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LIMITS OF JULIA SETS FOR SUMS OF POWER MAPS AND
POLYNOMIALS

MICAH BRAME

1. Abstract

Suppose fn,c is a complex-valued mapping of one complex variable given by

fn,c(z) = zn + p(z) + c,

where p is a polynomial such that p(0) = 0 and c is a complex parameter such that

|c| < 1. We provide necessary and su�cient conditions that the geometric limit, as

n ! 1, of the set of points that remain bounded under iteration by fn,c is the disk

of radius 1 centered at the origin.

2. Background

Complex dynamics is a relatively new field, considering much of what is known in

dynamics has only been discovered since the 1980s. The roots of dynamics, however,

lie in functional analysis in the early 19th century, where the groundwork was laid

by the English mathematician Charles Babbage in his 1815 paper An Essay Towards

the Calculus of Functions [2]. Continuing through the rest of the 19th and early

20th century, contributions from mathematicians such as Ernst Schröder, Lucjan

Böttcher, Pierre Fatou, and Gaston Julia continued to bolster the foundation of

dynamics. According to an overview of the history of dynamics, (see [1]), Ernst

Schröder was the first mathematician to explore iteration, which is the backbone

of modern dynamics. In 1871, he published a paper that discussed the concept of

conjugating mappings to much simpler maps to allow for easier study of the dynamics

(see [9]). Classifying when these conjugations could occur was worked on in part by

I would like to graciously thank Scott Kaschner for his work on this project and his mentoring

throughout this wonderful introduction to mathematical research.
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Böttcher in the early 1900s (see [3]). Most of these conjugations only occurred locally,

which limited analysis to small subsets of the mapping’s domain. As research in the

field of dynamics progressed, however, it became increasingly important to understand

how iterations a↵ect points in a global context. Fatou and Julia’s contributions

included new definitions for useful sets of tools to examine iterations globally. Two

of the main objects of their studies are now aptly named the Fatou and Julia Sets of

a mapping, the latter of which is an integral component of this paper’s research.

After the 1940s, research on dynamics tapered o↵, mainly because the field is deeply

entwined with a geometric intuition that quickly became intractable. It was not until

the 1980s that the field resurfaced as computers became powerful enough to allow for

visualization and experimentation. Throughout the 1980s and 1990s, the field of dy-

namics truly blossomed into what it is today due to the work of mathematicians such

as Douady, Hubbard, Milnor, and McMullen (see [4], [6], [7], and [8] for examples).

2.1. Notation and Terminology. In general, the study of complex dynamics ex-

plores iterative mappings in the complex plane. Before a closer examination of dy-

namics and our research, it will be helpful to explain certain notation and terminology

used throughout the paper.

Complex numbers are of the form z = x + iy, where the real numbers x and y

are respectively the real and imaginary parts of z, with i =
p
�1. Because complex

numbers contain a real and an imaginary part, visualizing complex numbers is rather

simple: associate the real part, x, of a complex number to the x-axis of a Cartesian

plane and the imaginary part, y, to the y-axis. By doing this for the entire set of

complex numbers, which is denoted by C, the complex plane is generated.

The complex numbers are a two-real-dimensional set; consequently, we must use

two-dimensional notions of size for the numbers and the distance between them.

When looking at only real numbers (i.e. numbers without any imaginary part), the
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notion of size and distance is simple because it is a one-dimensional ordered field.

The size of a real number is just the absolute value of the number, and the distance

between two numbers is the absolute value of the di↵erence of the two numbers.

However, the complex numbers are not an ordered field, and therefore absolute value

cannot be used. Instead, we define the modulus of a complex point z = x + iy to

be |z| =
p
x2 + y2. We use the same notation as real absolute value because the

modulus of a real number is equal to the absolute value. Similar to absolute value,

the modulus of a complex number is the distance from its representative point to

the origin at z = 0 in the complex plane. Furthermore, the distance between two

non-zero complex points is similar: take z1 = x1 + iy1 and z2 = x2 + iy2; the distance

between the two points is |z1 � z2| =
p
(x1 � x2)2 + (y1 � y2)2.

Studying how these points in the complex plane behave under repeated composi-

tions of a mapping is a main focus of complex dynamics. In our research, we studied

complex mappings, which take complex numbers and map them to other complex

numbers. Let f : C ! C denote such a mapping. Repeatedly composing a map-

ping with itself is called iteration. For example, the kth iterate of a mapping is the

mapping composed with itself k times. We will use the following notation to describe

this:

fk = f � · · · � f.

The sequence of iterates of a point z0 is as follows:

{z0, z1 = f(z0), z2 = f 2(z0), ...},

where zk denotes the kth iterate of z0 by f . For example, z2 = f(f(z0)) = f(z1).

These sequences of iterates, called orbits, define the mapping’s dynamics.
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In order to gain deeper intuition of the dynamics of a mapping, being able to

understand iterations of many points at once is helpful. One of the mathematical

objects that we used heavily in our research does that by separating all the points

whose orbits stay bounded from the points whose orbits stay unbounded.

Definition 1. The filled Julia set, K(f), for some mapping f , is the set of all

points whose orbits stay bounded under iteration by f .

Understanding how the Julia set is built will help motivate our result later, so let

us explore a simple example. In this example, the following standard notation will be

used. Let a 2 A denote that a is an element of the set A. Let A ⇢ B denote that a

set A is a subset of a set B, meaning that all the elements of A are contained within

B. Let D denote the unit disk, which is the set of all complex numbers with modulus

less than one, that is, D = {z 2 C : |z| < 1}. Subsequently, D will denote the closed

unit disk, which is the set of all complex numbers with modulus less than or equal

to one. In our proofs, we subscript the disk notation to denote a disk of radius r as

follows,

Dr = {z 2 C : |z| < r} and Dr = {z 2 C : |z|  r}.

For simplicity, we omit the subscript when r = 1 to align with the standard notation

of the unit disk.

Example 1. Let f : C ! C by f(z) = z2. If we take z0 = 1, iterating it will leave

z0 = 1 with its orbit as follows:

{z0 = 1, z1 = 1 = f(z0), z2 = 1 = f 2(z0), ...}.

Because the iterates remain at z0 = 1, the point z0 = 1 is called fixed. Moreover,

any z 2 C such that |z| = 1 will have its orbit remain on the unit circle, meaning
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Figure 1. Left: Points of modulus 1 remain modulus 1 after iteration.
Right: Points less than 1 in modulus iterate down to zero by f .

that each iterate’s modulus will be one (see Figure 1). This happens because |z| = 1

implies |f(z)| = |z2| = |z|2 = 12 = 1. Now, if we take z0 = 0.5, its orbit converges to

0:

{z0 = 0.5, z1 = 0.25 = f(z0), z2 = 0.125 = f 2(z0), ...}.

Not surprisingly, any z 2 C such that |z| < 1 will have an orbit that converges to 0

(see Figure 1). Finally, any z 2 C with |z| > 1 will have an unbounded orbit. Take

z0 = 2 for example. Then the orbit is as follows:

{z0 = 2, z1 = 4 = f(z0), z2 = 16 = f 2(z0), ...}.

Compiling all of this, we can describe the filled Julia set for f . Any point that is less

than or equal to 1 in modulus has a bounded orbit while any point that is greater

than 1 in modulus has an unbounded orbit. Therefore, K(f) is the closed unit disk,

that is,

K(f) = D = {z 2 C : |z|  1}.

This example is rather trivial in comparison to the majority of filled Julia sets. By

simply adding a complex parameter c, the filled Julia sets of the family of mappings

f(z) = z2+c become much more intricate. In Figure 2, notice the complicated nature
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Figure 2. Left: Douady Rabbit with c = �0.1 + 0.75i. Right: Basil-
lica with c = �1.

of two famous filled Julia sets generated from this family of mappings. These com-

plicated structures are one of the main reasons why research in the field of dynamics

experienced such a long hiatus in the mid-20th century — computers are needed to

generate their images, and this technology did not become widely available until the

1980s.

The final concept plays a minor role in this paper’s research; however, it plays a

major role in defining the dynamics of mappings, so it is worth discussing. A fixed

point of a mapping f is a point that gets mapped to itself by f ; in other words, z⇤ is a

fixed point if and only if f(z⇤) = z⇤. This will be true for any number of iterations by

f on the fixed point. There are multiple types of fixed points: attracting, repelling,

and indi↵erent. First, let us examine attracting fixed points. If the modulus of the

derivative1 of the mapping at the fixed point is less than one, then the fixed point is

called attracting; in other words,

|f 0(z⇤)| < 1,

where z⇤ is a fixed point of f . The attracting fixed point theorem brings this behavior

into a more geometric sense. If the fixed point is attracting, then orbits nearby will

converge to it (after a number of iterations). In Example 1, we saw that f(z) = z2

1
The derivative of a complex mapping f at a point z0 is defined to be the limit f 0

(z0) =

limz!z0(f(z)� f(z0))/(z � z0).



LIMITS OF JULIA SETS FOR SUMS OF POWER MAPS AND POLYNOMIALS 7

had an attracting fixed point at z⇤ = 0. First, we confirm that z⇤ is a fixed point of

f by testing f(0) = 02 = 0. Second, we confirm that z⇤ is attracting by finding the

derivative of f at z⇤ and testing whether it is less than one in modulus:

|f 0(z⇤)| = |2z⇤| = 0 < 1.

Now, notice how any point of modulus less one will eventually iterate to z⇤ = 0.

The set of all points of modulus less than one are therefore in the so-called basin of

attraction for z⇤. The basin of attraction for an attracting fixed point is the set of

all points whose orbits converge to that fixed point.

A fixed point is called repelling when the modulus of the derivative at the fixed

point is greater than one. The repelling fixed point theorem characterizes the resulting

behavior more geometrically: after some iterations, points near the repelling fixed

point will be pushed away from the fixed point. However, this behavior is more

complicated than that of attracting fixed points. The theorem only guarantees that

points near the fixed point will pushed away up to a certain number of iterations

(specific to each point). After that, the points can stay away from or return to the

fixed point, depending on the global dynamics of the mapping itself. In Example 1, it

is simple to show that z⇤ = 1 is a repelling fixed point for f(z) = z2. Most points close

to z⇤ iterate away from z⇤; however, there are certain points near z⇤ that exhibit the

more complicated behavior previously mentioned. Take z0 =
p
2
2 +

p
2
2 i for example.

It is close to z⇤ and has a modulus of one. After two iterations, f 2(z0) = z2 = �1,

which is far from z⇤. Nevertheless, the next iteration of z0 returns back to z⇤ as

f(�1) = 1 = z⇤. After two iterations, the repelling nature of the fixed point has

lost its power and the global properties of the mapping brought z0 back near to the

repelling fixed point.
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Finally, a fixed point is defined to be indi↵erent when the modulus of the derivative

at the fixed point is equal to one. Geometrically, the indi↵erent fixed point could

either be what is called weakly repelling or weakly attracting, or neither of the two.

If it is weakly repelling or attracting, then points close to it either diverge from or

converge to the fixed point very slowly, meaning that it takes many iterations to

diverge or converge.

3. Motivation

Let us explore the result from which this paper’s research sprang. In 2012, S.

Hruska Boyd and M. Schulz proved the following theorem (see [5]):

Theorem 3.1. Let c 2 C be a complex parameter. For the family of complex map-

pings, Pn,c(z) = zn + c, where n is a positive integer,

(1) If |c| > 1, then

lim
n!1

K(Pn,c) = S1,

where S1
is the unit circle.

(2) If |c| < 1, then

lim
n!1

K(Pn,c) = D.

Before discussing the result in further detail, we will again need another notion of

distance since we are dealing with limits of sets. In this case, it will be Hausdor↵

distance.
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Definition 2. For two sets A,B in a metric space (X, d), the Hausdor↵ distance

dH(A,B) between the sets is defined as

dH(A,B) = max

⇢
sup
a2A

d(a,B), sup
b2B

d(b, A)

�

= max

⇢
sup
a2A

inf
b2B

d(a, b), sup
b2B

inf
a2A

d(a, b)

�
.

At first, this definition may seem daunting; however, the idea behind it is simple.

Take two sets A,B in a metric space (X, d). A metric space is just some set X

that has a well-defined notion of distance d on the set, such as the complex numbers

whose defined distance is in terms of modulus. Begin by walking around in set A:

at each point a in A, find the shortest distance from a to set B and add it to a

list. Then find the supremum, or the least upper bound, of the list. Intuitively,

this will be the largest of the minimum distances from set A to set B, though the

maximum may technically not exist2. Do the same process while walking around in

B to find the largest minimum distance from set B to set A. While it may seem

counterintuitive, more often than not, the largest minimum distance from B to A is

not equal to the largest minimum distance from A to B. Refer to Figure 3. The

d1

d2

d3

A

B

a

Figure 3. Hausdor↵ Distance

largest minimum distance from B to A is d1, terminating at a; however, note that

2
If a maximum of a set is not included in the set, then the least upper bound of the set, called the

supremum, will su�ce.
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the shortest distance from a back to set B, denoted by d2, is much smaller than the

true largest minimum distance from A to B, denoted by d3, due to the shape of B.

Finally, to finish the process, compare the largest minimum distance from A to B

with the largest minimum distance from B to A. Whichever distance is larger is the

Hausdor↵ distance between the sets.

Now, let us discuss Theorem 3.1. We focus on the second part of the theorem,

which concerns the family of mappings Pn,c(z) = zn + c where |c| < 1. Notice as the

degree n of Pn,c is increased, |z|n gets either very large for |z| > 1 or very small for

|z| < 1. As long as z is chosen to be inside the unit disk, for su�ciently large n, the

orbit of z will remain bounded, similar to Example 1. If z is chosen to be outside unit

disk, then its orbit will be unbounded. Putting these two facts together, the filled

Julia set, K(Pn,c), approaches D for su�ciently large n (see Figure 4).

It is not surprising that this phenomena can be easily disrupted. Just by incor-

porating fixed nonconstant terms to the map, the dynamics at the limit become

much more complicated. Consider the following example in which we simply add a

quadratic term to the formula for Pn,c.

Example 2. Let f : C ! C by fn,c(z) = zn + z2 + c. Pick a parameter c0 in the

unit disk but not in the Mandelbrot set. The Mandelbrot set, denoted by M, is

the set of all complex parameters c whose associated quadratic polynomial (z2 + c)

have a connected filled Julia set, meaning that it is all in one piece instead of being

Figure 4. From left to right, K(Pn,c) where n = 2, n = 16, and n = 256
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made up of multiple smaller pieces that do not intersect. By picking a parameter

that is not in the Mandelbrot set, the filled Julia set of g(z) = z2+ c0 is disconnected,

thereby giving a strong chance of finding points of small modulus whose orbits remain

unbounded. Consequently, with the z2 + c0 terms in the formula for fn,c0(z), many

points z will leave the disk after one iteration; then, as before, their orbits will remain

unbounded as zn expedites their increasing moduli. See Figure 5, where only a slight

adjustment of the parameter c to be outside of the Mandelbrot set causes almost

every single point’s orbit to remain unbounded. For reference, the di↵erent shades

of blue represent the number of iterates a point requires for its modulus to exceed a

given threshold (chosen large enough to guarantee an unbounded orbit). This number

of iterates is often interpreted as the “speed” with which an orbit “escapes.” Darker

shades correspond to a larger number of iterations required for an orbit escape from

the filled Julia set, and black corresponds to the filled Julia set.

We can further generalize this family of mappings with the addition of a general

degree d � 1 polynomial p such that p(0) = 0; define fn,c : C ! C as

fn,c(z) = zn + p(z) + c.

Figure 5. K(f200,ci) with p(z) = z2, c1 = 0.25+0.25i 2 M (left), and
c2 = 0.45 + 0.25i /2 M (right)
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Characterizing when this family of maps follows Boyd and Schulz’s result is the main

focus of this paper.

4. Main Research

First, notice that fn,c = zn + p(z) + c is the sum of a power map (whose power we

increase in the limit) and a fixed degree d polynomial q(z) = p(z) + c. Second, if we

pick z0 such that |z0| > 1, we can still expect the image (the first iterate) of z0 by

fn,c to have large modulus for large enough n. Guided by this intuition, we find a

generalization of Lemma 3.1 from [5], which provides an upper bound for the size of

the filled Julia sets of fn,c.

Lemma 4.1. For any c 2 C and any ✏ > 0, there is an N � 2 such that for all

n � N ,

K(fn,c) ⇢ D1+✏

We will provide the proof of this and all further lemas and theorems in the next

section. When c = 0, the situation is fairly simple. Without the addition of a

constant, we need only concern ourselves with the possibility that the image of the

unit disk under the polynomial p is large. If the image of the disk is large compared

to the disk, then there are points within the disk that will iterate outside of the disk

by fn,0. In those cases, the filled Julia set of fn,0 cannot be the whole unit disk,

thus diverging from the result from Boyd-Schulz. With the addition of a parameter

c, the dynamics become more complicated due to a relationship between p and c. It

turns out that we can find a lower bound on c in relation to p that will guarantee the

existence of at least one point in the disk that will iterate outside of the disk by fn,c.

This idea is formalized in the following lemma.
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Lemma 4.2. Let m := inf |z|=1 |p(z)|, and let r = min{m, 1}. Then for any c 2 C

such that |c| > 1� r, there exist z0 2 D and N � 0 such that for all n � N ,

z0 /2 K(fn,c).

Our aim is to use c to translate the image of the unit circle by p outside the unit

disk. Since the unit circle is the boundary of the disk, the image of the unit circle

is the boundary of the image of the disk, so even if just part of the image of the

unit circle lies outside the disk, we have points inside the disk whose images by p lie

outside the disk. Once this happens, we can make n large enough that these points

will have unbounded orbits by fn,c. To achieve this, we first find the smallest point

in modulus on the image of the circle by p. Translating this point outside the disk

will guarantee that at least one point in the image of the disk lies outside of the disk.

If we take |c| to be at least 1 minus the modulus of that smallest point, then we will

have the desired translation, and the result of the lemma follows.

The interplay between p and c demonstrated by Lemma 4.2 makes it clear that any

hope of understanding the dynamics of fn,c(z) = zn + p(z) + c in terms of only c is

lost. Consequently, the limiting behavior of K(fn,c) depends more sensitively on the

dynamics of q. The details of this dependence and the preceding lemmas lead to our

main result, which is the following theorem.

Theorem 4.1. Let q : C ! C be the map given by q(z) = p(z) + c, and let fn,c(z) =

zn + q(z). Under the Hausdor↵ metric,

lim
n!1

K(fn,c) = D

if and only q(D) ⇢ D.
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The theorem provides a biconditional statement that supplies necessary and su�-

cient conditions for the limit of the filled Julia set of fn,c to converge to the unit disk.

Consider the following example.

Example 3. Suppose fn,c(z) = zn + azd + c, where a 2 C. To analyze fn,c as

previously mentioned, we look to the dynamics of p(z) = azd. The mapping p is

dynamically simple in the sense that its filled Julia set is a scaled disk whose radius

is related to the modulus of a and the degree d:

K(p) = D
|a|(�1/d) .

Additionally, the image of the unit circle by p(z) = azd is simply a circle whose radius

is scaled by |a|. For example, if p(z) = 4z2, then the image of the unit circle, p(S1),

would be a circle of radius 4. Because the image of the unit circle is a circle, we can

use Lemma 4.2 to help find exactly which c will translate the image outside of the

disk. These c will determine when q(D) ⇢ D and, consequently, whether the filled

Julia set of fn,c will converge to the disk or be strictly contained within it, (i.e. there

is at least one point in D that is not in K(fn,c)).

There are three cases that arise: when |a| > 1, |a| = 1, or |a| < 1. The first two are

simple and do not require the lemma for support. If |a| > 1, then D ⇢ p(D) = D|a|.

Consequently, the choice of c does not matter because even with c = 0,

q(D) = p(D) = D|a| * D.

Applying Theorem 4.1 with Lemma 4.1, we conclude for all c 2 C that if |a| > 1,

then

lim
n!1

K(fn,c) ( D.
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The case where |a| = 1 is identical except when c = 0. Note that when c = 0,

q(D) = p(D) = D ⇢ D,

so Theorem 4.1 applies and we get limn!1 K(fn,c) = D.

The final case in which |a| < 1 requires support from Lemma 4.2.

The lemma constructs a minimum radius r based on the minimum modulus of the

image of the unit circle p(S1). When choosing parameters c such that |c| > 1� r, the

image of the unit circle is translated enough so that part of it lies outside the unit

disk. Generally speaking, this r is an overestimate for certain c due to the geometry

of the image of the unit circle; however, in this case, because the image of the unit

circle is a circle of radius |a| and the modulus of a circle map is constant and equal

to its radius, r = |a| will be an exact minimum radius such that for all c, where

|c| > 1 � |a|, the image of the unit circle will be translated enough so that it is not

contained in the disk. Subsequently, q(D) * D. Again applying Theorem 4.1 with

help from Lemma 4.1, we conclude that for all |c| > 1� |a| where |a| < 1,

lim
n!1

K(fn,c) ( D.

Alternatively, if we take |c|  1 � |a|, then the image of the disk is not translated

outside of the disk. In other words, q(D) ⇢ D and Theorem 4.1 applies directly:

lim
n!1

K(fn,c) = D.

The results of this example can be compiled neatly into a corollary of Theorem 4.1.

The proof of the corollary is very similar to that of Theorem 4.1 and is therefore left

to the reader.



LIMITS OF JULIA SETS FOR SUMS OF POWER MAPS AND POLYNOMIALS 16

Corollary 4.1.1. Let fn,c(z) = zn+azd+c and r = min{|a|, 1}. Under the Hausdor↵

metric,

(1) For c 2 D1�r,

lim
n!1

K(fn,c) = D

(2) For c 2 D \ D1�r,

lim
n!1

K(fn,c) ( D,

if the limit exists.

5. Proof of Main Results

Proof of Lemma 4.1. The goal of this proof is to show that any point outside of the

unit disk, that is, z 2 C\D1+✏, will produce an orbit that is unbounded under iteration

by fn,c(z) = zn + p(z) + c for large enough n. To achieve this, we will use induction.

Before we can begin induction, however, it will be helpful to have a way to control

the size of p(z), so, let z 2 C \ D1+✏. One can find a degree d� 1 polynomial p̂ such

that

p(z) = zd p̂(1/z).

Note that 1/z 2 D1�✏ since we chose |z| > 1 + ✏, so we can apply the Maximum

Modulus Principle on p̂. The Maximum Modulus Principle guarantees the existence

of some M � 0 such that outputs of a holomorphic mapping (a mapping that is

complex and di↵erentiable) will always be less than M in modulus; so for p̂, there is

an M � 0 such that |p̂(z)|  M for all z 2 C. Subsequently, we can find a maximum

modulus for p as such: |p(z)|  M |z|d. Now we choose B > max {1, |c|,M} to be a

lower boundary such that |fn,c(z)| > B. Then choose N > d+ 2 large enough that

|z|N > max{4B, 2M |z|d + |c|}
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and BN�d�1 > 3. Now start the induction. Let n � N . We claim |fm
n,c(z)| � Bm for

all m � 1. Observe that

|fn,c(z)| = |zn + p(z) + c| � |z|n � |p(z) + c|

� |z|n �M |z|d � |c|

� |z|n � 1

2
|z|n � |c| � 4B � 2B � B = B.

Now suppose for some m � 1, we know |fm
n,c(z)| � Bm. Let zm = fm

n,c(z), and note

that |p(zm) + c|  B|zm|d +B  |zm|d+2 < |zm|N . Then for any n � N ,

��fm+1
n,c (z)

�� = |znm + p(zm) + c| � |znm|� |p(zm) + c|

� |zm|n �M |zm|d � |c|

� Bmn � BmdB � B

� Bm+1
�
Bmn�m�1 � Bmd�m � 1

�
� Bm+1,

where the last inequality follows (eventually) from the fact that Bn > 3Bd+1. By

induction, we have that |fm
n,c(z)| � Bm for all m � 1. Since B > 1, the orbit of z

under fn,c is not bounded. Thus, z /2 K(fn,c). ⇤

Proof of Lemma 4.2. The goal of this proof is to show that as long as c 2 D\D1�r,

we can always find one point in the disk with an unbounded orbit for fn,c(z) =

zn + p(z) + c. To do this, it will be su�cient to find a z0 that leaves the disk after

one iterate. To begin, since c 2 D\D1�r, we have that 1
2(|c| + r � 1) > 0. From

this it follows that 1
2(3r � |c| + 1) < r. Using the open mapping theorem3, we know

Dr ⇢ p(D). Therefore, there exists z0 2 D such that |p(z0)| = 1
2(3r� |c|+1). Choose

N large enough that |z0|N < 1
4(3r � |c| + 1). Now we have everything we need to

3
The open mapping theorem states that if f is a holomorphic mapping, then it maps open subsets

of its domain in C to open subsets of C.



LIMITS OF JULIA SETS FOR SUMS OF POWER MAPS AND POLYNOMIALS 18

show that the first iterate of z0, denoted by z1, lies outside the disk. For n � N ,

|fn,c (z0) | = |zn0 + p(z0) + c|

� |c|+ |p(z0)|� |z0|n

> |c|+ 1

2
(3r � |c|+ 1)� 1

4
(3r � |c|+ 1)

>
3

4
|c|+ 1

4
(3r + 1)

>
3

4
(1� r) +

1

4
(3r + 1) > 1.

Thus, |fn,c (z0) | > 1. Then by Lemma 4.1, we may choose N large enough so that

K(fn,c) ⇢ D1+ 1
2 (|z1|�1).

It follows that the orbit of z0 does not remain bounded. ⇤

Proof of Theorem 4.1. To prove a biconditional statement, we must prove both q(D) ⇢

D implies limn!1 K(fn,c) = D and limn!1 K(fn,c) = D implies q(D) ⇢ D. Suppose

first that the image of D under q is contained in D. Let

s = max
z2D

{|q(z)|},

so 0 < s < 1.

To see limn!1 K(fn,c) = D, let 0 < ✏ < 1 � s and K be a compact set such that

D1�✏ ⇢ K ⇢ D. We choose K to be compact to guarantee it is closed and bounded,

meaning we include the boundary of the set and all the points inside it are close

together. Since K is compact, we may choose this N so that for any z 2 D1�✏, we
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have |z|n < 1� ✏� s. Then for any z 2 D1�✏, we also have

|fn,c (z) |  |z|n + |q(z)|

< (1� ✏� s) + s < 1� ✏.

It follows that the orbit of any point in D1�✏ never leaves the disk D1�✏. Thus, we

have D1�✏ ⇢ K(fn,c). Combining this with Lemma 4.1, for any ✏ > 0, we may choose

N large enough such that

D1�✏ ⇢ K(fn,c) ⇢ D1+✏.

We now prove the converse, using proof by way of contradiction. Suppose the image

of D under q is not contained in D, so q(D)\D is nonempty. By the open mapping

theorem, q(D) is an open set, so q(D)\D is also open. Thus, there is some z0 2 D

such that |q(z0)| > 1. In this case one can pick N large enough that for any n � N ,

we have |fn,c(z0)| > 1, so for all n � N , z0 /2 K(fn) The result follows. ⇤

6. Conclusion

Because complex dynamics is such a new field relative to most fields in mathematics,

there is still much to be discovered. This paper’s research is significant in that the

results are brand new and therefore expand the horizons of the field, particularly in

the realm of polynomial dynamics. Providing conditions for when a large family of

mappings follows a certain characteristic is one of the best ways to expand the field.

This paper provides conditions for geometric limits of the filled Julia sets to equal

the unit disk for the family of mappings, which consist of the sum of power maps and

fixed-degree polynomials. These conditions are proved to be necessary and su�cient,

and therefore provide a complete summary of the characteristic.
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For further study, one question concerns the limits of the filled Julia sets for this

family of mappings when they do not converge to a unit disk. The conjecture is that if

the limits exist, then the filled Julia sets will converge to some complicated, di�cult-

to-define structure. While di�cult, this problem seems tractable. It is expected,

based on extensive experimental evidence, that such limits do exist, in general. Be-

yond families of polynomial mappings, one could also extend this study to rational

mappings. Another avenue for study would be to explore the situation with mappings

of more than one complex variable.
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[9] E. Schröder. Über iterierte funktionen. Math. Ann., 3:296–322, 1871.

[10] D. G. Zill and P. D. Shanahan. Complex Analysis. Jones & Bartlett Publishers, 2013.


	Limits of Julia Sets for Sums of Power Maps and Polynomials
	Recommended Citation

	1. Abstract
	2. Background
	2.1. Notation and Terminology

	3. Motivation
	4. Main Research
	5. Proof of Main Results
	6. Conclusion
	References

