perturb osteoclast function and lead to

chronic histological damage [65,66]. These findings are not precluded by our results, as osteo-

blasts may accomplish such outcomes while still succumbing to lytic infection.

A key unanswered question in CHIKV disease pathogenesis is what mechanistically pro-

motes symptoms during the chronic phase. Replicating virus has not been detected at chronic

time points, yet chronic inflammation is clearly present in tissue, serum, and synovial samples,

both histologically and transcriptionally [67–69]. Although viral RNA can be detected in the

chronic phase, to date it has been difficult to identify the cells harboring it. The treatment of

mice with anti-Mxra8 mAb not only reduced the total number of tdTomato+ cells by 75%, but

also decreased the levels of chronic RNA by 73%, thus correlating the level of chronic viral
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RNA and the number of persistent tdTomato+ cells in the chronic phase. Such results sug-

gested that persistent viral RNA might be harbored within the tdTomato+ cells. Our model

allowed us to isolate uninuclear CD45- tdTomato+ cells in the ankle and skin tissue and defini-

tively show that they harbor persistent CHIKV RNA at chronic phase time points. Despite evi-

dence that the skin and muscle fibroblasts harbor viral RNA at these time points, we were

unable to detect the expression of viral CHIKV surface proteins in the vast majority of cells

examined. Gating on the tdTomato+ cells did allow us to identify a rare population of cells

(fewer than 1% of all tdTomato+ cells) that expressed cell surface CHIKV antigens. At this

time it is unclear if the chronic viral RNA we detected is located in only these rare CHIKV+

cells or if the majority of cells harboring viral RNA do not express CHIKV antigens. Single cell

RNA sequencing analysis will be needed to further clarify these findings. In addition, since

muscle fibers could not be isolated and analyzed by flow cytometry, it is unknown if they har-

bor persistent CHIKV RNA and/or express cell surface CHIKV antigens. How this viral RNA

is able to persist in these cells, why the majority of these cell do not express CHIKV antigens

on their cell surface, and whether these tdTomato+ cells are transcriptionally altered and ulti-

mately drive chronic pathogenesis of CHIKV are areas of future investigation.

In conclusion, our CHIKV-3´-Cre and tdTomato system provides further evidence for

musculoskeletal cells as targets of CHIKV infection in the acute and chronic stages of disease

and revealed that fibroblasts that survive acute CHIKV harbor persistent CHIKV RNA. How

these cells contribute to pathogenesis remains to be elucidated. Uncovering the mechanisms

for long-term pathogenesis could aid in the development of treatments and preventative mea-

sures for this incapacitating, virally-induced chronic arthritis.

Materials and methods

Viruses

The wild-type strain of CHIKV (denoted CHIKV-WT) used in these studies is LR2006 OPY1,

an ECSA strain of CHIKV isolated from the La Réunion Island outbreak [62]. Plasmids for

CHIKV-5´-GFP and CHIKV-3´-GFP were obtained from Stephen Higgs (Kansas State Uni-

versity), and the Cre recombinase gene, with a nuclear localization signal (NLS) sequence, was

substituted for GFP in both viruses [62,63]. To produce the CHIKV-5´-Cre plasmid, Cre was

PCR amplified from a Cre-containing plasmid with a forward primer (FW) containing an

AscI restriction site and homology to the 5´ end of the Cre gene and a reverse primer (RV)

containing a PmeI site and homology to the 3´ end of the Cre gene. To produce the CHIKV-

3´-Cre plasmid, Cre was PCR amplified from the CHIKV-5´-Cre plasmid using AscI-Cre FW

and BsmBI-Cre RV primers. The 3´-UTR also was PCR amplified from the CHIKV-3´-GFP

virus using BsmBI-3´UTR FW and NotI-3´-UTR RV primers. Both PCR fragments were

inserted concurrently into a CHIKV-3´-GFP plasmid linearized with AscI and NotI. The

infectious clone plasmids for CHIKV-WT, CHIKV-3´-Cre, and CHIKV-5´-Cre were

sequenced and had 100% nucleotide identity with reference and predicted sequences.

To produce recombinant viral stocks, the infectious clone plasmids were linearized with

NotI, and RNA was produced using a SP6 DNA-dependent RNA transcription kit (Agilent,

Promega, BioLabs). The RNA was transfected into baby hamster kidney cells (BHK-21 cells)

using Lipofectamine 2000 (Invitrogen), and after 48 h the supernatant was collected, centri-

fuged at 150–300 x g to clear cell debris, aliquoted, and stored at -80˚C. Titers of the viral

stocks were assessed by plaque assay as previously described [70]. All cell and animal work

with live CHIKV was performed in a biosafety level 3 facility and followed guidelines estab-

lished by the Environmental Health and Safety Committee at Washington University School

of Medicine.
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Mice

The following strains of mice were obtained from the Jackson Laboratory: C57BL/6 (JAX

Stock No: 000664; C57BL/6J) and tdTomato reporter mice (JAX Stock No: 007914; B6.Cg-Gt
(ROSA)26Sortm14(CAG-tdTomato)Hze/J). Mice were bred and maintained at Washington University

School of Medicine animal facilities in accordance with all federal and University guidelines.

For all experiments, mice were weight- and sex-matched prior to infection; both sexes were

used. For mouse studies, the principles of Good Laboratory Animal Care were adhered to in

strict accordance with NIH recommendations [71]. All animal protocols were approved by the

Animal Studies Committee at Washington University. Every effort was made to minimize ani-

mal suffering.

Cells and media

Murine embryonic fibroblasts (MEFs) were generated from C57BL/6 and tdTomato reporter

mice and grown at 37˚C and 5% CO2 in CD10 media: Dulbecco’s modified Eagle medium

(DMEM) (Corning) supplemented with 10% fetal bovine serum (FBS) (Biowest), 1% penicil-

lin-streptomycin (P/S; Corning), 1% L-glutamine (Glu; Corning), 1% non-essential amino

acids (NEAA; Corning), and 1% HEPES (Corning). For some experiments CD1 media (CD10

media with only 1% FBS) was used. MEFs were used prior to passage number 5 for these stud-

ies. The C2C12 myoblast cell line was obtained from ATCC (ATCC CRL1772) and cultured

using the same conditions as the MEFs.

Viral growth curves

For viral growth curves, MEFs were plated at 2 x 104 cells/well and C2C12s at 1 x 104 cells/well

in 96-well tissue culture-treated plates and allowed to adhere overnight. Cells were rinsed and

diluted virus was then added at the indicated MOI and allowed to adhere for 1 h. The input

virus was then removed, the cells were washed once, and fresh CD1 media was added. At each

time point, a plate was frozen at -80˚C and underwent three freeze-thaw cycles before titers

were determined on BHK-21 cells by plaque assay.

In vitro coverslip studies

tdTomato reporter MEFs were plated onto collagen type I-treated 22 mm glass coverslips

(Corning) at 4 x 105 cells/well in 6-well tissue culture-treated plates in CD10. If indicated, cells

also were concurrently pre-treated with ~100 U IFN-β (PBL Assay Science), and all cells were

allowed to adhere to the coverslips overnight. Cells were inoculated with virus at the indicated

MOI, as described above. After 48 h, the supernatant was removed, and the cells were fixed to

the coverslips with 4% paraformaldehyde (PFA) for at least 10 min. Coverslips were stored in

the wells with phosphate-buffered solution (PBS) at 4˚C until further processing.

Coverslips were prepared for microscopy as follows: coverslips were permeabilized for

10 min at room temperature (RT, ~23˚C) with 0.2% Triton-X in PBST (PBS + 0.1% Tween20),

washed with PBST, stained with DAPI (100 μg/mL in PBST) for 10 min at RT, washed with

PBST, mounted onto a glass slide using ProLong Gold (Invitrogen), and allowed to cure pro-

tected from light at RT overnight. Coverslips were imaged using a Nikon Spinning Disk Con-

focal Microscope, maintained at the Washington University Center for Cellular Imaging. For

illustration purposes, cells were imaged at 4x or 10x with a single capture using the DAPI and

RFP channels. For quantification purposes, four random locations were selected on each cov-

erslip, and a 4x4 stitched image of 16 adjacent 4x images (15% overlap) was produced from

each location. Image files were processed and automatically quantified for cell number and
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tdTomato+ cell count using ImageJ. The nuclei or cells were quantified using the Quantify Par-

ticles function, with the size being a minimum of 500 pixels2. The DAPI+ nuclei count repre-

sents the total number of cells per field, and the RFP+ cell count represents the total number of

tdTomato+ cells per field. The percentage of tdTomato+ cells was calculated by dividing the

total number of tdTomato+ cells per field by the total number of nuclei per field for each

image.

Viral burden studies in animals

Four-week old C57BL/6 mice sedated with ketamine were injected subcutaneously with

105−106 plaque-forming units (PFU) of virus diluted in 10–30 μL of CD1 without P/S into the

left (ipsilateral) footpad, between the second and third digits. Swelling of the infected foot was

monitored daily using digital calipers by measuring both height and width. For infectious virus

and viral RNA samples, mice were sedated and sacrificed with ketamine at the indicated time

point and were perfused with 5–10 mL PBS. Tissues (spleen, ipsilateral and contralateral ankles

with toes removed and skin included, and ipsilateral quadriceps muscles) were harvested into

homogenization bead tubes containing 600 μL of PBS and stored at -80˚C. Infectious virus titer

was determined by plaque assay. For viral RNA samples, bead tubes containing organ samples

were snap frozen in liquid nitrogen before transfer to -80˚C. Viral RNA levels were determined

using RT-qPCR, as described below. Blood samples were allowed to coagulate at RT, samples

were centrifuged at 9,000 x g for 5–10 min, and serum was transferred to a fresh tube and stored

at -80˚C.

For Mxra8 mAb studies, tdTomato reporter mice were inoculated with CHIKV-3´-Cre as

described above. The mice were injected via an intraperitoneal route with 250 μg of Armenian

hamster isotype control (Bio X Cell # BE0260) or Armenian hamster anti-Mxra-8 mAbs

diluted in PBS (125 μg each of 1G11.E6 + 7F1.D8) [59] at 12 h prior to infection and at 4, 8, 12,

16, 20, and 24 dpi. Samples were harvested for RNA or histology as described above. RT-qPCR

analysis, frozen section slides and quantification, and immunofluorescence was performed as

described below.

Quantitative real-time PCR

RNA was isolated from Trizol-tissue homogenates using the standard Trizol-chloroform

extraction protocol and/or an RNAasy mini-prep kit (Qiagen). For analysis of sorted cells,

RNA was isolated using RNeasy FFPE Kite (Qiagen). Modifications to the suggested protocol

include elimination of all steps for processing FFPE tissues such as deparaffinization. Isolated

RNA was resuspended in UltraPure H2O (Ambion) and stored at 4˚C overnight or -80˚C for

long-term storage. Viral standards were generated by producing RNA from the infectious

clone plasmids as described above. The copy number of the standard was determined by quan-

tifying the sample and calculating the copy number using the known genome length. A 1:10

dilution series of the standard was prepared ranging from ~101 copies to ~109 copies. RT-

qPCR was performed on a Bio-Rad CFX machine using the TaqMan RNA-to-CT 1-Step Kit

(Applied Biosystems) with a 25 μL total reaction volume per well, 2 μL of RNA sample, and

the indicated amount of Taqman primers and probe from Integrated DNA Technologies: E1

FW (5´- TCG ACG CGC CCT CTT TAA -3´), E1 probe (5´- /56-FAM/ ACC AGC CTG/

ZEN/ CAC CCA TTC CTC AGA C/ 3IABkFQ/ -3´), E1 RV (5´- ATC GAA TGC ACC GCA

CAC T -3´), nsP1 FW (5´- AAA GGG CAA ACT CAG CTT CAC -3´), nsP1 probe (5´-/

56-FAM/ CGC TGT GAT/ ZEN/ ACA GTG GTT TCG TGT G/ 3IABkFQ/ -3´), nsP1 RV (5´-

GCC TGG GCT CAT CGT TAT TC -3´). For RNA isolated from sorted cells, 9 μL of RNA

was analyzed by RT-qPCR in a 25 μL total reaction volume. To quantify the Cre copy number,
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pre-made Enterobacteria phage P1 cyclization recombinase FAM Taqman copy number prim-

ers/probe were used (ThermoFischer Mr00635245_cn), and 1.25 μL of the 20x working stock

was used per 25 μL reaction. The following PCR cycling protocol was used: 30 minutes at 48˚,

10 min at 95˚, and 40 cycles of 15 sec at 95˚ and 1 min at 60˚C. RNA copy number was deter-

mined for each sample using the matching RNA standard, and the copy number was normal-

ized to the total μg of RNA for each sample (determined by NanoDrop).

Histology studies

Four-week old tdTomato mice were infected as described above. For histology samples, mice

were sedated with ketamine and sacrificed at the indicated time point, and 5–10 mL of 4%

PFA was perfused into the heart. Tissues (e.g., spleen, ipsilateral and contralateral feet/ankles)

were harvested and fixed in 4% PFA. After 48 h of immersion fixation, tissues were washed

with PBS and transferred to BSL2 facilities for further processing. Tissues containing bone (e.
g., whole foot/ankle samples) were decalcified in 14% acid-free EDTA (VWR) for 14 days. For

frozen section processing, decalcified tissues and soft tissues (e.g., spleen) were equilibrated

overnight in 30% sucrose in PBS and then frozen in optimal cutting temperature (OCT) com-

pound (Tissue Tek). Samples were then cut with a cryostat at 10 μm for spleens or 30 μm for

foot/ankle samples onto SuperFrost Plus slides (Fisher). Slides were stored at -20˚C until fur-

ther processing.

Frozen section slides were prepared for microscopy by fixing with cold acetone, permeabi-

lizing with 0.2% Triton-X in PBST, washing with PBST, and mounting with a No. 1-1/2 glass

coverslip (VWR) using Vectashield containing DAPI (Vector Laboratories H-1200). Slides

were imaged using a Nikon Spinning Disk Confocal Microscope, maintained at the Washing-

ton University Center for Cellular Imaging. Whole tiled images of the foot and ankle were pre-

pared using the 4x objective and the DAPI, GFP, and RFP channels using large-image capture

and 15% overlap. Alternatively, frozen section slides were processed and imaged using immu-

nofluorescence, as described below. Image files were processed using ImageJ. The total num-

ber or tissue-specific number of tdTomato+ cells was quantified by eye using manual cell

counters in ImageJ or Photoshop; quantification was performed in a blinded manner. The

total area of each foot/ankle or tissue was measured using ImageJ, and each count of total

tdTomato+ cells was normalized to the respective area.

For paraffin section processing, decalcified tissues were dehydrated using washes of 30%

ethanol (EtOH), 50% EtOH, and 70% EtOH. Samples were submitted to the Musculoskeletal

Research Center for paraffin embedding, sectioning, and hematoxylin and eosin (H&E) stain-

ing. Histopathologic examination and analysis was performed by a pathologist blinded to

intervention group or time point. The presence of acute and/or chronic inflammation within

the skeletal muscle, synovial tissues, and joint space was noted. The overall severity of inflam-

mation was scored as follows: 0 for none, 1 for mild, 2 for moderate, and 3 for severe. Repre-

sentative images were taken using the Zeiss Axio Imager Z2 Fluorescence Microscope with

ApoTome 2, managed at the Washington University Center for Cellular Imaging.

Immunofluorescence

Frozen section slides were first fixed with cold acetone. If indicated for the specific antibody,

the samples underwent antigen retrieval using antigen unmasking solution (H3300; Vector

Laboratories), which was incubated overnight in a 60˚C water bath, protected from light. Sam-

ples were then permeabilized with 0.2% Triton-X in PBST, washed with PBST and then

blocked for 1–2 h with TSA blocking reagent (Perkin Elmer FP1012). Samples were then incu-

bated overnight at 4˚C in primary antibody diluted 1:100 in 3% normal goat serum (NGS,
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Equitech-Bio, Inc.) and 3% bovine serum albumin (BSA, Sigma) in PBST. After two washes

with PBST, samples were incubated for 1–2 h at RT in secondary antibody diluted 1:500 in 1%

BSA PBST. Samples were washed once with PBST, stained with DAPI (100 μg/mL in PBST)

for 10 min at RT, washed once with PBST, and a glass coverslip was mounted and slides were

allowed to cure protected from light at RT overnight. Slides were imaged using a Nikon Spin-

ning Disk Confocal Microscope maintained at the Washington University Center for Cellular

Imaging. For illustration purposes, cells were imaged at 20x or 100x with a single capture

using the DAPI, GFP, RFP, and or AF647 channels.

The following primary antibodies were used for these studies with antigen retrieval: anti-

vimentin (Abcam, clone EPR3776); anti-CD45 (Abcam, polyclonal ab10558); anti-CD44

(Abcam, clone EPR18668); anti-CD29 (eBioscience, clone KMI6). The following antibodies

did not require antigen retrieval: anti-CD31 (BD Biosciences, clone MEC 13.3); anti-SAA

(Abcam, clone EA-53).

Flow cytometry and florescence activated cell sorting

Mice were sacrificed 28 dpi and perfused with PBS. To isolate cells from the skin, the toes were

removed, and the cutaneous and subcutaneous tissues were everted and minced. In addition,

the ankle tissue, without the skin, was disarticulated without fracturing the bone. Tissues were

individually incubated for 2 h at 37˚C in 5 mL digestion buffer with manual shaking every 20–

30 min. Digestion buffer consisted of RPMI (Sigma), type IV collagenase (2.5 mg/mL, Sigma),

Liberase TL (100 μg/mL, Roche), DNase I (10 mg/mL, Sigma), 15 mM HEPES (Corning), and

10% FBS (BioWest). Digested tissues were passed through a 70 μm cell strainer and washed

once with 40 mL PBS containing 5% FBS (FACS buffer). The number of viable cells was quan-

tified by trypan blue staining.

The single cell suspension was transferred to a 96-well plate and incubated with anti-mouse

CD16/CD32 (Clone 93; BioLegend) for 10 min at 4˚C and then surface-stained in PBS con-

taining 5% FBS for 1 h at 4˚C. All antibodies were diluted 1:200 and are from BioLegend unless

otherwise specified: anti-CD45 FITC (30-F11), Fixable Viability Dye eFluor 506 (1:500,

eBioscience), anti-CD29 PerCP-Cy5.5, anti-CD44 PE-Cy7, and anti-CD31 APC. Viral CHIKV

antigens E1 and E2 were detected on the cell surface using N297Q biotinylated humanized

CHK-152 (5 μg/mL) and murine CHK-166 (5 μg/mL) mAbs [60], with a N297Q biotinylated

humanized West Nile virus (WNV) E16 serving as the isotype control. Secondary staining was

followed with streptavidin-conjugated APC (1:500) (BioLegend). Gating strategy for ankle and

skin cells is shown in S6A and S6D Fig.

After staining, cells were washed and fixed at 4˚C for 10 min in 4% paraformaldehyde (Elec-

tron Microscopy Sciences). The fixed cells were washed and resuspended in PBS containing

5% FBS. Cells were processed on a LSR Fortessa (Becton Dickinson) flow cytometer or sorted

using a FACSAria II (Becton Dickinson) managed by the Flow Cytometry & Fluorescence

Activated Cell Sorting Core at Washington University and analyzed using BD FACSDiva and

FlowJo v10 software (Tree Star Inc.).

RNA in situ hybridization

Paraffin sections were processed using the provided RNAscope reagents and protocols from

Advanced Cell Diagnostics. Slides were first prepared as directed for formalin-fixed paraffin-

embedded (FFPE) samples (ACD Document Number 322452). The prepared samples were

then exposed to RNAscope Probe V-CHIKV-sp (ACD 479501). The probed samples were

then detected following the RNAscope 2.5 HD Detection Reagent–BROWN protocol (ACD

Document Number 322310), with the only modification being that slides were washed via
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pipetting the wash buffer onto the slides instead of submerging the slides into wash buffer.

Representative images were taken using the Zeiss Axio Imager Z2 Fluorescence Microscope

with ApoTome 2, managed at the Washington University Center for Cellular Imaging.

Statistical analysis

All data were analyzed using the Prism software, version 7 (GraphPad), as detailed in the figure

legends. The following statistical tests were used: two tailed Student’s unpaired t test, Student’s

paired t test, Mann-Whitney test, ordinary one-way analysis of variance (ANOVA), ordinary

two-way ANOVA, and two-way repeated-measures ANOVA. The following post-tests for

multiple comparisons were also used: Bonferroni’s post-test, Dunnett’s post-test, Tukey’s post-

test, and Sidak’s post-test. All error bars indicate standard error of the mean (SEM); if error

bars are not visible, then they are shorter than the height of the symbol. Asterisks indicate sta-

tistical significance, with only relevant comparisons shown (�, P< 0.05; ��, P< 0.01; ���,

P< 0.001; ����, P< 0.0001).

Ethics statement

Experiments were approved and performed in accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The

protocols were approved by the Institutional Animal Care and Use Committee at the Wash-

ington University School of Medicine (Assurance number A3381-01).

Supporting information

S1 Fig. CHIKV-5´-Cre and CHIKV-3´-Cre mark reporter cells in vitro and grow produc-

tively in muscle cells and fibroblasts. (A) Genome maps of the three CHIKV clones that were

used in these studies: CHIKV-WT, CHIKV-3´-Cre, and CHIKV-5´-Cre. (B) tdTomato MEFs

plated in 96-well plates (2.5 x 104 cells/well) were inoculated with CHIKV-5´-Cre (purple

inverted triangles) or CHIKV-3´-Cre (red triangles) at an MOI of 0.1, 1.0, or 3.0 and analyzed

for fluorescence. (C) tdTomato MEFs plated in 96-well plates (2.5 x 104 cells/well) and were

mock-infected (mock) or infected at an MOI of 3.0 with CHIKV-WT (WT), CHIKV-5´-Cre

(5´ Cre), or CHIKV-5´-Cre pretreated with ~100 U IFN-β (5´ Cre + IFN-β). (D) Representa-

tive growth curves of C2C12 myoblasts or (E) C57BL/6 MEFs infected with CHIKV-WT

(green circles), CHIKV-5´-Cre (purple inverted triangles), or CHIKV-3´-Cre (red triangles) at

an MOI of 0.05. The number of tdTomato+ cells per well in B and C were quantified at 2 dpi

manually using a fluorescent microscope and are representative of two independent experi-

ments. Data in B were analyzed with a two-way ANOVA using Sidak’s post-test. Data in C

were analyzed with an ordinary one-way ANOVA using Sidak’s post-test. All error bars indi-

cate SEM. (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

(TIF)

S2 Fig. Characterization of clinical disease and viral replication of CHIKV-5´-Cre and

CHIKV-3´-Cre viruses. (A) Swelling of ipsilateral feet of mice inoculated with 106 PFU of

CHIKV-WT (open green circles; also shown in Fig 2A) or 106 PFU of CHIKV-5´-Cre (purple).

Data were pooled from two independent experiments with n = 10 for each virus. (B-F) Levels

of infectious virus in mice infected with 106 PFU of CHIKV-WT (solid green circles; or open

green circles in S2B, also shown in Fig 2B), 106 PFU of CHIKV-5´-Cre (purple inverted trian-

gles), or 106 PFU of CHIKV-3´-Cre (red triangles) in (B) ipsilateral ankle, (C) serum, (D) ipsi-

lateral quadriceps muscle, (E) the contralateral ankle, or (F) spleen. For B-F, each time point

for each virus and organ represents 5–7 mice and were pooled from at least 2 independent
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experiments. Infectious virus levels during acute infection was measured by plaque assay, nor-

malized to gram of tissue, and then log-transformed. The dashed line for B-F represents limit

of detection for the plaque assay. Data in B-F were log-transformed prior to analysis. Data in A

were analyzed with a two-way repeated measures (RM) ANOVA with Bonferroni’s post-test,

and data in B-F were analyzed with an ordinary two-way ANOVA. Sidak’s post-test was used

for A, and B; Dunnett’s post-test comparing WT as the control column was used for C-F. All

error bars indicate SEM. (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

(TIF)

S3 Fig. CHIKV-5´-Cre and CHIKV-3´-Cre retain their pathogenic properties to induce

acute arthritis. (A) Mice were mock-infected or infected with 106 PFU CHIKV-WT (WT) or

CHIKV-3´-Cre (3´-Cre), and ipsilateral ankles were probed for CHIKV RNA using in situ
hybridization at 2 dpi. Paraffin sections were stained with a probe for E1 CHIKV-LR RNA as

outlined in the Methods. Representative images are shown of the skin, muscle, and synovium.

Scale bars represent 100 μm. Data represents two independent experiments with 6 mice per

virus and 2 mock-infected mice. (B-C) Mice were mock-infected (mock, blue diamonds) or

inoculated with 106 PFU CHIKV-WT (WT, green circles) or CHIKV-5´-Cre (5´-Cre, purple

inverted triangles), and ipsilateral ankles were taken for H&E histology at 7 dpi. (B) Represen-

tative images are shown of the skin, muscle, and synovium from CHIKV-5´-Cre infected sam-

ples; scale bar represents 100 μm. The skin and associated tissue is divided (from left to right)

into muscle (M), hypodermis (H), dermis (D), and epidermis (E). The muscle section is

divided into tendon (T) and muscle (M). The synovium section shows synovium (S) and bone

(B), with asterisks indicating synovial inflammation and arrows indicating immune infiltrates

into the synovial cavity. (C) Ankles from B were scored for overall histological damage, com-

pared to mock-infected and CHIKV-WT-infected samples. Open symbols for mock and WT

indicate that these data are also shown in the corresponding Fig 2C graph. Samples were

pooled from two independent experiments. Data in C were statistically analyzed with a one-

way ANOVA with Tukey’s post-test. All error bars indicate SEM. (�, P< 0.05; ��, P< 0.01;
���, P< 0.001; ����, P< 0.0001).

(TIF)

S4 Fig. CHIKV-5´-Cre and CHIKV-3´-Cre retain their pathogenic properties to induce

chronic disease. (A-B) Mice were mock-infected (mock, blue diamonds) or infected with 106

PFU CHIKV-WT (WT, green circles) or CHIKV-5´-Cre (5´-Cre, purple inverted triangles),

and at 28 dpi ipsilateral ankles were analyzed histologically after hematoxylin and eosin stain-

ing of sections. (A) Representative images are shown of the skin, muscle, and synovium from

CHIKV-5´-Cre samples; scale bar represents 100 μm. The skin and associated tissue is divided

(from left to right) into muscle (M), hypodermis (H), dermis (D), and epidermis (E). The mus-

cle section is divided into muscle (M) and tendon (T), with black ovals around focal patches of

cellular filtrates. The synovium section shows synovium (S) and bone (B), with asterisks indi-

cating synovial inflammation and proliferation. (B) Ankles from A were scored for overall his-

tological damage, compared to mock-infected and CHIKV-WT-infected samples. Open

symbols for mock and WT indicate that these data are also shown in Fig 3B graph. (C) RNA

was isolated from the ipsilateral ankles of mice inoculated with 106 PFU of CHIKV-WT (open

green circles, also shown in Fig 3D) or 106 PFU of CHIKV-5´-Cre (purple inverted triangles)

at time points ranging from 0 to 112 dpi and analyzed by RT-qPCR for viral E1, nsp1, or Cre

RNA copy number. Samples were normalized to total μg of RNA isolated for each sample and

then log-transformed. (C) Viral E1 RNA levels were measured. (D) The ratio of viral E1 RNA

to viral nsP1 RNA in the same samples as C (open green circles, also shown in Fig 3E). (E) The

ratio of viral Cre RNA to viral nsP1 RNA in mice inoculated with 106 PFU of CHIKV-5´-Cre
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(purple inverted triangles) or CHIKV-3´-Cre (red triangles). Data in B were analyzed with a

one-way ANOVA with Tukey’s post-test. For C-E, each time point for each virus represents

4–20 mice and was pooled from at least 2 independent experiments. The dashed line in C rep-

resents the limit of detection for the RT-qPCR assay; for D and E, the dotted line represents a

ratio of 1. Data in C-E were analyzed with a two-way ANOVA with Sidak’s post-test. All error

bars indicate SEM. (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; ����, P< 0.0001).

(TIF)

S5 Fig. Cells are marked by CHIKV-5´-Cre or CHIKV-3´-Cre at chronic time points. (A)

C57BL/6 or (B) tdTomato mice were inoculated with 106 PFU CHIKV-WT (WT, green cir-

cles), CHIKV-5´-Cre (5´-Cre, purple inverted triangles), or CHIKV-3´-Cre (3´-Cre, red trian-

gles). Ipsilateral ankles were processed at 28 dpi, and the total number of tdTomato+ cells in

frozen tissue sections was quantified. Open green circles for WT and open red triangles for 3´-

Cre indicate that these data are also shown in the corresponding Fig 4B graph. (C) Representa-

tive image of a whole foot/ankle from a tdTomato mouse infected with 5´-Cre at 28 dpi. Blue

shows DAPI staining, and red is tdTomato; scale bars represent 1000 μm. (D) Time course of

tdTomato mice infected with CHIKV-5´-Cre (purpled inverted triangles) or CHIKV-3´-Cre

(open red triangles, also shown in Fig 4C) from 1 to 112 dpi. Each time point for each virus rep-

resents 6–20 mice. (E) Representative images of connective tissues in the ipsilateral ankle of a

mouse infected with CHIKV-3´-Cre. Blue shows DAPI staining, and red is tdTomato; scale bar

represents 1000 μm. In higher magnification inset images scale bars represent 100 μm; (A) is

adipose tissue, (T) is tendon, (B) is bone, (M) is muscle, and (S) is synovium. Data from A, B,

and D were pooled from at least two independent experiments. Data in A and B were analyzed

with an ordinary one-way ANOVA using Tukey’s post-test. Data in D were analyzed with

two-way ANOVA using Sidak’s post-est. All error bars indicate SEM. (�, P< 0.05; ��, P< 0.01;
���, P< 0.001; ����, P< 0.0001).

(TIF)

S6 Fig. Gating strategy for skin and ankle flow cytometry. tdTomato mice were infected

with 105 PFU of CHIKV-3´-Cre (3´-Cre), ipsilateral skin (A-C) or ankle (D-F) tissue were har-

vested at 28 dpi, and single cell suspensions were generated and analyzed by flow cytometry as

described in Methods. Gating strategy showing subpopulations of live cells in tdTomato mice

in the ipsilateral skin (A) and ankle tissue (D). The percentages of tdTomato+ fibroblasts were

determined using CD45- as well as CD29+ and CD44int. (B, E) Representative histogram of the

tdTomato mean florescence intensity (MFI) for both the CD45+ and CD45- cells in the ipsilat-

eral skin (B) and ankle (E). (C, F) Quantification of paired tdTomato MFI data for the CD45+

and CD45- cells in the ipsilateral skin (C) and ankle (E). Data represents three (D-F) or five

(A-C) independent experiments. Data in C and F were analyzed using a paired Student’s t test.

(�, P< 0.05).

(TIF)
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