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Stroke causes behavioral deficits in multiple cognitive domains and there is a growing
interest in predicting patient performance from neuroimaging data using machine
learning techniques. Here, we investigated a deep learning approach based on
convolutional neural networks (CNNs) for predicting the severity of language disorder
from 3D lesion images from magnetic resonance imaging (MRI) in a heterogeneous
sample of stroke patients. CNN performance was compared to that of conventional
(shallow) machine learning methods, including ridge regression (RR) on the images’
principal components and support vector regression. We also devised a hybrid method
based on re-using CNN’s high-level features as additional input to the RR model.
Predictive accuracy of the four different methods was further investigated in relation
to the size of the training set and the level of redundancy across lesion images in
the dataset, which was evaluated in terms of location and topological properties of
the lesions. The Hybrid model achieved the best performance in most cases, thereby
suggesting that the high-level features extracted by CNNs are complementary to
principal component analysis features and improve the model’s predictive accuracy.
Moreover, our analyses indicate that both the size of training data and image redundancy
are critical factors in determining the accuracy of a computational model in predicting
behavioral outcome from the structural brain imaging data of stroke patients.

Keywords: deep learning, machine learning, stroke, cognitive deficit, magnetic resonance imaging, brain lesion

INTRODUCTION

Deep learning methods have gained popularity because they often outperform conventional (i.e.,
shallow) machine learning methods and can extract features automatically from raw data with little
or no preprocessing (LeCun et al., 2015). Among the many implementations of deep learning
models, convolutional neural networks (CNNs) (Krizhevsky et al., 2012) are particularly suited
for medical imaging data (Shen et al., 2017). A prominent example is the recent demonstration
that a CNN trained end-to-end from pixels of medical images to disease labels in a skin cancer
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classification problem performed at the level of expert
dermatologists (Esteva et al., 2017). Deep learning has also
been applied to neuroimaging data for brain-based classification
of psychiatric and neurological disorders (Arbabshirani et al.,
2017; Vieira et al., 2017). For example, several studies have
tackled the diagnosis of Alzheimer’s disease and its prodromal
stage (mild cognitive impairment) using magnetic resonance
imaging (MRI) data as input to a CNN (for comprehensive
overviews see Arbabshirani et al., 2017; Vieira et al., 2017).

The use of deep learning on neuroimaging data is particularly
interesting because MRI scans produce 3D images. Though some
studies have used 2D slices of the brain volume as independent
images for training, state-of-the-art deep learning techniques and
massive use of GPU-computing allow to feed a whole 3D image
to a CNN, despite the very high dimensional input, without
decomposition or preprocessing. In the present work we employ
a 3D CNN framework in the context of predicting behavioral
outcomes of stroke patients from MRI lesion images. The latter
can be formalized as a regression problem, where the learning
objective is to map the 3D image of a patient’s brain lesion to
the real-valued score representing the behavioral performance
of the same patient (see Figure 1). This problem has been
previously tackled with conventional machine learning methods
(Price et al., 2010; Hope et al., 2013; Zhang et al., 2014; Corbetta
et al., 2015; Siegel et al., 2016) but not with deep learning.
Moreover, the use of deep learning for regression (rather than
classification) problems in clinical neuroimaging is still sparse
(Vieira et al., 2017).

A widely shared assumption in cognitive neurology and
neuropsychology is that the effect of brain damage on behavior
and cognition depends on location and size of the lesion. This
has led to the long-standing and systematic effort to identify the
relationship between brain structure and function. Specifically,
the vast majority of studies have sought to establish which brain
lesion is associated to a specific (categorically defined) deficit
(Rorden and Karnath, 2004). The latter mapping is reversed
when the attempt is to predict behavioral performance from
lesion information and the task is more challenging because it
implies that lesion-behavior relationships are consistent across
individuals and can be used to predict behavior in new patients
(Price et al., 2017). However, the consistency of the association
is questionable because it depends on multiple factors and non-
linear interactions might be present in the data, thereby calling
for a machine learning approach to this problem (Chen et al.,
2008; Hope et al., 2013; Smith et al., 2013; Zhang et al., 2014;
Siegel et al., 2016; Price et al., 2017). Notably, conventional
machine learning methods typically require extraction and
selection of image features that represent topological information
about the lesion, a critical step that is dispensed with in the deep
learning approach.

In the present study, we take advantage of the data from
a relatively large and heterogeneous cohort of stroke patients
(Corbetta et al., 2015) to investigate the feasibility of a deep
learning model for predicting behavioral performance from
lesion images. We focused on the prediction of language
scores, in line with several previous studies that examined
lesion-behavior relationship in stroke patients using machine

learning (Price et al., 2010; Hope et al., 2013, 2015; Zhang et al.,
2014). Language deficits are a very frequent outcome of stroke
(particularly following left hemisphere damage) and their neural
correlates show lower inter-individual variability in comparison
to other cognitive functions like memory (Siegel et al., 2016).
Moreover, the prospect of predicting the functional recovery
of language has profound implications for clinical practice
(Price et al., 2010).

The main aim of the present study was therefore to assess
the CNN/deep learning approach against conventional (i.e.,
shallow) machine learning methods. Shallow machine learning
has been previously applied on the current stroke dataset using
multivariate ridge regression (RR) trained on features of the
lesion images extracted by principal component analysis (PCA)
to predict patients’ behavioral outcomes (Corbetta et al., 2015;
Siegel et al., 2016). The resulting model (hereafter PCA + RR,
see Figure 2 and “Materials and Methods” section for details),
when trained and evaluated on the language deficit scores using
leave-one-(patient)-out cross-validation, accounted for about
60% of the variance (using r2 as goodness-of-fit measure). This
method, re-implemented in the present study, provides a useful
benchmark for comparative evaluation of the deep learning
approach. Moreover, we broadened the comparison between
deep and shallow machine learning techniques by testing a
kernel-based approach (Vapnik, 1998), that is support vector
regression (SVR). A SVR-based approach has been previously
proposed in the context of multivariate lesion-symptom mapping
in stroke patients (Zhang et al., 2014), where the SVR model’s
ability to predict language deficit scores on the patients’ sample
from the lesion image features was also tested (though with
relatively poor fit).

A complementary aim of the study was to examine how the
different machine learning approaches are affected by the number
of patient cases available for training and by the diversity of
lesions in the sample. State-of-the-art stroke studies typically
include a small number of patients (order of 100; see Corbetta
et al., 2015) in comparison to publicly available databases of
patients suffering from other neurological conditions such as
Alzheimer’s disease (but see Price et al., 2010) This raises the
question of whether the amount of data is adequate for a deep
learning approach and, more generally, how performance of the
different machine learning methods scales with the size of the
training database. Indeed, limited sample size has been identified
as the main bottleneck for neuroimaging-based prediction of
brain disorders (see Arbabshirani et al., 2017, for review and
discussion). Second, we investigated the role of redundancy in the
image database, that is the similarity between a given test image
and the images used to train the model. We therefore assessed
to what extent these two factors are critical in determining the
predictive accuracy of the different machine learning models.

MATERIALS AND METHODS

Dataset
The dataset was obtained from a study on stroke patients carried
out at the Washington University School of Medicine. The study
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FIGURE 1 | Steps involved in the prediction of behavioral outcome in stroke patients from 3D lesion images. Conventional machine learning methods typically rely on
data preprocessing and feature selection, which are dispensed with in deep convolutional neural networks.

FIGURE 2 | Ridge regression method used by Siegel et al. (2016) for predicting behavioral deficits in stroke patients from MRI lesion images.

and all procedures were approved by the Washington University
School of Medicine Internal Review Board; written informed
consent was obtained from all participants in accordance with
the Declaration of Helsinki. Subject enrolment, inclusion and
exclusion criteria, and demographic information are described
in detail in Corbetta et al. (2015); in brief, the study included
132 stroke patients (mean age 52.8 years with range 22–77;
119 right handed, 63 female, 64 right hemisphere damage),
recruited through the inpatient service at Barnes-Jewish Hospital
and the Rehabilitation Institute of St. Louis. Imaging and
behavioral testing session were usually performed on the same
day. Patient scanning was performed on a Siemens 3T Tim-Trio.
Structural scans consisted of a sagittal MP-RAGE T1-weighted
image (TR = 1950 ms, TE = 2.26 ms, flip angle = 9◦, voxel
size = 1.0× 1.0× 1.0 mm, slice thickness = 1.00 mm), a transverse
turbo spin-echo T2-weighted image (TR = 2500 ms, TE = 435 ms,
voxel-size = 1.0 × 1.0 × 1.0 mm, slice thickness = 1.00 mm),
and a sagittal FLAIR (fluid attenuated inversion recovery)
(TR = 7500 ms, TE = 326 ms, voxel-size = 1.5 × 1.5 × 1.5 mm,
slice thickness = 1.50 mm). Individual T1 MRI images were
registered to the Montreal Neurological Institute (MNI) brain
using FSL (FMRIB Software Library) FNIRT (FMRIB non-linear
imaging registration tool) (Andersson et al., 2007). Lesions were
manually segmented on individual structural MRI images (T1-
weighted MPRAGE, T2-weighted spin echo images, and FLAIR
images) using the Analyze biomedical imaging software system
(Robb and Hanson, 1991). Two board-certified neurologists
reviewed all segmentations.

Though the original dataset includes behavioral data for
multiple cognitive domains (e.g., language, memory, attention),
in the present study we focused on predicting performance in
the language domain. As noted in the section “Introduction,”

the rationale for this choice was threefold: (i) a language
impairment is the most common cognitive deficit following
stroke (typically when causing left hemisphere damage); (ii)
language is the cognitive domain in which a shallow machine
learning method has achieved the highest predictive accuracy
on the same dataset (Siegel et al., 2016); and (iii) the problem
of predicting language deficit scores from lesion images has
been attempted with different methods and by different research
groups (Hope et al., 2013; Zhang et al., 2014; Siegel et al., 2016).

Our dataset included all patients who had MRI lesion images
and language scores available (N = 98), which is the same
sample previously used by Siegel et al. (2016) to develop
their RR method (see below for further details). The data
for each patient consisted of a 3D image of the lesion with
a 3 mm isovoxel resolution normalized the MNI coordinate
space (61 × 73 × 61 voxels). The current image resolution
limits the computational burden implied by the large-size 3D
image space and it is fully adequate for representing the spatial
topography of the lesions. The language score of each patient
summarized performance across several language tasks as it
captured their shared variance (first principal component) and it
was normalized to represent impaired performance with negative
values (Siegel et al., 2016). Accordingly, 29 of the stroke patients
presented with a language deficit.

Ridge Regression Method
We re-implemented the RR method and used its performance
as a baseline for assessing the other methods. The pipeline
used in the original study (Siegel et al., 2016) is illustrated in
Figure 2. Lesion images were first preprocessed using PCA to
strongly reduce the high dimensionality of the image space.
Here, we replicated the PCA preprocessing step using singular
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value decomposition (SVD) in python using scikit-learn module.
The first 56 components explained 95% of variance and were
retained as input features for RR. The latter is a method for
modeling the relationship between a scalar dependent variable
y (output) and one or more explanatory variables denoted by
x (input). RR differs from multiple linear regression because it
uses L2-normalization for regularization of model coefficients, so
that unimportant features are automatically down weighted or
eliminated, as given in the cost function below:

n∑
i=1

(wTxi − yi)
2
+ λ||w||22

where n is the number of subjects, w is the weight vector
that describes the relative importance of each feature in x to
the prediction of y, and λ is the regularization coefficient.
Optimal weights were computed across the entire training set
using gradient descent to minimize error for the RR equation.
Training and testing was carried out using a leave-one-out
cross validation (LOOCV) loop (Golland and Fischl, 2003), in
which one patient is left out from training at a time (cycling
through all patients) and used only for testing. In each loop, the
regularization coefficient lambda was optimized by identifying
a lambda between λ = 1 and 150 that minimized leave-one-
out (LOO) prediction error over the entire training dataset. The
optimized lambda was λ = 100 for all LOOCV cycles. Predictions
on the left-out test data were pooled and the model accuracy was
assessed using the square of the Pearson correlation coefficient
between actual and predicted behavioral scores (Siegel et al.,
2016). RR in this work was implemented in python (scikit-learn
module), using linear least square function as loss function and
L2-normalization for regularization.

Support Vector Regression
To broaden the comparison between deep and shallow machine
learning techniques, we also implemented a kernel-based
approach to predicting behavioral scores from brain lesion
images. SVR is a kernel-based learning machine for regression
(Vapnik et al., 1997). Instead of minimizing the observed training
error, SVR attempts to minimize the generalization error bound.
SVR can be thought of as a linear regression function in
a high dimensional feature space where the input data are
mapped via a non-linear function (Cortes and Vapnik, 1995;
Smola and Schölkopf, 2004).

Considering a training dataset {(x1, y1), (x2, y2), . . .
(xl, yl)} ⊂ Rn

× R, the following function is estimated in
SVR for linear regression:

f (x) = 〈w, x〉 + b;where : w, x ∈ Rn, b ∈ R

by minimizing the so-called regularized risk functional
(Vapnik et al., 1997; Vapnik, 1998; Basak et al., 2007)
1
2 ||w||

2
+ C · Remp[f ].

The first term 1
2 ||w||

2 is called the regularization term.
Minimizing this term will make the function as flat as possible.
The second term Remp[f ] is the empirical error measured by the
loss function and C is called the regularization constant which

determines tolerated deviations from the loss function. In this
problem, we used ε – insensitive loss function Lε :

Lε(yi, f (xi))=max{0, |y− f (x)| − ε}

This defines ε tube, so that if the predicted value is within the tube
the loss is zero, while if the predicted point is outside the tube,
the loss is the magnitude of the difference between the predicted
value and the radius ε of the tube. Slack variables ξ, ξ

∗

are used
to deal with infeasible constraints of the optimization problem.
Then the problem can be formulated as:

min
1
2
||w||2 + C

l∑
i=1

(ξi, ξ
∗

i )

subject to


yi − 〈w, xi〉 − b ≤ ε + ξi
〈w, xi〉 + b− yi ≤ ε + ξ

∗

i
ξi, ξ

∗

i ≥ 0

The purpose is to construct a Lagrange function from the
objective function and the corresponding constraints, by
introducing a dual set of variables (Lin et al., 2006). The
constant C > 0 determines the trade-off between the flatness
of f and the amount up to which deviations larger than ε are
tolerated. In cases where non-linear functions are optimized, it is
performed by mapping the input space xi into higher dimensional
space through function φ(xi), which linearises the relationships
between xi and yi. A kernel function K is used to simplify the
mapping. By using the kernel function, the data can be mapped
implicitly into a feature space (without full knowledge of φ),
which is therefore very efficient (Schölkopf and Smola, 2002; Lin
et al., 2006). In this work we only used a radial basis function
(RBF) kernel, which is defined as follows:

K(xi, x)=exp(−γ||x-xi||
2)

The SVR simulations were based on the libSVM framework
implemented in python using sci-kit learn module. We trained
our model and tested its performance using LOO cross-validation
on the full dataset. The learning parameters were set to C = 50 and
ε = 0.1 (note that large value of ε generally gives large errors in
the solution), whereas the RBF kernel coefficient γ was set to the
reciprocal of the number of input features (i.e., the default value
in the SVR implementation).

Convolutional Neural Networks
Convolutional neural networks exploit spatially local correlation
by enforcing a local connectivity pattern between neurons
of adjacent layers. CNN performs image classification by
discovering low level features (such as edges and curves) and then
building up to more abstract representations through a series
of convolutional layers. A typical CNN architecture consists
of at least four different layers namely convolutional layer,
pooling/subsampling layer, fully connected layer, and an output
layer, as explained below.

Convolutional Layer
It comprises of a set of filters, each independently convolved
with the image. These filters (or kernels) have a small receptive
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field but extend through the full depth of the input volume.
During the forward pass, each filter is convolved across the width
and height of the input volume, computing the dot product
between the entries of the filter and the input and producing
a 2D activation map of that filter. As a result, the network
learns filters that activate when it detects some specific type
of feature at some spatial position in the input. Stacking the
activation maps for all filters along the depth dimension forms
the full output volume of the convolution layer. CNNs share
weights in convolutional layers, which means that all spatial
locations share the same convolution kernel, which greatly
reduces the number of parameters needed for a convolution
layer. After each convolutional layer, it is conventional to apply
a non-linear activation function immediately afterward. Deep
CNNs with rectified linear units [ReLUs; f (x) = max(0, x)]
train several times faster than their equivalents with tanh units
(Krizhevsky et al., 2012).

Pooling Layer
It pools the activation of the neurons at one layer into a single
neuron in the next layer. It can use two different pooling
methods: max pooling and average pooling. Max pooling uses the
maximum value from each cluster of neurons at the prior layer.
Average pooling averages the value from each cluster of neurons
at the prior layer. In the present work we used max pooling
because it can boost signal from small regions of the image space
and it is therefore best suited for our dataset, which includes very
small lesions (in contrast, average pooling is more effective in the
case of a large and noisy region of interest in the image). The
pooling layer operates independently on every depth slice of the
input and resizes it spatially. It serves two main purposes: (i) the
number of parameters or weights is reduced, thereby decreasing
the computational cost; and (ii) it controls over-fitting.

Fully Connected and Output Layers
In the fully connected layer every neuron is connected to all
neurons in another layer. Finally, output layer neurons provide
the prediction of the model.

CNN Implementation
The architecture of the CNN used in the present study is depicted
in Figure 3. It includes one convolutional, one pooling, one fully
connected and one output layer. The input layer is fed with a 3D
lesion image (size: 61× 73× 61), followed by a 3D convolutional
layer with four kernels (size: 3× 3× 3). ReLU activation function
is applied on the convolutional layer and the output of this layer is
passed to the pooling layer. 3D max pooling (8× 8× 8) is applied
on the output of the convolutional layer, generating feature maps
of size (8 × 10 × 8). The large pooling stride is motivated by
the fact the size of the lesion is typically small and most of
the image space is therefore occupied by zero values. Finally,
activations are passed to the fully connected layer, consisting
of 500 neurons with ReLU activation function, and then to the
output layer. The output layer is made by a single neuron with
sigmoid activation function, which represents the language score
of the corresponding patient. This allows us to map the entire
lesion image into a single (predicted) behavioral score.

Formally, the CNN implementation employed here can be
described as follows. Consider a 3D MRI image x ∈ <H×W×D

with H × W × D elements (height, width, and depth of an
image), each of them indexed by a triplet (i, j, d) with 0 ≤ i < H,
0 ≤ j < W, and 0 ≤ d < D. D represents the number of slices
in the MRI image. Each slice has H × W elements. Suppose
we are considering the lth layer of a CNN, whose inputs form
an order three tensor xl with xl

∈ <
Hl ×Wl ×Dl . Thus, the triplet

index set (il, jl, dl) refers to one element in xl which is in the
dlth slice at spatial location (il, jl) (at the ilth row and jlth
column). In the convolutional layer multiple kernels are used.
Assuming D kernels are used and each kernel is of spatial span
H × W, we denote all the kernels as f. f is an order four tensor
RH × W × Dl × D. Similarly, we use indexed variables 0 ≤ i < H,
0 ≤ j < W, 0 ≤ dl < Dl, and 0 ≤ d < D to pinpoint a specific
element in the kernel. The basic flow of the CNN structure is
represented by the following equation:

x1
→ w1

→ x2 . . .→ xL−1
→ wL−1

→ xL
→ wL

→ z

The above equation illustrates how a CNN runs layer by layer
in a forward pass. The input x1 goes through the processing in
the first layer. We denote the weights involved in the first layer’s
processing collectively as a tensor w1. The output of the first layer
is x2, which also acts as an input to the next processing layer. This
processing proceeds until output xL.

All CNN models used in this work were implemented in
Tensorflow and were trained on GPUs using the Adam optimizer
(Kingma and Ba, 2014; Abadi et al., 2015). Mean square error
was used as loss function for training. All models were trained
and tested using a LOOCV loop, which was also used to tune
the hyperparameters.

Hybrid Model (RR With CNN and PCA
Features: f + RR)
We also assessed whether the features learned by the CNN at the
top hidden layer provide information that is not captured by the
PCA preprocessing used in the RR model. To this end, we trained
a RR model where the features (neuron activations) encoded in
the fully connected hidden layer of the CNN were added to the
PCA-based features as input to the model.

Quantifying Redundancy
Machine learning algorithms capture structure in the data that
needs to be generalized in order to make predictions from new
data. Therefore, the presence of similar data instances in the
dataset is required for such models to work. However, these
similarities must be defined in the most general manner to
be effective on unseen examples. Trained models are obviously
biased toward the kind of examples they have seen during
training and images that have more similar examples in the
data (redundancy) yield more accurate predictions. We explored
how the redundancy of images, defined in terms of similarity
(or distance metrics) would affect the predictive accuracy of the
models. We defined three types of image-image distances for all
pairs as follows:

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00053 July 29, 2019 Time: 16:34 # 6

Chauhan et al. Prediction of Stroke Deficits With Deep Learning

FIGURE 3 | Architecture of the deep convolutional neural network (CNN).

Lesion Centroid Distance
Distance between two images was simply computed in terms of
the Euclidean distance between the centroids of the lesions.

Topological Distance
This index is complementary to lesion-centroid and goes beyond
the centroid comparison. The images are first centered at
their lesion centroids and then images are cropped as per the
larger lesion size, then every pair of voxels is compared in
the transformed pair of images using Euclidean distance. The
differences in voxel-wise comparisons is a measure of how
the lesions differ in terms of topology irrespective of their
centroid positions.

Location + Topological Distance
Since all MRI lesion images are aligned in a common reference
frame, their unbiased topological differences can be measured
by voxel to voxel signal differences. Direct comparison between
images will also implicitly capture the location information as
similar topologies at different locations will be computed as
distant. We therefore computed the Euclidean distance between
each pairs of images.

For each measure of distance between a pair of images a
redundancy score (for each of the above definitions) was assigned
to individual images. Since the models have been trained in a
leave one out manner, the number of times an image occurs
in similar pairs of images at a given threshold informs us
about how much of training data is redundant with this image.
A threshold was chosen as follows: in the full distance matrix,
the number of column values lower than the (mean-SD) in the
row is treated as the redundancy for the image label in that
row. Row-wise thresholding was found to be more suitable as
it not only represents the redundancy of the image but also it
implicitly computes the range of distances of an image with all
the others. After computing the redundancy of every image with
reference to the rest of the data set, two groups of images with

high and low redundancy were created and model performance
was compared between them.

Performance Metrics
Performance of the models was measured using the square of
the Pearson correlation coefficient between actual and predicted
scores (Siegel et al., 2016). Mean absolute error (MAE; i.e., the
absolute difference between predicted and actual score) is also
reported in some of the analyses.

RESULTS

The results presented below are divided into four sub-sections.
We first look at the predictive accuracy of the different
models/approaches. We then investigate how performance is
affected by sample size and redundancy in the training dataset.
Finally, we assess the model on prediction of chronic cognitive
deficit as measured 3 months after the stroke.

Overall Performance of Predictive
Models on the Full Dataset
Multiple models were trained and tested on the dataset as
described in the section “Materials and Methods” using LOO
cross-validation (as in Siegel et al., 2016). Results for the four
different approaches are shown in Figure 4. All models explained
more than 60% of the variance and rank them according to
the r2 values (in parentheses) produced the following order:
Hybrid Model (0.675), SVR (0.657), PCA + RR (0.646), and
CNN (0.627). Notably, the SVR model performed significantly
better than CNN (p = 0.0402, two-tailed) and PCA + RR
(p = 0.0001, two-tailed) in the comparison of r2 values. Therefore,
it appears that deep learning did not lead to performance gains
when evaluated against the two conventional, shallow learning
methods. However, the Hybrid RR model, trained with composite
features from PCA and CNN (the latter corresponding to neuron
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activations in the fully connected hidden layer) outperformed all
other methods (p = 0.0001, two-tailed, for SVR vs. f+ RR). These
observations suggest that for the current dataset, which includes a
relatively small number of samples, avoiding over-fitting is a key
factor. A linear method like RR is therefore the most powerful
when exploiting the rich set of features derived from both PCA
and CNN learning on the lesion images. We will return to the
issue of dataset size in the next section.

Inspection of Figure 4 suggests that accuracy in predicting
a specific range of scores does not necessarily reflect the
ranking of the models’ overall predictive accuracy. For example,
the CNN appears to resolve quantitative differences among
language deficits patients despite the overall poorer model fit.
We performed two supplementary analyses to further investigate
the predictive accuracy of the models from this perspective.
First, since language deficits are very uncommon following right
hemisphere stroke, we compared the different models on the
subset of patients with left hemisphere lesions (N = 57). Note
that focusing on the population of left hemisphere stroke patients
in relation to language deficits is a standard approach and it is
well aligned with potential clinical applications of a computer
model (Hope et al., 2013). The predictive accuracy of the models
(see Figure 5A) was similar to that previously reported for the
full dataset, thereby showing that the latter performance was not
inflated by the inclusion of right hemisphere stroke patients. In
the second analysis (see Figure 5B) we evaluated the models’
predictive accuracy across the range of scores that marks the
presence of cognitive deficit, that is on the subgroup of patients
(N = 29) who showed language deficit (score< 0). We found that

the scores in the deficit range are better predicted by CNN than
PCA + RR (p = 0.0425, two-tailed). These results suggest that
the CNN model is better tuned to the fine-grained, quantitative
prediction of the severity of deficit and help in explaining why
CNN features boost the overall performance of the Hybrid model.
For the sake of completeness, we also evaluated the models’
predictions on the subgroup of patients showing no language
deficit (scores ≥ 0). Performance was very poor across models
(all r2 values < 0.05). This is to be expected because individual
differences within the range of unimpaired performance are
independent of the nature of the lesions. Individual variability
is expected also in the absence of lesions and it is obvious
that it cannot be mapped onto a lesion image in the current
framework. In summary, CNNs appear to extract useful high-
level features that capture the association between 3D lesion
images and language deficit scores.

Role of Dataset Size on Predictive
Accuracy
Despite the favorable performance of CNNs in predicting the
severity of deficit, the limited size of the dataset is likely to
represent a crucial bottleneck. The issue of dataset size in MRI
image analysis and prediction has been highlighted both in
relation to the lesion-behavior mapping problem (Price et al.,
2017) as well as for other types of medical imaging problems
(Cho et al., 2015). Deep learning methods are highly effective
when the number of samples available for training is large
(Russakovsky et al., 2015; Shen et al., 2017). To investigate this

FIGURE 4 | Language scores predicted by the four competing models: (A) Hybrid model, (B) SVR, (C) PCA + RR, and (D) CNN.
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issue in a more systematic way, we assessed how performance
changed as a function of dataset size. We created multiple
cohorts of four differently sized groups of patients (specifically
25, 50, 75, and 90 patients groups were created), which were
randomly sampled from the full dataset. Random sampling was
performed 40 times for each sample size. The models were then
independently trained on all cohorts of the four datasets to assess
generalization performance (LOO cross validation). Results of
these simulations are presented in Figure 6. As can be noted,

CNN’s performance is overall poorer than PCA + RR and
SVR. This gap is especially clear for the smaller sample sizes,
but it remains statistically significant even for the largest one
(p = 0.036, two-tailed, for SVR vs. CNN at size 90). Nevertheless,
the different models show markedly different patterns in terms of
the effect of sample size. While PCA + RR and SVR models are
relatively unaffected by sample size, performance of the CNN (as
well as of the related Hybrid model) show large improvements
with increasing sample size (see inset in Figure 6 for a plot of

FIGURE 5 | Comparison of models’ predictive accuracy on selected subsets of patients: (A) patients with left hemisphere lesions (N = 57), that is the population in
which a language deficit is most common after stroke, and (B) patients with language deficit (N = 29) as attested by a score < 0.

FIGURE 6 | Notched box plot showing the prediction performance (R2) on 40 runs for each sample size and method. At the smaller sample sizes the performance
levels of CNN or Hybrid models are either poorer or statistically similar to that of SVR and PCA-RR models (overlapping notches of the boxplot). However, at sample
size of 90 the Hybrid model outperformed all other models. The inset plots the CNN performance gap (difference in R2 values) with increasing sample size in
comparison to the SVR model; the best fitting function (red line) is extrapolated up to a sample size of 150.
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the performance gap of CNN with respect to SVR). These results
suggest that the dataset size requirement for optimal performance
of deep learning methods has not yet been satisfied and CNNs
might significantly outperform competing models when more
data will become available. By extrapolating the differential
performance plot, we speculate that a few hundred samples
may be needed for the CNN to outperform the SVR model.
Note, however, that this comparison is relevant only for the
conventional CNN approach, because we also established that the
use of (hidden) features extracted by a CNN within a Hybrid (RR-
based) model leads to be best predictive performance, presumably
avoiding over-fitting caused by training them within the standard
CNN framework (as shown in Figure 3).

Role of Data Redundancy on Predictive
Accuracy
Machine learning models acquire knowledge through exposure
to the training data and are therefore sensitive to biases that
may arise from examples that are over- or under-represented
in the dataset. This also applies to a regression problem like
the present one because some lesion patterns are likely to be
more frequent and might therefore lead to better prediction
than less frequent (or even unique) lesion patterns. However,
the effect of the similarities between lesions might differ across
models, particularly because the number of training parameters

is different in each model. We defined three types of image
redundancy indexes based on (a) lesion centroid distances
(centroid redundancy); (b) lesion pixel-wise topological distances
(location + topology redundancy); and (c) distances between
directly superimposed images (raw redundancy) as described in
the section “Materials and Methods.” Then, we grouped the
images into two sets with high vs. low redundancy levels and
we assessed the predictive accuracy of all models on these two
image datasets. Figure 7 shows the performance of the smaller
and larger clusters defined by redundancy levels in each category.
This analysis provides insights into the lesion-predicted language
deficits as follows.

Redundant Models Perform Better
All models show marked differences in predictive accuracy on the
high vs. low redundancy image sets. The models perform very
similarly in the image set in which redundancies are high. Not
surprisingly, a model which has previously seen similar examples
during training is much more accurate in prediction. This is
consistent with the large data set requirements that were found
to be critical for developing robust models as discussed in the
previous section.

Hybrid Models Perform Better in Most Comparisons
In the small redundancy set, the Hybrid model comprehensively
outperformed all other models, except when redundancy was

FIGURE 7 | Average prediction performance for images having large vs. small redundancy levels with other images. Performance is measured by both goodness of
fit (r2) (A–C) and mean absolute error (MAE) (D–F). For these definitions of redundancy, almost all models perform very similarly in the image set in which
redundancies are high (right-sided bars in all panels). In the small redundancy set, the Hybrid model comprehensively outperformed all other models, except in the
location + topology based similarity. Values in the brackets of x-axis labels represent the number of images included in small and large redundancy groups.

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00053 July 29, 2019 Time: 16:34 # 10

Chauhan et al. Prediction of Stroke Deficits With Deep Learning

defined using location + topology similarity. The finding
that the Hybrid model performs better on images with
limited redundancy is consistent with the idea that the lesion
features extracted by the CNN are useful for prediction and
complementary to those extracted by the PCA method.

Topology and Location Based Low Redundancy
Produce Somewhat Competing Models
In the case of redundancy being defined by the
location + topology similarity between images, performance
on the low redundancy set was lower for the Hybrid model
compared to the other models (Figures 7B,E). This suggests
that the PCA and CNN features model contrasting properties
in this comparison when redundancy is completely eliminated,
and strictly non-redundant samples are left for training. We
suggest that suboptimal models trained by CNN and PCA
are independent of each other due to multiple and distinct
sub-optimal solutions with similar performance in a high
dimensional space. One explanation for this result is that highly
generalizable features are needed for models to work well on
data with low redundancy level. CNN and PCA-RR models
generalize in different ways because data sets are small and
multiple solutions with a similar (low) performance may emerge
from learning on a large feature set. If that is the case, PCA
and CNN-derived features may be inconsistent with each other,

which in turn is detrimental to overall predictive performance.
Note that this does not apply to the high redundancy set because
there is a much smaller space of possible (good) solutions and
features driving the prediction are likely to be more similar
across learning methods. When redundancy is defined only
along a single dimension, either location (centroid similarity)
or topology (raw similarity), the low redundancy set still
retains images that are redundant on the other dimension.
The CNN-derived and PCA features will be therefore more
similar and combining them in the Hybrid model improves
performance. In summary, we find that redundancy defined
in simple terms as variants of Euclidean distances of lesions
is a critical parameter that determines how accurately a given
model can predict language deficit based on MRI lesion
images. Even though these results are obtained for the current
data set, they are likely to be general in nature and it would
be interesting to examine other MRI diagnostic problems
in this context.

Can Long Term Language Deficits Also
Be Predicted?
One of the most interesting clinical applications of a computer
model connecting brain lesion images to behavioral outcomes
is the prediction of long term deficits. We therefore assessed

FIGURE 8 | Long-term language scores predicted by the four machine learning models: (A) CNN, (B) PCA + RR, (C) SVR, and (D) Hybrid model. Predictive
accuracy is indexed by R2 values.

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00053 July 29, 2019 Time: 16:34 # 11

Chauhan et al. Prediction of Stroke Deficits With Deep Learning

all models in terms of the ability to predict the language score
obtained in follow-up re-testing performed 3 months after the
stroke (Ramsey et al., 2017). Indeed, Ramsey et al. (2017) reported
that lesion topography (represented by PCA components of
lesion images) accounted for about 13% of unique variance in
the prediction of language recovery using regression analyses.
Figure 8 summarizes our results (methods identical to the main
analysis) on all patients (N = 74) for whom the long-term deficit
scores were available.

Prediction accuracy for long-term deficit in terms of r2

values (range 0.35–0.59) was lower compared to our previous
results (range 0.63–0.68). However, accuracy is remarkable
when considering that the models did not include patients’
demographic data and/or acute-phase neuropsychological
scores as (additional) predictors (see Hope et al., 2013;
Ramsey et al., 2017).

DISCUSSION

In this work, we assessed deep and shallow machine learning
approaches to predicting cognitive deficits from MRI lesion
images. Conventional (shallow) machine learning methods
typically require extraction and selection of image features that
represent topological information about the lesion, a critical
step that is dispensed with in the deep learning approach. We
compared SVR and CNN techniques to a previously developed
method based on RR. We also developed a Hybrid method
based on re-using CNN’s high-level features together with PCA
image features as input to a RR model, which yielded the
best performance.

Overall, our results suggest that deep learning leverages
predictive performance, which also scales up favorably with the
amount of training data. Dataset size has been highlighted as
a key issue for the lesion-behavior mapping problem (Price
et al., 2017). Though the size of our dataset was far from
optimal for deep learning, our analyses suggest that CNNs are
likely to significantly outperform competing models when more
patient data will become available. Moreover, we observed that
the CNN already outperforms conventional models in resolving
quantitative differences among the subgroup of patients with
language deficit. This is crucial in the context of predicting
the severity of deficit (i.e., a regression problem) as opposed to
the mere presence of deficit (i.e., a classification problem). The
CNN’s tuning to fine-grained prediction of the severity of deficit
also helps explaining why CNN features boosted the overall
performance of the Hybrid model.

We also systematically examined how predictive accuracy is
influenced by data redundancy, defined in terms of similarity
across lesion images using several distance metrics. Our analyses
revealed that training on a dataset that contains multiple
instances of similar lesions is a crucial factor to obtain good
performance: lesion patterns that are more frequent lead to
better prediction than less frequent lesion patterns. This is
in line with the view that limited sample size is the main
bottleneck for neuroimaging-based prediction of brain disorders
(Arbabshirani et al., 2017).

It is worth noting that the performance gains obtained
with deep learning come at the expense of interpretability.
Conventional machine learning models can be readily analyzed
to assess which image features (i.e., which voxels) are particularly
weighted in computing the prediction (see Siegel et al., 2016).
Whether similar results can be obtained from methods that
analyze deep networks in terms of function of intermediate
feature layers (e.g., Zeiler and Fergus, 2014) or hidden neurons’
receptive fields (e.g., Testolin et al., 2017) is an issue for
future work. Conversely, deep learning might also be exploited
to use raw MRI images (rather than lesion images) as
input for predicting behavioral deficits; however, stroke lesion
segmentation remains a challenging problem1 and manual
delineation remains the gold standard. Given the limits of dataset
size, design of an end-to-end pipeline might benefit from a
transfer learning approach (see Wang S. et al., 2019; Wang S.H.
et al., 2019 for applications to neuroimaging).

Other avenues for future research include the assessment
of deep learning models that include connectivity data to
address the question of whether predictive accuracy is leveraged
by information on structural and/or functional disconnection
among brain regions (Forkel et al., 2014; Siegel et al., 2016;
Hope et al., 2018). Finally, the prospect of predicting long-term
deficits and/or the potential for functional recovery has profound
implications for clinical practice.
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