
Title of Thesis: 

Degree candidate: 

Degree and year: 

Thesis directed by: 

ABSTRACT 

MATHEMATICAL MODEL OF ADAPTIVE 

MOTOR CONTROL 

Makiko Kosha 

Master of Science, 1999 

Associate Professor Robert M. Sanner 
Department of Aerospace Engineering 

An adaptive control law incorporating a biologically inspired neural networks 

for robot control is used as a mathematical model of human motor control a11d 

the motor control adaptation. Modeling human motor control strategy is made 

difficult due to the redundancies in the human motor control system. This control 

model is able to overcome the difficulties of the hurnan motor control modcli11g , 

and include the learning capability of the motor control strategy which was omit

ted in human motor control studies until now. By adaptively piecing together 

a collection of elementary computational elements, the proposed model develops 

complex internal models which are used to compensate for the effects of externally 

imposed forces or changes in the physical properties of the system. 

In order to examine the form of human motor control adaptation in detai l, 1-t 

computer simulation was developed with a two dimensional model of the l11rnia11 
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nrm which utilized the proposed adaptive motor control model. The sirnulation 

result show tha t the model is able to capture the characteristics of the motor 

control adaptation seen in human experiments reported by [1 4], [4G]. For cont in

uation of this research , an experimental apparatus was designed and built for the 

human motor control study. This apparatns is a cable driven , two-ctimensional 

manipulator which is used to apply specified d isturbance forces to the human 

arm. The preliminary experiment conducted with this test apparatus show a 

strong correla tion to the simulation data and other experimental data reported 

on human reaching motions . 
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Chapter 1 

Introduction 

1.1 Motivation 

The early experiences of astronauts on numerous space walks during Extravehic

ular Activity (EVA) and on the moon in the 1960's and the 70's demonstrate the 

difficulties experienced by humans performing tasks in reduced gravity environ

ments. The first successful EVA operation was accomplished by Edwin "Buz7," 

Aldrin during Gemini 12 mission. Aldrin was also first astronaut to perform 

EVA with training in neutral buoyancy in preparation for the flight. Before this 

mission, astronauts were not capable of conducting smooth movements i11 spc1ce; 

instead they struggled and ended the EVA completely fatigued L 401. Prior to tltc 

Gemini 12 mission, EVA training was performed solely on KC-135 flights, where 

the simulation of microgravity alternates with periods of hypergravity of approx

imately 2-g's . These altered gravity environments last respectively, only thirty 

seconds and fifteen seconds. The training only in the KC-135 rnicrogravity sini

ulation aircraft proved insufficient for learning to execute tasks in H, challenging; 

environment as microgravity. 

In the mean time, wealth of knowledge lws been gained during space opera-
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tions. The time astronauts spent on the moon, the da ta collected on the human 

motion on the Skylab and the Mir , and even the time spent to trc1in the as tronm1ts 

for space conducted in a simulation of microgravity, such as neutral buoyancy and 

KC-135, have helped to illustrate the challenges that humans face when they are 

required to work and function in unfamiliar dynamic environments. Although 

lrnmans possess remarkable capacity to learn and adap t to uew situations and 

environments, the experiences in the space operations teaches the importance of 

large number of carefully planned training sessions. 

With the advent of the International Space Station (ISS) , the space program 

is faced with new challenges. The current design of space s ta tion relies heavily 

on EVA for initial construction and external maintenance of the sta tion. This re

quired number of EVA's grossly exceed National Aeronautical and Space Agency 's 

(NASA) capability [l], thus making space operations, scheduling, and training 

play an even more critical role in our space program. 

Human capacity to adapt to new dynamic environments allows us to opera te 

in unfamiliar territory, such as in space and under water. Human motor control 

and adapta tion have been studied for decades, but the level of understanding on 

how the adaptation and learning process occurs is quite limited and it remains 

a topic of current research. An improved understanding of human adaptation 

to altered dynamic environments would be tremendously usefol to improve both 

the success of operational capabilities and improve the training of the astrow-1,ut:c; 

required to meet the needs of the future space program. Better understanding 

of the motor control and the adapta tion mechanism would prove inval1tablc iu 

various fields of research. These include orthopedics, child development , and , 

as mentioned earlier, subject t raining in altered environments. These are c,l. few 
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of the most obvious areas to benefi t from a better understanding of the human 

motor control mechanism. 

Although observed in everyday life , the adaptation mechanism of human mo

tor control has not been modeled adequately. This thesis attempts to elucidate 

the structure of human motor control strategies and model how they learn to 

accommodate different dynamic environments, setting them in a mathematical 

framework amenable to simulation and analysis. In the development below, "neu

ral" networks are used as a component of the proposed mathematical model. 

The use of neural networks to model human learning has been prornising, L>ut 

so far, scientists have not been able to implement it in the frame work of a mo

tor control model in any meaningful manner. Vast number of neurons form the 

nervous system of the human body. F\1rthermore, the large number of different 

types of neurons which make up the nervous system and its intricate and specific 

network connections have made the understanding of motor control impossible 

thus far. The precise modeling of the connection of billions of neurons is not 

only unfeas ible, but has very little meaning. The neural connections arc very 

redundant, the precise connections may be different in each and every person. 

F\irthermore, precise connections change continuously, and in some cases drasti

cally. For example, it is known that in the cases of brain surgery performed on 

the patients with sever seizures, large portions of the brain may be removed , but 

t he functions computed in those areas are learned to be com puted iu other parts 

of the brain. 

Until recently, researchers have treated the modeling of uem al science using 

neural networks as a black box, only able to connect an inpnt to au output 

without any considerations for what the body represented by tha t black box is 
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doing, since it is impract ical to attempt to model what every neuron is doing. 

But, by definition , this type of approach does little to reveal what the human 

body is actually doing. In addition , the network used might be able to create a 

sensorimotor map, but if any small changes to the system are rnad e, then nothing 

can be said of the next condition. 

It is beyond our current computational power to try to mode] each and every 

ne uron, how they are connected to each other, aud how the connections result 

in human behavior. Instead of trying to solve the problem by mapping frorn 

behavioral goals of motor control to the neural input activating the muscles, 

the understanding of motor control can be gained progressively by establishing a 

hierarchy of motor control levels [6] [51]. This approach allows the investigator to 

address more meaningful questions while still advancing the knowledge of motor 

control study. Although , bridging the gap between motor control levels will be 

difficult , many questions can be addressed by studying each levels i11dividually. 

The proposed model takes the understandings contributed by several previous 

experiments, analyzing each level, and then closes oue of the gaps of hierarchy. 

Specifically by providing a model of the observed plasticity of motor control 

strategics . 

1. 2 Organization of Thesis 

This thesis opens with the motivation for the investigation of human motor con

trol and its adaptation mechanism. In Chapter 2, the current nnderstauding of 

the nervous system and the muscle physiology is presented. The basic knowledge 

of how neurons communicate with each other , how networks arc buil t, and how 

11euro11s activate muscle contractions is described . The ba,ckgronrnl 0 11 physiol-
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ogy of motoneurons and muscles provided in this chapter assists in evaluating the 

model and offers insight into the difficulties of this task. Chapter 3 reports the 

results of current motor control research. The basic principles of movement orga

nization provide us with an approach to appropriately structure the model that 

is capable of capturing the characteristics of the observed movement . Chapter 

4 follows with the description of the proposed mathematical model, along with 

the capabilities and the limitations of the model. This ir:, then followed by the 

result s from a simulation of this model which is shown to provide good quali

tative agreement with previously reported experiments on human subjects. In 

chapter 5, the design and construction of a haptic device capable of performing 

further experiments to validate the proposed model are described. Preliminary 

test results obtained with this device are then presented. Chapter 6 reviews the 

research results, offers some recommendations to improve the test apparatus, and 

concludes with a discussion of the future research. 
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Chapter 2 

The Physiology of Limb Motion 

2.1 Introduction 

Similar to a robotic system, human limb motion can be viewed in an engineering 

sense with the human arm modeled as a manipulator and the central nervous 

system (CNS) playing the role of the manipula tor controller structure. The CNS 

commands efferent signals to the muscles to execut e motion while an afferent 

signal is sent back from t he muscles to transfer sensory informa tion such as po

sition, velocity, and force data . At the higher level of the CNS , commands are 

calcula ted by a 'joint controller ' which computes the necessary torque to fo llow a 

specified reference trajectory. T he reference trajectory is similarly calcula ted by 

a trajectory planning module to accomplish a specific t ask. 

The ma thema tical model proposed in this thesis addresses the modeling of the 

CNS , and the det ailed d iscussions are covered in chapters 3 and 4. This chapter 

presents the reader with a basic understanding of the human neural, muscular , 

skelet al system and upper limb motor control. A more complete informa tion of 

this chapter can be found in [25]. T his chapter a t tempts to reveal the difficul t ies 

of modeling human motor control system and give insight on the relevance of the 
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adaptive motor control model presented in this thesis. 

2.1.1 Anatomical Organization of the Nervous System 

The command center of the human body, the CNS, consists of t he brain , the brain 

stem , and the spinal cord. It is responsible for the complex tasks of the human 

mind , such as pa ttern recognition, cognition, and long term memory. These 

functions, which are localized to discrete regions in the brain, are not actually 

complex faculties of mind, but rather elementary operations [25]. More elaborate 

fac ulties are constructed from the serial and parallel interconnections of several 

brain regions. 

The neuronal functions are hierarchically and anatomically organized. Com

plex mental functions are organized in the brain , while the most elementary 

functions of motor coordinations, for example spinal reflex, are calculated in the 

sp inal cord . Neural circuits in the spinal cord play an essential role in motor 

coordination. These spinal reflexes are very fast because the networks are con

rn~cted simply and the information travels short distances. Although the neuronal 

commands mediating the spinal reflex are very simple, the higher centers cau iu

Huence the spinal reflexes to generate more complex behavior. Reflex circuits 

provide the nervous system with a set of elementary patterns of coordination 

that can be activated either by sensory stimuli or by descending signals from t lie 

brain s tem and cerebral cortex. Reflex circuits provide the higher centers wi th 

a set of elementary patterns of coordination. These wired-in movement pa tterns 

arc nevertheless remarkably adaptable to current conditio11s. For execution of 

motion, the speed of motion is improved greatly in this way. This occurs because 

environmental information, such as the initial position of the body segments and 
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Figure 2.1: A sketch of a brain, spine, and muscle. Reproduced from Principles 

of Neural Science. 

external loads acting to oppose movement , reaches the lower levels directly. The 

higher centers can activate these reflex circuits to produce voluntary movement 

patterns. 

2.1.2 Advantage of Networks 

The architecture of the human brain is comprised of basic clements. But despite 

the simplicity and the similarities of the basic properties of d ifferent types of nerve 

cells, the precise network of countless nerve cells ca.n prodnce ma.ny complex and 
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intricate behaviors . The best estimate today of the number of neurons in the 

hu man brain is approximately 1011 neurons. The means by which these neurons 

are connected can be modified with experience. 

Though there are as many as 10,000 different types of nerve cells, they all 

share several common features. The functional similarities of the nerve cells are 

described in the following sections. 

2.2 Physiology of Neurons 

2.2.1 Neuronal Function 

There are two fundamental principles governing neuronal function. The principle 

of dynamic polariza tion st ates that information Hows in a predictable and con

sistent direction within each nerve cell. In most cases, the signals travel from the 

dendrites to the axon hillock, where the action potential is generated. \t\Then the 

action potential is triggered, it travels through the axon unidirectionally toward 

the presynaptic release site. 

The second principle, the principle of connectional specificity, states three 

irnportant considerations about the neural connections. First, there is no cy to

plasmic continuity between nerve cells. Second, the nerve cells do not connect 

indiscriminately to one another. Third, each cell makes specific connections a t 

precise and specialized points of synaptic contact. 

There are three types of neurons: afferent , efferent , arni intcr11curo11s. T ltc 

afferent neurons carry the information provided by the sensory neurons into the 

nervous system. The motor signal, which is also called the efferent signal, is the 

information carried by the motor neurons into the muscles and glands . The in-
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ternenrous constitute the larges t number of neurons, and they connect a ll types 

of neurons to each other. There are two ways the neuronal connections can im

prove communications between neurons; these are neuronal diversions and neu

ronal conversions. Neuronal diversion refers to a situation where a single neuron 

branches many times and terminates on many target cells. Nemonal diversions 

allows a single neuron to exert a widespread influence by distributing its sig11als 

to many target cells. Neuronal conversion refers to a situation where many sen

sory cells terminate on single motor cell. This allows a target cell to integrate 

various information from many sources. 

2.3 Human Arm Motion 

Activation of Muscles 

An action potential is generated in a motoneuron by the spatial and temporal 

summation of incoming action potentials from other neurons. Action potentials 

travel in about 100 milliseconds. The action potential travels from the motoneu

ron's axon and invades the several branches of the postsynaptic neuron, each with 

a terminal that is closely apposed to a skeletal muscle fiber. T he action potential 

arriving at the ne uromuscular junction triggers a sequence of hiocl1ernical cvcuts 

which results in muscle contraction [25]. 

2.3.1 Muscle Function 

Production of Force 

The smallest subunit that can be controlled is called the motor unit. The rn.otor 

unit consists of a single motoneuron and the muscle fibers it innervates. The 
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Figure 2.2: 1\ansmission of action potentials. R eproduced from Principles of 

Neural Science. 

innervation ratio (number of muscle fibers innervated by one rnotoneuron) is 

roughly proportional to the size of the muscle. Low innervation ratio rneans 

that there is finer control of the muscle's total force. Muscles work a lot like a 

spring. Muscles genera.te restoring force when they are stret ched b eyond their 

resting length. At a point where muscle is stretched beyond the resting length , the 

muscle st arts to produce restoring force proportional to the muscle length. When 

muscle is stimulated by a motoneuron , the contractile elements shorten similar to 

excising the slack of a rubber band. When a rubber band is compressed , it. .inst 

\)ecornes slack. Like a rubber band, i£ the n:mscle contraction did not take up the 

slack, the muscle also would b e slack when it is cornpressed shorter than the set 

point (resting length). Therefore, the muscle contract.ion causes restoring force 

to b e generated at a much shorter muscle length. If a load acts on the muscle 

as i£ there were a weight attached to the end 0£ the muscle , t he weight would 

be pulled up progressively as the rate of rnotor neuron stimulation to the muscle 

is increased, until the weight equaled the muscle restoring force. The 1eugth .:1,t, 

which the muscle comes to rest for a given stimulation and load is called the 

equilibrium point. This is the basi. of the equilibritun point hy pothesis discnsset\ 
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in the n xt chapter. 

Muscles contract slowly relative to the time course of a 8ingle neuron. There

fore, the train of impulses may activate the muscle fiber. T hen , the action po

tentiall:i ternporally sum until a plateau of muscle force is reached . T he plateau is 

called te tamrn. If the stimula tion is rela tively slow, and reachel:i the muscle after 

the peak force of the twitch is reached , the tension has a ripple and il:i called un

fu secl tetanus. But if the impulse comes in so fast that the average force increases 

progressively to a maximum value, the tension becomes smooth becaul:ie the in

dividual twitches can no longer be distinguished . This is called fused tetanul:i . 

The force production depends on t he pattern of l:itimula tion, as well a8 the ra te 

a t which muscle fib ers are stimula ted. The rate of act ion potential docs not cor

respond linearly to the produced tension. Rather, an insert ion of a single extra 

action potentia l in a low-frequency train of act ion potentials profoundly enhances 

the tension [25]. Following an extra impulse, muscles can be transiently ac tiva ted 

at a. h igher rate than required for the maintenance of a steady level of force. T he 

neuromuscular system takes advantage of this to make quick movements. 

The nervous system controls t he force of muscle contraction in two wayl:i : 

by size and by rate modula tion. The size principle states that when a motor 

neuron pool is activated, the smallest cell bodies are recru ited fi rst. As the 

synaptic inputs increase, progressively larger motor ncurorrn are recrui ted. Rate 

modulation l:itates that the nervous system can vary force by modula ting the ra te 

of firing of motor neurons . Increases in force with increasing firing frcq nency 

allows successive twitches to summate more effectively. T he recrui tment a.ud 

rate modulation are not rnut ually exclusive, but the nervous system controls 

force output by using both methods. 
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Limitations of Muscle as an Actuator 

The muscle properties described above lirnit the control strategies in two sub

s t.ant. ial manners . First , instead of controlling the length of contract.ion or the 

l'mcc produced by the muscles directly, the motor systems control the ·t.iffncss 

n,nc1 t he set point (resting length) of the muscle. The joints in the human body 

,trc act1tated with two opposing muscles, and t here are two strategics by which 

"· joint can be actuated with two contracting muscles . First , u. joint can be con

trolled by reciprocal innervation, where the agonist muscle increases the stiffness 

anc1 contracts to cause a joint motion, while the inhibited antagonist muscle re

laxes. Reciprocal innervation is energy efficient , but it requires that loads are 

accurately known by central processes involved in planning the movement , be

c,1use the stiffness of the antagonist muscle, which is analogous to the gain of the 

PD controller, is decreased. On the other hand, in co-contraction both agonist 

and antagonist muscles to contract . The actuation takes place because the ago

nist muscle contracts harder than the antagonist muscle. This method uses more 

energy but does it increases the stiffness of the joint, analogous to increasing the 

gain of the PD controller, therefore does not require loads to b e known precisely. 

This method also potentially provides more accurate rnotiou and greater adapt

ability during unanticipated changes in external loads. When contracting; two 

opposing muscles, the CNS can vary the stiffness and the angle of the joint . Like 

the increased gains of a controller , the increased stiffness of rt joint causes it to 

h e influenced less by an unanticipated external for ce. 

Another limitation of the muscle is its slow response to neural activation. 

Muscles act like low pass filters, and the nervous syst em does not control skele

tal muscles through a linear relationship . Changes in muscle t ension represent. 
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a transformation of the frequency of neural impulses. When the h·equency of 

the action potential train is increased, the magnitude of the change in tension 

decreases and the change in tension lags progressively more. The muscle can not 

transform high frequencies in the modulation of neural impulses into fluctuations 

in force. To produce a fast rising force, motor systems activate the agonist muscle 

to a greater degree and more quickly than normal and also nse the antagcmist 

muscle to slow down. The change in muscle length depends on multiple factors: 

neural drive, initial length of the muscle, and external loads. 

2.3.2 Muscle Receptors 

To make movements, the human body needs to know information about its ki11e

matic state and its environment. Proprioception is mediated by muscle spindles 

and Golgi tendons. The functional difference in response of muscle spindles and 

Golgi tendons can be explained by their different anatomical arrangements within 

the muscles. The Golgi tendons are connected in series to the extrnfusal muscle 

fibers, while muscle spindles are connected in parallel to the intrafusal mw;clc 

fib ers. Because Golgi tendons are much stiffer than extrafusaJ muscle fibers, dur

ing tension most of the stress is taken up by the extrafusal fibers. Therefore , 

the response of Golgi tendons during stretching is weak and inconsistent . During 

muscle contraction, the extrafusal muscle fibers pull on the Golgi te11dou , resnlt

ing in a s trong response to compression. By contrast , the intrafosal fibers whicl1 

are innervated by the muscle spindles are connected in parallel to the muncle 

fib ers. For this reason, as the extrafusal muscle fibers are loaded under tension, 

the intrafusal fib ers are also stretched, resulting in a strong responses from the 

muscle spindles. On the other hand , when the muscles contract, iutrafusal fibers 
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slacken and the muscle spindles produce no response. The tendon organs provide 

supplemental information to the muscle spindles about st ate of muscles: mus

cle spindles sense relative position of the limb segments while the tendon organs 

sense t ension level of the muscle. In other words , the muscle spindles provide 

position feedback while Golgi t endon organs provide force feedback. 
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t ---......._ 
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Figure 2.3: Connect ions of Golgi tendon organ and muscle spindles. Reproduced 

from Principles of Neural Science. 

2.4 Summary 

The control of the actuat ion is controlled by the CNS. There is a hierarchical 

organizat ion of the nervous system. The complex computations takes place in 

the brain, the central processor . The signals commanded by the brain travel 
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through the conduit of the spinal cord which also contains a number of elemen

tary computational elements. These signals from the brain commands how the 

computational elements in the spinal cord execute actuation by activating the 

muscles. Embedded within the muscles are muscle spindles and Golgi tendon 

organs which feed back the velocity information and the force information re

spectively to the spinal cord, and successively to the brain . 

16 



Chapter 3 

Abstract Models of Motor Control 

The most difficult problem with human motor control study is that human motion 

is plagued with redundancies. The excess degrees of freedom exist at many levels, 

and this problem is known as Bernstein's problem [6] . First, the solution of 

muscle activation used to produce a joint torque is not unique. Because most limb 

segments are actuated by several muscles, and since some of these muscles actuate 

multiple joints, multiple combinations of the muscle activations can produce the 

same net joint torque. Another redundancy exists at the kinematic level; several 

combinations of joint angles can produce the same hand position and orientation. 

The third redundancy exists at the task level. A specific task can be accomplished 

111 many different ways. For example, to accomplish a goal such as point-to-point 

reaching, the hand can follow many different paths and still end up at the desired 

target position. Therefore, Bernstein's problem poses a real challenge to any 

motor control study [51]. Researchers have therefore approached this problem 

in the study of motor control by attempting to gain knowledge at individual 

levels of motor control organization. Some of the current understandings about 

the hierarchical nature of the human motor control system are presented in this 

chapter. 
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3.1 Virtual Thajectory 

Although there are redundancies at the task level,the kinematic level, and joint 

leve l, there is still a distinct method by which a person completes a task un

der various conditions. For example, a person 's handwriting looks very similar 

regardless of whether it is written on a paper with the use of finger and wrist 

motions or if it is written on the black board with the use of the upper limb mo

tions. It is unlikely, given the size of the memory, that there are multiple models 

of the movements which accomplish a specific task in every possible situation. 

Therefore, the similarity in the outcome suggests an existence of a global rule 

at the task level [51]. This also suggests that the performance of every motion 

incorporates both the abstract information derived from long-term memory and 

the available inforrnation about the current task [51]. 

The objective of the studies of planning and control of multi-joint movement 

1s to identify a common kinematic feature or stereotypical patterns of muscle 

activation which characterize a typical motor behavior. This presents two funda

mental questions . What coordinate frame does the brain use to represent motion? 

And, how does the brain choose a certain trajectory from the infinite number of 

possibilities? To answer these questions, researchers have set out to conduct an 

experiment to observe the patterns of invariance in behavior. Some resear chers 

found that the trajectories are planned in joint variables [13], [50] while others 

have argued that simplicity of motor control is achieved by planning hand tra

jectories in extracorporeal space [6]. Joint rota tions are then tailored to produce 

the desired hand trajectory. Experiments conducted on both monkey and human 

reaching motions [2], [14], [32] indicate that for point-to-point reaching motion , 

the subjects tended to generate hand paths which are roughly straight lines to 
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thc target with single-peaked, bell-shaped speed profiles. These movement char

acteristics were evident independent of the part of the work-space in which the 

reaching movement was performed. This result indicates that common features 

existed in extracorporeal space. The plots showing a typical point-to-point reach

mg path and velocity profile are in Figure 3.1. 

Natural movements of a person is smooth and graceful, instead of awkward 

and jerky. To describe 'smoothness' mathematically, an optimization function 

was selected to match the observed motion of Figure 3. 1 [23]. The cost function 

rninimizes jerk, the derivative of acceleration: 

Cr ~ J l [ ( d:i; t) )' + ( d~\t) )'] dt (3.1) 

Where the movement duration ranges from O to t1, and ;r; (t) and y(t) are the 

Position of the hand in Cartesian coordinates during the motion. Based on this 

definition of smooth motion, planning of the movement depends on the initial and 

final position of the movement. The following equations (3.2) express 'minimum' 

.i erk trajectory [23]. 

t 5 t 4 . ( t )3) x(t) = .'.C + (x;· - x0 )(6(-) - 15(-) + 10 -t 
0 tf t1 f 

t 5 t .4 ( t )3 
y(t) =Yo+ (YJ - Yo)(6(-t ) - 15(t~) + lO -t ) 

f ' } f 
(3.2) 

The Figure 3.1 shows notable similarities between the simulation and the ex

Perimental data. This model exhibits three characteristics. The trajectory of 

the hand follows a straight path; the velocity profile of the trajectory is smooth 

anc[ unimodal; and the shape of trajectory is invariant under transla tion , rota

tion, amplitude and speed scaling [51] . Experimental results exhibit the same 

characteristics when the above parameters are varied. 
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Figure 3.1: Experimental result and simulatin result of virtual trajectory com

Pared, where solid line is the simulation data and dashed is the experimental 

data. ThI·s figl11·e shows h h d t l d d I t· t e an pa 1s, spee s, an acce era 10n components 

in Y axis and acceleration components in x axis for two reaching motions. This 

figure reproduced from Principles of Neural Science. 

These studies do not indicate that the human body measures jerk and calcu-

la tes th t · h l l h · e raJectory equation. This t eory on y supports t iat t ere Is a certain 

task de d d d · l · t · l · 1 · -Pen ent reference trajectory use urmg reac m1g mo 10ns w 1Ic 1 IS cap-

tured by this model, the 'minimum jerk'. It may be that the smoothness of motion 

Is an outcome of the intrinsic properties of the neural and musculo-skeletal hard

ware. However, this finding is important because, it suggests that the reference 

Illotion signal and the low level control structure which 'tracks ' this reference can 
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I ) C addressed independently. 

3.2 Task Execution 

Now t hat the task level redundancy is addressed , how does a biological system 

control actuation and calcula te the nece. ·sary torque to execute motion? The 

following two sections discuss the results which reveal some of the actua tion 

charact eristics and the possible motor control strategies . 

Severa l researchers have conducted experiments to observe the brain activity 

of a monkey while executing reaching motions [19]. The experiment result in

clicat ed tha t there is a correla tion between the neural activity in the brain and 

the direction of reaching motion. Furthermore, Bizzi et . al. summarize the con

clusions m ade by [19], [20], [24] that the movement control is represented in an 

cxt racorporeal space in the cortical cells, and that the exact manner of how the 

rnu8cles are activated is not represented in the motor cortex [7]. These studies 

inspired a new experiment to investigate the manner in which the CNS tn msform 

the planned movements into muscle activation. This question has to handle the 

redundancy problem at the actuation level and the kinematic level. 

3.2.1 Equilibrium Hypothesis 

According to the equilibrium hypothesis, the combination of int rinsic muscle 

properties and the contraction of the muscle from the motor neuron activation 

exerts a restoring force. An experiment was conducted on a large number of 

bullfrogs where the restoring force of the leg muscle was measured a t several 

coordina te locations when a microstimulation was applied to the spina l cord [7]. 
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The force field compiled from a group of restoring force vectors converges to an 

equilibrium point. The equilibrium hypothesis states that the limb posture is 

rnaintained by specifying the equilibrium point. 

Equilibrium trajectory hypothesis states that once the equilibrium point is 

achieved, the limb movements result from a shift in the neurally specified equi

librium point [12J. This theory claims that limb motion resists external pertur

bations by providing instantaneous corrections force when the limb is away from 

the intended trajectory. Corrective force provided by the elastic properties of the 

muscle. 

The controller using an equilibrium hypothesis was investigated by creating 

a simulation modeling the human motor control during an execution of reaching 

rnotion in a well known environment (3.3) [14] . 

(3.3) 

Controller expressed with this equation matches well with the experimental hu

man data as seen in Figure 3.2. 

3.2.2 Muscle Properties 

Mussa-Ivaldi et al. determined the elastic and viscous properties of muscle in 

their experiments. The stiffness matrix calculated from the experimental result 

is nearly symmetric, therefore the muscles behave primarily like springs [35]. 

Flash compared the muscle model using the elas tic and viscous muscle properties, 

and found out that simulation using a PD controller-like muscle properties during 

Upper limb reaching motions compared well to the experimental results [14]. This 

study supports the hypothesis that the PD style control strategy can be used to 
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Figure 3.2: Equilibrium trajectory: simulation data is labeled S and the human 

data is labeled R. The two reaching paths are shown in A, while velocity data 

are shown in B. Reprinted from [14] 

model the control strategy utilized during an execution of point-to-point reaching 

motion. 

3-2.3 Low-level Computational Elements 

To Provide a more detailed picture of exactly how the CNS motor commands are 

structured, Bizzi et al. conducted an experiment where several microstimula tions 

Were provided to the spinal cord of a bullfrog. At the same time, the isometric 

force produced by the leg muscle was measured at the ankle. The measurements 

indicated that for each site stimulated in the spinal cord , there exists a structured 

Pattern of force vec tors referred to as the convergent force field (CFF). The ex

Perimental setup and the CFF are shown in Figure 3.3. This study also showed 

tha t the sirnultaneous stimulation of two distinct areas produce a force equiva

lent to the linear combinations of the force fields obtained from the individual 
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Figure 3.3: Evidence of low-level computational elements. Reprinted from [7] 

st imula tions of the two areas [7]. This result is also confirmed by several other 

researchers [36] . From this result , several researchers have hypothesized tha t the 

'PD'-like motor control strategy is created by various linear combinations of these 

simple, low-level computational elements found in the spinal cord. 

Figure 3.4 shows the result from the simultaneous excita tion of two distinct 

sites within the spinal cord. Section A and B are the resulting CFF's from two 

iudependent applications of microstimulations at two different sites in the spinal 

cord. The CFF produced by the costimula tion of the tow sites is shown in section 

C, While the summation of the two measured force fields is shown in section D. 

Note the strong correla tion between C and D. 

24 



A 

• 

' \ ' ' ' ' , ,, ,,,'\'\ 
I I' ,,'\..'\.'\. 
' ,,, '\..,'\. 
' \ ' ''\.'\,"" 

C \ \ I I// // 

"'- \\II //// 

''\ \I I /// 

...... ..... ' \ I I / / / 

' / / . .. - --_ _ __ .. , ,, __ _ ,,,,, 
_,.,, I''' '"" "'' '' "'"' 

B \ \ I I I I / ,,, 

'\ \ \ I I I ,,. 

' \ \ I I 
' ' \ \ I / / 

' ' ' ' I I 
' ' ' \ \ I I I 
....._ ' ' ' ' ' I I I 
..._ ..... ' ' ' I I 

D 

.. 
'\ \ I I I / ,, ..

', '\ \ \ I I / / ..

, '\\\I / // 

''''' 'II / 
....... ' ' ' \ I / I ,/ 

......_....._''' ' I I I 

___ .., ... , _ 

---~, ,,, __ , , ,\\ 
_,, , ,,\\ 

Figure 3.4: Convergent force fields: section A and B are the resulting CFF's 

from two independent applications of microstimulations at two different sites in 

the spinal cord. The CFF produced by the costimulation of the two sites is shown 

in section C , while the summation of the two measured force fields is shown iu 

section D. Note the strong correlation between C and D. Reprinted from [36] 

3.3 Internal Model 

A simple PD control algorithm is able to simulate successfu lly the reaching motion 

executed in a familiar environment, but how does the execution of motion change 

in a presence of unknown disturbance forces? How does the trajectory respond to 

a systematic disturbance force if the motion was executed repeatedly? A study 

conducted by Shadmehr and Mussa-Ivald i [46] suggests that instead the CNS 

builds an internal model of the disturbance forces, which is used in the motor 

control strategy. The internal model is the mechanism the nervous system uses 

to predict the forces that would be acting on the hand as it performs the task . 

In this experiment of adaptive motor control strategy, the test subject was 
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seated in front of a manipulandum. The elbow of the subject was suspended 

Wi th a harness to maintain the motion in a two-dimensional plane. The test 

subjec t practiced the reaching motion grasping the manipulandum in null field , 

Which is a condition of no disturbance force applied to the test subject . After 

th
e practice phase, the t est subjects were instructed to make reaching motions 

in a learning workspace. The reaching motions were conducted mostly in the 

disturbance force field , and few motions were conducted in the null field. The 

subjects were moved to make reaching motions in another workspace to s tudy if 

the learning is generalizable. In the second work space, the subjec ts were making 

reaching motions in null field, force field 1, and force field 2. The first type of 

force field , referred to as force field 1, is a group of forces which was computed 

as a function of the velocity of the hand (3.4). 

f= Bx (3.4) 

where f represents the force acting on the end-point of the arm. The force 

field matrix, B represents the viscous, environmental force applied on the hand 

during reaching motion expressed in the Cartesian hand coordina te. The second 

force field , referred to as the force field 2 is shown in equation (3 .5). 

T = Wq (3.5) 

Where T is the torques acting on the elbow and the shoulder joints during motion. 

This force field w is the viscous environmental force field which is a function 
' ' 

of joint velocities q. w is calcula ted so that the two effective disturbance force 

fields are the same in the learning workspace. If the internal model is buil t in 

extrinsic coordina te frame of the hand, then the force field 1 appear same in 

different workspace but force field 2 will apply different force field in different 
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workspace , while if the internal model is built in intrinsic coordinate frame, the 

force field 2 appear same in different workspace and force field 1 appear different 

in different workspace. 

3.3.1 Reference Trajectory 

This exp eriment analyzed the point-to-point reaching motions conducted by the 

test subjects in a horizontal plane with and without the disturbance force fie ld . 

The analysis of reaching motion executed in the null field exhibit the . ·ame tra

jectory characteristics as described by the 'minimum jerk trajectory ' . Under the 

influence of disturbance, deviation from the straight path of the trajectory is ob

served at the initial exposure to the force field . It appears that the unexpected 

disturbance force push the arm away from the straight path. In response, the 

subj ect corrects the hand motion, causing a the reaching motion to look like a 

hook. 

3.3.2 Learning 

Evidence of progressive learning is seen in Figure 3.5. vVith practice, the devia tion 

in the reaching motion become smaller and smaller , and the path approaches the 

original reaching motion evident in the traj ectory in the null field. This learning 

pattern suggests tha t indeed there is a desired, minimum jerk traj ec tory that the 

reaching motion prefers, and even in the disturbance force field , the controller 

attempts to return to the desired trajectory by compensating for the disturbance 

force. 
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p· igure 3.5: Experiment result : hand trajectories with disturbance force field 

during the learning period. The dark line is the average value while the gray area 

is the standard deviation. Path of the reaching motion after (A) 250 reaching 

motions (B) 500 reaching motions (C) 750 reaching motions (D) 1000 reaching 

motions. This figure and one that follows are reproduced from [46] 
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3.3.3 Aftereffect 

When the force field was unexpectedly removed, instead of producing the original 

reaching tra jectory of straight motion to the target , the subj ec ts produced a 

trc1jec tory with a deviation from the path. The hook found in the reaching path 

is opposite direction from the movement devia tion seen during the initia l exposure 

to the disturbance force field. This evidence of aftereffect shows that the force 

compensation is not simply handled with stiffer muscles, but an internal model 

is being built for the disturbance force. The aftereffect is the signature of the 

internal model [46]. The aftereffect is also evident outside of the workspace where 

learning occurred. From comparing the evidence of learning in two types of force 

fields, it is evident tha t the learning is generalized in intrinsic coordinate system. 

Also it indicates that the learning is not accomplished in the form of a look up 

ta ble, but it is by building a generalizable internal model. 

3.3.4 Adaptive Motor Control Model 

To investigat e a plausible model capturing the evidence of learning during a 

traj ectory following t ask of reaching motion , another cont rol model was proposed 

by Shadmehr and Mussa-Ivaldi [46]. Instead of the simple PD-control model, 

Shadmehr and l\!Iussa-Ivaldi suggested an adaptive computed torque controller 

as a model of motor control which captures the evidence of the internal rnociel at:> 

seen from the experimental result [46]. 

T( q , CJ , t) = H( q)qm(t) + F( q , q) + E( q , q) - K DCJ. (t) - K pq(t) (:J .6) 

where K D and K p are constant , positive, definite matrices, q (t) is the stntc 

error , c]m(t) is the minimum jerk trajectory, aud q(t ) arc the current n,rm joint 
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Figure 3.6: Experiment result: hand trajectories without disturbance force field 

during execution of motion. Path of the reaching motion after (A) 250 reaching 

motions (B) 500 reaching motions (C) 750 reaching motions (D) 1000 reaching 

motions. 
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a nglci::i, so that q(i;) = q(i;) - qm(i;). The terms iI, F , and .E are the adaptive 

internal models of the arm inertia, centripetal and Coriolis forces, and external 

forces respect ively. The fixed component of the equation assured that the closed 

loop arm motion approach the desired traj ectory with stiffness and viscoi::iity. The 

internal model of the environmental forces acting on the arm in the controller is 

E, and estimates of the true values are iteratively built as the task is practiced. 

Although in the formulation of computed torque, the construction of the internal 

model by the neural system is represented , Shadmchr and Musi::ia-Ivaldi did uot 

address how the internal models are learned [4G]. The development of a motor 

control rnodel including the adaptation is discussed in det ail in the next chapter. 
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Chapter 4 

Mathematical Model of Adaptive Motor Control 

This chapter details a control algorithm from adaptive robot control which allows 

simultaneous learning and control of mul ti-joint a.rm and contains components 

analogous to those identified in chapter 3. Although this control algorithm was 

developed independently in robot control, it nonetheless appears to cap ture some 

of t he interesting characteristics of human motor control and the motor control 

adapta tion which have been omitted in previous models. 

4.1 Models of Arm Dynamics and Control 

Architecture 

Consider the central nervous system as a. controller which commands the execu

tion of motion. The proprioception sensing can be considered as a posit ion and 

velocity feedback pa.th. The sensory system of the human is not addressed in this 

model and is assumed perfect for this study, neglecting la.gs and noise. 

The study by Hogan [23], presented in the previous chapter , shows a. convinc

ing evidence that the desired trajectory is decoupled from the control algorithm. 
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And the desired trajectory attempts to minimize jerk [23]. T his finding allows 

a use of a control a lgorithm from the field of robot control, which separates the 

d esired trajectory calculation and the formulation of tracking control algorithm. 

In this study, the 'minimum jerk trajectory ' is assumed as the desired trajectory. 

In the analysis to follow, the mechanics of the human arm is simplified and 

modeled as a rigid two-link rnanipulator with revolute joints with torque about 

the joint center. The calculated output torque about the i-th joint is the sum of all 

of the torques applied by the muscles around that joint. Hence the redundancy of 

the joint actuation is not addressed. To create a rnathernatical model of actuation 

of multi-joint arm, a large number of solutions are available in the field of robotics 

where many years of research has been conducted in the area of dynamics and 

control. Equation of motion of a two joint robot arm can be expressed in the 

formof(4.1) 

H(q) q + F(q,q) + G (q) + E (q,q) = T (4.1) 

where H is then x n inertia matrix, q is then-vector describing the joint angles 

of the robot arm, Fis then-vector including the Coriolis and centripetal torques, 

G is then-vector including the gravitational torques , (therefore is equal to zero 

when the motion is constrained to a. horizontal plane) , and E is the n -vector 

representing the external environrnental force. 

4.1.1 Feedback 

A trajectory following motor control model incorpora.ting the intrinsic properties 

of muscles can be accomplished by using PD feedback control, where proportional 

term represents the stiffness and the derivative term represents the viscous prop

erty of the muscles [14]. Simple PD control model is able to simulate a reaching 
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u10tio11 conducted in a familiar environment. But to model arm motion in a 

disturbance force field and the learning of the disturbance force, more complex 

model is necessary. 

4.1.2 Passivity Controller 

To address how the internal models adaptively change, robotics suggests a par

ticnlar controller which is better suited for continuous adaptive operation. First , 

to discuss this controller, introduce a new error metric. 

s(t) =(!+ A) q = q(t) + Aq(t) (4.2) 

where A is a constant, positive definite matrix. Note that definit ion (4.2) states 

that if the controller is able to keep the condition of s = 0, the tracking error will 

converge exponentially to 0. Using this formulat ion of error, the passivity based 

controller can be expressed as (4.3). 

r (q, q, t) = H (q)q'(t) + C(q, q) qr(t) + E(q, q) - K o(t)q(t) - Ko(t) Aq(t) 

(4 .3) 

where q,.(t) = qrr\t) - Aq(t), and both KD and A are positive definite ma.trices 

[49]. 

As discussed earlier, the stiffness of the muscles vary. This co11troller ca11 

employ t ime-varying K D, but because there is currently no analytical fonnulatio11 

of how the muscle stiffness changes, K D is kept as a constant matrix at this time 

of research. 

Let r 0 denote the control law obtained usmg the exact k11owledge of the 

matrices, H , C , and E , r = r 0 (q, q, t). Then the resulting closed loop dynamics 
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can be expressed in the form 

Hs = - KDs - Cs + r(q, q, t ) ( 4.4) 

where error torque, r = T - T
0 = 0 is the discrepancy between the current 

control st rategy and the optimal T
0

. Then, there exists a positive definite energy 

function V(s, t) = sTH(q(t))s/2, whose derivative satisfies (4.5). 

V(s , t) = -sTK 0 (t) s + sr+ + sT (ir - 2C)s/2, ( 4.5) 

There is always an expression of C so that H - 2C is skew symmetric, hence the 

last term in (4.5) is zero, and thus, the energy function satisfies the dissipation 

inequality, 

(4.G) 

where k 0 ~ 0, because it is the uniform lower bound on the eigenvalues of ma trix 

J( n- Above equa tion , ( 4.6), states that the mapping from+ to s is passive. Note 

that if T = T 0
, so that r = 0, ( 4.6) implies that s( t) converges exponentially to 

0 , and hence ij converges exponentially to zero. 

4.2 Adaptive Arm Control 

Adaptive control strategies from the field of robotics offer possible insight iuto the 

successful adaptation of the internal models. In adaptive robot applications , if 

enough prior knowledge about the physical dynamics are available, the uonlinear 

components of the controller, H , C , and E , can be factored into a matrix of 

funct ions , where the exact structure of the nonlinear terms are known a priori, 

and a. vector of unknown constants, a: 
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Tn/ (q, q, t) H(q)c{(t) + C(q, q)q1.(t) + (q, q) 

Y(q,q, t)a. (4 .7) 

An adaptive controller can then estirnate the nonlinear terms, H , C , and E , by 

ch a nging its estimates of the constants a . Substituting equa tion ( 4. 7) for the 

uonlinear terms , the control law becornes ( 4. 8) . 

T(q,q,t) = -KD(t)s(t) + Y(q,q,t)a(t) , (4. 8) 

The control law uses the estimate of the nonlinear physical pararneters in place 

of the true value . The controller stably adjusts the unknown physical parameters 

in real-time using the adaptation law (4.9) which expresses the rnechanism of 

ad aptation. 

(4.9) 

where r is a symmetric, positive definite rn.atrix controlling the rat e of learning. 

It has b een shown that this strategy ensures tha t s approaches O asymptotically, 

t herefore q_ approaches O asymptotically (49) . This control law, coupled wi t h the 

continuous, real-time adaptation strategy, results in globally stable oper;:,,tiou , 

while achiev ing asymptotically perfect tracking of any sufficiently smooth desired 

tra ,i ectory. 

Although this formulation is mathematically elegant, it is uot likely t hat the 

lrnrnan hody is equipped with specific sets of nonlinear functions to utilize in 

building its internal models. This controller is also limited to physical system 

which is well expressed mathematically, but if there is a drastic change in the 

system , enough to change the structure of the nonlinearities in the matrix of 

functions , Y , the controller no longer can guarantee st ability or convergence. 
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4.3 Adaptive Arm Control and 'Neural' 

Networks 

Consider a different factorization of the nonlinear terms which is more promising 

as a model of a biological system and is less sensitive to drastic changes in the 

s tr ucture of t he physical system. The controller recent ly proposed by [42] instead 

parameterizes the nonlinear t erms as multiplying a ma trix of unknown functions 

by a known vector of signals: 

Tnl(q , q, t) H(q)c{(t) + C(q, q)q'" (t) + E(q , q) 

M(q, q) v (q, q, t ) 

or, in components, 

2n+ J 

Tt 1(q , q, t) = L Mi,.i (q , q) 'Uj (q , q, t) 
j = l 

where v1 = c_jI,' , Vt + n = ql", for l = l . . , n , and V 2n+ 1 = 1. Here control is determined 

by the estimates of unknown .functions M ij rather than estima tes of constants. 

The convergent force field hypothesis of the biological motor system presented 

in the previous chapter suggests a similar model of how the required motor con

t rol torques are constructed. Recall from chapter 3, that the experiments indicate 

tha t compensating torques generated are pieced together from low-level elemen

tary structures collectively called motor computational elements. The biological 

evidence of linear superposition of these motor computational elements sugges t 

that the adaptive nonlinear component is expressed as (4 .10). The mo tor com

puta tional element approximate the necessary functions by piecing together the 

sim ple basis functions 'Pk· 

N 

+tl(q , q, t ) = L Cl'.i,1,; (t ) t..pk( q , <'I, t ). (4.10) 
k = l 
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where f.f·1 
( q , q, t) is an adaptive estimate of the nonlinear torque required about 

the ith joint given the current state of the lirnb and the desired motion . Each <p1,; 

represents a torque produced by a motor computa tional element , and the cli,k(t) 

represent the rela t ive s trength of each elementary torque a t t ime t . To model 

biologically, the learning mechanism of these components uses a Hebbian rule of 

the form : 

where the ra te of learning is controlled by 'Y which is a constant. In this scheme, 

each weight &i,k adj usts in time according to the performance of elementary torque 

output , 'Pk, to minimize the tracking error measure si to an appropria te level. 

4.4 Motor computational e lements 

In this sect ion, the m athematical description of the motor computa tional elemeuts 

i i:> discussed. For various computa t ional models there is an expansion which satisfy 

the condition 

I
A1i,j(q, q) - t Ci, j ,k 9k(q, q, ~di :S f.;, j 

k = l 

for any ( q, rj) contained in a prespecified compact set A C R '2.n . Au excellent 

a pproximation of the matrix M can be constructed by this expansion using a 

single hidden layer ' neural ' network with (q, (j ) a8 inpu ts to the uetwork. T he 

approxima t ion accuracy is represented by Ei ,j. 91,: is the signal processing clement 

a t a node k , Ci jk is the output weights, and ~k is the input weights associa ted wi th 

node k. This expansion can approximate arbitrary function8 over a compact set 

to any specified accuracy as long as the function being approximated is cont iuuous 

in ( q, tj ). 
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where fnl( · t·) . d . . . . 
i q, q, , 1s an a apt1ve estimate of the nonlmear torque required about 

the 'ith joint given the current state of the limb and the desired motion. Each 1Pk 

represents a torque produced by a motor computational element, and the &i,k(t) 

represent the relative strength of each elementary torque at time t. To model 

biologically, the learning mechanism of these components uses a Hebbian rule of 

the form: 

Where the rate of learning is controlled by , which is a constant. In this scheme, 

each weight &i,k adjusts in time according to the performance of elementary torque 

output , 1Pk, to minimize the tracking error measure si to an appropriate level. 

4 .4 Motor computational elements 

In this section, the mathematical description of the motor computational elements 

is discussed. For various computational models there is an expansion which satisfy 

the condition 

l
j\![i,j ( q , q) - £ Ci,j,k .9k ( q, q, f.k)I :S Ci,j 

k=l 

for any ( q, q) contained in a prespecified compact set A C R 2n . An excellent 

approximation of the matrix M can be constructed by this expansion using a 

single hidden layer 'neural ' network with (q, q) as inputs to the network. The 

approximation accuracy is represented by Ei,J . 9k is the signal processing clement 

at a node k, e,iJk is the output weights, and f. k is the input weights associated with 

110de k. This expansion can approximate arbitrary functions over a compact set 

to any specified accuracy as long as the function being approximated is continuous 

in (q, q). 

38 



There is an algorithm developed by [43] which provides a precise sp ecification 

of N and f.k based on the smoothness of the function being approximating. For 

example, take a radial basis function: gk(x , { k) = g(l/hx - { kl/ ) where h is a 

Positive scaling parameter . The value of { k is selected to encode uniform mesh 

over the compact set, A. From this analysis, t o approximate the functions l \!liJ , 

only the values of ci,J,k need to be learned. 

The network size increases with the number of independent variables in the 

functions to be approximated, M i.i · Thus, network size can be reduced by imple

menting pr ior knowledge of the matrix M as much as possible [42). Consider for 

example, decomposing the term 

C (q, q) <{ = C 1(q) [q qr] 

where C 1 ( q) E n nxn2, and [q qr] E Rn2 contains all possible combinations CJi CJ}, 

for i 7· - 1 '· - , . .. , n . Similarly the component of the environmental force can be 

Written as E (q, q) = E 1 (q)p(q) where E 1(q) E n nxn and p(q) E R n represent 

an assumed known q dependence. Then , the nonlinear torque component can be 

decomposed in the form 

7 nl(q ,q, t) = N (q) w(q,q,t) 

Where w E 7?n(n+2) now contains the elements of c:( , [q qr], and p(q). Then, 

assume the functions required for each component of T n l are sufficiently smooth. 

Then a neural network approximation of the form: 

n(n+2) N 

T[f ( q, q, t) = L L Ci,j ,k 9k( q, { k) Wj( q, q, t) (4. 11) 
j=l k=l 

can accurately approximate the required nonlinear control input for appropriate 

Values of the network parameters N, { k, and ci ,J,k· In fact, by defining the differ

ence between nonlinear torque and the network approximation of the nonlinear 
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torque, d = T nl - T N one has 

n(n+2) 

ld.Jq, q, t) I :'S L Ei ,)i'wj(q, q, t)I 
.i = l 

for any inputs, joint angles and velocity of the joint angles in a bounded range , 

where each r: · is now the worst case network aJJproximation error to the com-i ,J 

ponents of N. Since the smooth, minimum jerk cartesian paths produce corre

spondingly smooth desired joint trajectories, lldll is uniformly bounded provided 

( q, q) can be guaranteed to remain bounded. F\uthermore, this bound can be 

made arbitrarily small by increasing the size of the approximating network [42]. 

Combining the above insights, a control with plausible representation of each 

weighted motor computat ional element is created. 

n(n+2) 

a.i,k'P1Jq,q,t) = 9k(q,t;k) L ci,.i,k w.i(q,q, t). 
j = l 

4.4.1 Adapting the Motor Computational Ele1nents 

The adaptive controller with neural network approximation of the nonlinear 

torque is expressed as ( 4.12) 

r (q,q,t) = - KD (t)s( t) ++N(q, q ,t) (4.12) 

where a network approximation is constructed from a weighted basis fu nction: 

n. (n+2) N 

+{(q,q,t) = L L c\ j,k(t;)gk(q , t; A:)wj(q ,q ,t) (4.13) 
j = l k= l 

which again uses estimates of the required parameters in place of the ( assn med 

unknown) actual values. Use of (4.12) with dynamics (4. 1) produces the closed

loop dynamics 

Hs = - K Ds - Cs+ y NC + d 
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where the elements of c(t) are of the form c; ,i,k(t) - ci ,.i,k, and the elements of 

y N E nnxN(n
2
+2n) are the corresponding cornbinations .9k(q, ~k) wi(q, q, t). 

Compare this closed-loop dynamics with the closed-loop dynamics of the adap

tive robot algorithm. It is the same except for the disturbance term d, which 

describes the discrepancy between the actual value of the required nonlinear 

torque and the network approximation of the nonlinear torque. The controller of 

( 4.13) can only provide the locally approximate parameterization of the nonlinear 

torque. Thus a careful treatment of the design of the adaptation is essentia l. 

P rovided that the joint angles and the joint velocities remain within their 

operating range, A, the disturbance term d can be accommodated for by a couple 

of robust adaptation rnethods . For one, a weight decay term can be added to the 

adaptive algorithm. The adaptive algorithm becomes 

(4 .14) 

where w(t) = 0 if l/c (t) /1 < c0 , and w(t) = wo > 0 otherwise. This adaptation 

law sets an upper bound, c0 , on the total magnitude of the parameters required 

to accurately approximate r nl. The parameter ~/ is a positive constant, learning 

rate; it can be different for each weight. 

Another form of stable adaptation law may be more biological. It allows each 

parameter value to saturate using a projection algorithm of the form: 

( 4.15) 

where P(:c, y, ,z ) = x if -z < y < ,z, or if y ~ -z and :c > 0, or if y 2'. z and x < O; 

P ( :c, y , z ) = O otherwise. Since the neural networks is only able to approximate 

the nonlinear torque to a specified, bounded accuracy, the projection is required 

to stop the adaptation when the performance reaches the appropriate accura,cy. 
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Human arm motion, due to its physical limitations, impose that the joint 

state variables remain within an easily computed nominal range, A. For more 

general case of nonlinear control, a special modification to the above control law 

is necessary, in case the state variable leave the compact set, A. The 'supervi ory' 

controller which force the state variable back to the nominal range can be added 

to accommodate for such a situation. In fact, the physical limitations of the 

human arm can be viewed as a type of 'supervisory' control imposed on the arm 

motion. Additionally, the pain sensation caused by the hyperextension of the 

arm can be viewed as a command from the 'supervisory' controller. 

This combination of 'neural' approximation, real-time adaptation, and 'su

pervisory' action (for some necessary case) can be proven to remain stable and to 

asymptotically converge to a small neighborhood of the desired trajectory [42] , 

[43] · Explicitly, the convergence can be expressed as 

l loT - ? E lim T 1/q(t)//-dt ~ k2 , 2 -
T-+oo O D/\ 

( 4.16) 

Where 
n 

E ~ sup sup~ /di(q , q, t)/ 2
. 

t x EA i==l 

and A is the smallest eigenvalue of A . This equation of the convergence capa-

bilities of the algorithm captures how the two methods by which controller may 

deal With the disturbance force field. The controller can implement torques which 

effectively stiffen the muscle, which is represented by increasing the term KD/\, or 

else the controller can improve its model based estimates by minimizing E which 

is the representation of how good the approximation by the internal model is. 
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4 .5 Simulation 

4.s.1 Simulation Construction 

A sirnula tion of two-joint arm motion was constructed using the adaptive motor 

control rnodel presented in the previous sections. The simula tion was constructed 

to compare the mathematical prediction of the above model to the experimental 

results of Shadrnehr and Mussa-Ivaldi study [46]. 

A rnodel of two joint arm motion ( actua tion occurring a t the elbow joint and 

th
e shoulder joint) was simula ted. Point-to-point reaching motion of length 10 

crn was conducted in a time duration of 0.65 sec. The simula tion assumes that 

th
e human reaching motion is dictated by 'minimum jerk trajectory'. A pscudo

ranclorn targe t is presented within the workspace of 15 cm by 15 cm. The target 

IS I · ' )resented in one of eight possible directions, equally separa ted from each other 

by 450- The reaching task is updated every 1.3 seconds, 0.65 seconds for the 

execution of reaching motion and 0.65 seconds to hold. The hold and wait phase 

is there because the disturbance force field deviate the hand trajectory, and the 

rnotion will take longer to execute. Initially, the controller is given 'perfect' self 

knowledge and given no knowledge of the environmental force field , hence E = 0. 

The sirnulation assumes that the test subject is an adult who had learned the arm 

Properties in his/her lifetime of practicing and learning motio11. Although the 

controller can learn the other terms, the simulation assumes that the CNS only 

needs to learn the environmental force acting on the human motion. The control 

laws described in the previous section, (4.13) and (4.15) were used to model the 

neural cornputa tion of the necessary joint torques. The gain matrices frnm [46] 

waR used in conjunction to the control laws: 
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4.5.2 Network Design 
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11.adial basis function network with a fixed width nodes specified by h > O and a 

fixed . f' . . range o translat10ns, k, was used to learn the nonlmear component of the 

dynamics equation [44} 4.17. 

9k( q) = g(hq - k) ( 4.17) 

The capacity of the network approximation of a smooth function is propor-

tional to /· - 1· ['' l] 1 . 1 f f' h . . r1~1 l L.t w 1ere r 1s t 1e rate o convergence o t e approxunat10n. 1e 

convergence rate varies according to the network size, smoothness of the function 

th
at is being approximated, and the type of basis function used. This simulation 

llseR Gaussian basis function. The domain of the good approximation was selected 

to include the range of joint angles exercised during the experiment. The value 

of Parameter h is set to 2, this makes the learning broad enough to generalize the 

learning to occur within the range of set A which is A= [- .5, 2] x [.5 , 2.5] . The 

larger value of h will give better approximation, but will require larger network 

si%e, and decreases the generalization capabilities. The optimization of h or the 

basis f_. · t· l · tl · Tl 1 · unction choice is beyond the scope o t 11s · 1es1s. 1e uetwor ( eqna.tiou 

llsing radial basis function is given in equation ( 4.18). 

8 

f{(q, q, t) = L L Ci,j,dt)g(hq - k) Wj(q, q, t) (4.18) 

Where 
.i = l k EIC 
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The learn· . t· . 
mg rate or each .J was tuned to match the learning rate observed in 

th
c experiments with human subjects: after some experimenta tion , the values 

11 = O.OI for .i = I , . . . , 6 and "/j = 0.04 for _j = 7, 8 were used in the simulation. 

The upper bound on the network weights, c was set at Cm ax = 75. 

The force field used in the simulation was 

E ( q, q) = J'I' ( q) BJ ( q) q ( 4.19) 

Where 

B = [--10.l - 11.2] . 
- 11.2 11.1 

and J is the Jacobian of the two-link arm, which maps the joint angle velocity 

to the cartesian velocity. This force field is the same one used in the experiment 

by Shadrnehr and Mussa-Ivaldi [46]. 

The reaching motion in 'null field ' exhibit perfect tracking, as seen in Figure 

4.1. 

4 .5 ,3 Controller Model Performance 

When the force field described by the equation 4.19, the simulation resul t show 

the dev· t· 1· h · 'h 1 ' l 1a 1011 rom the reaching pat m a oo <: s 1ape. Figure 4.2 shows the 

reaching path at the initial exposure to the force field. 

These reaching performance agree very well with the human retmlt reported 

in [46J. The reaching motion executed in a well known environment exhibi t very 

st
raight motion to the target location in human data, while the reaching motion 

executed a t the initial exposure to the force field is characterized by the hook 

Pattern · · on ented in the same direct10n. 
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Figure 4.1: Evaluation of reaching motion under 'null field ' 

Figure 4.2: 

field 
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Figure 4.3: Reaching motion executed after 250 cycles 

T he Figures 4.3 to 4.6 show the progression of the performance under distur-

orce eld. Clearly, the learning of the force field is seen in these plots. 
bance f fi 

The reaching motion approaches the baseline performance as the motion is ex

ecuted in the disturbance force field. Again, these results correlate well to the 

ata reported m [46]. Note agam that the control model can have any human d . . 

learning rate by changing the adaptation gain. For the purpose of the simulatiou, 

however, the adaptation gain was picked to match the human data. 

The evidence of aftereffect is seen in the Figures 4. 7 to 4.10. The t ime pro-

gression of the after effect growing is evident from these figures. The signature 

of internal model is seen as the hook pattern in the opposite direction from the 

initial performance in the force field. The appearance and the time progression 

of growing aftereffect is very similar to the human data re ported iu [ 4G] . 

Thus, it appears this is mathematical model of the adaptive motor control 
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Figure 4.4: Reaching motion executed after 500 cycles 
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Figure 4.6: Reaching motion executed after 1000 cycles 
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Figure 4. 7: Evidence of aftereffect aft er 250 cycles 
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Figure 4.8: Evidence of aftereffect after 500 cycles 

0.55 

0.5 

0.45 

0.4 

0.35 

0.3 

0.3 0.35 

0. 15 0.2 
0.25 

X (m) 

Figure 4.9: Evidence of aftereffect after 750 cycles 
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Figure 4. 10: Evidence of aftereffect after 1000 cycles 

is able to capture the performance seen during the execut ion of reaching motion 

in a well known environment and a t a initial exposure to the disturbance force. 

Moreover, the model is capable of successfully capturing the time progressio11 of 

the learning and aftereffect. The quali tative characteristics of the performance is 

very simila r to the reported human data [46]. 

4.5.4 Persistency of Excitation 

The human experiment shows the evidence of generalizable learning to outside 

of the learning workspace. Same behavior is difficult for this model of adaptive 

control. The control algorithm used in the model update8 the internal model 

j u8t enough to successfully track the desired trajectory. The co11structio11 of the 

exact model is not a necessity, unless appropria te desired trajectory is selec ted 

for learning. The desired traj ectory necessary for the construct iou of the ' perfec t. ' 

Gl 



model is known as the ' persistency of excita tion '. For further presenta tion on this 

topic, refer to [49]. 
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Chapter 5 

A Haptic Device for M otor Control Studies 

A haptic device capable of conducting future human motor control study was 

designed and built a t the Space Systems Laboratory (SSL). The haptic system, 

named TSUNAMI (Test Stand for Upper-body Neuromuscular Adaptive Move

ment Investigation), was built to study the adaptive motor control of upper limb 

motions same as the simulat ion described in chapter 4. This chap ter presents 

design considerat ions and the system description of TSUNAMI. To design a test 

apparatus capable of conducting an experiment in interesting environments such 

as the neutral buoyancy and the KC-135 invest igating the same scenario as the 

simulation described previously, the following considerations must be included 

in the system design. First , TSUNAMI must be capable of applying variable 

force to the test subject as he/ she reaches for a target position. The vir tual force 

field applied to the test subject must be well characterized in order to study the 

response of the human arm dynamics to the applied environmental forces , aucl 

the motor control adaptation to the external forces. Secondly, T SUNAl'vII must 

be able to perform the experimental task while resisting the small vertical force 

applied by t he test subject during testing. Thirdly, T SUNAMI must produce 

fo rces large enough to be sensed by the human subjects but small enough so that 
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they will not harm the test subject. It is advantageous for the system designer to 

design a robot arm whose force application capacity is not harmful to the subject 

as an additional safety precaution yet moves fast enough to accommodate the 

speed of the human arm motion. Fourth, the system must be designed to be 

portable and functional under water. For future research, it is important to be 

able to test human motor control in the astronaut training environments, such 

as in neutral buoyancy and on board KC-135 research aircraft. 

5.1 Design Criteria 

5.1.1 Workspace Sizing and Force Capacity 

The operational requirements for this test stand include realistic workspace and 

force reflecting environments. The system workspace, which must exercise the 

normal working range of human arm joint angles (shoulder and elbow), is de

signed to fit the target workspace size of 13.7cm by 13.7cm (5.4 inches by 5.4 

inches). The size of the target workspace will allow normal reaching motion with

out approaching the extremes of the test subject's joint angles. The workspace 

of TSUNAMI is further described in the later section. 

The force capability of the system, which must be large enough to induce 

effective deviation in operator motions, yet not endanger the operator , has been 

set at a maximum value of five pounds of force throughout the work area. These 

constraints, determined from data obtained via computer simulation, agree with 

the requirements of JPL's Universal Force Reflecting Hand Controller , wliich 

operates in a twelve inch cube and provides three pounds of translational force 

and 5.5 inch-pounds of rotational capability [4] · 
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The actuator has to be able to apply the specified force field to the subjects 

hand during reaching motions without allowing any other system dynamics to 

be sensed. For example, the test subject must not feel the mass and the friction 

of the actuators during any part of the experiment. For a manipulator that is 

not in::;trumented with a force-torque sensor, the actuator design must minimize 

cogging and backlash, but maximize the motors backdrive. In addition, the 

sensation of cogging and backlash would add uncharacterized and complicated 

disturbances to the force field during testing, producing unwanted disturbances 

during a null force field phase. The motors are there only to compensate for the 

system friction and to apply an external environmental force field. Additionally, 

the test subject must be able to backdrive the motor with very little effort . Thus, 

presence of virtually no manipulator dynamics is preferred. 

5.1.2 Data Measurement 

The manipulator joint angles and the joint velocity must be known in order to 

specify the appropriate tip force while compensating for the friction. To study the 

reaching motion data, the joint position and velocity of the tes t subject must be 

available for post-test analysis. To sufficiently characterize the human reaching 

motion which takes place in approximately 0.65 seconds for this experiment , 

the kinematic data is stored a t a rate of 80 Hz. This data collection rate is in 

agreement with similar studies conducted by Shaclmehr and Mussa-Ivaldi [46]. 
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5 .2 Adaptability and Future Considerations 

Although some experiments are conducted in a typical laboratory environment, 

the SSL conducts most studies of human operations in the neutral buoyancy tank 

and few studies on board KC-135 research aircraft to simulate microgravity envi

ronment . Therefore, TSUNAMI is designed to be adaptable to conduct research 

under water. Hence, all electronics and motors are encased in waterproof boxes 

for use in the neutral buoyancy environment. The Intel 80386-based data collec

tion system, which includes a PCMCIA data storage card, is also waterproofed 

and located in the vicinity of the arm to minimize noise contamination from the 

analog signals. The computers and the motors can be powered by a set of DC 

batteries for the testing in neutral buoyancy tank. 

5.3 System Description 

The test apparatus being described here is a two-dimensional, cable driven, paral

lel manipulator. The parallel manipulator configuration of TSUNAMI allows the 

two motors, which are instrumented with optical encoders, to be collocated and 

mounted off of the manipulator links. This parallel configuration enables motor 

placement outside of the workspace, thus reducing the inertia of the manipulator 

significantly. Figure 5.1 shows a picture of TSUNAMI test setup. The actuators 

need to be easily back drivable so that the test. subject can easily move the han

dle to the target position. The cable driven system allows the manipulator to 

have a very small gear ratio without bacldash or cogging. This is very important 

because, during the test, the unknown system dynamics need to be minimized 

a.s much as possible. In sumroarY, this configuration minimizes the manipulator 
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Figure 5.1: TSUNAMI test setup 

inertia and dynamics so that they are negligible rela tive to the dynamics of the 

system being simulated. Hence, the system is capable of t esting without being 

instrumented with a force-torque sensor, reducing the cost and devcloprnent time. 

5.4 Hardware Design: Mechanical Description 

5.4.1 Parallel Manipulator 

The TSUNAMI manipulator is a parallel linkage, two-dimensional system tha t is 

driven with a set of cables attached a t the link base. T he cable spans betwecll 

the link base and the motor shaft . A sketch of the manipulator co11fignratio11 is 

sh own in Figure 5.2 . Link 1 and link 3 are collocatec.l at the disk center. Aud link 
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:J and link 2 are connected by link 4 in a way that link 2 and link 3 always remain 

parallel to each other , and link 1 and link 4 always remain parallel to each other. 

This configuration assures that angle of link 3 is always the sum of angle of link 1 

and the angle between link 1 and link 2. The free rotat ing handle is constructed 

using two aluminum cylinders with a set of bearings, and it sits at the tip of the 

last link. The handle is designed to freely rotate so that the test subj ec t 's wrist 

orientation can remain constant regardless of the manipulator tip position . To 

meet the workspace size criteria, the rnanipulator link lengths were chosen by 

iterating for the desired workspace for various gear ratios in the desirable ontput 

torque range. 

0 

0 

Motor shaft 

Support structure 

__._- Link4 

/ 
Handle 

/ "'"Q'-------"-1 ---~ 11 a 
Link 1 \ Actuator 2 

Link 2 
Motor driver casing 

F igure 5.2: TSUNAMI top view 
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5 .4 .2 Workspace 

The rnanipulator workspace is the area in which the links are able to reach. The 

targets are constrained by the target workspace, and placed within the manip

ulator workspace. During the experiment, the test subj ect may overshoot the 

e and reach beyond the target workspace, therefore the target workspace 
targ· -t . 

18 
constrained in a smaller space, within the area reachable by the manipula

tor. Furthermore, the experiment should be conducted away frorn the edges of 

th
e manipulator workspace, because it is more difficult to move the manipulator 

near tl d · . 1
e e ges of the workspace. The top edges of the mampulator workspace are 

· ngu anty points for the TSUNAMI arrn, and are best avoided. The lower 
the si 1 . 

edges <lo not quite reach the singularity point but are very close to the base, and 

th
erefore do not have as much moment arm to move the arm. Consequently, the 

target workspace should be located as far away frorn the top edge as possible 

without · d ' 1 f b l qmte extending to the lower e ge. Figure 5.3 is a pot o ot 1 a.reas. 

5·4 ·3 Forward Kinematics 

Forward kinematics is the calculation of the Cartesian tip position from the joint 

angles. The forward kinematics of the parallel, two-link manipulator is very 

similar to that of the serial two-link manipulator. See Figure 5.4 for the schematic 

of the linkages. The difference between the two manipulator configurations is the 

specific angle data available from the sensors mounted on act t1ators . The serial 

manipulator has the angle data of link ) and link 2, while parallel manipulator 

has the angle data of link 
1 

and link 3. But, as can be seen in Figure 5.4, a, is 

equal to q 
1 

and 
02 

is equal to q 
1 
+ q,. Eq nations ( 5 .1) show the similarity of the 
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(a) 

/ 
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/ 

(b) 

Figure 5.4: Serial Manipulator versus Parallel Manipulator 

two equa tions. 

Ser'ial 

:.c l1 cos(q1) + l2 cos(q1 + r12) 

y l1 sin (qi) + l2 sin (q1 + q2) 

Parallel 

(5 .1) 

For further det ails on t he discussions of forward kinematics, torque calculatiou , 

and J acobian, see [11]. 

5.4.4 Jacobian 

The Jacobian is a multidimensional form of the derivative . It is 1tsed to traw-Jorm 

velocities and forces between joint space and Cctrtesian spa.cc. Equation (5.2) 

represents the Cartesian transformation of static forces from joint torques. The 
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velocity and force calculations are shown in (5.3) and (5.4), while (5.5) shows the 

.Jacobian of a parallel manipulator . 

5.4.5 

(::) 

(:) 

Motor Sizing 

T = JT . I 

(

- lJ sin(ai) 

lt cos(ai) 

( 5.2) 

(5.3) 

(5.4) 

(5 .5) 

The n1otor was sized to not have any greater mechanical advantage than a human 

arm (to prevent any harm) , and moves fast enough to keep up with the lnnnau 

reaching motion. Thus the motor was sized to accommodate a low gear ratio and 

still meet the force application criteria discussed above. The TSUNAMI gear 

ratio provided by the cable system is 15 to 1. 

Inland Motor'o, direct-drive DC torque motor ' was cho1:,en to ;-1,c: t.1111.tc the 

linkages on TSUNAMI. The gear ratio and link lengtho were designed specifically 

fo r these experiments. The Table 5.1 lists the specifications of the motor 11scd for 

the TSUNAMI actuators . These frameless motors are encased in rnotor housings 

were fabricated which hold the stator assembly, brush ring, rotor nsscmlJly, and 

stainless steel drive shaft together and provide mounting points. T he motor 

1 Part Num ber 29GGA from In laud motor 
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Size constants / Value Units 

Peak torque rating 0.85 lb-ft 

Motor constant 0.097 lb-ft/watt 

Motor weight 1.5 lb 

Voltage, s talled a t 12.2 volts 

Peak current 6. 8 amperes 

Table 5. 1: Inland motor data sheet. 

assembly of TSUANMI was covered with a delrin plate to protect mechanically 

sensitive par ts, such as bearings and encoders, from motor brush dust. 

Motor drivers, which require much more power than the above mentioned 

electronics, are encased in a custom water proof aluminum box connected to 

the motor casing, which is also separately wa ter proofed. From each of the two 

motor casings, shafts to dri ve the cables protrude through holes wi th a ::;hafL 

seals2 installed to prevent water from entering the motor casing. The shaft seals 

are commercially available seals that allow a rota ting shaft to pass thro ugh a 

hole while staying water-tight. The shaft seals add a small amount of additional 

fr iction to the system. Figure 5.5 shows the assembly. 

T he force sensing threshold of the average person is 0.25 ounces to 0.36 ounces 

[39]. T he test stand is capable of producing over four teen t imes tha t amount a t 

any point within the workspace . T he performance capability is listed on the 

Table 5.2. 

2 P art Number: 1141VIB124-G from Bal Sea.I Engineeri ng Company 
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Motor shaft 
- Shaft sleeve 

I 
I ,- - ----- - " ,,.--- - ---" 
I I I I I 
I I I I 
I_ _ _ 2=-=-=-=-=-=-=-= l...L - - - - - - _l - - - - - - _LI 

~ Motor driver casing Motor driver 

Figure 5.5: TSUNAMI actuators: side view 

Performance characteristic Value Units I 
Force application frequency 125 Hz 

IVIaximum Force at the tip 9.0 lb 

Ta ble 5.2: Performance capability of TSUNAMI 

5 .4.6 Support Structure 

The actuator housing, electronics, video monitor , and rna.nipulator assembly a.re 

held together by a rectangular support structure construct ed from aluminum C 

channels. This support structure also holds a fla t plate in front of the manipulator 

to support the test subject's elbow. The table mounted on TSUNAMI H.llows the 

subject to keep his/her test ing arm at shoulder level without installing an a.rm 

harness, which could interfere with the intended motion. T he arm Lmrncss is 

often used for tests which constrain the limb to a plane and simulate reduced 

gravity environments. However, these harness ofteu constrict the active muscles , 
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interfering with the motion. The support structure is 34 in in height , 18 in in 

width, and 28 in in depth. The front and the back portions of the support frame 

have aluminum panels installed for additional strength, but the two sides are left 

open for easy access to the electronic cables and hardware installation. 

T he flat panel video display is also enclosed in a separate custom waterproof 

box. The casing for the it consists of a hollow aluminum box, an aluminum back 

plate, and a plexiglass front cover. The video power is supplied from a DC power 

supply into the casing, and the video signal runs through a cable from the video 

driver card in the electronics box. The video display is rnounted 0 11 top of the 

manipula tor assembly. It is situated about 36 in from the test subject,. 

All of the electronics necessary for driving the DC brush motor and data 

collection are encased in a water proof, commercially available camera housing:1. 

Just as the video casing, the DC power is available remotely, and is supplied by 

cable into the electronics housing. 

5.5 Electronics Design 

5.5.1 Computer 

The electronic system is based on the Ampro 80386 SX mother boctrclt\ with ma th 

coprocessor and with 8 IvIB of RAM . The CPU, encoder reader card , P Cl\llCIJ\ 

interface card , video driver card, and digital to analog converter ea.rd me nll 

connect ed to each other through a PC104 bus with memory locations allocated 

to data from each carcl. The 386 SX Little Board is a 25 MHz nrn.d1inc with clnnl 

3 Ikelite box, manufacturer info 

'
1 Arnpro Computers Inc. 
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Zip Drive 

I --------

1 
I 
I 80386 CPU 
I 

Flash Ram 

:9 Power 
"' Dis tribution 
~ 1------

a; PCMCIA 

Video Driver 

DAC 

Quadrature 
counter 

---------- I 

AMC Motor 
Driver 

Driver 

Optical 
Encoders 

Figure 5.6: TSUNAMI computer system block diagram 

serial and parallel port , floppy drive controller , IDE hard disk drive interface, 

SCSI interface , and stackable PC/104 expansion. The software for data collectio11 

and for running TSUNAMI is stored on the PCMCIA card. AMPRO supplies the 

PCMCIA interface card which is compatible to their 386 SX Little Board. The 

data of the force output and the manipulator tip position and velocity arc stored 

in the PCMCIA card during test ing, while ZIP drive i8 nsecl for long term data 

storage. This PCMCIA card is not a bootable disk. To start up the cornp11tcr , a 

20MB IDE Flash Drive5 is used . A sketch of the elcctronic8 is provided in F igure 

5.6. 

The power distribution board takes the unregulated voltage from the remotely 

5 Part Number: SDIB-20-101 from Californi a Peripherals 

66 

"' . 

' ,., 



located twelve volt, DC power, (either twelve volt , DC battery6 or a power supply) 

and regulates to five volt computer power using a Datel DC-DC converter7. A 

DC-DC converter is used instead of a voltage regulator because it is much more 

efficient. Its efficiency reduces power consumption and heat generation. The DC

DC converter output has greater noise than voltage regula tors, because it cycles 

to provide the appropriate voltage, but the electronics powered by this board are 

not sensitive to small ripple. The board supplies power to the electronics in the 

electronics housing (CPU, PCMCIA card, video driver card , DAC board, encoder 

reader card, and solid state disk). The power distribution board also has a five 

amp fuse before the DC-DC converter for current protect ion. The electronics 

powered by this board require a maximum of three amps total. Due to the limit 

of current output by the power distribution board , a separate power supply is 

used for the video display, a floppy drive, and a ZIP drive. 

The encoder reader card8 with PC 104 bus is used to conver t the output from 

the optical encoders on the motors into digital values readable by the computer. 

Additionally, this encoder reader card provides power to the encoders. Thi8 

card has four encoder reader channels, configured in such a way that one of the 

channels can be jumpered to provide a clock counter which runs at GOO kHz . 

The clock signal from the encoder card is used to provide a time signal for the 

exper iment. The power requirement for the encoder card is a five volts co111p uter 

power at approximately 400 milliamps. 

A video driver card compatible with the PC104 bus and the PLAN An. display 

0 20 amp-hour, Power Sonic re-chargeable battery 

7 Model number : UWR-5/4000-D12 

kPart Number: 4I30 from MESA E lectronics 

67 



is available through AMPR09
. The video driver card is supplied with video driver 

software. This card also requires five volts about 400 milliamps. 

To control the torque output using a computer , the computer signal must 

be converted to an analog input and sent to the motor driver card. The analog 

voltage level is then converted by the drivers to a phase width modulation (P\i\TM) 

signal used to control the motors. F irst, the digital to analog converter card 

(DAC board) to converts the digital signal from the computer , then it supplies 

the appropriate analog signal to the motor driver board LJ. The DAC hoard is 

able to output either monopolar 5 volt signal or bipolar 5 volt signal. TSUNA1'ifl 

is configured to output a bipolar 5 volt signal which commands the motor to 

spin in one d irection with positive voltage and cornmand the motor to spin in the 

opposite direction with negative voltage. The DAC board requires a maximum of 

700 milliamps. When the operating mode of the n1otor driver board (also called 

PWM servo amplifiers) is set to a current (torque) mode, the input voltage is 

convert ed to a current output, and the driver board commands the motors by 

current control. This way, the output torque is d irectly commanded. The motor 

driver board has its own dedicated unregulated DC power source for the reference 

voltage, or the main power . By connecting a completely separate power ::;ource, 

the computers and the actuator system can be kept electronically isola ted from 

each other . 

9 Am pro JviiniModule/SuperVGA Display Controller 

10 Part Number AX10415 from AXIOIV1 

llPart Number: 10A8 from Advanced Motion Control:; 
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5.5 .2 Sensors 

The position and the velocity of the manipulator joints are calculated from the 

rnotor shaft angle, which is measured using optical encoders installed on the mo

tor shaft 12 . The velocity of the shaft motion is calculated by taking a derivative 

of the shaft position information. The data is filtered to reduce the noise intro

clucccl from the process of taking the derivative. The third-order filter is designed 

wi
th 

a Chebyshev type II digital fi lter design. The position and the velocity of 

the rnanipulator tip are calculated using forward kinematics calculations. The 

position and velocity information of the arm joints of the human subjects arc also 

calculated from the position of the manipulator tip (handle position). The end

point of t he human arm is collocated with the manipulator tip , because the test 

subject grips the handle installed at the manipulator tip. Since the arm motion is 

confined in two-dimensional space, the joint position can be calculated from the 

tip position using an inverse-kinematics calculation. But this method assumes 

th
at the planar arm motion is perfectly confined in two-dimensional space. Also 

assumed is perfect knowledge of limb segments, that each arm link is rigid, and 

th
at the subject arm motion is caused only by two joints. Prior to the experi

ment. , the limb segments are measured from joint center to joint center using a 

tape measure. The same person conducts all measurements for consistency. 

5.5.3 Velocity Filter D esign 

The tip velocity of the manipulator is calculated from the position information 

rneasured from the encoder counts. When the velocity information is uot rnca-

l 2 Part Number: RM15D-1024-3/8-G6-5-CA18-LD-l-C2 from RENCO 
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Figure 5.7: Filtered velocity data for link 1 

sured with a s b . 1 1 d 1· . . . f' . . . ensor , ut 1s ca cu ate Tom pos1t10n m ormat10n, some noise 1s 

uce . To extract the s1gmficant velocity value from the noisy, calculated liltrod d . . . . 

Vel · · ocity data, the noise is filtered from the velocity data. The filter is designed 

AB s third order, 'chebyshev :filter '. The plots in 5.7 and 5.8 show 
using MATL , 

the ra 1 . 
w ve oc1ty data and the post-filter data. The filter used for TSUNAMI 

· wn m 5.6). The filter used is a third order low pa.5S filter with cut off 
18 sho · ( 

quency of 50 Hz. The filter is designed with the stopband ripple of -40 dil 
fre 

y(3) - b3x(3) + b,x( 2) + b,x(l) + b0x(O) - a,y(2) - a, y( 1) - a,y( 0) ( 5.6) 

where n signifies the number of order y(3) is the current filtered velocity while 

x(
3

) is the current raw velocity data. y(2) and x(2) are the filtered velocity and 

th
e raw velocity from the one sample data previous to the current time. Because 

of order 3, the raw and the fi ltered data from 3 sample periods previous to the 
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Figure 5.8: Filtered velocity data for link 2 

I Constants Value 
Constants Value 

0.01829742761014 

a3 1.000000 b3 

a2 -2.18883806645027 
b2 0.00612189363910 

a1 1.67715473732202 
b1 

0.00612189363910 

L 

ao -0.43947802837328 
bo 

0.01829742761014 

I 

Table 5.3: Filter constants 

current d ata are stored to make the filter calculations. 

M emory and Data Management 

The dat . . . . 
' a 1s stored m RAM real-t!lne. At t.he end of the experiment, the data 

is d 
ownloaded from PCMCIA card. The data storage is performed alter the 

5.5 .4 

~~ti d . . me ata collection to reduce the computational tune. The !llaximuur data 
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nne 1s party 1ctated by the fact. that running TSUNAMI and storing collection t · - · 1 d ' · 

thc data are conducted in one code, and the motor is dithered at about 500 Hz for 

th
is experiment. The data is then transferred over to Macintosh using zip drive 

for later analysis. The experimental data analysis is conducted using MATLAB 

[code in appendix]. The data collection runs at 80 Hz as previously mentioned. 

5 .5 ,5 Video Display 

The display is a flat panel, plasma display manufactured by Planar
13

. This display 

was used because it can be easily enclosed in a custom under water casing, and 

it requires low enough power to be used under water for future study. Also, the 

display has to be large enough so that the test subj ects can sec the information 

easily and clearly. LED displays were rejected at the outset of the study because 

of the high cost of active matrix LED and because anticipated arm motion rates 

were sufficiently high to cause non-active matrix LED displays to exhibi t ghosting 

effects. 

5.6 System Modeling 

To improve the experimentation, various tests were conducted 0 11 T SUNAMI. The 

target workspace hOO to be optimally placed within the manipulator workspace 

The t orque output WM calibra ted to account for the discrepancy between the 

output torque and the commanded torque due to motor inefficiency and the 

nonlinearity of the DAC output. Also, tests were conducted to construct a friction 

model of the two actuators. Jn this section of the chapter , the various t.ests 

fodel Number: EL 7768MS from Planar Systems Inc. 13 1 
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conducted on TSUNAMI are presented . 

5.6.1 Torque Calibration 

Theoretically, the torque output can be calculated from the equation T
01

,
1
, = 

K1, X ·i x Tcom ,mand x (g ea,7'ra,tio). K,, is the torque sensitivity. For the motor used 

for TSUANMI, K1, is 0.125 lb· ft/amp and i is the current commaucl from the 

PWI\II servo arnplifier. Realistically, the DAC board does not output a perfectly 

linear voltage . Nonlinearity may be introduced at the motor driver board ; and 

there is an inefficiency in the motor which could alter the actual output torque 

from the theoretical value. To rnake sure that we have a precise knowledge of the 

tip force, the torque output of the motor needs to be calibrated. The force output , 

in a stall condition at the first set of links, is measured using a force sensor. The 

force sensor i , fixed on the table and attached to the test link with a stainless 

s teel cable. A voltage is commanded while dithering the motor. The resultant 

force output is measured. This test is repeated for both links a t numerous levels 

of the commanded voltage. Figure 5.9 illustrates the calibration setup for the 

stall torque test. Link two and link four are disconnected during this tes t. 

The output force is converted to an equivalent output torqne at the base disk. 

The data is reduced to calculate the linear relationship between the comma.ndccl 

torque and the output torque. The calibration curve is a set of fonr linear curve 

fits . As a result , the equations describing the linear rela tionship arc nscd 111 the 

software to command the desired torque output. Plots 5.10 and 5.11 show the 

calibra tion da ta along with the curves fit s. 
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Figure 5.9: Torque calibration test setup 
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Figure 5.10: Torque calibration data for link 1 
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Figure 5.11: Torque calibrat ion data for link 2 

Friction Compensation 

The torque calibrat ion described previously is good for a stall condition. But 

with motion, the friction effect also influences the torque output . The motors arc 

dithered to reduce the effect of the friction. The dither ampli tude and frequency 

are both chosen empirically, but there is still not enough friction compensatiou. 

Because TSUNAMI's control algorithm does not include the force feedback, it 

is essential to compensate for friction by constructing a friction model for the 

system. To build a friction model for TSUNAMI, the friction model for the two 

actuators are calculated separately, which allows the measurement for each link 

to be conducted separately. The friction at the bearings installed i11 t he ti nk 

_j oints is assumed to be negligible. This assurnption is viable because most. of 

t he frict ion comes from the actuator assembly. To conduct the friction test , a 

known voltage with dither is commanded to the test link . The link is free to 
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Figure 5.12: Friction rnoclel for link 1 

rnove wl ·1 11 
e the position and the velocity data of the link are recorded for later 

analysis . Frict· · cl d t· · d d 1 1 1 · 
ion 1s mo ele as a unct10n epen ent so e y on ve oc1ty, hence 

the 
commanded torque is plotted against mes.sured steady state velocity. The 

cornrn 
anded torque, once the steady state velocity is reached, balances only the 

f . n ct ion at t l . . . . 
' · 

1
at particular velocity since acceleratwn 1s zero, hence the inertial 

effect · is zero. 

Prom tr f' . . 
ie T1ct1on test , the data is plotted on the Figures 5. l 2 and 5. l 3. To 

iuclutle the friction compensation model in the control of TSUNAMI, the equa-

tions wl. . . . . . uch descnbe the relationship between the fnct1on and velocity must be 
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Friction model: Link 2 I • tau out I 
curve fit 
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Figure 5.13: Friction model for link 2 
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CS t imated rr · 
· .1-0 perform the curve fit, the form of equation must first be chosen. 

The sim1)lest £' f' fi · th 1· fi B b 1 l , orm o curve t 1s e mear curve t. ut , o vious y, t 1e linear 

cqua tior 1 . . 1 
wou d be grossly incorrect. Another level of complexity would be a 

linear , , c:: _ . • . . curve nt with a st1ct1on torque at q = O. Note that the curve and the 

offset at zcr·o · ·1 l f · 0 d · 0 'I' l · · t·11 1s not necessan y t 1e same or q > an q < . us m s 1 a 

crude est · t f' · · [ ] [ ] ima e or the lower range of velocity. It is previously reported by 3 , 5 

thatth - f· ·· . . . . e n ct1on has a very nonlinear function near q = 0. This effect is know as 

"S 
' tribeck ff " · · · · · F TSUNAl\111 l 1· . d · :1 ·1 c ect or as slip-stick friction . •or , , t 1e unction esc11 )eC 

by 
th

c equation (5.7) [9] which includes viscous, stiction, and Stribcck effects, is 

used for the curve fit. 
(5 .7) 

Table 5 4 1· t l · t· l f' · t · d 1 ' t1·on · is s t 1e values used for the coefficients or t 1e n c 1011 mo e eq u<.1 , 

(5.7) to er t· h · 1· f' · t· 1 ca ,e t e curve fit approximations · or · nc 1011 va ues. 

~ 

I 1 
Link# Co 

C1 
C2 C3 C4 

.__ 

Link 1 (positive) -0.074952 9.79E-05 0.14962 0.841276 -0.77746 

L· 
-0.0016 0.68793 -1.10855 

mk 1 (negative) 3.757823 -3.79467 

Link 2 (positive) -4.637 4.4585 0.00323 1.0691 -1.3546 

Link 2 (negative) -0.1405 0.12703 0.0585 1.0331 -1.0507 

Table 5.4: Friction model monS
t
ants 

5.7 Test D escript ion 
A ty · t I stu<lY 

. pica! experiment using TSUNAMI will be a upper-limb, motor con ,ro . . 
Where a b. . ·1 h Jd. .. onto the rna,uipnla,11-

su Ject will execute reaching motions whi e 
O 

mg 
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dmn end-effector. The pseudo-random target locations a rc di play -cl on the vi ie 

dis play mounted on top of the manipulator base. Test subjects are instructed to 

move n, ·ursor , which represents the location of the -nd-~fl>ct r , t th' square br

µ; .t. L>y rnovin · the m nipuland.um. m:iu ,, t '-' t iu ·, va riable forcn ·an l , a ppl_i l 

by the manipulandum. The position and velocity data of t l e rn, nipuh1udum will 

b \ t · · .. , l f r lat l' ln,t a, mialysi . The p sit ion and velocity of the test subject' . 

.i oint angles arc calculated from the manipulandum da,ta usn1g; 111 r8 t h ll fl, l · .. 

eq 11 a tions . 

5.8 Software Description 

The operating system on the TSUNAMI computer is DOS 6.2.2 and the cornpiler 

is g;cc for DOS called djgpp which is available on the Internet a t no cost. T he ex

periment apparatus was programmed using dj gpp on a 386 computer. TSUNAt\!II 

code requires a large block of RAM available for data storage ( amount beyond 

DOS's 640K fla t memory limit) , and has interrupt driven functions; gnu based c 

compiler was used since it allows the entire memory space to b e accessed. The 

TSUNAJ\/11 software performs manipulator control , graphical output , n,nd c\ata 

collection. It is included in the appendix A and B. 

5.8.1 Control Scheme 

Control of the manipulator is fairly simple. The proposed experiments rccp1irc 

the manipulator to apply a force which is a, function of current t,ip position n.ud 

velocity, or a function of current joint angles a.nd velocity. T his test requires ouly 

torque control, which is achieved by sirnply sen ling nt conunand cmrcnt that is 
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Proportion. 1 . . 
a to the desired motor torque. The resulting torque is not fed back, 

but a calib · · . 1at10n test was performed to assure that the output torque is equal to 
the co . 

mmanded torque. 

5.8.2 E xecution Time 

'I'he two slow t · f 1 d d' 1 · i · 1 'd es port10ns o t 1e co e are ISP aymg grapmcs to t 1e v1 eo output 

a
nd 

Writing· data to a data file. rr 1 d f' h d d .10 run t 1e co e aster, t e ata is store in 
RAM 1 . 

c unng testing, and at the end of a test session, the data from RAM is 
Written t 0 a data file. Furthermore, the target is not updated every main loop 

cycle, but is lI.mI·ted to 33 Hz. Th · h ·1 1 ct· 1 e target remams on t e screen untI t 1e ISP ay 
ft1nct · 1011 

is called. The display function erases the target from the screen and 
ca1cu1at 

es the new target position. It then updates the new target position if 
the full . . . . 

motion durat1011 is reached. Otherwise, the same target 1s drawn on the 
screen T 

· he motor is dithered at 66 Hz. Therefore, to attain an equal amount 
of ditr . . 

ier voltage in both directions, the torques are commanded at much faster 

frequency. The dither calculation and DAC output occurs in the main loop which 
e:x:ecut 

es the fastest . 

5.8.3 
Interrupt Driven Code 

To run t l 1 · t· · d · 1e system and record data at a fixed rate, t 1e actuat10n unct10n, 1s-

Play function , and the data collection function are all tied to the operating system 

111terru t l A . P · As shown on Figure 5.15, the main loop continuous y runs. n m-

terrupt handler is tied to a function which sets the flags for RunTSUNAMI, 

Display_}earn, Display_star , and TakeDATA. If the flag for a function is set to 

an" " 011 state , that function is executed. RunTSUNAMI executes every cirne the 
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Sample position 
Calculate 
Command torque 

0.0067 0.0134 

T D 

Record Data 

0.1005 

F igure 5.14: Software timing diagram 
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\ Interrupt ) 
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................ _ .. .i 
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{Interrupt Handler) 

Clean up 

Wait for interrupt 
handler to finish 

Run TSUNAMI 
TakeDATA 

Display 

Check for quit 

Figure 5.15: Algorithm diagram 
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interrupt fires, while data collection function execute every other intcrrnpt , and 

display function only execute every fifth interrupt. Figure 5.14 shows the timing 

sequence of the function execution. 

5.8.4 Target Generation 

The target is generated by calculating a fixed length distance in a pseudo-random 

direction from the current position. The target is constrained to remain within 

the target work space. The directions are pseudo-random because it is picked 

randomly using the C pseudo-random number generator from eight possible di

rections equally spaced at 45°. The algorithm to display the target during the 

exp eriment has two components. First , during both the learning phase and the 

evalua tion phase, a pseudo-random target has to be calcula ted . Secondly, during 

the evaluation phase, the target from all eight directions must be executed twice. 

The algori thm m ust pick the next target while trying to minimize the number 

of sequences required to execute the eight directions. The algorithm has to keep 

track of which target has been already generated and which has not. All of the 

target directions must be taken twice; once with , and once without the applied 

force field or1. 

A new target is presented every 2.0 seconds, but each reaching motion takes 

only a.bou t 650 milliseconds. The longer duration is allocated to accommodate 

for the test subjec t 's reaction time which is about another 500 milliseconds and 

a p ossible longer reaching time due to the deviation in the reaching trajectory 

induced by a disturbance force field . 

During ea.ch target presentation, the display function is called about 65 times. 

T'here are two t iming variables calculated in di splay functi on. One is the i11dcxi11g, 
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which is counted every time the display function is called and reset to O when a 

11ew reaching sequence is initia ted. The second variable keeps track of whether 

the time has increased beyond 2.0 seconds. If the time is equal to or exceeds 2.0 

seconds the variable n is set to 1, otherwise it is 0. The pmpose of this is to know 

when the next reaching sequence should be started . 

The computer generates a random integer between O through 7. T his integer 

is converted to an angle from 0° to 360° a t intervals of 45°. When the loop counter 

index is equal to 60 , the next target location is calculated from the angle. It is 

previously det ermined that maximum index for a reaching sequence is between G3 

a nd 67. Therefore, by the t ime the index reaches 60 , the test snb,i ect should have 

reached the previous target position and is waiting for the next target position 

to be displayed. The target location is calcula ted to be 0.29528 ft (9cm) from 

the current tip position at the random angle previously mentioned. This target 

position is checked to see if it remains in the workspace. If it docs uot , a.not l1cr 

target position which will stay within the target workspace will be calcula ted . 

The current tip location is compared to the workspace grid shown in the Figure 

5.16. 

The grids in Figure 5.3 are created to provide previously calcula ted target 

d ir "ctions which remain within the confines of the workspace . The position is 

first checked to see if it is within the center grid. If so, a r·u1clorn directiou is 

picked out of the direction set of 1, 3, 5, or 7. For each work. ·pace grid, c:alc:11lat ions 

a re conducted to find which directions the next targets ca11 go and still remain 

in the t a rget work.-·pace . If the tip position is not currently in the center grid , 

then it is placed in one of the four distinct , workspace quadrants. Each q1mdra11L 

is fur ther divided into fou r sect ions. T he optional directions for those areas an' 
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indicated in the diagram. One of those directions is picked to calculate the next 

target position. At the end of the reaching duration, the new target location is 

displayed and the loop counter index, m is reset to 0. 

The second part of the display function makes sure that all eight directions 

are displayed twice; once with force field "off" and once with force field "on" . 

Figure 5.18 illustrates the algorithm to keep track of which directions have beeu 

used for the target generation. For the evaluation phase, a status flag is set 

to "evalua t ion" and a direction is selected from the target array which holds 

numbers between zero to fifteen in a random order. The numbers from zero 

through seven will represent directions from zero through seven with the force 

flag set to "ofP', while the numbers from eight to fifteen represent directions from 

take a II from 
the direction 

array 

convert the II 
to a direction 
and a force 

value 

is the target 
with in the 

workspace? 

calculate 
the target 
position 

mark this# 
as being done 

choose a grid 
the current 

position is in 

pick a 
direction 

from the grid 

'"" was this II 
used before ? 

---:u::--
target 
sition 

Figure 5.18: Target generation algori thm 
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zero through seven with force flag set to "on" . From the numbers provided, 

a candidate target location is calculated. If the target doesn ' t remain within 

the workspace, a new target position is calcula ted in the same manner. In the 

cases where the t arget position is calculated from the first selection of a number 

from the target array, that value in the array address is marked as having been 

executed, and the t arget array is indexed until the next element in the array 

is not labeled as having been executed. If the first selection from the target 

array does not produce a viable target position, another number is selected as 

described earlier. Then, that direct.ion number has to be checked to see if it 

has been executed previously with force "on" and/ or "off' ' . To accomplish this, 

two variables are created , one equal to the direction nurnber and the other equal 

to the direction number plus eight. Then the first varia ble is checked to ::;ee if 

the direction number still exists in the target array. If it does exist , the targe t 

location is calculated from that value, the force fiag is set to "off" , and the number 

is labeled as having been executed. The target calculation is now complete for 

this reaching sequence. The array index is moved until the next element is not 

labeled as having been executed. If t he number is not found , that direction was 

executed with the force field "off", and was marked as completed by setting the 

va lue to -1. Second variable , direction number plus eight, is checked to sec if it 

still exis t s in the t arget array. If it is found in the array, the target location 1s 

calculated, the force flag is set to "on", and marked as having b een executed. U 

the direction value plus eight also doesn ' t exist , the target value is cH.lcnlatcd and 

the force flag is set to "on" , but there is nothing to b e done with the targe t array. 

At t his point , the array index is moved until the next clement is not labeled as 

having been cxecnted. This is repeated until t he a rray index reaches sixteen , n,t 
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wbich time the sta tus flag is set to "complete" and the evaluation phase ends. 

The target generation algorithm is illustrated in Figure 5.18. 

5.9 Preliminary Experimentation 

A preliminary experiment of human reaching motion was conducted with T SUN Al\lII. 

To investigate the capabilities of this t est apparatus to study upper limb motion , a 

simple experiment was conducted. This section describes the experiment method 

and the result . 

In order to conduct this experiment, TSUNAIVII was built to measure the 

human reaching motion during null and specified force field applied to the human 

subj ect at his/her hand. This specified force field , disturbance to the reaching 

motion , is chosen to be propor tional to the arm motion velocity because the most 

force field experienced in na ture is proportional to velocity, for example, drag. 

The velocity and the tip position of a test subj ect is measured a11d a11alyzed 

to study the changes in reaching motion during disturbance force field . The dis

turbance force field used in this experiment is the sarne force field used in the 

simula tion described in chapter 4 and in the experiment conducted by Shad

mehr and Mussa-Ivaldi [46]. The goal of this preliminary study is to evalu ate 

TSUNAMI 's capability to study adaptive motor control of humans. Hence , the 

experiment is performed to have a test subject execute reaching motions iu the 

same force field as used by Shadmehr and Mussa-Iva.ldi [46] and as used by the 

simula tion described in chapter 4. The reaching motion in a well known environ

ment referred to as the 'null field' and in disturbance force field is studied to see 

if t he result will correla te well wi th the previously reported data from chapter 3 

and chapter 4. 

88 



5.9.1 Experiment Method 

First , the test subject practices the reaching motion for 250 reaching cycles in 

no disturbance force field called 'null field ' . Test subject is presented with a 

target described in the target generation section. Test subject is instructed to 

rnove the manipulator handle to the t arget position and rest until a new t arget is 

presented. New target is displayed every 2.0 seconds. T he current tip position is 

ava ila ble as a circular cursor moving on the screen . During the practice session , 

the tip position and tip velocity dat a is recorded to be analyzed later . Following 

the practice session, a similar test is conducted to study the reaching motion 

executed in the disturbance force field. The tip position and tip velocity data it> 

again recorded for la ter analysis. 

5.9.2 Test Setup 

During the experiment , the test subject is outfitted with a wris t guard to prevent 

motion a t the wrist. The subject is seated in a car scat fixed in front of the tes t 

st and with the table being at the shoulder height. The body position is fixed 

with respect to the testing table to assure all motion is executed through the 

shoulder and the elbow joint. The table, which holds up the test subject's elbow 

to constrain the arm motion in a plan , is covered with a teflon sheet to red11Cc 

the friction effect on the test subject 's arm. At the star t of t he experiment, once 

the subj ect is seated , the initial angles of the elbow and the shoulder joints arc 

rneasurcd . 
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5.9.3 Experiment Result 

Plots in , Figure 5.19 to 5.21 , show the experimental results of the reaching test 

described in the previous section . The reaching motion executed in the 'null field ' 

exhibit straight pa th to the target position , as reported in studies by [1 4], [51], 

[16] [46] . Plot shown in the Figure 5.20 is one of the reaching motion executed 

in the 'null field '. This reaching motion is executed in the positive x , negative y 

direction , 135°. T he reaching path is straight to the target while velocity curve 

is bell shap ed as expected. The reaching rnotion occurs about 490 milliseconds 

after the target was presented. The reaction time, the t ime from the presenta tion 

of the target until the movement is initia ted , ranged from about 480 milliseconds 

t o 520 milliseconds. The movement duration seen in this experiment was about 

750 milliseconds instead of the reported 650 milliseconds [46]. 

Figure 5.21 shows the reaching path generated during execution of reaching 

rnotion a t the initia l exposure to the disturbance force field . The reaching motion 

executed in the disturbance force shows the same hook pattern as seen in the 

simulation and in the experimental result of Shaclmehr and Mussa- lvaJdi s tudy 

[46]. The reaching motion in the force field takes longer trajectory clue to the 

influence of the arm being pushed away from the straight pa th , and the corrective 

motion made toward the target. 
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Chapter 6 

Conclusion and Further Study 

6 .1 Discussion 

The adaptive motor control model proposed in this thesis appears to success

fully capture the characteristics seen during the learned point-to-point reaching 

m otions of upper limb in a horizontal plane. The model also describes a plausi

ble algorithm describing the adaptive construction of an internal model by the 

CNS. The adaptive computational element used in the model proposed in tlii :::; 

the:::; is uses the Gaussians, but the model is not sensitive to the particular basis 

funct ion chosen for the funct ion approximation . IF the physiological data sup

porting a certain type of computational element become avftilable , this model can 

incorporat e the new motor computational clement. 

The internal model of the environmental force is con:::;tructecl in a ~imilnr 

manner to the convergent force fields observed in Bizzi's stndy [7]. Both the 

convergent force field, which is produced in the spinal cord , and the low-level 

elernentary computational units are computed in intrinsic coordinate frmn c::; . 
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6.2 The Upgrades to TSUNAMI 

The obvious firs t step to the upgrade to TSUNAl\111 is to complete waterproofing 

the TSUNAMI system. Additional work needed to make TSUNAMI function un

der water includes installing waterproof electrical connectors to the motor driver 

casing, the video d isplay casing, and the electronics box. T he video display cas

ing, motor driver casing, and the electronics box should be pressurized as well. 

The knot which fixes the shaft sleeve on the motor shaft needs to be redesigned 

so that there is no water leakage through the connection between the knot and 

the shaft sleeve. Also the power cable needs to be built to provide power to the 

electronics from the surface. 

Another improvement recommended for TSUNAMI is to rnoclify the actuator 

casing to make sure that the motor shaft is aligned better. I suspect the motor 

sh aft is ever so slightly off angle which is causing an additional friction that is 

posit ion dependent. The cable connection must be aligned just right also. 

6.3 Recommendations for Future Research 

The rnathematical model proposed in this thesis is an early attempt. to more 

ambitious research bridging the human physiology to engineerin1;. Numerous 

foture studies can come out directly from this study. 

The first st ep is to strengthen this study by conducting multiple subject ex

p eriments, perform statistical analysis on the experimental results to qua.nti{y 

t he differences b etween the subjects, and compare to the difference betwe(-\11 the 

simulation result to the average experimental result . This study would allow 

quantified comparisons between the model and the human motion. 
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Second, extend the study to encompass more disturbance environments that 

.-u c more m eaningful especially for NASA and the SSL. The model cau b e tested 

11ncl cr the influence of disturbance modeling the drag force in the neutral buoy

a n cy environment . The comparison of the result to the experimental result ob

tained frorn the human experiment obtained from under water will evaluate the 

simula tion 's predictive ability. Also the data from neutral buoyancy simula tion 

will be a s tep closer to improving the astronaut training program, by pot entia lly 

providing a powerful analytic methodologies to training astronauts. 

On rnore scientific note, instrument the t arget muscles, such as biceps and 

triceps p a ir , with EMG sensors during testing will provide further human physi

ological d a t a to improve the model which is not currently available. By studying 

t he cha nge in the muscle recruitment during learning, issue of stiffness change 

during learning can b e investigat ed , providing another da ta which can be incor

p ora ted into the model. 

This sam e model can b e extended to a full 6 DOF model of adaptive neu

romuscular control by modeling the human posture control during execution of 

arm motion in multiple environments. This study will also extend a research 

conduct ed previously at the SSL to quantify the simula tion differences between 

the neutra l buoyancy, KC-135, and the rnicrogravity environment by observin g; 

t he differences in the postural rnaintenance in those enviromnents [5:3]. The dis

turban ce force to the postural control will be present due to the execution of 

a rrn rn.otion. Conduce an experiment of postural maintenance during rnachiu g; 

motion in 1-g lab environment and the neutral buoyancy environment in order 

to qua ntify the changes in sensory-motor coordination across two cnviromnents. 

In time the same experiment can b e conducted on-b orrrd KC- 1:35 am\ on-board 
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·c fihuttle to provide quantitative differences of the two rnicrogrw ity s· 
1 

spac · · , < . nnu a-

. . C'.rlvironments to the actual rnicrogravity environment. t10n , 

The control model proposed in this thesis with the developments mentioned 

a bove can be applied to designing a better control of the prosthesis. The electrical 

. . , ls of· the motor control commands from the human body can be mca.sure,c·l s1gn<1 · ' · · 

Cl (·"n become the input to conducting simple motions of the prosthesis. This an . ,<• · 

11 give more capabilities and closer to typical human functionality to a state, WOU C , 

of t he arm prosthesis. 
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Appendix A 

Header File for the Experiment Software 

This header file 1s linked with RUN.C to run TSUNAMI and c:ollec-t data 

during experiments. The headerfiles include de.fined variables , initialization of 

functions, 1:.rnd the defined shortcuts. 

I• 
------ - - --- ------------------------------------------------------------- ---------------------------- ------------------- -

Filonamo: Arm2.h 
Curront location: o:\gprog 
I n c ludod in filo: 

Juno 99 Dato last changod: ---------------- ----------------- - - --------- - - --------- -------- - ---------------- ------------------------- - ----------- ---

typodof unsignod char byto; 

!********** 
#dofino HEAD_CHANO 
#dof ino READ_CHAN 1 

#dof ino HEAO_ CIIAN3 

Udof ino CLEAR_CIIANO 
lldof in o CLEAR_C HANl 

Udof ino CLEAH_CHAH3 
Udof ino DCHl _LOW 

#dof inc DCl!l_HIGH 
#do f ino DCH2_LOW 

#dofino DCH2_11IGH 
#dof ino DOUT _CTL 
#dof ino EBASE_O 
#dof ino EOASE_ 1 
Udof ino EBASE_.2 
#dof ino EBASE_3 
Udof ino E_CMMD 
#dof ino REV _CNT 
#do f ino FREQ 

Constants 
Ox84 
Ox85 
Ox87 
Ox88 
Ox89 
Ox8B 
Ox0220 
O:x022 1 
Ox0222 
Ox0223 
OX0225 
Ox0210 
Ox02 11 
Ox02 12 
Ox0213 
Ox02 16 
4096 I• 
500000 .0 
2 147483647 
4294967295 
4096 

**********! 

I• DAC board base address • I 

I• DAC base + I •I 

I• DAC baso + 2 •I 

I• DAC baso + 3 •I 

I• DAC bas o + 5 • I 

;-.. Coun'tor board baso address ... ; 

I• Counto r: baso + I •I 

/• Counter: base + 2 •I 
baso + 3 • I 

/• Coun'tor: baso + 6 cmmd rogistor •/ 
(Pu l s o c nt)/rov: 1024*4 for quadra'turo • / 

•I 

/• Countor: 

/• Froq. of oncodor coun'tor 

/• Max. numbor of oncodor countor •/ 
/ • 1024 puso/rov ••1 for quadrat:uro • / 

#dof ino HALF _CTS_PER 
ltdof i no FULL_CTS 
Udofino ENC _CNT 
#dofino GEAR_RATIO 
Ud ofin o L1 

15. 254 237288 
0 .89808 

/• Goar Ratio 
/• Link 1 longth •/ 
/*- Link 2 longth •/ 

•I 

#dofino L2 1. 2498 
#dofino KT 0.125 
#dof' i no BASE8254 01.0010 
#do f ino TIMER 8 
I* Filtor cooffic iont :1 •/ 
#dof i no B_J O .01829742761014 
#dof ino B_2 0. 00612 189363910 
Udof i n o B_l 0 .00612 1893639 10 
#dofin o B_O 0 . 0 18297427 6 1014 
#dof ino A_2 -2 . 18883806645027 
Udofi no A_l 1.6T715473732202 
#dofino A_O -0.113947802837328 

/• Torquo sonsitivity •I 

;... timor intorrupt 8 • I 
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#dof in o Nf 4 

/• filtOr ordor + 1 •/ 

#dof ino MaxNf 5 

/••• Function Macro ,.,; 
#dof ino LOCK_FUNCTION(x) _go32_dpmi_lock_codo(X , ( long) sizoof (x)) 
#dof ino LOCK _ VARIADLE(x) _go32_dpmi_lock_data( (void • )tx, (long)s izoof (x)) 

/• cl oar _rog (command) 

This function will c1oar tho rog i stor which i s spocifiod 

• by 'command' . For oncodor count or board-

•I 
#dof ino c l oar _rog(c ornmand) 

outportb (ILCMMD, command) 

/• dacoudvoid) . 
.. Thi s function "'ill onablO DAC o utput. 
* sot highost bit to 1 co onablO output 

o utportb(DOUT _CTL, Ox80) •I 
#dofino dacoutO 

I• 
• Sign(vo ltago) 

Tako in tho voltage value calculate s thO sign of 

• tho voltage valuo 

* Ro turns : 
fl oat -1.0: 

• float +t.O: 

#dof ino Sign( volt ago) 

( (voltago<O. 0) ?-1. 0, (voltago>O . O)? 1 .o, 0. 0) 

/••* 
stru ct var{ 
float a; 
float b. 
float c '. 
float d '. 
float o; 
): 

Ooc laro Structuros 

Function Prototyping 

void Const_volt(float, jnt); 

void dact(float ); 
void dac2(float); 
vo~d dacShutdo._n(void); 
void dataFilo(void). 
void Dis play _loarn(~oid); 
void Display_star (void); 
void Flag_Makor(void); 

void initial(void); 
void RunTSUNAMI(void); 
void TakoDATA(void); 
float Dithl(float); 
fl.oat Dith2(float); 

float volt_cmd(int, float); 
float Ang_cal c( int, float); 
float Filtor(float, float); 
float Rot_calc(int, float); 
float StatFrict(float) ; 

float timo(void); 
float V_calc (float, float); 
float Vol_calc( float, float, float); 

float RollOvor( float); 
// float RollOvor(fl oat , float>; 

float onc(byto); 
// doublo onc(byto); 
s truct var Input_koy (v oid); 

/• Temporary for ,:y.c •/ 
// void cloar_rog(byto); 
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Appendix B 

Code to Execute Experiment 

This program runs TSUNAMI for the experiment and collects data for later 

analysis . 

-------- ---------------------------------------------------- - -------- ------ - -- -------- - - ---- -------- -----------------------------I• 

FILE , RUN.C 
DATE: Juno 29,1999 
CODE: interrupt; drivon TSUNAMI codo 

FOLDER, GPROG ------------ --- --------- - -- --------------- ---------------------- ------------------------ ------------------------ -- -- -------------

•I 

#inc ludo <stdio. h> 
#include <stdlib.h> 

#inc ludo <pc . h> 
#inc ludo <d pmi . h> 
U-includo <go32 . h> 
#include <str ing, h > 
#inc l udo <ctypo. h > 
ltinc ludo <math. h> 
#inc lude "grx20.h" 
#include "draYi ng . h" 
#include "grfontdv. h " 
#inc l ude "arm2.h" 
#i fdof _GNUC_ 
oxtorn int gotch(void); 
oxtorn int kbhit(void) ; 

#ond if 

#dofino Oithor_t 
#dofino Dith2_t 

0 .0075 /• c hock this part ou t timoing i ssuo •/ 

0.015 

#dof ino Dv O. 75 
#dof ino ON 1 
#do! ino OFF 0 
#dof i no XMAX 0.225 I• 2 . 70 inch oS •/ 

#dofino XMIN -0 . 225 I• -2. 70 inchos •I 

Udo f i no YMAX l. 885 I• 22.62 inchos •I 

#dof ino YMIN 1 .435 I• 17. 22 inchos •I 

Udofin o llch_timo 2.0 
#dof ino £val 5 
Udof i no COMP LETE 3 

int tx (2) , ty (2); 
int d.isx, di s y ; 
int dirtos 't ( 17] .. {O, 10, 5, 7 , 3, 9 , t/j , 11 , 6, 1, 12, 15, 2 , lj 
i nt bas odir ( 17] = {O, 10, 5 , 7 , 3, 9, 14, 11, 6, 1 , 12, 15 , 2 , 4 

int drcasoQ( lj) = { 1 , 3, 5 , 7}; 

int drca s ol ( 3] a {4, 5, 6} 
i nt drcaso2 [ 3] "" {O, 6, 7} 
int drcaso3 (3] "" {O, 1, 2} 
int drcaso4[4] "' {2, 3, 4} 
int drcas oll [2] • {11 , 5}; 
int drcaso21 (2] • {O, 7}; 

1nt drcase31 [2] • {1, 0}; 
i nt drc aso41 (2] • {3, 4}; 

int drc aso 12 [2] • {5, 6}; 
int drc a s o22 [2] {7, 6}; 

8. 13. O}; 
8. 13. O) ; 
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int drcaso32 [2] = { 1, 2}; 
int drcaso42[2] = {2, 3}; 

/• dummy timo variablo •/ 

/••••••••••••••! 
float vl = 0.0; 
float v?. "' 0.0 ; 
float tt ; 
float var_ t [ 10000), 
float var _3 (10000) , 
int var_7(10000]; 

var_l (10000), var_2(10000]; /• stored data •/ 
var_4[ !0000], var_5[10000] , var_6[10000]; 

fl oat data_x, data_y; 
float disp_x, disp_y; 
I• -- -- -- -- -- - - - - -- --- - - - - -- • I 
int c y c le • 0; 
int diroct ... 0 ; 
int Tdl =- O; 
fl oat Frl • 0.0; 
float Fr2 "" 0.0; 
/• ----- - ----------------- --• / 
float nvoltl =- 0.0 ; 
float nvolt2 = 0.0; 
float dumt "' 0.0 ; 
float s ubt • 0.0; 
float xnoxt , ynoxt ; 
int modoFlag • 0; 
int finish 2 0; 
int Forco "' OFF; 
int Warning = O; 
ilLt cnt_d • O; 

/• global x, y •/ 

i nt cnt_t °' 0; 
int c nt_r • O; I* function enabling flags for 3 primary functions •/ 

v o latile int counter • O; 

void Flag _Makor(void) 
{ 

if (cnt_d 
{ 

ON 11 c nt_t "'"' OH 1 1 c:nt_r ., .. ON) 

if (cnt_d ON) 

Warning "' 1; /• Display() i s running •/ 
if (c:nt_ t "''"' ON) 
Warning = ?.; /• TakoDATAO is running•/ 
if (cnt_r "'""' ON) 
Warning = 3 ; /• RunTSUNAMI0 is running •/ 
} 

olse if (c:ountor'l.15 ""= O) 
( 

c nt_d = ON; 

cnt_t = Otl; 
c:nt_r ,.. ON; 

/• s hould bo ON •/ 

also if ( c ountor'l.5 == O) 
{ 

c:nt _d = OH; 
cnt_1; "" OFF; 
c: n t_r = ON; 

olso 

c:nt _d ,., OFF; 
cn-t_t "" OFF; 
c nt_r = ON; 
) 

c ounter++; 
} 

int main(void) 

/• s hould bo OFF •/ 

/• s hould bo OFF •/ 

_go32_dpmi_soginfo old_bandlor, now_handlor; 

float t "" O; 
fl oat dt "" 0.0; 
float t_old • 0.0 ; 
int k ""' 0; 
char record[] ... "roc.dat"; 
FILE •fp; 

/• Upon Data Fil o "-/ 
fp "" fopo n(roc:ord , "w"); 

dacout O ; 
dacl(O.O); 
dac2(0.0) ; 
/•-------- c hange tho timor rato --- - ----•/ 
o utp( BASE025'1+0x03, Ox04); 
outp( BASE825'1+0x00, OxEl); 
outp( BASE0254+0x00, OxlC); 
/•-------- sot up for graphic s modo --------•/ 
GrSotModo(GR_dofaul t_graphics) ; 
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CrCloarSc roon(CrAllocColor(O, 0, 0)); 

Gr SotModo(Gll_width_hoight_c olor _graphics, 610, 180, 16); 

r;otkoy () ; 

I• l o ad tho addross of tho old timor !Sil into tho OldISR s tructuro •/ 
_go32_dpmi _got_protoctod_modo_ intorrupt_ voe tor (TIMER, &old _handl or) ; 
/• po int tloYISR to tho propor so l octorcoffsot for handlor function •/ 

noy_handlor.pm_offsot • Cint)Flag_Maker; /• intoger valuo i s tho function pointor value •/ now_handlor. pm_soloctor ,.. _go32_my _cs (); 

/• c hain tho noy !SR onto tho old ono so that fir s t tho old timor !SR •/ 
/• Yill bo callod, then tho noY timor !SR •/ 

_go32_dpmi _chain_protoctod_mode_intorrupt_ voctor(TIMER, &now _handlor) ; 

i nitial(); 
tt = timo (); 
dis>: = 2 ; 
di s y ... 2 ; 

XllOY.t "' -0.Ql\1667; 
yno xt "' 1.625; 
t x(OJ • 520; 
ty[OJ • 90 ; 
tx[I) • 320 ; 
ty(I) = 240; 
modoFlag • Eva}; 
Forco "" OFF; 

/•--------- First Evaluation - - ------ ------•/ 
wh ile ((modeFlag =~ Eval) &.k !kbhit() 
{ 

if ( c nt_r ""• ON && Warning • = OFF) 
RunTSUNAMI (); 

I* - - - - -- - --- -- - -- - - --- - -- -- - - - - --- -- - - -- - - - - - -- * I 
tt "' t.imo(); 

dt = tt - t_old ; 
Fr 1 "" Dith t (dt); 
Fr2 "" Dith2(dt); 
t_old • tt; 

I• - - -- -- -- -- --- -- - --- - - - - - - -- - -- -- - -- - -- --- -- -- • I 
if (cnt_d •• OH && Warning """" OFF) 
Di s play_star(); 

I"' - - ---- - - ----- -- - - - - - - -- - - - ----- - -- - - ---- - ----• I 
tt • timo(); 

dt "" tt - t_old ; 
Frl ~ Dithl(dt); 
Fr2 • Dith2(dt) ; 
t_old "" tt; 

I* -- -- -- -- --------- -- -- ---- --- - - ------ - - - ---- -- • I 
if (cnt_ t """" ON Ut Warning .... OFF) 
TakoOATA () ; 
t • time(); 
tt ... t; 

dt "" tt - t_o ld; 
Frl ,.. Dith l (dt); 
Fr2 = Di th2(dt); 
t_old = tt; 
if (Warning ,... 1) 

GrCirclo(O, 8 , 8, GrAllocColor(255,255,255)); 
if (Warning =:aa: 2) 

GrCirc lo(200, 8 , 8 , GrAllocColor(255,255 , 255)); 
if (Warning .... 3) 

CrCirclo(150, 8 , 8, GrAll ocColor(255,255 , 255)); } 

CrBo>:(tx[0]-10, ty[0]-10, tx[O]+lO, ty[O]+lO, GrAllocColo r(O, 0, 0) ); I•----------------• I 
if (cnt_r """" ON &k Warning ,..,.. OFF) 
RunTSUNAMI () ; 
tt • timo(); 

dt = tt - t_old; 
Frl • Ditbl (dt); 
Fr2 :c Dith2(dt); 
t._old '"" tt ; 

!•---------------•I 
GrFilledCirclo(disx, di s y, 3, GrAllocColo r(O, 0, 0)); 
Forco "' ON ; 

tt "" timoO; 
dt '"" tt - t_o ld; 
Frl = Dithl(dt); 
Ft·2 .., Di th2(dt); 
t_old "" tt; 

Subt ,.. tt ; 

dumt • t - :3 Ubt; 

I•----------------•/ 
if ( c nt_r "'• ON &t Warning "' "' OFF) 
RunTSUNAMI (); 

if (cnt _t "'"" ON &&: Warning ,.,.. OFF) 
{ 
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c nt _ t = 0; 
Warning :a OFF; 
} 

if ( c n t _d 
{ 

ON &.k. Warning •= OFF) 

c nt _d .. O; 

Warning • OFF; 
} 

I* Firs t Loarning Soss ion •/ 
\.lhilo ( (dumt <215. 0) &.&. ! kbhitO 
{ 

if (cnt_r == ON && Warning • z OFF) 
llun'J'SUNAMI {) ; 

!*--------------------- ------- ------------ -----•/ 
tt = timoO; 
dt • tt - t _old; 
Frl :: Dithl(dt); 
Fr2 "" Dith2(dt); 
t_old ,. tt; 

I* - - - - - - - --- - - - -- -- -- - - - -- -- -- -- - - - - - - -- --- - - --* I 
if ( c nt_d ::i::a ON &&. Warning :.. OFF) 
Di s play_loarn(); 

I* - - - - -- -- - - - - ---- -- - - - - - - - --- - - -- -- -- - - -- - ----•I 
tt = timo() ; 
dt = tt - t _old; 
Frl S< Dithl(dt); 
Fr2 = Dith2(dt); 
t_old "" tt ; 

I* -- - - - - - - -- - -- -- - - ---- - - - - --- - - -- ---- - - -- - - - - -• I 
if ( c nt _ t .,,.. ON && Warning ,.., OFF) 
( 

c nt_ t • O; 
Warning • OFF; 
} 

t ,.. timo(); 

tt - t; 

<lt -= tt - t _old; 
Frt • Dithl(dt); 
Fr2 = Dith2(dt); 
t_ol<l "' tt; 
dumt = t - s ubt; 
if ( Warning =• 1) 

GrCirc lo(O, 8 , 8, GrAllocColor(255,255 , 255)); 
if (Warning ,..,. 2) 

GrCirclo (200, 8, 8 , GrAlloc Color (255,255,255)); 
i f (Warning •• 3) 

Gr Circlo('150, 8, 8 , GrAllocColor(255,255 , 255)): 
} 

modoFlag .. Eva!; 
Forco "" OFF; 

/•-------- --------• I 
if ( c nt_r ""'" ON &.& Warning .. .,. OFF) 
llun'J'SUNAMI {) ; 
tt ,.. timo(); 

dt • tt - t _old; 
Fr1 "" Dith l (dt); 
Fr2 = Dith2(dt); 
t_old "" tt ; 

I* -- -- -- - - -- - - - -- * I 
GrBox(tx[0) -10, ty[0] - 10,tx[O)+lO , ty[O)+lO, GrAllocColor( O, 0, 0) ) ; 

GrFillodCirc lo (di s x , di s y , J, GrAllocColor(O , 0, 0)) : 
c yclo "' O; 

dirtost[O] ,., O ; /• ro-initializo tho direction array * I 
dirtost[lJ = 10 ; 
dirtost(2] ,.. 5 ; 
dirtos t [3] "" ·, ; 

dirtos t['1J ::c 3 ; 
dirtost [5 J :ar 9; 
dirtost (6) ,., 14; 

dirtost (7) "' 11 ; 
dirtost (8] a 6; 
dirtost [9) • 1; 

dirtos t[lOJ • 12; 
dirtost[11 J • 15 ; 
dirtost[12] • 2; 
dirtost [13] ,.. '1 ; 
dirtost[l4) • 8; 
dirtos t[l5] = 13; 
dirtost[16) • O; 

I* - - - - - - - - - - --- -- -- ---- -- -- --- - - - --- - - -- - - - - - - - • I 
if (cnt_r =• ON !J.11. Warning •• OFF ) 
llunTSUNAMI () ; 

i f ( c nt_ t ""'"' ON && Warning '"'"" OFF) 
T a. koDAT/\ () ; 

if (cnt_d •• ON && Warning ..... OFF) 
Di s play_starO; 
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/*------------Socond Evaluation----------------*/ 

whilo ((modoFlag •• Eval) &t lkbhitO ) 
{ 

if (cnt_r . .. ON Ii.IL Warning == OFF) 

~~nTSUNAMI (); - - -- - --- -- - - ---- ----- - - - ----- -----•/ 

tt = timo(); 

dt = tt - t_old ; 
Fri • Dithl(dt ); 
Fr2 • Dith2(dt) ; 

;;~~d -= - tt; ------ ------------------------------*/ 
if (cnt_d • .., ON && Warning "'=' OFF) 

~!splay _s tar () ; --- - ------------------- ---------*/ 
tt "' timo(); 

dt ""'tt - t_old; 
Fri • Dithl(dt); 
Fr2 soc Dith2(dt); 

;~~=d-.. -tt; - ------- ------- ---------------------*/ 
if Cent t =z= ON && Warning == OFF) 
TakoDATA (); 
t "" time(); 
tt = t ; 

dt "" tt - t_old ; 
Frl = Dithl(dt); 
F'r2 ,.. Dith2(dt); 
t_old = tt; 

if (Warn ing • = 1) 5)) 
GrCirclo(O, 8, a, GrAllocColor(255, 255 •25 ; 

if (Warning •• 2) GrAllocColor(255 • 255,255)); GrCirclo (200, 8, 8 , 
if (Warning • = 3 ) 
GrCirclo(450, 8 , 8 , 
} 

GrAllocColor(255 , 255,255)): 0, O) ); 

GrAllocColor(O' 
ty [O]+lO, GrBox(tx[0)- 10, ty[0)-10, tx[O)+lO, 

if (cnt_r . ,,, ON && Warning == OFf) 
l\unTSUNAMI () ; 
tt "' timo(); 

dt == tt - t_old; 
Fr! • Dithl(dt); 
Fr2 • Dith2(dt); 

;;~~~-=-::~-----------------------------------t O)); 
GrFillodCirclo(disx, disy, 3 , GrAllocColor(O ' 1 

Forco ,.. ON; 
tt = timo() ; 
dt = tt - t _o ld ; 
Frl .. Dithl(dt); 
Fr2 • Dith2(dt); 
t_old • tt; 
BUbt = tt ; 

~~::_ :ac _ t _ - _ subt ; -------------------------------*/ 
if (cnt_r '"""' ON && Warning =z== OFF) 
l\unTSUNAMI () : 

if (cnt_t == ON &tt. Warning == OFF) 
{ 

Cnt_t ,.. O; 

~arning .,. OFF; 

if (cnt d "" "" ON &t Warning •= OFF) 
{ -
c nt_d .. O; 

~arning .,. OFF; 

/• ---------Second Loarning Scsslon----

Whilo C<dumt<215.0) && !kbhitO ) 
( 

---------•/ 

if (cnt_r =:.: ON &.& Warning ''""" OFF) 

llunTSUNAMI () : ---------•/ 
/•------------------------------------
tt .. timo(); 

dt "" tt - t old· 
Frl • Dithl(dt); 
Fr2 -= Dith2(dt); 

~:~~d - = - tt; ------------------------------------•/ 

if (cnt_d ... ON &IL Warning • .., OFF) 

Display _loarn(); ----------*/ 
/•-----------------------------------
tt "" timo(); 
dt "" tt - t old 
Frt "" Dithl(dt) 
Fr2 "" Dith2(dt) 
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t _old • tt; 

I* - - -- -- - - - - -- - -- - - - - -- -- -- - - - - - - - - - -- - - --- - --- • I 
if ( c nt _t am ON &:&: Warning .,.. OFF) 
( 

c nt_t .. O; 

Warning =- OFF; 
} 

t • timo() ; 

tt - t; 
dt = tt - t_old; 
Frl ""' Dithl(dt); 
Fr2 = Di th2(dt) ; 
t_old .. tt; 

dumt .. t - subt; 
if (Warning ,,..,. 1) 

GrCirclo(O, 8, 8, GrAllocColor(255 ,255,255)); 
if (Warning a• 2) 

GrCirclo(200, 8, 8, GrAllocColor(255,255,255)); 
if (Warning :a• J) 

GrCirclo('l60, 8, 8, GrAllocColor(255,255,255)) i 
} 

modoFlag a Eval; 
Forco = OFF; 
if (cnt_r ..... ON &&: Warning = .. OFF) 
Runl'SUHAMI O ; 
tt ,.. timo() ; 

dt = tt - t_old; 
Fr! = Dithl(dt); 
Fr2 "" Dith2(dt); 
t_old .. tt ; 

I• - - - - - - - - ----- -- -- - - -- - - - -- - - -- -- - - -- - - ----- -- * I 
GrBo x(tx(0] -10, ty [0]-10,tx[O]+!O,ty(O]+IO, GrAlloc Color(O, 0, 0) ) ; 
GrFillodCirclo(disx, disy, 3, GrAllocColor(O, 0, 0)); 
cyc le • O; 
dirtost [O] = O; 

dirto s t [!J = 10 ; 
dirtos t [2] .. 5 ; 
dirtost [3] ., 7; 

dirtost ['1J 3; 
dirtost[S] 9 ; 
dirtos t [6] = 11; 
dirtost(7] = 11 ; 
dirt e s t [8] "" 6 ; 
dirt est [9] 1 ; 
dirtost[lO] ... 12; 
dirtost[ l l] = 15; 
dirtost ( 12) • 2; 
dirtost ( 13) = 4; 
dirtost[ 14] :at 8; 
dirtos t[ l S] = 13; 
dirtOSl: (16] aaa Q j 

if (cnt_r ..... ON kit: Warning ==i OFF) 
RunTSUNAMI (); 

if (cnt_t • .,, ON &:&: Warning ... OFF) 
Tako DATA(); 

if (cnt_d "'"" ON &:&: Warning =» OFF) 
Di s play_star() ; 

/• -------------Third Evaluation------------ ----•/ 
whilo ((modoFlag •• Eval) &:&: !kbhitO ) 
( 

if (cnt_r · ·"' ON &:&: Warning "'"" OFF) 
llunTSUNAMI {) ; 

I• -- -- -- ---- --- --- - -- - - - - - - --- ---- --- - ---------•I 
tt = timo() ; 

dt = tt - t_old; 
Frl • Dithl(dt); 
Fr2 "" Dith2(dt); 
t_old "' tt; 

I* - - - - -- - --- --- -- - - - - - - -- --- - - - - -- - - -- -- - - - ----• I 
if (cnt_d """" ON &:&: Warning == OFF) 
Display _star() ; 

I• - - - - - - -- -- --- ------ -- -- --- - - -- -- -- ---- - -- - - -- • I 
tt :a: timo(); 
dt • tt - t_old; 
Fr! ""' Dithl(dt); 
Fr2 "" Dith2(dt); 
t_old "' tt; 

I* -- -- -- -- -- - -- -- -- ----------- - - -- - - -----------•I 
if (cnt _t 1.aa ON &:&: Warning ::.a OFF) 
TakoDATA () ; 
t "" timo(); 
'tt .. t; 

dt "' tt - t_old 
Frl .,. Dith1(dt) 
Fr2 == Dith2(dt) 
t_old • tt; 
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if (Warning ,..,. 1) 

GrCirc lo(O, 8, 8, GrAllocColor(255,255,255)); 
i f (Warni ng •=- 2) 

GrCirclo(200, 8, 8, GrAllocColor(255,255,255)); 
if (Warning ,zio:: 3) 

Cr Circlo('150, 8 , 8, GrAlloc Color(255,255,255)); 
J 
GrDox(tx[0] - 10, ty [0] -10 , tx[O]+ IO, ty [O]+!O, GrAlloc Color(O, 0, 0) ) : 
if (cnt _ r '"'"' ON && Warning "'"'" OFF) 
llun'l'SUNAMI () ; 
tt ,. timo() ; 

dt "' tt - t_old; 
Frl • Dithl(dt); 
Fr2 =- Oith2(dt) ; 
t_ o ld "" tt ; 

GrFillodCirclo(di s x, <li s y, 3, GrAllocColor(O, 0, 0)); 
Forco = ON: 
tt • timo (); 
dt • tt - t_old; 
Fr1 ,.. DithHdt); 
Fr2 "' Dith2(dt); 
t _old = tt; 
s ubt "' tt ; 
dumt "' t - suht; 

I* - - - - -- -- - - -- - -- - - -- - - - - - - --- -- - --- -- - - ----- -- * I 
if ( c nt _r .,."" ON &:& Warning "'"' OFF) 
RunTSUNAMI () ; 
if (cnt_ t ==- ON &:& Warning =• OFF) 
( 

c nt _t "" 0; 
Warning ,. OFF; 
} 

if (cnt_d 
( 

ON &:& Warning ... ,. OFF) 

cnt _d "' O; 
Warning • OFF ; 
} 

/*----- - ------Thi rd Loarning Sossion-----------*/ 
s ubt "" t; 
dumt .., tt - subt; 
uhilo ((dumt<2 15.0) &:& !kbhitO ) 
( 

if (cnt _r '"""' ON k& Warning ,.,,.. OFF) 
llunTSUNAMI O ; 

!*---------------------------------------------•! 
tt ,. timo(); 

dt "" tt - t_old ; 
Frl "" Dith l (<lt); 
Fr2 • Dith2(dt); 
t_o ld "" tt; 

I* - - - --- -- ---- - -- - - -- -- -- -- -- - -- --- - - - -- ----- -- • I 
if ( c nt_d """" ON &:&: Warning .,.. OFF) 
Di s play_loarn(); 
I* - - -- - - - - - - - -- -- - - -- ---- -- --- -- -- --- - - -- - - -- --• I 
tt .. timo(); 
dt "" tt - t_old; 
Frl "' Oithl(dt); 
Fr2 "' Dith2(dt) ; 
t_old "' tt ; 

!•--------------------------------------- -- ----•! 
if (cnt_t .. .. ON && Warning ,.,,, OFF) 
( 

c nt _t "' 0 ; 
Warning ,.. OFF ; 
) 

t = timo(); 
tt .. t; 

dt "" tt - t_old; 
Frl "" Dithl(dt); 
Fr2 "" Dith2(dt); 
t_old =- tt ; 
dumt ,.. t - subt; 
if (Warnin g "'""' 1) 
GrCirclo(O, 8, 8, GrAllocColor(255,256 , 255)); 
if ( Warning .. ,., 2) 

GrCircl0(200, 8 , 8 , Gr AllocColor(255,255,255)); 
if (Warning •• 3) 

GrCirclo(450 , 8, 8 , GrAlloc Color(255,255,255)); 
} 

mo doFlag "' Eval; 
Forco v OFF; 
if ( c nt_r .... ON &&: Warning .... OFF) 
RunTSUNAMI () ; 
tt .. timoO; 
dt • tt - t_old; 
Fr l • Dithl(dt); 
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Fr2 • Jlith2(dt); 

t_old "' tt; 
I* - - - - - - - - - - --- -- - - -- - - - - - - - - -- - -- - - ---- -- - ----• I 
GrBox(tx[0)- 10 , ty[0)- 10,tx[O) +J O,ty [O) +lO, Gr AUocColor(O , 0, 0) ) ; 

GrFil l odCirclo (disx, di s y , 3 , GrAllocColor (O, 0, 0)); 

c yclo = 0; 
dirtost [0] = 0; 
dirtost [l] ,. 10; 

d i rtost (2] " 5; 
dirto s t [3] = 7 ; 
dirtost [4] ,. 3; 
dirtos t[S] • 9; 
dirtost [6] • 14; 
dirtost [7) • 11; 
di rtost [8] = 6 ; 
dirtost [9) = 1; 
d i rtos t[lO] = 12; 
dirtos t( ll] :a: 15 ; 
dirtos t (12] ,.. 2; 

dirtost ( 13] • 11 ; 
dirtost [l'l] = 8 ; 
dirtost (1 5 ) • 13 ; 
dirto s t(1 6 ] ._. O; 
if (cnt_r ="' ON tt& War n ing "'"'" OFF) 

RunTSUNAMI (); 
if ( c nt_t •• ON kk Warning == OFF) 

TakoDATA () ; 
if (cnt_d ,.. .. ON &k Warning """' OFF) 

Di s play_star O; 
/•-------- ----Fourth Evaluation---------- ------•/ 

wh ilo ((modo Flag "'" '"' Eva!) kt !kbhitO ) 

{ 
if (cnt_r ""'" ON kk Warning =-= OFF) 

llunTSUNAMI () ; 
/•---------------------------------------------•! 
tt = timoO; 
dt '"' tt - t_old ; 
Fr 1 .., Dithl{dt) ; 

Fr2 • Dith2(dt); 
t _ old ,. tt ; 
I• -- -- -- -- - - - - - - - - - - - - - -- - - --- - - ---- - - - ---- -- --• I 
if ( c nt_d •• ON kk Warning .,,.. OFF) 

Display_starO ; 
I• - - -- - - -- -- -- - - -- ---- - - - -- ----- -- --------- ----• I 
tt = timoO; 
dt "" tt - t_old ; 
Fri • Dithl(dt); 
Fr2 .. Oith2(dt); 
t_old = tt; 
I• -- -- -- -- - -- -- - - --- -- - -- -- -- - ----- - - - - - --- -- __ .. I 
if (<.: n t_t :nae ON kk Warning •= OFF) 

TakoDATA () ; 
t -= timoO; 
tt = t ; 

dt "" tt - t_old ; 
Fr l "" Dithl(dt) ; 

Fr2 = Dith2(dt); 

t_old = tt ; 

if ( Warning """' 1) 
GrCirc l e(O , 8 , 8, GrAllocColor(255,255,255)); 

if (Warning • = 2) 
GrCirclo(200, 8 , 8, GrAllocColor(255 , 255,255)); 

if (Warning s= 3) 
GrCirclo(450 , 8, 8 , GrAl locColor(255,255 , 255 ) ); 

} 
GrBox(tx [0 ) - 10 , ty [0)-10, tx [O]+!O, ty{O] +!O, GrAllocCol odO, 0, 0) ); 

if (cnt_r = .. ON &:&: Warning ""= OFF) 

RunTSUNAMI () ; 
tt ,. timoO; 
dt = tt - t_ol d ; 
Frl "" D.ithl(dt); 
Fr2 "" Dith2(dt); 
t_old .. tt; 
Gz:Fi llodCirclo(disx, di sy , 3, GrAll.ocCol or(O, 0, O)); 

Forco • ON; 
tt = timoO; 
dt "" tt - t _old; 
Fr l • Dithl(dt); 
Fr2 ,. Dith2(dt); 

t_old • tt; 
s ubt = tt ; 
dumt = t - s ubt; 
I• - - - - -- - --- -- - -- - -- - - - ---- -- - - - ----- - -- - -- - - --• I 
if (cnt _r ... ON .Jct Warn ing ,.. OFF) 

RunTSUNAMI (); 
if ( c nt _t ..... ON kl Warning ,... OFF} 
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cnt_t ., 0 ; 

Warning "" OFF ; 
} 

if (cn t _d •• OH && Warning •a OFF) 
{ 

c nt_d • O; 
Warnin g • OFF ; 
} 

! * -- -------- - - Forth Loarn i ng So:rnion----- ----- • / 
...,hil o ((dumt<2 15.0) && !kbh itO ) 
{ 

if (cnt _r ""'"" ON && Warning '"'"' OFF) 
llunTSUNAMI () ; 

!*------------- -- - - ------------- ------ -- --- ----•/ 
tt :a: timo() ; 

dt "" tt - t_old ; 
Frl "" Dithl ( dt); 
Fr2 "" Dith2(dt ); 
t_old .. tt ; 

I• -- -- -- - - - - - - - -- -- -- -- -- -- --- -- - - - --- - - - - --- - - • I 
i f (c.:n t _d •• ON && Wa rn i ng • • OFF') 
Di s play_loar n(); 

I* -- - - - - - - -- -- - - - ---- - - -- - - - ------- - - - -- - - - - ---* I 
tt "" timo(); 
dt ... tt - t _ old ; 
Fr l = Dith l( dt) ; 
Fr2 :c Di t h 2( d t ) ; 
t_old "" tt ; 

I * - - -- - - -- -- - - --- -- -- -- -- - - - - - -- -- ---- --- - - - - --• I 
if(cnt_t =-• Otl &&: Warn i ng =• OFF) 
{ 

c n t_t '"' O ; 

Wurni n g '"' OFF ; 
} 

t "" t imo() ; 
tt "' t; 
<lt • tt: - t_old; 
Fr l ,.. Dithl(dt) ; 
Fr2 = Dith 2(dt) ; 
t_old "" tt; 
d umt = t - s ubt; 
if (Warn ing •• 1) 

GrC i rclo(O , 8, 8 , Gr Al l ocColor(255 , 255,255)) ; 
if (Warn i n g •• 2) 

GrC irclo(200, 8 , 8 , Gr All ocCol or(255,255 , 255)) ; 
if ( Warn ing '"' "" 3) 

GrC i rclo( 4 50 , 8 , 8 , GrAllocColor(255 , 255 , 255)) ; 
} 

modoFl ag = Ev al; 
Forc o • OFF; 

I * - - -- -- -- - ------ -- - - -- - - - - -- - - - - - - --- -- - -- - - -- • I 
if ( c n t_r •=- ON &:& War n ing =• OFF) 
llu nTSUNA MI () ; 
tt • timo(); 
dt a t t - t_ol d ; 
Fr l s: Dith l (d1:); 
Fr2 "" Oith 2(dt) ; 
t old • tt · 

G;iJox(tx [o] -10, t y[0 ] - 10 ,tx[0]+ 10 , ty[0] +10 , GrAllocColor(O, 0 , 0) ) ; 
GrFillodCirc l o(disx, disy, 3 , GrAllocColor ( O, 0, 0) ) ; 
c.: yclo ,.. 0 ; 
dirtos t [O] =- 0; 
dirtost (1 ) .. 10 ; 
dirtost ( 2 ) ... 5 : 
dirtost[3) "' 7 ; 
dirtost [ tl] • 3 ; 
di.rtost [5] • 9 ; 
dirtest [ G] • 1'1; 
d irtost (7] ,. 11 ; 

dirtost [ B] '"' 6 ; 
tlirtost [9] = 1 ; 
dirtost ( 10] "" 12 ; 
dirtost [ ll] "" 15 ; 
dirtos t [1 2] '"' 2 ; 
dirtost[ 13] .. '1; 

dirto s 't [ l4] 2 8; 
dirto~t[l5] ,,. 13; 
d irtost [16] = 0; 
if (cnt_r =• ON &k Warning ,,.. OFF) 
RunTSU NAM I () ; 

if (cnt_t .... ON &&: War ning •• OF F) 
Tako DATA () ; 

if (cnt_d """" ON && Warn ing •• OFF) 
Di s play_ s t ar(); 

I* -- -- - - -- -- - Last Evaluation- - ---- ------ - - --- -- • / 
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whilo ((modoFlag "'"' Eva!) && !kbhitO 
( 

.if (cnt_r .. :a ON && Warning • • OFF) 
RunTSUNAMI () ; 
I• - - - - - - -- -- --- - -- - - - -- - - - - - - - - - - -- - -- - - - - - - - - _, I 
tt = timo(); 
dt "' tt - t _old; 
Fr1 = Dithl (dt); 
Fr 2 = Dith?.(dt); 
t_old "' tt; 

I• - - -- - - -- --- - - - --- -- -- - - - - - -- - - -- - - - - -- --- - - - - • I 
if (cnt_d ''"" ON && Warning "'"' OFF) 
Display_starO; 
I* -- -- - - -- - - --- - - -- ----------- -- -- -- - - -- --- -- - -• I 
t:t "" timo(); 
d t "' tt - t_old; 
Fr l = Dithl(dt) ; 
Fr?. "' Dith2(dt); 
t_old = tt; 
I.., -- ---- ---------------------------------------•I 
if (cnt_t """' ON && Wa r ning .. ,.. OFF) 
TakoDATA () ; 
t "" timoO ; 
tt ,a: t ; 

dt .. tt - t_old; 

Fr1 "" Dithl(dt); 
Fr2 ><a Oith2(dt); 
t_old = tt ; 
if (Warning == 1) 

GrCirclo(O, 8, 8, GrAllocCo lor(255,255,255)); 
if (Warning """' 2) 
GrCirclo(200 , 8, 8, GrAllocColor(255 ,255 ,255)); 
if (Warning . ,.. 3) 

GrCirclo(150 , 8 , 8, GrAllocColor(255,255,255)); 
} 
GrBox(tx[0]-10, ty[0]-10,tx[O]+ I O,ty[O]+lO, GrAllocColor(O, 0 , 0) ) ; 
GrFillodCircle(disx, di s y, 3 , GrAllocColor(O , 0, 0)); 
dacl(O.O); 
dac2(0 .0); 
dacShutdownO; I* disablo DAC output •/ 
I* load tho old timor ISR back without tho now ISR chainod o n */ 
_go32_d pmi_ s ot_protoctod_modo_intorrupt_ voctor (TIMER, &old_handlor); 

/•-- ----------- Storo data into tho file -----------------•! 
for (k=O ; k<3100; k++) 

fprintf(fp ," 'l.f\t 1/.f\t 'l.f\t 'l.f\t 1/.f\t 'l.f\t 'l.f\t 'l.d\n " , var_t[k], var_l[k], var_?.[k], var_3(k], var_4(k] , var_5 Lk], va r _6(k], 
var _7 [k]); 

fcloso(fp); 

return O; 

// FUNCTIONS 

I* initial() 

Thi s function initializes encodor counter channels. 
* Input: Void 
* Returns : Void 

•I 
void initial(void) 
{ 

int n :a:: 0 ; 
byto stat ; 

cloar_rog(CLEA!l_CHAHO); 
stat: = Ox80; 
whilo (stat"':a::Or.80) 
{ 

s tat = inportb(E_CMMD) & Ox80; 
n++; 

c lear _rog (CLEAR_CHANl); 
s tat "' Ox80; 
whilo (stat '""""OY.80) 
{ 

s tat = inportb(E_CMMD) & Or.BO; 
n++; 

c loar_rog(CLEAR_Cl! AN3) ; 
} 

/ • time 0 

I* initialize •I 

• Thi s function roads ·from tho encoder counter c ha nnel 3 and conv erts 
tho countor value t:o absolute time. 
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Input : Void 
* !lot urns: t imo , t 

•I 
float timo( void) 

float f c nt, t; 
.t'cnt = onc(llEAD_CllAN3); 
t "" fcnt/( (float) FllEQ); 
if (t • • 0.) t • 0 .0001; 
roturn ( t) ; 
} 

/• on c(command) 

* Th is function will r o ad tho count or c hanno l s pocif i od by 'command', 
Tho data is road as 4 soparate bytes and converted to a float 
variable f c ut(float counter value). 

* Input : command 
* lloturns: c nt 

•I 
float onc( byto command) 
{ 

int n = O ; 
float fcnt ; 
long int c nt; 
long int cnt_O, cnt_ l, cnt_2, c n t_3; 
byto stat ; 
outportb(E_CMMD, command); /• road counter •/ 
stat = Ox80; 
while (stat.,.=-Ox80) 
{ 

stat = inportb(E_CMMD) & Ox80 ; 
n++; 

c nt _O ,.. inportb(EDASE_O); 
c nt _l = inportb(EBASE_l); 
c nt: _2 = inportb(El3ASE_2); 
cnt: _3 • inportb(EBASE_3); 
c nt • c nt_O + (cnt_1< <8) + (cnt:_2<<16) + (cnt_3<<21); 
fcnt = (float) cnt ; 
return (fcnt); 
} 

•I 

llot _ca l c (actuator id, fo11co) 

codo to calcula te tho oncodor value from encoder 1 or 2. 

Argurnont: actuator i d #, previou s encoder value 
Returns: c urrant encoder value 

float llot_calc(int act_id, float c nt_old) 
{ 

float cnt = 0.0; 
fl oat done ; 

if (act_id ,.,. 1) c nt • onc(READ_CHANO) ; 
olso if(act_id •• 2) c nt .,. onc(READ_CHANl); 
done = cnt - cnt_old; 
c nt = cnt + llollOvor(donc)• (float) FULL_CTS; 
return (cnt); 
) 

llollOvor (done) 

Tako in tho now and old on codor values and calculates 
if tho it has gono through tho roll ovor point 
fl oat HALF _CTS_PER: Number of counts betwoon rollovors 

Arg ument : one i s tho e urront one oder count 
onc_old i s tho previous oncoder count 

Ro turns : 
float -1.0 
float +t .0: 
float 0 .0: 

if it passes from nog to pas through rollover pt, 

if it passes from pas to nag through rollover pt, 
if it does not pass t hrough r o llover pt, 

•I 
float. llollOver(float done) 
( 

if (done < - ((float) HALF _CTS_PER) 
return (1.0); /• rollover from - to + valuo i s i ncreasi ng •/ 
ol s o if (done > ( (float) HALF_CTS_ PER)) 
roturn (-1 . 0); / • rol lovor from + to - valuo i s decroasing *I 
olse 
rot urn (0 . 0); 
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I* Ang_ c alc{int, flogt) 

* This fun c tion road s tho oncodor count and c o nvorts to tho an g los\ 
a lphal and alph a l whoro alpha1 = thotal and alpha2 = thota1 + thota2 

Input: link #, fon c l or fen c 2 
* Ho turns : a l pha! or alpha2 

•I 
fl oa t Ang_colc (int a c t _ id, float fonc ) 
{ 

fl oat ang, alpha; 
/• b o ttom di s k i s connectod t o motor 2, link 1 */ 
I* top di s k is connected to motor 1, link 2 •/ 

ang = fenc ; 
a l pha • ( (ang/ENC_CNT) •2•PI)/GEAR_I\ATIO; 
if ( ac t _ id ,.. . 1) I* cal culation of alpha2 ,.. thot a l+thota2 *I 
alpha"" alpha+ Ph(120/180.0); I* a ng le of link2 = 90 init ially *I 
ol s o if(ac t _ id ... 2) I* c alc ula tion of alphal *I 
a lpha "" -1. O• (a l pha-PI• (30/ 180 .O)); 
r o turn (alpha ); 

I• 
Dithl( s volt , dt) 

Add dithor 
Argument: volt, dt 
Roturn s : 
float: voltage value which is voltage + dynamic fri c tion vo ltage 

•I 
fl oat Dithl(floa t dt) 
{ 

fl oat dvolt; 
sta t ic f !oa t dtd; 

<ltd ... dtd + dt; 

if (<ltd < Dithor_t) 
dvolt • nvolt1 + 0.75; 
ol so i f (dtd >=- Dithor_t &.&: dtd < Dith2_t) 
dv olt "' nvoltl - 0.75; 
ol s o 

dtd "" 0.; 

dvolt "' nvoltl + 0.75; 
} 

dv olt "" -1.0*dvolt; /• motor 2 i s c onnected back..,ard s •I 
dac 2(dvol t) ; /• motor 2 is c onnoctod to link! •/ 
re turn (dvolt); 
) 

I• 
Dith2( s volt, dt) 

Add di thor 
Ar gument: volt, dt 
lloturns : 
float: voltago value which i s voltage + dynamic friction voltag e 

•I 
fl oat Dith2(floa t dt) 
{ 

fl oat dvolt; 
s tatic f l o at dtd; 

dtd "' <ltd + dt ; 

if (dtd < Dithor_t) 
dvolt = nvolt2 + O. 7 5; 
ol s o if (dtd >• Dithor_t &.&. dtd < Dith2_t) 
dvolt = nvolt2 - O. 75; 
ol s o 

<ltd .. o. 
dvolt ::o nv olt2 + 0. 75; 
) 

dacl (dvolt); I* motor 1 i s c onnoc tod to link2 *I 
roturn(dvolt); 
) 

/• dac l (voltag o) 

* DAC o utput from channol 1: 
"' This function !Jill tnko tho vol tago valuo and output ana l oguo 

signal a t tho s p oc if i od voltago. 
* Dipolar outpu t s ot t o + and - 10V range 

Input: Voltago 
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• !lo t u r ns: Void 

•I 
void d a c l( f l oa t vol t ago ) 
{ 

byto h i g h_byto, lot.: _byto ; 
fl oat num , lot.:num , highnum ; 
long t omp; 
l o wnum • hig lmu m .. 0. 

I*** v oltago limit • ••/ 
i f ( vo l tago > 6 . 8 ) 
volt a g o "" 6 . 8 ; 
o l s o if (vol tag o < - 6, 8 ) 
vol t ago ., -6 . 8 ; 

/• convort voltag o in two bytos in d oc imal •/ 
num =- v o l t ago• ( 20'18 .0/10.0)+2048.0; 
if ( num>• 2 56 .0) 
{ 

t o mp • Clong)num; 
l o 1,1num • tomp II: Oxff; 
low_by to = ( uns i g nod c h ar ) l o 1,1num; 
t ornp "" (long )num; 
h ighnum "" tomp>>8 ; 
h igh _byt o • (un sign e d c ha r) hi ghnum ; 
) 

o l so 
{ 

l o w_byto "" num; 
hig h _byt o "" 0. O; 
} 

/• comma nd v oltage out •/ 
o utpor tb ( OCll l_LOW , lot.:_byto) ; 
outportb (DCHl _ HIGH, h igh _byto); 
} 

/• d ac2 ( vo ltag o) 

* DAC out put fr om c hannol 2 : 
Thi s func t ion 1,1ill t a ko tho vol t a go v a luo an d out put analog uo 

s i g nal at tho s poc ifiod voltago. 
• Bi p olar o utput s ot to + and - 10V r ango 

Input : Vol tago 
• Rot urn s : Vo id 

•I 
void dac2 (floa t v oltago) 
{ 

by t o hig h _byt o , l ow_byto ; 
fl oat num, lown um, highnum; 
long tamp ; 
lownu m • hig hnum • O, ; 

/••• vo ltago limit •••/ 
if (vo ltage > 6 .8) 
vol t ago • 6 . 8 ; 
al s o if (voltaga < -6 8) 
vo l tage .., -6 . 8 ; 

/• convort voltag o in t uo byto s in doc ima l •/ 
num ,., vo ltago•(2048.0/10.0)+2048 . 0 ; 
if (num>•2 56. 0 ) 
( 

tamp ,.. ( long ) num; 
l o \.lnum "" t omp &: Oxf f; 
l o u_ byto = (un s i g nod t: h a r) l ounum; 
t a mp "" ( long ) num; 
h ighnum 02 tomp >>8 ; 
high _byt o • (un s i gnod c ha r) hig hnum; 
} 

al s o 
{ 

l o w_ byto = num ; 
hig h _byto ,. O .O; 
} 

/• command vol t ago ou t •/ 
outportb (DC112 _LOW , l ou _byta); 
ou t portb (DC11 2_ HIGH, h igh _byto ) ; 
} 

/• d acShutdown(void) 

Th is f unction tJill d i sab l o DA C out put. 
* Input : Vo id 
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* !lo turns : Void 

•I 
void dacShutdown (void) 

outportb(DOUT_CTL , OxOO) ; 
} 

/ • sot highest bit to O to inhibit output •/ 

I• 
volt:_c md (int, float) 

conunand voltago out for the specified torque value 

Arg ument: actuator id # , s pocifed torque v a lue 

Ro turns : volt ago valuo 
•I 
float volt_cmd(int act_id, f loat tau) 
{ 

float volt; 

volt "' tau/(KT>1<GE.All _RATIO); 
if (volt "> 5.0) 
volt "' 5.0; 
olso if (volt < -5.0) 
vo l t = -5.0; 

roturn(volt); 
} 

I* - --- -- -- - - ---- - - -- ----- -- --- -- - ----- - ---- -- - -- - -- -- - -- - - - - - - -- - - - -- - - - - - - -- -• I 
I* Di s play_loarn () 

• Th i s function di s plays tho target location and tip location 
information on tho monitor. 

MORE CHANGES NEEDED: TIMI NG and STAR PATTEllH 
* Input : void 
* Rot urn s: void 

•I 
void Display _learn ( void) 
( 

st:atic int n = O; 

s tatic int m • O; 
static int oldx, oldy, n o ; 

i n t dir , j; 
float t, tomp; 
float that a; 

GrBoY.(tx (0]-10, ty(0] - 10, tx (O] +lO, ty(O] +l O, GrAllocColodO, 0, 0) ) ; 
GrFillodCirc l o(oldx, oldy, 3 , GrAl l ocColor(O, 0, 0)) ; 

t "' tt; 

tomp = t/Rch_time; 
n "' (int)(temp); 
if (m ::n,, 60) /• calcul ate next target pos. <- current act. pas . •/ 
( 

dir = ran dO 'l.8 ; 
thota "" dir•PI /4 0; 
xnoxt "" data_x + 0 29528•cos(thota) ; 
ynoxt "" data_y + O. 2952B*sin(th o t a ); 

if (xnoxt<XMAX && xn oxt>XMIN &&: ynoxt<YM AX && ynoxt>Y MIN) 
( 

tdl] • (int)((4BO•(O.O-xnoxt)/0.6) + 320); 
ty[l ] • (int)(480•(ynoxt - 1.66)/0.6)+240 ; 
} 

ol s o 
{ 
if ( (data_x <O .0162) &t (data._x>-0 .0162) &:&: (data_y <l .6762) &&: ( da ta_y>l. 6438)) 

( 
j : rand()'l,4; 

dir "" drcasoO[j]; 

olso 
if(data_x > 0.0) 
if (data_y > 1 . 66) 
if ( (data_x<•O. 0703) && (data_y< 1.1 l. 7303) ) 
d i r = 5 ; 
also if ( (da ta_x>O. 0703) &&: (data_y<"' 1. 7303)) 
{ 

j "' rand()'l.2 ; 
dir "" drcas o 11 (j ] ; 
} 

ol s o if ((data_x < ... 0.0703 ) && (dat a _y> l . 7303)) 
{ 
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j • randO'l.2; 
d i r "" drc aso12 [j]; 
} 

olso 

j =- rand01/.3; 
dir ,... drc a s ol (j]; 
) 

ol s o 

if ((datn_x<=0.0703) &.&. (data_y>::.1. 5897)) 
dir .. 3; 

olso if ( (data_x>0.0703) &:& (data_y >=1.5897)) 
( 

j • randO'l.2; 
dir = drcas o4 1 [j]; 
} 

olso if ((data_x <=- 0.0703) &&: (data_y<l. 5897)) 
( 

j = randO'l.2; 
dir "" d.rcaso42 (j] ; 

olso 

j • rand()'l,3; 
dir ""' drc aso'1 [j]; 
) 

olso 

if ((data_y > 1. 66 )) 

if ( (data_x>~-o . 0703) && (data_y<• !. 7303)) 
dir .. 7; 

ol s o if ( (data_x<-0. 0703) && (data_y< .. l. 7303) 
( 

j • rand()'l,2; 
dir • drcaso21 (j]; 
) 

olso if ((data_x >• -0.0703) && (data_y>l.7303)) 
( 

j • randO'l.2; 
<lir "' drcaso22 (j] ; 
} 

olso 
( 

j a rand()'l.3; 
dir • drca s o2 [j]; 
} 

olso 

if ( (data_x>• -0 .0703) &:&. (data_y>::r.1. 5897)) 
dir ""' 1; 

ol s o if ( (data_x<-0 .0703) t&: (data_y> =- 1. 5897)) 
( 

j.., ran<lO'l.2; 
dir = drcaso31 (j]; 
} 

ol s o if ( (data_x>•-o 0703) A:& (data_y<l. 5897)) 
( 

j • rand()'l,2; 
dir = drc a s o32(j]; 

ol s o 

j • randO'l.3; 
<lir ,. drcaso3(j] ; 
} 

thota • dir•PI/4. 0; 

xnoxt • data_x + 0. 29528•cos(thota); 
ynoxt • data_y + 0. 29528•Bin(thota); 

tx(l) • (int)((4BO•(O.O-xnoxt)/0.6) + 320) ; 
ty[l) • (int)(480•(ynoxt - 1.66)/0.6)+240; 
} 

I* - - - - - - ------- - - - - -- - - ------- --------------- __ ,.I 
} 

if (n > no) 
( 

tx[O] • tx[l]; 
ty [OJ • ty[l); 
m"" O; 

di s p_x: ,.. xnoxt; 
disp_y = ynoxt; 

GrBoY.(tx[0]-10, ty [0)-10 , tx[O]+ l O , ty[O]+lO, GrAllocColor(255, 255, 255) ) ; 
GrFillodCirc lo (disx, disy, 3, GrAllocColor(255, 255 , 255)); 
oldx • di s x; 
oldy • disy; 
m++; 
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no = n; 
cnt_d = O; 

Warning • OFF; 
} 

I* Display_ s tar() 

Th is function display s tho targot location and tip location 
information on tho monitor. 

MORE CHANGES NEEDED: TIMING and STAR PATTEHN 
I n put: void 

• Ro turns: void 

•I 

void Dis play_star(void) 

static int n = O; 
static int m • O; 
static int oldx , oldy , no; 
static int fstat ; 
int dir, j, fdir ; 
float t , tomp ; 
float thota; 
s t atic int kk "' O ; 

t "" timo(); 
GrBox(tx[0]-10, ty[0] -10, tx[O]+ ! O, ty[O]+!O, GrAllocColor(O, 0, 0) ); 
GrFillodCirclo(oldx, oldy , 3, GrAllocColor(O, 0, 0)); 

tomp = t/llch_timo; 
n "" (int) (tomp); 
if (m •• 60) /• calculato noxt target pos. <- curront act. pos. •/ 
{ 

dir ,.. dirtost [ eye lo] /,8; 
fstat = {int) (dirtost (cyclo] / 8 0); 
thota = dir*PI/'1.0; 
xnoxt ,.. data_x + 0. 29528•cos(thota) ; 
ynoxt .. data_y + 0. 29528•sin(thota); 
if (xno,:t<XMAX &:& xno,:t>XMIN &:&: yno,:t<YMAX &:&: ynoxt>YMIN) 
{ 

tx[l] (int) ((480•(0.0-xnoxt)/O.G) + 320); 
ty[l] • (int)(4BO•(ynoxt - J.GG)/0.6)+240; 
} 

elso 

if ( (data_,:<O. 0162) && (data_x>-0 .0162) &:&: (data_y<l. 6762 ) &&: (data_y>l. 6438)) 
( 

j "" randO'l.4; 
dir = drcas oO(j ); 
} 

ol s o 
i f (data_x > 0.0) 
if (data_y > 1 . 66) 
if ( (data_x<=O. 0703) && (data_y<• l. 7303) ) 
dir = 5 ; 
olso if ( (data_x>O 0703) kt (data_y<"" l. 7303)) 
( 

j = rand()'l.2; 
dir "" <lr c asoll [j]; 
} 

olso if ((data_x <= O 0703) &:&: (data_y>l.7303)) 
{ 

j "' randO'l.2; 
dir "" drcaso12[j]; 

o l so 
( 

j = randO'l.3; 
dir • drcasol [j); 
} 

also 
if ( (data_x<""O. 0703) && (data_y>"' l . 5897)) 
dir .., 3; 
olse if ( (data_x>0 . 0703) IL& (data_y >at .5897)) 
{ 

j a rilnd()'l,2; 
dir .. drca :Jo41 (j ) ; 
} 

olso if ( (data_,: <• 0. 0703) &&. (data_y<l. 5897)) 
( 

j ,. rand()'l, 2 ; 
dir • drcaso42 [j]; 

ol s o 
{ 

j ,. randO'l.3; 
dir = drc a s o4 [j]; 
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ol SO 

il((dat a_ y > 1.66)) 

ii «ctata_x>• -0. 0703) k& (data_y<• !. 7303)) 
di r • 7; 

ol s o if ( (data_x<-0.0703 ) &.&: (data_y<=l .7303) 
( 

j "' randO'l.2; 
d i r "" <lrc a s o21 [jJ; 
} 

o l s o if ((data_x >• - 0. 0703) k&. (data_y>l. 7303)) 
( 

j .. r a ndO'l.2; 
<lir = drc a s o22 [j] ; 

o l so 

j .. randO'l,3; 

dir "' drcas o2[j]; 
} 

ol s o 

if ( (data_ x >::.-o. 0703) l &. (data_y>a l. 5897)) 
d i r • l; 

a l so if ( (data_ :r. <-0. 0703) &:k (data_y>~ l. 5897)) 
( 

j -a:; rand()'l,2; 

dir ,.. drca s o31 [j]; 
} 

also if ((data_x> .. -0.0703) &:k (<lata_y<l.5897)) 
( 

j • r a nd()'l,2; 

dir .,. drc a s o32 [j] ; 
} 

ol s o 
( 

j • rand()'l.J: 
di r = drcaso3 [j] ; 
} 

} 

theta .. dir•PI/4 .O; 
f s tat = ON; 

::r.noxt • data_x + 0.29528•cos (thota); 
ynoxt "' d a t a_ y + 0 . 29528•sin(thota); 
tx [1] • ( int) ((480• (0 .O-xnoxt) /0. 6) + 320); 
ty[l) "" (i nt)(480•(ynoxt - 1.66)/0.6)+240; 
<liroct = dh·; 

fdir • dir + 8; 
kk • O; 
whilo (kk<16) 
{ 

if (dirtos t [kk) dir) 
{ 

dirtos t (kk] .. -1; 
f s tat "" OFF ; 
kk • 16; 
} 

ol s o if((dirtoat[kk) "'"' fdir) &:&: (kk< l6) ) 
{ 

dirto s t [kk) = -1; 
fstat .. ON; 
kk • 16; 
} 

kk++; 
) 

whilo ( dirtost(cyclo] .,., -1) 
c yclo++; 

if (eye lo >:a 16) 

modoFlag "" COMPLETE; 

if (n > no) 
( 

tx[OJ • tx[l]; 
ty[OJ • ty[l]; 
m ,., O; 
} 

d isp_:r. = xnoxt; 
<li s p_y • ynoxt; 
Forc o • f s tat; 

GrBox(tx[0)-10, ty[0)-10, t:r.[0)+10, ty(O]+lO, GrAllocColor(255, 255, 255) ) ; 
CrFillodCirclo(disx, d i sy, 3, GrAllocColor(255, 255, 255)); 
oldx "' disx; 
oldy = di s y; 
m++; 

no "" n; 

c nt_d = 0; 
Warning • OFF; 
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I* TakoDATA(); 

* This function rocords tho tost data onto a filo. 
* Input: void 
* llot:urns : void 

•I 
void TakoDATA(void) 

s tatic int j • O ; 
var_t ( j] • tt ; 
var_l ( j ] • data_x; 
var_2 ( j ] • data_y; 
var_3(j ] a v l ; 
var_'1[j ] = v 2 ; 
var _5 [ j] ,.. di s p_x ; 
var_6[j ] "' di s p_y; 
va r _ 7 (j] • Forco; 
if (j <= 4500) 
j++; 

cnt_t = O; 
Warning .. OFF; 
} 

I * llu nTSUNAMI () ; 

Th i s fu nction r u ns TSUANMI. 
I nput: void 

* llo'turns : void 

•I 
void RunTS UNAMI(void) 

float foncl, fonc2 ; 
floa't disk l _anglo , link2_nn glo , disk2_anglo; 
f l oat tau l _out, taul_cmd, tau2_out, tau2_cmd ; 
float 't, x, y ; 
s tatic float xo = 0.0; 
static float yo ,. 0.0 ; 
s tatic float t _old • O O; 
static float sl_adot • 0.0; 
sta'tic f l oat o2_adot .. 0.0 ; 
s tatic float fo nco l = O. O; 
static float fonco2 • O .O; 
static float dthl[7] • {0.0, 0.0 , O. O, 0 .0 , 0.0 , 0.0, 0 .0} ; 
static float dt h'.l(7 ] .., {0.0, o.o, o .o, 0 . 0 , 0.0, 0.0 , 0.0}; 
s tatic float f_dth 1 [7] • {0.0, 0.0, O.O , 0.0, 0.0, 0 . 0, 0.0}; 
static float f_dth2[7 ] • {0.0, O.O, O.O , 0.0, 0.0 , 0.0 , 0.0}; 
static float vx(7 ] • {0.0, 0.0, 0.0 , 0 .0, 0.0, 0.0, 0.0} ; 
s tatic float vy('l) • {0.0, O.O, O.O, O.O, 0.0 , 0.0 , 0.0); 
s tatic float f_vx[ 7] • {0 . 0, O.O, o.o, 0 .0, 0.0 , 0.0, 0.0}; 
s tat:ic float f_vy[7 ) • {0.0, 0.0, O.O, 0 . 0 , 0.0, 0.0, 0.0}; 

float al dot , a2dot, s haft l _anglo , shaft2_anglo ; 
float fric_Y., fric_y ; 
i n t i • 0; 
s tatic int j • O; 
int l "'" 0 ; 
float cl , c 12, s l , ~12, c 2 , s2, dt ; 
float do n um; 
f l oat fx "" 0.0 ; 
f l oat f y ,. 0.0; 

t "' timoO ; 
fonc l .. Rot_calc( 1, fo ncol); 
fonc2 "' Rot_ca l c(2 , fonco2); 
tt "" t; 

/• Cal c ul ato oncodor count *I 

dt .. t - t_old; 
if (dt ••O .0) 
d t • 0.00001: 
di s kl_anglo • Ang_calc(2, 
disk2_anglo • Ang_calc(l, 
link2_anglo ,.. disk2_anglo 
cl • cos (diskl_unglo); 
c2 :::c cos(link2_anglo); 
c12 = cos(disk2_anglo); 
sl ,.. sin (diskl_anglo) ; 
s 2 =- sin(lin k2_angl o) ; 
s 12 "' sin(disk2_anglo) ; 

fonc2) ; 
foncl); 

/• Calculate anglo •/ 

- diskl_anglo; 

x = L l •cl + L2*c12; 
y "' Ll*s1 + L2•u12; 
data_x • x; 

/• Cal c ulato tip location from a ngles •/ 

data_y ,.. y; 

disx "' (int:)((180*(0.0- x)/0.6) + 320); 
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d isy • (in t )(480•(y - 1.66 )/0.6)+240; 

I• - - - ------------------------------------------•I 
slrnftt_ a nglo ,.. <liskl _anglo•GEAR_RATIO ; 
s haft2_anglo • di s k2_anglo•GEA1l_RATI0; 
a ldo t "" ( s haftl _angl o - s l_adot)/dt; 
a2do t "' ( s haft2_anglo - s2_adot)/dt; 
d o num • 1/(Ll•L2*s12); 

/• Filt.or voloc ity data •/ 
vx[j] "" vx[j+1]; 
vy(j] • vy(j+I]; 

dthl(j] • dthl [ j+ l]; 
dth2 (j] • dth2 (j+ 1] ; 

if (j """" 2) I* Cal culato tip volocity: raw voloc ity data •/ 
( 

vx[4] = (x - xo )/dt; 
vy(4] • (y - yo)/dt; 
d t h1(4] • aldot ; 
dth2 (1] "' a2dot; 
} 

if (j • • 3) 
( 

/• Cal culato filtorod volocity •/ 

f _vx[4 ) • (float)(B_3•(doublo)vx[3] + B_2•(doublo )vx[2] + B_l*(doublo)vx[l] + B_O•(doubl o )vx[O] - A_2•(doublo)f _vx[2] 
A_ 1• (doublo) f _vx [ 1] - A_O• (doublo)f _vx (O]); 

f _ vy(1] ,. (float)(B_3•(doublo)vy[3) + B_2•(doublo)vy[2] + B_ h(doublo)vy [ l] + B_O•(doublo)vy[OJ - A_2•(doublo ) f_ vy(2] 
A_ t • (doubl o) f _vy [1] -A_O• (doublo)f _vy [0]); 

f_dth1['1] • (float)(B_3*(doublo)dth1[3) + 13_2•(doublo)dth1[2] + B_h(doublo)dth1[1] + B_O•(doublo)dthl(O] _ 
A_ 2•(doublo)f_d 'th l[2] - A_l•(doublo)f_dthl[l] - A_O•(doublo)f _dthl[O]) ; 

f _dth2(4] .. (float) (B _3•(doublo)dth2(3] + D_2•(doublo)dth2 (2] + B_ l •(doublo)dth2[1) + B_O• (doublo )dth2 [0] _ 
A_2•(doublo)f _dth2(2] - A_t•(doublo )f_dth2(1] - A_O•(doublo )f_dth2[0]); 
) 

f_ vx[j] • .f _vx[j+l); 
f_vy[j] • f _ vy[j+l ]; 

f _dthl[j] - f_dthl[j+l] ; 
f_dth2 ( j ] • f_dth2 (j+1]; 
j++ ; 

if(j -· 4) 
( 

j - 0; 
vl ... f_vx [3]; 
v 2 • f_vy[3]; 
l++;} 

/•--------------------------------------------------------------------------•/ 
I* Fric tion Compensat i on calculation: linoar Friction Modol filtorod *I 
if ( f _dth l ( 3] >O. 0) 
{ 

i f(f_dth1(3 ] > 100.0) 
f _dthl[3] • 100. 0 ; 

fric _x "' -0. 074952+0 . 0000979*oxp(O. 14962•fabs (f _dth l [3]) )+0 . 841276• 
( 1-oxp( - O. 77746•fabo (f _dt hl (3 ]))); 
fric_x a O. BO•fric_x; 
} 

ol s o if(f _dth l [ 3 ] < 0.0) 
{ 

if ( f _dthl (3] <-100 .0) 
f_dthl ( 3] • -100.0; 

fric_x • -1* (3. 757823-3 79467•oxp(-O. 0016•fabs (f_dthl [3]) )+0. 68"!93*( 1-oxp(-1.10855•f a bs (f _dth l (3)))) ) ; 
fric_x • 0 .9 3•fric_x ; 

ol s o 
fric_x • 0 . 0; 
if (fric _x > 2. 0) 
fric_x "" 2.0; 
o l s o if(fric_x < -2.0) 
f r ic_ x • -2.0; 
if ( f_dth2 ( 3] > o.o ) 
( 

i f(f_dth2[3] > 100.0) 
f _dth2(3 ] • 100.0; 

fric_y = -IJ. 637+4. 4585•oxp(O 00323•f abs(f _dth2 ( 3 ) ) )+1 . 0691•(1 - oxp(-1. 3546*fahs( f _dth2 (3 ]))); 
fric_y "" 0. 67•fric_y; 
} 

ol so if (f _dth2(3] < 0.0) 
{ 

if(f _dth2(3] < - 100 .0) 
f _dth2(3] • - 100.0; 

fric_y "" - 1* (-0. 1405+0. 12703*oxp(O .0585•fabB (f _dth2 (3])) +1 .0331• (l-oxp(-1 .0507•fabs (f _d t h2 [3])) ) ) ; 
f ric _y • 0.67•fric_y; 
) 

also 
fric _y = O .0; 
if (fri c _y > 2 O) 
f ri c _y ,.. 2.0; 
o l s o if(fric_y < -2 O) 
fri c_y • - 2 .0; 
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1 f (Fo r c o ,.. .. OFF) 
( 

b: "' 0 O; 
fy = 0 . Q ; 

l 
Ol!,O if ( Forc o .... ON) 

f:r. = - 0 69205 •vl-O. l67'12•v2; 
fy -0 . 767'12•vl + 0.76057•v2 ; 
} 

tau l _out ... Ll•ct•fy - Ll• s l•f:r.; /• Calculate motor torquo to croat o tho disturbanco •/ 
if (taul_out a =- 0.0) 
taul_c md • 0 .01; 
ol s o if (( tau l _out>O. 0) kl£ (taut_out<O. 75)) 
t au l _c md '"' 1.2335•taul_out + 0.0803 + fric _x ; 
o l s o if ((taul _out> '"'0.75) &.&: (taul _out < 1.86)) 
taul_c md '"' l. 294iJ*taul_out + 0.024 + fric _x; 
ol s e if ((tau l _out> • t.86) &:&: (taul_out < 2.89)) 
taul _cmd • 1.2601•taul_out + 0.0864 + fric_x; 
olso if (( taut _out> ,. 2. 89)) 
taul _c md "" l.2223•taul _out + 0.1615 + fric_x; 
o l s o i f (( t:aul_out<O. 0) 1£& (taut_out> - 0. 33)) 
tau l _c md .,. 1.0921htaul_out -0 .0317 + fric _x ; 
ol s o if ((taul_out<• -0.33) &.&. (taul_out>-1.8)) 
tau 1 _cmd '"' 1 . 1982•taul _out -0. 0206 + fric_x ; 
ol s o if (('taul_out<• -1 . 8) &.&: (taul_out>-2.9)) 
tau l _cmd • 1 .1743•taul_out -0.065 + fric_x ; 
a l s o if ((tau t _out<a -2.9)) 
t,aul _c md ,. 1 .1375•taul_out -0 . 1603 + fric _x; 
tilu2 _out ,.. L2• c l 2•fy - L2• s 12•fx ; 
if(tau2_out • .., 0.0) 
tau2_cmd '"' -0. 165 ; 
e l s o if ((tau2_out>O 0) lt (tau2_out<1 . 13)) 
tau2_cmd • 1. 1579•tau2_out - 0 .11556 + fric_y; 
ol s o if ((tau2_out>zl. 13) &:&: (tau2_out < 1.84)) 
tau2_c md "" 1. 16248•tau2_out - 0. 12025 + fric_y: 
ol s o if ((tau2_out>,..1.84) &:&. (tau2_out < 2.93)) 
tau2_cmd "" 1. M 169•tn.u2_out - 0 . 08959 + fric_y; 
ol s o if ((tau2_out> • 2.93)) 
tau2_cmd = 1. 12814•tau2_o ut - 0. 0"7322 + fric_y; 
oh:o i f (( tau2_out<O. 0) &&: (tau2_out> - O. 05)) 
tau2_cmd "' 1. 85546•tau2_out -0 . 2 + fric_y ; 
o lso if (( tau2_out <• -O. 05) &&. (tau2_out> - 1. 6)) 

tau2_crnd '"' 1. 2 1237•tau2 _out -0 .17357 + fric_y; 
also if ((tau2_out< =o- l. 6) &:&. (tau2_out>-2.4)) 
tau2 _cmd "' 1. 35332•ta u2_out + 0. 06027 + fri c_y ; 
al s o if ((tau2_out<.,. -2.4)) 
tau2_c md • 1 .00724•tau2_out -0. 74568 + fric_y; 
I* - - - - - - - - ---- - --- -- - -- - -- --- -- - - -- - - --- -------• I 

nvoltl • volt_c md(l, taul _cmd); 
nvolt2 "" volt_cmd(2, tau2 _c md); 
fonc o1 • foncl; 
f ouco2 • f onc2 ; 
t_old "' t; 

Y.O = Y.; 

yo = y; 
sl_adot "" s haftl_anglo; 
s 2_adot • s h aft2_anglo; 
if (i <5000) 
i++; 

<::fft_r "' OFF; 
Warning • OFF; 
} 

/• Sot tho old valuos •/ 

/• Rosot tho old valuos *I 
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Appendix C 

Simulation Code 

The simulation of the adaptive motor control model during reaching motion. 

I• 

Latost vorsion 3/12/95 
Star Trajoctory : Working Copy: March 12, 1995 

•I 
#includo <stdio. h> 
#include "mathfun s h" 
#dof ino NllANSI 
#includo " nru t il. h" 
#dof ino NUMNOOE 102 
#dof ino Ql MIN -5 
#dofino QlMAX 8 
#<lof ino Q2MIH -3 
#dof ino Q2MAX 9 
#dof ino ETIME 26 
#do fino LT IME 412.5 
#dofino DT 0.0001 
#dofin o FIELD 1 
#dofino EVAL 2 
Udof ino LEAllN 4 

#dof ino Q10 0. 26 18 
#dof ino Q20 1 . 4835 
#dof ino SYSDIM 4 
#dofino NETOUT 16 
#dofino ADAPTIVE 
#dof ino NSTATES SYSDIM+NETOU1'•NUMNODE 

float qld . q2d . qldd, q2dd , qlddd, q2ddd, tau (2). sl , s2; 
float tor!, tor2, kal, ka2, ka3, ka4, is l, is2; 
float actlov [NUMNODE] , •actrof "' actlo v, •act ; 
float •oldx, •nowx ; 
float kal, kb , bota ; 
float lambda [2] [2] , kd [2] [ 2] , kp (2 ) (2) , ohat (2) (2) ; 
float ll inv [2] (2) , C [2 ) [2] , hllat (2 ) (2 ) , c hat [ 2] (1) , II ( 2) (2) : 
s hort modoFlag; 
doublo nrand(doublo); 
/• Maki' s global variablos •/ 
short log; 
s hort star; 
static f l oat dptx (260) ; 
static float dpty [260); 

void odoin"t(float ystart[], int nvar, f l oat xl, float x2, 
float op!.1, f l oat hl, float hmin , int •nok, int •nbad, 
vo id (•dorivs)(float, float [], f l oat [] ), 
void (•rkqs)(float [], float [], i nt, float•, float, float, 
float [], float •, float *, void (•)(float , float (] , float [] )) , 
float, void (•savvars)(float,float[J )); 
void rkck(float y[], f l oat dydx[), int n, float x, float h, 
f !oat yout [] , f loat yorr [] , void (•dorivs ) (f l oat, float [J , float [] )); 
void rkqs(f l oat y [], float dydx [], int n , float •x , 
float htry , float ops , f loat yscal[], float •hdid, float •hnox t , 
void (*doriv s) (float, float [), float [)) ); 
void r hs(f loat , float[), float[]); 
void mySavo ( f lont , float[]) ; 
void dosTraj (int, float , float•, float•, float•); 
float drand48(void); 
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float ffloor(float); 

fl oat xO[NSTATES); 

FILE *OFilo, *oF'ilol, • oFilo2 , • oFilo3, •oFilo4; 
FILE •nFilo, •nFilo 1, >1<nf'ilo2 , •nFilo3, •nFilol\; 

main() 
( 

~hort ii,quo; 
float ops "' 1.0o-05, dt .. 0.0001; 
float piglot , tho ta , xx, xxx, yy, yyy; 
int nok, cow1t , nba d; 
doublo pooh; 
l nt tigor, kk; 
int i • O; 
int dirwalk; 
oldx • (float•) malloc( NSTATES * sizoof( float)) ; 
n o wx • (float•) malloc( NSTATES * sizoof ( float)); 

dptx [OJ • 0. 259725; 
dpty[OJ • 0.4202H; 
dptx [ 1) • 0. 33043568 ; 
dpty( lJ • 0.490958; 
xx = dptx[OJ - 0.12 ; 
XXX ::r dptx[O] + 0. 12; 
yy • dpty(OJ - 0.12; 
yyy • dpty[OJ + 0.12; 

printf(" 'l.f\t 'l.f\n 1/.f\t 1/,f\n\n " , xx, yy, xxx, yyy); 
quo "' 0 ; 

whilo (qu o< 255) /•u # of counts •••/ 

piglet • 8.•drand18(); 
dirwalk "' (int) ffloor(piglot) ; 
thota ,. PI•dinmlk/1; 
dptx [quo+!] • dptx [quoJ + O. l• cos (thota) ; 
dpty [quo+ l] • dpty [quo) + 0. l •sin(thota); 

if ((dptx [quo+t)<xxx) &:&; (dptx[quo+l]>xx) &&: (dpty [quo+l ] <yyy) ,U (dpty[quo+ l] >yy)) 
quo++; 
} 

for (quo=O ; quo <255; quo++) 
{ 

printf ( "'l.f\t 1/.f \ n" ,dptx [quo] , dpty [quo]); 
} 

printf("ok ! \n" ) ;fflus h (stdout) ; 

for (ii "' O; ii < NSTATES; ii++) xO[ii ] ., O. ; 

lambda [OJ (OJ • 6. 4968: 
l a mbd a [O] (1) "'0 . 0637; 
l ambda[l ][OJ • 0.0637; 
l ambda[1](1J • 6.6667; 
kd[O J [OJ • 2.J; 
kd[OJ [lJ • 0.9; 
kd[l J [OJ • 0.9; 
kd[1](1J • 2.1; 
kp[O J [OJ • 15.0; 
kp[OJ [lJ • 6.0 ; 
kp[lJ [OJ • 6 . 0 ; 
kp [!J [lJ • 16. 0 ; 
kal • 0.01; 
ka2 • 0.01; 
kaJ • 0.04: 
ka1 = 0 . 01\ ; 

printf("ok!\n") ;f f lush(s:tdout); 
nFilo "" fopon( "nullO. da t ", "w " ); 
nFil o l = fopo n( 11 nulll .dat", "w" ) 
nFilo2 = fopon("null2.dat" ,"w") 
nFilo3"" fopou( •• null3.dat","w") 
nFil o'l .. fopo n("null'l .dat", "w") 
oFilo "' fopon("robotO.dat" ,"w" ); 
oF ilol • fopon( "robotl.dat","w"); 
oFilo2 ,. fopon( " robot2 dat", "w"); 
oFilo3 ,. fopon( "robot3.dat 11 ,"w"); 
oFilol\ "' fopon( "robot4 .dat", "w"); 

I• 
xO [OJ 
xO[! J 
x0[2] 
xO[JJ 

Show 
• Q!O ; 
• 020; 
= 0. 

- 0.: 
s tar • O; 

initial porformanco in Fiold 

modoFlag .. EVAL+FIELD; 

•I 
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odoint(xO, NSTATES, O., ETIME, ops , dt , 1.0o-05 , &: nok, &:nbad, rhs, rkqs , . OS, mySavo); 

xO[O] • Q!O; 
xO[ t ] • Q20 ; 
xO [2] • 0.; 

x0[3] • 0. ; 
s tar :c 1; 

modoFlag • EVAL; 

odoint (xO, NSTATES, O. , ETIME, ops , dt, 1. Oo-05, &nok, &nbad, rhs, rkqs , . 05, mySavo); 

xO(O ] • QlO ; 
xO[l] • Q20; 
x0 [ 2] • O.; 
xO [ J ) • O.; 

for (kk "' O; kk < 4; kk++) 

rnodoFlag "" LEARN+FIELD; 

odoint(xO, HSTATES, 0., LTIME , o ps , dt , 1.0o-05 , !mok , &:nbad, rhs , rkqs , .OS , mySavc ); 

xO[O) • QIO ; 
xO[ l) • Q20 ; 

xO (2 ] • 0. ; 
xO [3] • O. ; 

Hta.r++ ; 

mo doFlag :a EVAL+FIELD; 

odoint (xO, NSTATES, O, , ET I ME, ops , dt, 1 .Oo-05, &:nok , lmbad, rhs , rkqs , . 05, mySavo); 

xO[OJ • QI O; 
xO[ l] • Q20; 
x0[2] • 0.; 

x0[3] • 0.; 
star++; 
modoFlag • F.VAL; 

odoint (xO , NSTATES, O. , ETIME, ops, dt, 1 .Oo- 05 , &n ok, &nbad, rhs , rkqs , . 0 5 , mySavo); 

xO[O] • Q!O; 
xO[l ] • Q20; 

x0[2] • 0.; 
x0[3] • O.; 

} 

void mySavo(float t, float x [] ) 

s tatic float qa,qad,qadd,qb , qbd , qbdd; 
int i, quo; 
float tt ; 

if ( ! (modoFl ag&EVAL)) rot urn; 
tt = fmod(t, 3.3); 
if (tt>l.65) roturn ; 
if ( s tar •• 0) 
( 

fprintf(oFilo, "'l.lf\t" ,t); 
for (i • O;i <4;i++) fprintf(0Filo,"'l.lf\t 11 ,x[i]); 
dosTraj ( 1 , t ,&:qa ,&qad, &qadd); 
dosTraj(2 , t , &qb,&qbd,&:qbdd) ; 
fprintf (oFilo , "'l.lf\t " ,qa); 
fprintf (oFilo , "'l.lf\t" ,qb); 
fprintf (oFi lo, "'l.lf\t" ,qad); 
fprintf(oFilo, "'l.lf\t" ,qbd) ; 
fprintf(oFi lo, "i',d\t " ,log); 
fprintf(oFilo, " \n"); 
fflu s h( oFilo) ; 
} 

also if ( s tar • • 2) 
( 

fprintf(oFilol, "'l.lf\t ", t); 
for (i • O; i<4;i++) fprintf(oFilo l, "'l.lf\t",x(iJ); 
dosTraj ( 1, ·t , &:qa ,&:qad ,&:qadd); 
dos'l'raj (2 , t , &qb ,&:qbd ,&:qbdd); 
fprintf(oFilol, "'l.lf \t" ,qa) ; 
fprintf (oFilol, "'l.lf \t '' , qb); 
fprintf(oFilol, "'l.lf \t " ,qad) ; 
f print f (oFilo 1, "'l.lf\ t ", qbd); 
fprintf(oFilol, "'l.d\t" ,log); 
f print f(oFilol, "\n"); 
ffl u s h(oFilol); 
} 

o l s o if (star •• 4) 
( 

fpr intf(oFilo2, "'l.lf\t" ,t); 
f or (i • O; i <4;i++) fpri ntf(oFilo2,"'l.lf\t",x[ i J); 
dosTraj ( 1 , t , &qa, &: qad, &:qadd) ; 
do s Traj (2, t , &:qb ,&:qbd ,&:qbdd); 
f printf(oFilo2, "'l.lf \t " ,qa); 
fprintf(oFilo2, "'l.lf \t" ,qb); 
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fpr i ntf(oFilo2, "'l.lf\t." ,qad); 
fprintf(oFilo2, "'l.lf\t" ,qbd); 
fprintf (oFilo2 , "'l.d\t", log); 
fprintf(oFilo2, " \ n"); 
fflu s h(oF'ilo2); 

J 
ol s o i f ( s tar •• 6) 
{ 

fprintf (oFilo3, "'l.lf\t", t); 

for (i -=O ; i<'1;i++) fprintf(oFilo3,"'l.lf\t",x[i]); 
do s 'l'raj ( 1, t, &:.qa, &:qad, &qadd) ; 
d osTraj (2, t ,&qb ,&:qbd ,&:qbdd); 
fprintf (oFilo3, "'l.lf\t ", qa); 
fprintf(oFilo3, "'l.lf\t" ,qb); 
fprint f (oFilo3, "'l.H\t" ,qad); 
fpr i ntf (of'i l o3, "'l.lf\t" ,qbd); 
fprintf(oFilo3, "'l.d\t" ,log) ; 
fprintf(oFi lo3, "\n"); 
fflush(oFilo3); 
J 
a l s o if (star • • 8) 
( 

fprintf (oFilo4, "'l.lf \t", t) ; 

for (i • O;i <4 ;i++) fprintf(oFilo4,"'l,lf\t ", x[i]); 
do s Traj (1, t ,&:.qa ,&qad ,&qadd); 
do sTraj (2, t ,&qb ,&qbd , &qbdd) , 
fprintf (oF'ilo4, "1/.lf\t", q a ); 
fprintf(oFilo'1, "'l.lf\t" , qb); 
fprintf(oFile4, " 'l.lf\t", qad); 
fprintf (oFile4, "'l.lf\t", qbd); 
fprintf (oF'ilo4, "'l.d\tu ,log ); 
f printf (oFilo4, "\n"); 
r flu s h (oFilo4) ; 
) 

o l s o if ( s tar .,.. 1) 

fprintf (nFilo, "'l.lf\t", t); 
f or (i • O; i <4 ; i++) fprintf(nF'ilo,"'l.lf\t",x[i]); 
d osTraj ( 1 , t, &.qa, &.qad, &:qadd) ; 
do sTraJ (2, t ,&qb ,&qbd ,&qbdd) ; 
fpri n tf(nF'ilo, "1/.lf\t" ,qa); 
fprintf(nFilo, "'l,l f \t " ,qb); 
fprintf (nFilo, "'l.lf\t" ,qad); 
fpi:-intf (nFilo , "'l.lf\t" ,qbd); 
fprint:f (nFilo, "1/.d\t", l og) ; 
fprintf(nF'ilo, " \ n" ) ; 
f f lush(nFilo) ; 
} 

ol s o if (star .. ... 3) 

fprint f (nFilo 1, "'l.lf\t", t) ; 
f o r (i • O; i<4; i++) fprintf(nFilol , "'l.lf\t" ,x[i]); 
do s Traj ( 1, t , &:qa ,&.qad , &:qadd) ; 
do s Traj (2 , t ,&qb ,&:qbd ,&.qbdd); 
fprintf(nFilol, "'l.lf\t" ,qa); 
fprintf(nFilol, "'l.lf\t" ,qb); 
fprintf(nFi l ol, 11 1/.lf\t" ,qad); 
fprintf (nFilol, " 'l.lf \t" ,qbd); 
fprintf(nFilol, "'l.d\t" ,log ); 
fprintf(nFilol ," \ n"); 
fflu s h(nFilol); 
} 

ol s o if ( s tar a ... 5) 

fprintf (nFile2, "'l.lf \t ", t) ; 
f or ( i a Q; i<4; i++) fprintf(nFilo2,"'l.lf\t" ,x[i] ); 
dosTraj ( 1 , t , &.qa ,&qad,&:qadd); 
dos Tra j (2 , t ,&.qb ,&:qbd,kqbdd); 
fprintf(nFilo2 , "'l.lf\t" ,qa ); 
fprintf (nFilo2, "'l.lf \ t", qb); 
fprintf (nFilo2 , "'l.lf \t" , qad); 
fprintf(nFilo2 , "'l.lf\t" ,qbd); 
f printf (nFilo2, "'l.d\t", log); 
fprintf (nFilo2, >t \n"); 
fflu s h(nFilo2); 
} 

o l s o if ( s tar ... . 7) 

fprintf (nFilo3, "'l.lf \ t " , t) ; 
f or (i • O ; i <4;i++) fprint:f(nFilo3,"'l.lf\t",x[i ] ); 
<lo s Tra j ( 1 , t ,&.qa ,&qad ,&.qadd) ; 
d osTra j (2, t ,&:qb ,&.qbd ,&qbdd); 
fprintf (nFilo3, "'l,l f\t ", qa); 
fprintf(nFilo 3 , "'l. l f\t" , qb); 
f printf (nFilo3 , "'l.lf\t", qad) ; 
f printf (nF'ilo3 , "'l.lf \ t", qbd); 

··-. 
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fprintf (nFilo3, " 'l.d\t", log) ; 
fprintf(nFilo3 , "\n"); 
fflu s h(nFilo3): 
} 

olso if (star ..... 9) 

fprintf (nFilo4, "'l.lf\t" , t) ; 

for (i "" O; i <'1. ; i++) fprintf(nFilo'1, "1/,lf\t " ,x[i ] ); 
dosTraj (1 , t. ,&: q a ,&:qad,lqadd); 
dosTraj (2, t ,&:qb ,&qbd ,lqbdd); 
fprintf (nFile4, "'l.lf\t " , qa) ; 
fprintf (nFilo4, '''l.lf\t", qb); 
fprintf (nFilo4 , 11 'l,lf\t ", qad); 
fprintf(nFilo4 , "'l.lf\t" ,qbd); 
fprintf(nFilo4, "'l.d\t " , log); 
fprintf(nFilo4, " \n " ) ; 
ff l u s h(nFilo4); 
} 

void dosTraj(int joint, float t, floilt *q, float *qd, float •qdd) 

double tt, tb; 

float mxf, myf, dummy; 
float nunx, mmy, dx, dy, ddx, ddy ; 

float qt, q2 , a2, dql, dq2, ddql, ddq2; 
float picor, rang , rsq, donum ; 
float olo l , olo2, o l o3, olo4; 
float djl, dj2 , dj3, dj4 ; 
float torml, torm2; 
float mr.O • 0 . 259725; 
float myO • 0.120247 ; 
s hort count, <liroct ; 
int quoo • 0; 

if (modoFlagl:EVAL) /• if modoFlag .. ,.. EVAL, random s tar trajectory •/ 

I* dummy ,.. t; 

\Jhile (dummy > 26. 4) dummy • du1tUUy - 26. 4; 
quo "" ffloor(dummy / 3 .3) ;•/ 

/• diroct a dpt [count]; •I /•activato this to produco random star s hapo•/ 
c ount = ffloor(t/3.3) ; 

diroct,.. count'l.8 ; 
l og ., diroct+ 1. ; 
tt • fmod(t , 3.3); 

/•----------- x and y coordinates ---- - - ----•/ 
if (direct < 1) { 

rnxf ._. 0. 359725; 
rnyf "" 0.120217; 
} 

ol s o if (diroct < 2) 

mxf • 0.33013568; 
myf • 0.49095768 ; 
} 

ol s o if (diroct < 3) 
mxf = 0. 259725; 

myf "" 0.520217; 
} 

olso if (direct < 1) 

mxf • O. 18901432; 
rnyf • 0.49095768; 
} 

olso if (diroct < 5 ){ 
mxf ""' O. 159725; 
myf • O 120247; 
} 

ol s o if (diroct < 6) { 

mxf == 0. 18901132 ; 
rnyf = 0 34953632; 
} 

olso if (diroct < 7) { 

rnxf • O 259725; 
myf ""' 0.320247 ; 
} 

olso { 
mxf • 0. 33043568 ; 
myf • O. 34953632; 
} 

/•-------- Calculation of Trajectory -------•/ 
if (tt<3.3 I:&: tt>2.3) { 

mmx • mxO; 
dx = 0.0; 
ddx = 0 . 0; 
rnrny ,. myO; 
dy • 0.0; 
ddy • 0 . 0; 

rang • atau2(mrny ,mmx); 
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r s q "" mmx*mmx + rnmy•mmy; 
q2 • acos ( (rs q - 0.2245)/0.2244); 
ql "' rru1g - SGN(q2)•acos( (rsq + 0.1089 - 0.1156)/(0.66'•sqrt(rsq)) ); 

dgl • 0.0; 
dq2 = 0.0; 
ddql • 0.0; 
ddq2 111 0.0; 
} 

olso if (tt>l.65) { 
tb • (tt-1.65)/0.65; 
mrnx = mxf - (mxf-mxO)•( G•pow(tb, 5) - 15•pov(tb, '1) + tO•pow(tb , 3) ) ; 
nuny = myf - (myf-myO)•( 6*pow(tb , 5) - 15•pow(tb , '1) + lO•pou(tb, 3) ) ; 
d,: • -(mxf-mxO)•( JO•pow(tb, 4) - GO•pov(tb, 3) + 3 0•pov(tb, 2) )/0.65; 
<ldx "" -(mxf-mxO)•( 120•pow(tb, 3) - 180•pow(tb, 2) + GO•tb )/(0.65•0.65); 
dy u -(myf-myO)•( 30•pow(tb, 4) - GO•po1o1(tb, 3) + 30•pow(tb , 2) )/0. 6 5; 
ddy ~ - (myf-myO)•( 120•pow(tb, 3) - 180•pow(tb, 2) + 60•tb )/(0.65•0.65); 
rang • atan2(mmy , mmx); 

r s q "' mmx•mmx + mmy•mrny; 
q2 "' acos( (rsq-0.2245)/0.22'1'1); 
ql • rang-SGN(q2)•acos( (rs q + 0.1089 - 0.1156)/(0.6G• s qrt(rs q)) ) ; 
a2 = q1+q2; 

o l o l "" 0.34•cos(a2); 
olo2 "" 0.34*sin(a2) ; 
olo3 • - 0.33*c os(ql) - 0.34• c o s (a2); 
olo4 = -0.33* s i n(q1) - 0.34• s in(a2); 
donum ,. 1/(0.1122•s in(q2)); 
dql "" donum • (olol•dx + olo2•dy); 
dq2 = donum • (ele3•dx + olo4•dy); 

/• a c colorations •/ 

torml • denum * (olol•ddx + olo2•ddy); 
torm2 • donwn • (olo3•ddx + olo4•ddy); 
djl ... -0 . 33•cos(ql)•dq1 - 0.34•cos (a2)•(dq1 + dq2); 
dj2 = - 0 . 34•cos(a2)•(dq1 + dq2); 
dj3 = -0 . 33• s in(q1)•dql - 0.34•sin(a2)•(dql + dq2); 
dj1 = -0.34• s in(a2)•(dq1 + dq2); 

ddql • torm l -donum*((olohdj1 + olo2•dj3)•dql + (olol•dj2 + olo2*dj4)•dq2) ; 
ddq2 = torm2-donum•((olo3•djl + olo4•dj3)•dql + (olo3•dj2 + olo4•dj4)•dq2); 

ol s o if (tt>O 65) { 
mmx "" mxf; 
rnmy = myf; 
dx E 0.0; 
ddx '"' 0.0; 
dy = 0.0; 
ddy = 0.0; 

rang "" atan2(mmy ,mmx); 
r s q "" mmx•mmx + mmy•mmy; 
q2 ,. ncos( (ruq-0.2245)/0 2244); 
q l = rang- SGN(q2)•acos( (rsq + 0.1089 - 0.1156)/(0.GG•sqrt(rsq)) ) ; 

a2 ... ql + q2; 
dql = 0.0 ; 
ddgl = 0.0 ; 
dq2 • 0.0 ; 
ddq2 = 0 .o ; 

al s o { 
tb • tt/0 66; 
mmx "" mxO + (mxf-mxO)•( G•pm,(tb, 5) - 15•pow(tb, 4) + 10•pow(tb, 3) ) ; 
mmy "' myO + (myf-myO)•( G•pow(tb, 5) - 15•pow(tb , 4) + lO•pow(tb, 3) ) ; 
dx = (mxt'-mxO)•( 30•pow(tb , 4) - GO•powCtb, 3) + 30•pow(tb, 2) )/0.65; 
ddx = (mxf-mxO)•( 120•pow(tb, 3) - 180•pow(tb, 2) + 6D•tb )/(0.65•0.65 ); 
dy = (myf-myO)•( 30•pow(tb, 4) - GO•pow(tb , 3) + 30*pow(tb, 2) )/0.65; 
<ldy • (myf-myO)•( 120•pow(tb, 3) - 180•pow(tb, 2) + 60*tb )/(0.65•0. 65); 

ril.llg "' atan2(mmy ,mmx); 
r s q "' mmx•mmx + mmy•mmy; 
q2 • acos( (rsq-0.2245)/0.2244); 
ql :aa: rang-SGN(q2)•acos( (rsq + 0.1089 - 0.1156)/(0.66• s qrt(rsq)) ); 

a2 .. q2 + ql; 
olol ::a 0.34*cos(a2); 
olo2 ,,. 0.34•s in(a2); 
o l o3 ,. -0.33•cos(q1) - 0.34•cos(a2) ; 
olo4 "" -0.33• s in(q1) - 0.34•sin(a2); 
donum ,.. 1/(0. ll22•sin(q2)); 
<lql "" donum • (olol•dx + olo2•dy); 
dq2 "' d onum • (olo3•dx + olo4.•dy); 

/• accolorations •/ 
torml "" danum • (olo1•ddx + olo2•ddy); 
torm2 • donum • (olo3*ddx + olo4*ddy); 
djl = -0.33•cos(q1)•dq l - 0.34.•cos(a2)•(dql + dq2); 
dj2 ""' -0.34•cos (a2)•(dq1 + dq2); 
dj3 =- - 0.33• s in(ql)•dql - 0 . 34•sin(a2)•(dql + dq2); 
<lj 1l "" -0.34* s in(a2)•(dq1 + dq2); 

ddql ,.. t orml -dooum•((olol•djl + olo2•dj3)•dq1 + (o l o t•dj2 + o l o2•dj4)•dq2); 
ddq2 ,,. torni2-donum•{(olo3•djl + olo4•dj3)•dql + ( olo3•dj2 + olo4•dj4)•dq2); 
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if (modoFlag&.LEAllN) 

quoo • (int) ffloor(t/ 1 .65); 
tt = fmod(t,1.65); 

/~ - ------- Calculation of Trajectory -------•/ 
if (tt<l.65 && tt>0.65) ( 
nunx • dptx (quoo+ l] ; 

mmy = dpty [quoo+l ] ; 
dx ,.. 0.0 ; 
ddx • 0.0 ; 
dy • 0.0; 
ddy :. 0.0 ; 

rang • atan2(mmy ,w.mx) ; 
rsq "' mmx•mmx + mmy•mmy; 
q2 = acos ( (rsq-0 . 2245) /0. 2244); 

q i • rang-SGN(q2)•acos( (rsq + 0.1089 - 0 . 1!56)/(0.66•sqrt(rsq)) ) ; 
a2 • ql + q 2 ; 
dql • 0.0; 
ddq l • 0.0 ; 
dq2 • 0 . 0; 
ddq2 = 0 .o; 
} 

ol s o { 

tb • tt/0.65; 

nunx "' dptx[quoo] + (dptx[quoo+l J -dptx[quooJ)•( 6•pov(tb , 5) - 15•pow(tb , 4) + lO•pow(tb, 3) ); 
rnmy • dpty[quoo] + (dpty[quoo+l]-dpty[quoo])•{ 6•pov(tb, 5 ) - 15•pov(tb,4) + JO•pov(tb, 3) ) ; 
dx • (dptx[quoo+l] - dptx[quoo])•( 30•pov(tb, 4) - GO•pow(tb, 3) + 30~pow(tb, 2) )/0.65 ; 
ddx • (dp tx[quoo+ l ] - d p tx[quoo])•( 120•pow(tb, 3) - 180•pow(tb, 2) + GO•tb )/(0.65•0.65); 
dy • (dpty [queo+l ] - dpty [quoo])•( 30•pow(tb, 4) - 60•pow(tb, 3) + JO•pow(tb, 2) )/0.65; 
ddy • ( dpty[quoe+ l] - dpty [q uoo))•( 120•pow(tb, 3) - 180•pow(tb, 2) + 60•tb )/(0 .65•0 . 65); 

rang w atan2(mmy , mmx); 
rsq .. mmx•mmx + mmy•mmy; 
q2 = acos( (rsq-0 . 2245) /O. 2244); 

ql "' rang-SGN(q2)•acos( (rsq + 0.1089 - 0.1156)/(0.66• s qrt(rsq)) ); 
a2 '"' q2+ql; 
olol = 0.34•cos (a2); 
olo2 "" 0.31•sin (a2) ; 
olo3 "' -0.33•cos(q1) - 0.34•cos(a2); 
olo1 = -0.33•sin(q l ) - 0 . 31•sin (a2); 
donum = 1/(0.1122•sin (q2)); 
dq l "' donum • (olo l •dx + ol o2•dy); 
dq2 • donum • (ole3•dx + elo4•dy); 

/• accolorations •/ 

torml ""' donum • (elo l • ddx + olo2•ddy); 
torm2 .. denum • (olo3•ddx + elo4•ddy); 

dj l 111 - 0 . 33•cos(q l )•dql - 0.34•cos(a2)•(dq l + dq2); 
dj2 • - 0.34•cos (a2)•(dql + dq2); 
dj3 • -0.33•sin(q l )•dq1 - 0.34•sin (a2)•(dq1 + dq2) : 
dj1 "' -0.34•sin(a2)•( dq 1 + dq2); 
ddq l = torml-donum•( (olohdj l + olo2•dj3)•dql + (olol•d j 2 + olo2•dj4)•dq2); 
ddq2 • torm2- denum•( (olo3•djl + olo4•d j 3)•dql + (olo3•dj2 + olo4•dj4)•dq2); 

if (join t :n , 1) { 

*q = q l j 

•qd "" dq l ; 
•qdd "" ddql; 

} ol s o if (joint ,.. .. 2) { 
•q "" q2 ; 
*qd ,.. dq2 ; 
•qdd ,.. ddq2 ; 

} elso if (joint • • 3) { 
•q "" mmx; 
•qd = dx; 
•qdd • ddx; 

} el s o if (joint ""'"' 4) { 
•q "' nuny; 
•qd • dy; 
•qdd • ddy; 

) 

void rhs(float t , float •stato, float •doriv) 

/• Paramotors for controller •/ 
s tatic float trunc• 2.0,sigma,.2.0, doltu• . 5 ; 
s tatic float r2, drl, dr 12, dr2, dr22 , dr3 , dr32, dr4 , dr42; 
:;tutic float a l • 0.306, a2 .. 0.074, a3 ,. 0.095, a4 • 0.0, dot; 
s tatic float qtl, qt2, qt l d, qt2d, qrd l , qrd2, qrddl, qrdd2; 
s tatic; float rog, k, gl, g2, g3; 
I~ Paramotors for plant dynamics •/ 
s tatic float ql, q2, qdl, qd2 , sn2 , c n2 , h; 
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s tatic float q3, s nl, e n!, s nl 2 , c n1 2 ; 
s t ati c fl o at v [2); 
s tatic fl oat • cptr[1 6]; 
I* Bookooping , otc •/ 
rogi s tor ii, jj , kk; 
floa t *Y. • s tato, •dx ,. doriv; 
/• Initializo variablos •/ 
for (ii = O; i i < 2; ii++) { 
hh a t[ii) [O) • h11at[ii) (1 ] • 0.; 
c hat[ii ) [O) • c h a t[ii) [1) • 0.; 
chat[ii ) [2] •chat[ii) [ 3) • 0 . ; 
ohat [ii) [O] • oha t [ii] [l] • 0 . ; 

l 
ql ::r •x++ ; 
q2 "" *x++; 
qd l = •x++ ; 
qd2 =- •x++; 

I• 
it ( (ADS (q!)>PI) 11 (ABS(q2 )>PI) 11 (ADS(qdl)>S.•PI) 11 (ABS(qd2)>5.•PI)) 

prin'tf ( "Gonoral failure: 'l.lf\t'l. l f\t'l.lf\t¼lf\n", 
t,ql,q2 , qdl , qd2); 
OY.it(l); 
} 

•I 
/•--- - --- - - - - Computo Do s irod Trajectory ---- ---- --- - •/ 

dosTraj ( 1 , t ,kqld ,kqldd ,kqlddd) ; 
d o s Traj (2, t ,&q2d ,&q2dd ,&q2ddd); 

/•-- -------- -Computo tracking orror ----------------•/ 
qt ! • qi - q!d; 
qt2 • q2 - q2d; 
qtld • qd! - qldd; 
qt2d • qd2 - q2dd; 

/• - ---- Compute adaptive fun c t i on ostimatos - - -------•/ 
l;lifdo f ADAPTIVE 
ac t = ac trof; 
for (ii • O; ii < 16; ii++) cptr[ii] • x+ ii•NUMNOOE; 
for (ii "" QlMIN; ii <• QlMAX; ii++) { 

<lr l = (ql - ii•dolta); 
for (jj • Q2MIN ; jj <• !J2MAX; jj++, a ct++) 
dr2 • (q2 - jj•dolta); 
if ( (ADS (drl ) >trunc ) 11 (ADS(dr2) >trunc)) 
•ac t • 0, : 
f or (kk • O; kk < 16 ; kk++) c ptr[kk]++; 
cont inuo; 

dr12 ,. drl•drl; 
r2 "" dr1 2 + dr2•dr2; 
•ac t . oxp(-r 2•sigma); 
hhat [0] [OJ +• (•cptr [O]++)•(•act); 
hhat [OJ ( 1) +. (•cptr[l]++)•(•act); 
hhat[I) [OJ +• (•cptr[2]++)•(•act); 
hhat [1](1) +• (•cptr[3] ++)•(•ac t); 
c hat [OJ [OJ +• (•cptr [4] ++)•(•act); 
c hat [OJ (1) +• ( •cptr [ 5] ++)•(•act); 
c hat [0) [2) +• ( •cptr [ 6] ++)•(•act) ; 
chat [OJ (3 ) +• (•cptr [7]++)•(•act); 
chat [I) [OJ +• (•cptr [O]++)•(•act) ; 
chat[!l(lJ +• (•cptr [9]++)•(•ac t); 
chat [Jl(2J +• (• cptr[!O]++)•(•act); 
c hat [I) [3J +• (•cptr[ll]++)•(•act); 
ohat [OJ [OJ +• (•c ptr[12]++)•(• act); 
ohat [OJ [ I) +- (•cptr[13]++)•(•act); 
ohat (1) [OJ +• (• c ptr[14]++)11(•act); 
ohat (!] [l ] += ( • cptr[15]++)•(•act); 
} 
} 

#ondif 

/• Adaptivo •/ 
qrd l • q l dd-lambda[OJ [O)•qtl - lambda[O] [ l) •qt2; 
qrd2 • q2dd- l ambda[l] [O]•qtl - lambda[ ! ] [1 ) •qt2; 
qrdd l • qlddd-lambda[O) [O)•qtld - lambda[O) [1)•qt2d; 
qrdd2 • q2ddd - lambda [l) [O]•qtld - lambda[!] [l)•qt2d; 
s l ~ l ambda[O] [O]•qtl + larnbda[O] [l]•qt2 + qtld; 
s 2 • lambda[!) [OJ•qtl + lambda[!) [1J•qt2 + qt2d ; 
t o ri • t au(O) • -kd[O) (O]• s l - kd[O) [1J• s 2 + 

hhat [OJ [OJ •qrdd l+hhat (OJ(!] •qrdd2 + 
c ha.t[O] [O]•qdl•qrdl + c hat[O] [1]•qdl•qrd2 + 
chat [OJ (2) •qd2•qrd1 + chat [OJ [3] •qd2•qrd2 + 
ohat [OJ [OJ •qdl + ohat [OJ (1 ) •qd2; 

tor2 • tau(!) • -kd[!J [O]•s l - kd(l] [1)• s 2 + 

hh at Lt] [O] •qrddl+hhat [1] [1]•qrdd2 + 
chat(l] [O]•qdl•qrdl + c hat[l] [1]•qd1•qrd2 + 
chat[l] [2]•qd2•qrd1 + c hat[l] [ 3]•qd2•qrd2 + 
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chat[ !] [ O]•qd! + ohat( l] [l]•qd2; 

/• PD *I 
llifdof PD 

torl • tau[OJ • -kd [OJ [OJ•qtld - kd[OJ [l ]•qt2d - kp[O] [O)•qt l - kp[O] [l)•qt2; 
tor2 • tau[l] • -kd [l][O]•qtld - kd[l) [!J•qt2d - kp[l](O)•qtl - kp[l)[l)•qt2; 
llond if 

I* Computo robot dynamics •/ 
q3 • qi + q2; 
:ml • s in(q l ); cnl • c o s (q l); 
s n2 ~ sin(q2); c n2 = cos( q2); 

s n12 = sin(q3); cn12 =- cos(q3) ; 

h=a3•sn2-a4*cn2; 
II (0) (O] "" a 1 + 2, • a3• cn2 + 2 . •o4•sn2; 
l![O] (l] = 11 [1.l [OJ = a2 + a3•cn2 + a4•sn2; 
11(1) (1] = a2; 
Mat!nv _2(H, Hinv, &dot ); 
if (ABS(dot)<0 . 005) printf( 11 Warning : ii is ill-conditionodl\n 11

); 

C [OJ [OJ 
C[O] (l] 
C[I) [OJ 
C[l ] [I] 

• -h •qd2; 
- h•(qdl+qd2); 

"" h•qdl; 
• 0. 

v[O] "" s l ; 
V (1) "" s2 ; 

Mat2Voc ( C , v, v) ; 
VocSub(tau, v, 2 , tau); 

if (modoFlag&FIELD) { 
tau [ OJ += 2 . 3•qd l + 0. 64•qd2; 
tau[l) + a -0.9•qd1 - 1.54•qd2; 
} 

Mat2Voc(Hinv, tau, tau); 
/• Cornputo dt , dx, dv •/ 
•dx++ • qdl; /• dql •/ 
*dx++ • qd2; /• tlq2 •/ 
*<lx++ ""' qrddl+tau (0); I* ddql •/ 
•<lx++ • qrdd2+tau (1) ; /• ddq1 •/ 

/• Computo df hat , dghat •/ 
IH fdof ADAPTIVE 
act • actrof; 
fo r (ii ,.. O; ii < 16; ii++) cptr[iiJ • dx+ii•NUMNODE ; 

if (AUS(sl)<.01) s l • O. ; 
if (ABS(s2)<.0l) s2• 0.; 
if (modoFlag&:LEARN) {g1• ka1 ;g2ako.2 ;g3:ko.3;} 
o l so ( g l • O.; g2• 0. ; g3• 0. ;} 

for (ii • O; ii < (NUMNODE); ii++) { 
rog ,... (•act++); 
if (rog=•O) { 

for (jj "" O; jj < 16 ; jj++) •cptr[jj ]++ • O.; 
c ontinuo; 

•cptr (0) ++ • -ghs1•qrdd1•rog; 
•cptr (1) ++ • - g h s 1•qrdd2•rog; 
..,cptr (2) ++ =- -g2•s2•qrddl•rog; 
•cptr [3) ++ • -g2•s2•qrdd2•rog; 
• c ptr [IJ.] ++ "" -g2•s l •qdl•qrdl•rog; 
•cptr (5] ++ .. -g2•s l•qdl•qrd2•reg ; 
•cptr [6] ++ ::: -g2•!3 l•qd2•qrdl•rog ; 
•cptr [7] ++ -g2•s l•qd2•qrd2•rog; 
•cptr(8]++ "" -g2•s2•qdl•qrdl•rog: 
•cptr (9] ++ "" -g2• s2•q<ll•qrd2•rog ; 
• cptr[lO]++ =- -g2•s2•qd2•qrdl•rog; 
•cptr (11)++ -g2• s2•qd2•qrd2•rog; 
• cptr ( 12]++ ,.. -g3•sl•qd l•reg; 
•cptr ( 13] ++ g -g3•sl•qd2•rog; 
•cptr[14]++ a -g3•s2•qdl•rog; 
•cptr(15) ++ • -g3 • s2•qd2•reg; 
} 

#ondif 
} 

doublo nrand(double scnlo) 
doublo tamp "" 0; 
tomp "" (double) random() - (1<<30); 
roturn( (tomp/{1 <<30))• s cal o ) ; 
} 
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