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ABSTRACT 

Thegrowth ofProton therapy requires new imaging and treatment planning 

modahties. X-ray computed tomography(xCT), which is widely available, 

has been used for the treatment planning for proton therapy, but since the 

basic interactions ofxCT in matter are fundamentally different than those 

of the protons, the resulting density map from xCT is only an approxima 

tion. Accuracy of the electron density map is crucial to successful use of 

proton therapy,thus requiring proton computed tomography(pCT),which 

accurately maps the electron density. 

The image reconstruction problem for pCT is to obtain the best estimate 

for the relative electron density map from the measured proton data. The 

problem is not exactly,solvable because of two factors: (1) the statistical 

fluctuation ofthe measured energy loss mainly dueto energystragghng,and 

(2)the statistical deviation of the proton from its most likely path(MLP) 

due to multiple Coulomb scattering. 

This thesis develops an optimized and effective iterative reconstruction al 

gorithms taking into account the peculiarities of proton transport through 

the object, and hardware acceleration methods need to work together syn 

onymously in order to be suitable for cflnical apphcations. Algebraic recon 

struction technique(ART)has shown some promise in the literature, but 

its theoretical basis does not fit with the assumptions of pGT. This thesis 

explores the assumptions and practical reconstruction of the electron den 

sity maps. In particular the performance in terms of reconstruction time, 

and the parallelizability wiU be examined. 

Ill 
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1. BACKGROUND 

1.1 Introduction 

Proton computed tomography(pCT)has been explored in the past decades because 

of its unique imaging characteristics, low radiation dose, and its possible use for 

treatment planning and on-Une target localization in proton therapy[40, 17]. The use 

of protons for medicalimaging was first suggested in the late 1960s by Koehler [2]and 

first experimental work on the concept of a pCT scanner was performed at the Los 

Alamos National Laboratories in the late 1970's [28, 25] but pCT was never fully 

developed because ofgreat advancesin x-ray CT(xCT)and otherimaging modalities. 

In recent years, pCT has gained relevance because proton treatment centers opened 

and rotatable proton gantries became available [38, 40]. 

In his pioneering work, Koehler showed that minute density differences, for ex 

ample, the addition of a 0.035 g cm~^ thick aluminium foil to a stack of aluminum 

absorbers 18gcm"^ thick,could be discerned by meansof2D-projection proton radio 

graphy using radiographic film as the detector. Subsequently, Steward and Koehler 

(1973a,b 1974) and others (Cookson 1974, Moffett et al 1975, Kramer et al 1979) 

demonstrated that the high contrast images obtained by proton radiography provided 

improved imaging oflow contrast lesions in human specimens over conventional x-ray 

techniques at comparable exposmre levels. The high contrast obtained byimaging the 



energy loss of protons with radiography is a consequence ofthe sharpness ofthe well 

known Bragg peak that occurs near the end of proton range. Even higher contrast 

can be achieved through the use of heavy ions rather than protons(Benthon et al 

1975, Capp et al 1978)[28]. 

Although first suggested by Cormack in 1963(Cormack 1963,1964)asa possibihty 

to do tomographic reconstructions with proton imaging, the first author that inves 

tigated pCT experimentally was Goitein (1972). He employed projection data with 

alpha particles measured by Lyman to demonstrate the utility of his least-squares 

reconstruction algorithm for pCT. Later, in comparisons of heavy charged particles 

CT(including pCT)with x-ray CT(Crowe et al 1975,Huesman et al 1975,Cormack 

and Koehler 1976, Hanson 1978) it was shown that charged particles have a clear 

dose advantage over x-rays [28]. This dose advantage might be utilized clinically 

by providing CT reconstructions with significantly better density resolution than it 

is possible with x-rays at a given dose level. Furthermore, in charged particle CT, 

it is the electron density relative to water what is imaged rather than the photon 

attenuation coefficient relative to water that is used in x-ray CT.This unique imag 

ing characteristics of charged particles may prove also to be beneficial in medical 

diagnosis [28]. 

X-ray computed tomography(CT)brought slice imaging into wide use for the first 

time and represented its breakthrough. Today CT is an essential part of radiological 

diagnostic and can be seen as a mature and clinically accepted procedure. It has 

supplemented or replaced classical x-ray imaging in many areas [30]. 

A rapid technical development phasein the seventies wasfollowed by an uneventful 



phase with no essential highhghtsin the eighties, this was partly caused by the expec 

tation that theimportance ofCT would decrease successively due to the introduction 

of magnetic resonance(MR)tomography. Contrary to these expectations, CT is in 

the phase ofrapid technical developments and again broadening its application spec 

trum. The development of spiral CT and the transition from scanning single slices 

to the raid scanning of complete value has made CT attractive again and has led 

to decisive developments in technical and in clinical perspectives. The introduction 

of multi-row detector systems and scan times in the sub-second range constitute the 

high point of these developments. 

Since x-rayCTis widely available,and protonfacilities are stiU limited toafew cen 

ters world wide,cmrent attention is directed to therapeutic applications ofpCT [40]. 

Proton therapy is an advanced form of radiation therapy which offers proven advan 

tages over radiation therapy with photons (e.g., high energy x-rays)[23]. TVeatment 

planning for proton therapy is currently based on x-ray CT,which has disadvantages 

because the mapping of Hounsfield CT values to electron density is not unique [5]. 

Furthermore,it would be advantageousto use protonsforimage guidancein thetreat 

mentroom for several reasons,including the dose advantage of protons and avoidance 

of alignment problems between imaging equipment and radiation source. 

pCT apphed in proton treatment planning would be advantageous because it di 

rectly reconstructs the electron density values and uses the same radiation modality 

that is being used for treatment. Therefore, pCT in combination with proton ra 

diation therapy may lead to ultirnate form of image-guided radiotherapy. pCT is 

generally based on similar underlying principles as other medical imaging modalities 



but differs in some aspects from x-ray CT. The imaging information of pCT is the 

energy loss of individual protons rather than the attenuation of a proton. From this 

information, the integrated density along the proton path can be estimated. The 

mostimportant difference with respect to xCT is that protons undergo multiple scat 

tering inside the object and, therefore, follow paths that statistically deviate from 

straight lines. Because of this different reconstruction algorithms than those relying 

on straight path assumptions have to be used. 

In x-ray CT,data collection is considered mathematically as a Radon transform, 

i.e., the integration along straight lines of the object source fimction. In this case, 

the object data represent the attenuation coefficient map and the projection data the 

log values of the detected x-ray cmmts. In pCT, protons with known entry energy 

are tracked individually on the entry and exit side of the object and their outgoing 

energy is recorded. This can be achieved with modern particle tracking detectors 

developed for high-energy physics applications. Because of the random nature of 

proton scattering, it is not possible to calculate the precise trajectory of the protons 

within the target,buttheentry and exit locations and directions ofthe protonscan be 

used to estimate their path through the object,and the measured energy loss permits 

estimating the integrated electron density aloiig the proton path.However, because 

most of the technological development efforts successfully went into improving the 

diagnostic xCT in those decades, the interest in developing medical pCT stagnated. 

Thesituation changed with the developmentofmedical proton gantriesfor delivery 

of proton beams,first at Loma Linda University Medical Center, and now in several 

other proton treatment centers, resulting in an increasing number of patients treated 



with proton therapy. This new technical development and increase of patient number 

elevated the need for an accurate prediction of the proton dose distributions and 

verification of the patient position on the treatment table, and also demanded the 

development of accurate 3D imaging techniques. This has lead to a renewed interest 

in proton imaging and the construction of a proton radiography system at the Paul 

Scherrer Institute in Switzerland [44]. 

The main goal of pCT for proton therapy applications is to determine ofthe elec 

tron density distribution ofthe object and to use this information for treatment plan 

ning and image-guidance in the treatrhent room. The image reconstruction problem 

for pCT is then to obtain the best estimate for the relative electron density mapfrom 

the measured proton data. The problem is not exactly solvable because of two rea 

sons: (1)the statistical fluctuation ofthe measured energy loss mainly due to energy 

straggling, and (2) the statistical deviation of the proton from its most likely path 

(MLP)due to multiple Coulomb scattering. Nevertheless, approximate solutions of 

the electron density map can befound by iteratively solving the reconstruction prob 

lem. 

Presently, a pCT system utilizing a proton gantry and fast image reconstruction 

techniques has not yet been developed. However, a recently published design study 

has concluded that a pCT scanner shotrld utilize instrumentation developed for high-

energy physics such as silicon track detectors and crystal calorimeters equipped with 

fast readout electronics, allowing one-by-one registration of protons traversing the 

body during a fuU revolution of the proton gantry [40]. Different from proton beam 

therapy wherethe Bragg peak is positioned inside the targeted tumor inside the body. 



pCT may label each incident proton and detect that proton when it exits from the 

body by a high-energy detector where the high-dose Bragg peak will occur inside 

the detector. The pCT scanner will provide precise information on the protons inci 

dent energy, location and direction, as weU as its exit energy,location and direction. 

Another recently published study further concluded that a completely new image re 

construction paradigm is needed for pCT which deals with the proton path of curves, 

rather than the well-known X-ray path of straight lines in xCT [49]. An adequate 

image reconstruction algorithm shall utihze the pCT scanner measurements to map 

the energy loss along the proton trajectories through the body. 

A major challenge in pCT that requires research and development is to investigate 

and optimize reconstruction algorithms. Researchers, using the Monte Carlos sim 

ulation tool GEANT4 and an elliptical object model have shown that, in principle, 

an algebraic reconstruction technique(ART)can lead to a satisfactory spatial reso 

lution [49]. However, there are many variants of algebraic reconstruction techniques 

(also called series expansion methods)that should be explored and optimized for the 

pCT application. These are expected to differ in terms ofcomputer speed, possibihty 

to perform parallel computations,and the accuracy ofthe reconstruction. The goal of 

this thesis is to estabhsh the computer science basis for this research allowing future 

students and researchers to further explore this important field. 

1.2 Significance 

Thenumberofproton treatmentcenters has dramaticallyincreased in recent year. For 

many years, the proton treatment center at Loma Linda University Medical Center, 



which opened in 1990,wasthe only hospital based center for proton therapy, but now 

there are about 10 such facihties world wide. 

Withincreasing useofprotonsforthetreatmentofpatients,doctors wanttoexploit 

their unique ability to stop the beam immediately in front ofa critical structure such 

as the optic nerve or the spinal cord. This requires very accurate treatment planning 

and the ability to predict where the proton beam will stop inside the patient. With 

current x-ray CT based treatment planning the accuracy of proton range predictions 

is not better than a few millimeters which often causes the radiation oncologist to 

avoid beamsthethat would stop in front ofcritical structures. Such major limitations 

can be over come by developing pCT. 

The knowledge of pCT reconstruction is currently;very limited and only a few 

publications on this subject exist. Therefore, more work in this field is needed and 

was initiated with this thesis project. Development of time-efficient computer algo 

rithms is the task ofcomputer scientists and this thesis will be significant for further 

development and optimization of reconstruction in pCT. 

A successful implementation ofpCT would avoid the ambiguities of mapping xCT 

Hounsfield units(HU,which is related to the X-ray attenuation coefficients) to elec 

tron densities, and would allow actual dose distribution and also verification of pa 

tient pqsition in the treatment room. In other words,fhe availability of pCT in the 

treatment room will predict very accurately the position of the Bragg peak within 

the patients body, resulting in a maximum dose dehvery to the targeted tumor and 

successful sparing ofthe surrounding normal tissues. Furthermore,a successful inte 

gration of pCT with proton therapy may lead to the ultimate form of image-guided 



3D conformalradiation therapy,which hasthe potentialto deliver the optimal doseto 

any point within the patient and provide arbitrarily shaped inhomogeneous dose dis 

tributions as desired Thisis now recognized asthe major potentialofpCTin medicine. 

The image formation principles of proton beam are presented below. Hardware con 

figuration and data acquisition for pCT will be discussed. Theemphasis will be onthe 

issue of image reconstruction from projected data along proton trajectories through 

the body. 

1.3 Purpose ofThe Thesis 

Preliminary work clearly points to algebraic techniques or series expansion meth 

ods for proton CT reconstruction. So far, only an additive algebraic reconstruction 

technique(ART)has been attempted on a single object. Other algebraic or series 

expansion techniques may give better results. These techniques have parameters that 

can be optimized,which has not been done yet. Furthermore,reconstruction has only 

been done of a 2-D object and with simulated data, this needs to be extended to a 

3D objects and to data that have been acquired with an experimental pCT proto 

type. Lastly, one ofthe challenges ofthe algebraic reconstruction or series expansion 

techniques is their high computation cost (e.g.,twelve horns computation time for an 

additive ART reconstruction on a laptop PC [49]). This should be accelerated using 

parallel computing techniques and/or hardware accelerators but the performance of 

these algorithms will also depend on the choice of relaxation factors and the partic 

ular object type. Clearly, much research is still needed before pCT can be clinically 

used to the benefit of patients. 



The purpose of this thesis is to establish the basis for this research by developing 

the software that uses simulated or experimental proton CT raw data as input and 

calculates most likely paths of protons through the object. It is the plan to use one 

or two algebraic reconstruction methods to demonstrate that the original object data 

can be reconstructed with sufficient spatial resolution;and without artifacts. Based 

on the findings of this work recommendations for future directions will be given. 

1.4 Assumptions 

The following assumptions were made throughout this thesis. 

1. The electron density distribution relative to water of the object to be recon 

structed using proton CT raw data is exactly known. Differences in the re 

constructed object are, therefore, due to imperfections in the raw data, the 

reconstruction algorithm, or both. 

2. The protons incident on the object are monoenergetic and have an energy of200 

MeV. 

3. The incident beam consists of protons that are all parallel in their direction and 

lie in a common plane. The object is reconstructed in this plane. 

1.5 Limitations 

Note: This thesis is one of the first in the field of pCT reconstruction. Below I 

stated only afew known limitations that must be considered when mewing the results. 

Additional limitations will be stated throughout the remainder of the thesis as they 



become obvious. 

The spatial and electron density resolution ofa pCT scanner are inherently limited 

by the physical processes of multiple Coulomb scattering (MCS) and energy loss 

straggling. A clinically meaningful spatial resolution for proton therapy is about 

1mm [40] and I chose this limit for the voxel size of my pCT reconstructions. 

My workfocuses on building the first version ofasoftware platform for pCT recon 

struction thatcan beextended to moreand more complex algorithms and applications 

in the future. As such I have limited the first version of the platform to reconstruc 

tion of a 2D object scanned with parallel, monoenergetic proton beams and without 

assuming any technical imperfections in the imaging system. 

1.6 Definition ofthe Terms and Abbreviations 

These are standard terms in the field and are included for the convenience of the 

reader. 

2-D Related to a two-dimensional plane. 

3-D Related to a three dimensional volume. 

Algorithm A set of ordered steps for solving a problem, such as a mathematical 

formula or the instructions in a program. 

ART Algebraic reconstruction technique is used to reconstruct and object from pro 

jection data; it is based on matrix algebra, anything. 

CERN A large multinational high-energy physics laboratory in Geneva,France. 
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CT Computed tomograpiiy is a technology that allows to reconstruct an object and 

displays the reconstruction as a stack of2D images. 

DSP Digital Signal Processing. 

Electron Density Electron density is the number electrons per unit volume present 

at a given location of an object. 

FPGA Field Programmable Gate Array. 

GEANT4 TheGEANT4code developed at CERN is a platform for"thesimulation of 

the passage of particles through matter." It is the most recent in the GEANTse 

ries ofsoftware toolkits developed by CERN,and the first to use Object oriented 

programming (in C-I-+). 

GPU Graphics Processing Unit. 

MCS Multiple Coulomb scattering occurs when a charged particle traverses and in 

teracts with the nuclei of matter. 

MLP Most likely path of a proton through a reconstruction volume when only entry 

and exit position and direction are known. 

MRI Magnetic Resonance Imaging, which is diagnostic technique which uses a mag 

netic field and radio waves to provide computerized images of internal body 

tissues magnetic resonance imaging. MRIs are used in medicine to help diagnose 

things that won't show up on an X-ray. 

NIST The National Institute of Standards and Technology is a federal technology 

agency that develops and promotes measurement,standards, and technology. 

. , 1 
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Particle or atom (nontechnical usage)a tiny piece of an3rthing. 

PC Personal Computer. 

pCT Proton Computed Tomography is a novel imaging technique that uses protons 

to perform CT. 

PET Positron Emission Tomography, is a diagnostic examination that involves the 

acquisition of physiologic images based on the detection of radiation from the 

emission of positrons. 

Proton accelerator A proton accelerator is a device that uses electric fields to accel 

erate protons to a high speed close to the velocity oflight and magnetic fields to 

keep them on a circular path. 

Proton Gantry A proton gantry is a medical device that bends the proton beam and 

allows treating a patient from any direction within a plane of rotation. 

Proton Therapy An advancedfrom ofradiation therapy thatemploysprotonstotreat 

tumors and other conditions. 

Quadrature A method of numerical integration, often applied to one-dimensional 

integrals. 

Relative Electron Density Electron density relative to that of water. This allows to 

use unit-less nmnbers in the vicinity of unity for the reconstruction of patient 

images. 

SPECT Single photon emission computed tomography, is a nuclear medicine tomo-

graphic imaging technique using gamma rays. 
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Tomography A method to generate 2D images of areaainside the body;in computed 

tomography these images are created by a computer. 

x-rays Energetic photons of short wave lengths generated by bombarding electrons 

onto a dense metallic target. X-rays are used for CT and radiation treatment. 

1.7 Organization ofthe Thesis 

In this thesis I will be researching various series expansion reconstruction techniques 

for pCT. In particular, I will perform the following tasks; The first step involves 

implementation of various pCT reconstruction algorithms in 2-D and testing their 

performance with GEANT4-simulated pCT data. I will optimize the performance 

by systematically varying relaxation parameters and iterative refinement steps. This 

first task is anticipated to take about 4 months. The second step is to improve 

the timing of the selected 2-D algorithm using numerical and parallel processing 

techniques. This is anticipated to take about4 months. The third step is to extend 

the optimized 2-D algorithm to three-dimensional objects. This is anticipated to take 

two months. After conclusion of these steps, I will suggest the path to be followed 

from that point on. I will look at possible hardware implementation using Field 

Programmable Gate Array(FPGA),Digital Signal Processing(DSP),and Graphics 

Processing Unit(GPU)to speed up the process. Some basic tests and analysis will 

be performed for one month. During the final month,conclusions will then be drawn 

and recommendations for further work be given. 
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2. CONVERSION OF ENERGY LOSS TO THE LINEINTEGRAL OF 

RELATIVE ELECTRON DENSITY 

2.1 Background 

The history of heavy charged particle radiography begaa in 1968 with the pioneering 

work of Koechler (1968). He showed that the addition of an aluminum foil 0.035 

gcm^ thick to a stock of aluminium absorbers, 18 gcm~^ thick, could be discerned by 

means of proton radiography using film as the detector [28]. Subsequently, Steward 

and Koehler (1973a,b, 1974)and others(Cookson 1974, Moffett et al 1975,Kramer 

et al 1979) did a lot of work to finally pubhsh results that the high contrast images 

obtained by proton radiography provided improved imaging of low contrast lesions 

in human specimens over conventional x-ray techniques. The high contrast obtained 

in this energy-loss form of radiography is a consequence of the sharpness of the well 

known Bragg peak that occurs neartheend ofthe proton range. Every higher contrast 

may be achieved through the use of heavy ions [28]. 

Although cited as a possibility by Cormack in 1963, the first to apply charged 

particles to computed tomography(CT)was Goitein in 1972. Heemployed projection 

data measured by Ljnnan with alpha particles to demonstrate the utility of his leaSt-

squares reconstruction algorithm. Later,in the comparison of heavy charged particle 

CT with x-ray. It was shown that charged particles have a dose advantage over x-
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Fig. 2.1: Gantry-1 Proton Treatment Room at Loma Linda Medical Center and University LUMC 

rays. This doesadvantage might be utilized effectively by providingCTreconstruction 

with significantly better density resolution than it possible with x-rays at a given dose 

level. Furthermore,in charged particles CT,it is the linear stooping power relative to 

water that is imaged rather than x-ray attenuation coefficient. The unique imaging 

characteristics of charged particles may prove to be beneficial in medical diagnosis. 

The current proton therapy system at LLUMC is illustrated in figure 2.1 [40], 

where proton gantry delivers proton from any angle around the patient. It dehvers 

wide range of beam intensities, of which protons used for pCT will penetrate the 

patient. During the gantry rotation, data including, entry and exit location, angle. 
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and energy loss will be collected. 

The main principle of proton computed tomography pCT is based on the deter 

mination ofthe integrated volume electron density, pe, or short, the electron density. 

This is accomplished by measuring the energy loss ofindividual protons after travers 

ing the image object. The electron density ofa material at a given location is defined 

as the number of electrons/cm^. 

Schulte, from Loma Linda Medical Center and University, and colleagues from 

LLUMC and other research centers [40], suggested a conceptual design for a proton 

computer tomography system illustrated in 2.2. The object is traversed by a broad 

beam of protons with known energy Ein- A proton-tracking detector is arranged on 

both sides of the patient, which records the entrance and exit points and angles of 

individual protons. Protons axe stopped in a scintillator crystal array to measure 

their outgoing energy. 

The figure 2.2 present a schematic of the proposed approach to pCT with known 

entry energy Ein are recorded one by one in the detector reference system (t,u,v) as 

they traverse the image Object from many different projection angle (f). The recorded 

data include entry and exit positions and entry and exit angles as well as exit energy 

E^t in the energy detector. In this figure, planes (1 and 2) register the location 

and direction of each proton on the entry side, planes(3 and 4)register the location 

and direction of each proton on the exit side, last we have energy detector measmes 

residual energy of each proton on the exit side 

This chapter deals with the development of the analjdic formalism allowing an 

computer-time eflS.cient conversion ofthe measured energy loss to the integrated elec-
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Fig. 2.2: Schematic of the Proposed Approach to Proton Computed Tomography pCT with known entry 

energy Ei„ [40] 

tron density along the proton path. 

2.2 Interaction of Protons With Matter 

When traversing matter, protons lose some of their energy via inelastic collisions 

with the outer electrons of the target atoms leading to ionizations and excitations. 

Furthermore, they will be deflected by multiple small-angle scattering events (i.e., 

multiple Coulomb scattering -MCS) from the atomic nuclei. These two main pro 

cesses, occurring a great number of times along the macroscopic path of the protons, 

lead to the macroscopic effects of the interaction of protons with matter: (1) loss 

of energy and (2) deflection from their original direction. As individual interaction 

events occur randomly, these two processes result in a statistical distribution of the 
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following two principal quantities observed for proton imaging: (1) the amount of 

energy lost by each proton after traversing the body,and (2)the lateral and angular 

displacement of the proton from its incident position and direction. The amount of 

energy-loss variation (i.e., energy straggling, which is reflected by the variation ofthe 

Bragg peak location of a proton traversing along the same path through the same 

object)is the principal hmitation for the intrinsic image contrast or density resolution 

of pCT (Satogata et al. 2003; Schulte et al. 2005). The variation of proton trajec 

tory due to the random MCS,resulting in the lateral and angular displacements, is 

the principal limitation for the intrinsic image spatial resolution of pCT. These two 

principal hmitations are discussed in more detail in [49] [40] [45]. 

In addition to the two main processes of inelastic collisions with the outer atomic 

electrons and elastic deflection from the atomic nuclei due to MCS,protons in the en 

ergy range(atthe MeV level)used for pCT also undergo inelastic nuclear interactions, 

leading to reduction of proton transmission in a depth-dependent manner. Protons 

undergoing nuclear interactions mostly deposit their energies locally and hence con 

tribute to the dose within the patient without contributing to the image formation. 

This is important for developing pCT for chnical use, but the magnitude ofthis effect 

is weU understood and contribution to patient dose is relatively small(Schulte et al. 

2005). For example,the probability of a 200 MeV proton to be transmitted without 

undergoing a nuclear interaction is 92.2% for a water layer of 10 cm thickness, and 

83.6% for a layer of20cm thickness. Thus the majority of protons will contribute to 

the image when using energy loss as the physical quantity to reconstruct the electron 

density along the path. 
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2.3 Energy'Loss and Electron Density: The Bethe Block Equation 

As we will see below, the energy loss of protons going through an object is closely 

related to the path integral of electron density. This relationship can be exploited to 

reconstruct the object distribution of electron density in 3D. 

The protons used for pCT must have sufficient energy to penetrate the body to 

be imaged. According to the NIST PSTAR data base^,the path depth or range in 

a continuous slowing-down approximation (CSDA)of 200 MeV protons in a tissue 

equivalent plastic is 25.8 cm, which is sufficient to penetrate an adult human skull 

(nominal width of 20 cm in anterior-posterior direction). For 250 MeV protons the 

range is 37.7 cm, sufficient to penetrate an adult trunk (nominal width of 34 cm, 

excluding arms). 

The energy-loss method of pCT is based upon the relationship between electron 

density and energy loss per unit track length. Let us first consider the relationship 

between energy density and physical density, which is is given by: 

Pe = pNa (2.1) 

where p is the physical density, Na is Avogadro's number (6.023 x 10"^^), and Z 

and A are the (effective) atomic number and atomic weight ofthe traversed material, 

respectively. When the object material is comprised of a compound, for example, 

water(iTaO),or a mixture ofelements or compounds,the electron density is given by: 

Pe = pNAEiW— (2.2) 

where Wi is the fraction by weight ofelement i, and Zi and Ai are the atomic number 

http://www.physics.nist.gov/PhysRefData/Star/Text/PSTAR.html 
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and atomic weight of the ith element. The elemental and compound data may be 

obtained on-line from the NIST material composition database [48]. 

Since the ratio ZjA is fairly constant for human tissues, the electron density 

closely reflects the physical density of the imaged tissue [45]. To avoid the large 

numbers associated with absolute electron density values, which are of the order of 

10^^ electrons/cm^,it is better to express results in terms of relative volume electron 

density, which is defined as: 

J7e = —^ (2.3)
Pe,water 

where Pe,water =3.343 x electrons/cm^ is the electron density of water. 

The energy loss per unit track length of a proton, also called the stopping power, 

S,is described by the Bethe Bloch equation [34] as: 

SW = (2.4) -

= r,,(u)F(I{u)E(u)) (2.5) 

where u represents the penetration depth ofa proton,E{u)is the energy,rjeiu)the 

relative electron density defined above,and I{u)the mean excitation potential ofthe 

object material at depth u. The mean excitation potential is a material-dependent 

constant that may change with penetration depth if the object's atom composition 

changes with depth. Its value is also given in the NIST material composition data 

base [48]. One should note that the mean excitation potential is similar for most 

human tissues and,therefore, its value for water of the human body (Iwater = 75eV") 

may be used as a representative value for hmnan tissues. 
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The function F{I,EY in equation 2.4 is defined as [34]: 

1 / 0^{,E) » (2.6)F{I,E) = K-
fil(E) 

where nieC^ — 511.011A;ey is the electron rest energy and P(E)is the proton velocity 

relative to the speed of light c. The constant K is defined as: 

K = ATTulrUeYPe,water =0-170^^^ (2.7) 
cm 

where Ve =2.818 x is the classical electron radius. The relationship between 

(3 and E is given by the relativistic relationship [34]: 

where Ep=938.29459 MeV is the proton rest energy. 

Note that the Bethe-Bloch equation 2.4 is a non-linear first order differential equa 

tion ofthe function E{u). Since I{u)is usually not exactly known because the object 

composition is unknown, integration of this equation is only possible under the as 

sumption that I{u) = const. As discussed above, for human tissues encountered 

in proton CT, the variation of I{u) with penetration depth is not very large, and 

the function F has only a week logarithmic dependence on I{u). Therefore, the as 

sumption of a constant value of 75.0 eV,the mean excitation potential for water, is 

reasonable. In this case, F becomes function of E only, and one can separate the 

terms depending on the variable u and the variable E: 

dE 
Ve(u)du = - (2.9) 

^ V 5 waterJ 

^ Note that the formula given here is only an approximation of the original Bethe Bloch equation, which contains 

a term Wmax,the maximum energy transfer in a single collision. The approximation given here is valid if the mass 

of the incident particle is large relative to the electron mass, which is the case for protons(mp/me . 1800). 
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Integrating the left side of the equation with respect to the penetration depth u 

along the proton path and the right side with respect to the energy between initial 

energy Ein at the beginning of the path and Eout at the end ofthe path, we get: 

PUout 
/ 'ne{u)du = -

pEout ciE 
r (2.10) 

Juir, JEin [J^,-^water) 

= )
JEout ^ yj^^^water) 

(2-11) 

It is now obvious that the integral ofthe relative electron density along the proton 

path can be calculated based onthe knowledge ofin-and outgoing proton energy. Due 

to the complicated energy dependence of F,the integration needs to be performed 

numerically or modeled as a polynomial equation. Also note that the integrated 

density along the proton trajectory is nothing else than the water-equivalent length 

ofthe proton track through the medium [45]. Unhke the inversion in xCT,the proton 

path is unknown in pCT due to MCS and must be estimated. This uniqueness of 

pCT renders a challenge for image reconstruction from the projection data along an 

unknown path. In addition to this challenge and the approximation made for 2.4 

from the original Bethe-Bloch equation, it shall be further noted that the integrated 

density along the proton is approximated by the water-equivalent length ofthe proton 

trajectories through the body because of the use of Iwater-

2.4 SimpliGed Version ofThe Bethe Bloch Equation 

One goal of my thesis was to mathematically simplify the integral in equation 2.10, 

in particular the Bethe Bloch equation term F(E,I). The gain will be an increase in 

performance by reducing the calculational errors and speeding up the reconstruction. 

22 



 

 

  

 

Here is the final version of the simplified formula that was derived starting from 

equation 2.10: 

pUout p^in d' E 
I r]e(u)dx= I —, ,2 ^ (2.12) 

JEo^t [ln(2mec2)-ln(J™ater)+HE+2Ep)+lii(£)-2ln(£:p)]-K 

2.4.1 Proofofthe Simplified Version ofBethe-Bloch Equation 

The following is a proof ofequation 2.12. Starting from the equation 2.10 we write: 

pout f-Eout 
/ r]e{u)dx = -
JUrn. JEEin Iwater) 

rEin 

/;Eout fwater) 

■/.
Ein 

'Eout 

First, let us consider the term equb = In ■ Taking into account that 

ln(a • b) = ln(a) + ln(&) 

In(^) = ln(a)-ln(6) 
and using the definition of (3 in equation 2.8, we get 

'2me(? I3^(E)
equb = In 

Iwaterl-PHE) 
o 2 1^ , 2me<r i {E+Ep)-^ 

1 - (i - (li^) 

^ water —i-(i-/ (E+Ep)^) 
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(E+Ep)'^lnr^)+ln('-;f^
\ (1+tF 

Vi&Ffei 

V -^water / \ /P 

2mec2\ /(£;+£;p)' 
= In 

^water El 
p 

El
p' 

= In +In/B1±2M±S-5 
E^^water p 

^water 

V ̂lyafer/ \ ^p / 

= ln(2mec)-ln(/^ate»-)+io.{E+2Ep)+ln(£/)-2\n{Ep) 

Next, we substitute this term and the term for(3 into 2.10 and obtain: 

L„ /e_ [̂in /32(E)] 

= f 
dE 

JEr B̂^t2EEp [lll(2meC2)-\n{I^ater)+ +2Ep)+\n{E)-21ii(£;p)]-K 

which is the most simplified version of the equation relating energy loss to the path 

integral of the relative electron density. 

2.5 High Speed(HS)Algorithm for Converting Energy Loss to Integrated Relative 

Electron Density 

2.5.1 Overview 

The High Speed(HS)Algorithm is been implemented to determine the physical den 

sity of a brain tissue using the Bethe-Bloch Equation 2.4. The first challenge faces 
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this algorithm was to calculate multiple integrations multiple times in one equation. 

The second challenge was to apply this equation on 180 x 50 x 10^ protons. This 

created a lot of challenge in time, performance, memory leak, and error boundaries. 

Thanks to all my math instructors who taught me how to best simplify a math 

equation. My skills resulted the simplified version of the Bethe-Bloh Equation 2.13. 

My algorithm will output the integrated relative electron density ofeach proton. The 

input will be only the Entry Proton Energy and the Exit Proton Energy. To 

The tremendous number of protons,on which I will do my calculations has lead us 

toward using MatLab environment,since it can handle huge number of variables and 

equations. I input the data file from the experiment data into a MatLab matrixes 

and feed it to my HS algorithm. Refer to Appendix A for information about matrix, 

and Appendix B for more information about Numerical Analysis. 

To know the Integrated Relative Electron Density for every Proton we must apply 

a numerical computation including multiple use of quadrature functions object the 

result ofthe physical density starting from the energy loss of protons after traversing 

the image object I developed the following algorithm to embed the equation 2.13, 

which is: 

PUout 
dE 

J... ° Je^. [1ii(̂ +ln(£:+2£p)+In(B)-2bi(Bj]-a-

2.5.2 Background Numeric Integration and Quadrature Function 

In numerical analysis, numerical integration constitutes a broad family of algorithms 

for calculating the mnnerical value ofa definite integral, and by extension,the term is 

also sometimes used to describe the numerical solution of differential equations. The 
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term quadrature is more or less a synonym for numerical integration, especially as 

applied to one-dimensional integrals [6]. Two- and higher-dimensional integration is 

sometimes described as cubature, although the meaning of quadrature is understood 

for higher dimensional integration as well [6]. 

The most basic problem to be solved using numerical integration is to compute 

the approximate solution of a definite integral: 

/a For more information about numeric integration visit Appendix B. 

Why Numeric Integration? Why Not? 

Several facts and reasons affect scientist to use numeric integrations. For example, 

the integrand function f, from the previous equation, may be known only at certain 

points, such as obtained by sampling. Many computer applications and computer 

embedded systems often use numerical integration for such a reason. 

The absente of finding an antiderivative is also another reason of using Numeric 

Integration. A formula for the integrand may be known, but it may be difficult or 

impossible to find an antiderivative. example exp(t~^). 

2.5.3 Description ofthe Algorithm 

Look at the algorithm code 2.5.3. This algorithm carefully translate the Bethe-Bloch 

Equation 2.13 blocks into Hnes ofcode which rrm smoothly to successfully meets our 

goal. 

Thesecond challenge,after translating the Bethe-Bloch Equationinto lines ofcode, 

is to apply numerical integration Matlab functions on this algorithm(or I am going 
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to call it the HS function). It may be possible to find an antiderivative symbolically, 

but it may be easier to compute a numerical approximation than to compute the 

antiderivative. That may be the case if the antiderivative is given as an infinite series 

or product, or if its evaluation requires a special function which is not available. 

Quadrature is a numerical method used to find the area under the graph ofa func 

tion, that is, to compute a definite integral. In MatLab,there is a build in numerical 

integration functions that helps do the numerical integration. Those functions are 

called Quadrature Functions. Quad and QuadI are MatLab Build-in functions, I 

used both frmctions, as I write code for Gaussian Quad fimction 

After developing the Algorithm above and translate it into MatLab code,I applied 

the function on a different numerical integration methods, and compare the results 

with NIST [26] results. 

2.6 Comparison ofDifferent Numerical Integration Methods 

2.6.1 Overview 

As I described above, I had run my experiment with different numerical integration 

functions, one of which I had to create myself. 

I have to check for correctness of myfunction performance against the other func 

tions. Also I have to check my function and the other MatLab fimctions correctness 

against the NIST National Institute of Science and Technology data 2.4. 

The first comparison was against time performance between the three functions, 

the second was for accuracy. I, as each of my committee members, were very sat-

® Refer to Appendix B if more information about numeric Integration are needed. 
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functionoutput=HS(E) 

ep =938.29b]%MeV 

K=0.170]%MeV.cm-^ 

mec2=511.011*10~3; %KeV therefore we multiply by three 3 

J=75*10~6; %eV therefore we multiply by six 6 

I=91.90000010^6;% this isfor bone. 

EEP2= (£■ + Cp). * (E/ + 6p); 

E22EP = E. * E + [2* tp). * E] 

divOl = EEP2./E22EP] divOS = E22EP./EEP2] div02 = 2 * mec2/P, 

lnmG.c2i = log(div02)] 

output = K. * divOl. * {Inm0c2i + log(E) + log{E + 2 * Cp) — 2 * logiop) — div03)] 

output = 1./output] 

Fig. 2.3: High Speed Algorithm for Converting Energy Loss to Integrated Relative Electron Density 
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Fig. 2.4: Comparison of Different Numerical Integration Methods with NIST database 
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isfied with the results of my home-constructed gaussian quad function. I will be 

going quickly over NIST database and then I will write in details about my per 

formance and accuracy comparison,then I concluded this section with a summary of 

this chapter. 

2.6.2 Comparison ofComputer Run Time 

One o the first main reasons to do this thesis is to shorten the time needed to render 

5® protons. 

We are running this algorithm on millions of protons for one hundred and eighty 

time; therefore, every clock cycle we can save will be a plus. 

The first run of myHS algorithm shows that the more Protons we render the more 

time takes us to do the calculation. After weeks of rendering the algorithm for many 

trials on different numbers of protons,I resulted that time will increase exponintiaUy 

when applying the algorithm on greater number of Protons. Refer to chart 2.5 for 

more details. 

After developing many versions ofmyHSalgorithm,and implementing an excellent 

gaussian quad fimction code, the results highfighted that my home-made gaussian 

quad algorithm has great performance comparing to the regular build-in math lab 

functions. 

The following chart followed by its table data will support my argument above. 

From the charts 2.6, and in more detail the chart 2.7, and by looking at the 

logarithmic scale of the Gaussian quad, we can successfully adopt this home-made 

gaussian quad function, because it save us a lot oftime especially we are not running 

'Refer to Appendix C for more information about NIST Database. 
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Fig. 2.7: In Detailed Logarithmic Scale of Number of Proton Verses Time 

more than thirty five thousand (35000)protons at the same time. For almost 3^° 

protons quad needs 1.031 seconds, while quadl needs 0.96 seconds, and our home 

made gaussian quad needs only 0.29 of a second. 

Here is a full table of time VS. the three functions. 

2.6.3 Comparison of Numerical Accuracy 

After running my test for weeks, I resulted that the Numerical Accuracy of my HS 

algorithm very satisfiable. Comparing the results of the HS algorithm results, applied 

on MatLab functions (Quad, and Quadl), and my custom-build Gaussian Quad func 

tion, with the NIST pStar Database, and by looking at average error, maix error, min 

error, and standard deviation, I found the error not to exceed %0.14. The following 

is a table with supported example of my comparison. 

The first test was to compare HS Algorithm result with the NIST results. I tried 
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run—E #E quad quadl gu_el 

1 1000 0.5938 0.375 0.1094 

2 2000 0.875 0.6563 0.1875 

3 3000 1.031 0.9688 0.2969 

4 4000 1.359 1.281 0.3906 

5 5000 0.672 1.609 0.5000 

6 6000 2.016 1.938 0.5938 

7 7000 2.375 2.234 0.6875 

8 8000 2.703 2.563 0.7813 

9 9000 3.047 2.875 0.8906 

10 l.OOE+04 3.359 3.203 0.9688 

11 l.OOE+04 3.375 3.156 0.9531 

12 2.00E+04 7.125 7.031 2.2190 

13 3.00E+04 11.64 12.48 3.7190 

14 4.00E+04 15.28 16.33 5.1250 

15 5.00E+04 21.11 22 7.0310 

Tab. 2.1: Time Needed by Each Function to Render a Number of Protons 
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run—E #E quad quadl gu_el 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

6.00E+04 

7.00E+04 

8.00E+04 

9.00E+G4 

l.OOE+05 

2.00E+05 

3.00E+05 

4.G0E+05 

5.GGE+G5 

6.GGE+G5 

7.GGE+G5 

8.GGE+G5 

9.GGE+G5 

1.GGE+G6 

27.83 

43.33 

58.91 

67.03 

75.06 

729.5 

1201 

1675 

2136 

2610 

3076 

3548 

4031 

4491 

29|48 

45,22 

58^56 
1 

66i52 

1 

74j56 

73i5 

12|08 

1680 

21^3 
i 

2615 

1 

3079 

3557 

4032 

4488 

10.0500 

24.0800 

38.0900 

45.3800 

50.4100 

680.8000 

1136.0000 

1582.0000 

2027.0000 

2474.0000 

2916.0000 

3372.0000 

3819.0000 

4259.0000 
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Min Max Standard Dev. Average 

Gaussian 0.01148834198939 0.13949398745925 0.03940854915190 0.07856807529633 

Quad 0.01148834127241 0.13845100255350 0.03916737322183 0.07837578341375 

Quadl 0.01148834127241 0.13845100649438 0.03916737525542 0.07837578528167 

Tab. 2.2: Error Results Analysis between Quad Functions and NIST pSTAR Database 

HS algorithm in Quad, Quadl, and Gaussian Quad with 100 - one hundred random 

numbers - using random algorithm technique. Here is my results: 

The different quadrature functions were applied on the same HS Algorithm to 

determine the physical densityfrom energy lost of proton traversing theimage object. 

The following chart 2.8 and the above table 2.6.3 show very acceptable results of the 

used algorithm, as the error range err > .Olmw was acceptable from the thesis 

committee members. 

2.6.4 Results 

I am adopting my HS Algorithm since it is giving me acceptable results when com 

paring it to the NIST pSTAR ® Database, along with my home-made Gaussian Quad 

Algorithm. The result were presented to the Thesis Committee Members, and has 

there satisfaction and approval. 

2.7 Summary and Conclusion 

The performance that I gainedfrom building myhome-made Gaussian Quad function, 

supported by the correctness ofsuccessful implementation of my HS Algorithm, gave 

® Refer to Appended C for more Information about NIST Database. 
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Fig. 2.8: Error Analysis Chart. 
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hope for Image Reconstruction using Proton Computed Tomography. 

The proofed simplified version of the Beth-Bloche Equation, and the successful 

implementation of the HS algorithm will have huge impact on the future of Image 

reconstruction using pCT. 

Graphic User Interface will be great improvement to the usability of such algo 

rithm. Currently, 1 am feeding my data using the MatLab Environment, but GUI 

interface, implemented in C-f-1- for example, will be great advantage to this applica 

tion. 

Since each proton is a separate entities; therefore, we can apply our calculations 

on each proton individually. Currently, 1 am only using my 3'"'^ victim laptop, after 

burning two computers,to do all my calculation on all the protons. Future continuing 

of the project is to lose paxallel programming applied on distributed system. 
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3. MOST LIKELY PATH DERIVATION 

3.1 Introduction and Background 

One of the challenges of pCT is the tendency for protons to undergoe scattering in 

the object by a process called a multiple Coulomb scattering(MCS).The uncertainty 

in the exact path of the proton leads to blurring of the image. One can minimize 

this spatial uncertainty of proton tracks by measuring the trajectory ofindividual in 

coming and outgoing protons using modern particle detector technology(Kleinknecht 

1998) [32]. 

Particle detectors can measure the trajectory ofa proton before entering and after 

leavingthe object with betterthan0.1 mm accmacyand precision. However,no direct 

information is available while the proton is traveling within the object. Therefore, 

some type of extrapolation ofthe external trajectories is required for optimal spatial 

resolution in pCT imaging. The best way to do this is to calculate the most hkely 

path (MLP) of each proton along with its probability envelope using all available 

information. This chapter presents the theory of the MLP derivation and derives 

a closed-form expression for the MLP when the entrance and exit trajectories are 

known. It differs from previous derivations (Schneider and Pedroni 1994, Williams 

2004), in that a compact matrix notation wiU be introduced. 



--1. 

Ml » 

J. .. 

Fig. 3.1: Representation of Most Likely Path 

3.2 Multiple-Coulomb Scattering in the Gaussian Approximation 

MCS is a physical process that leads to a statistical (or random) change of the di 

rection of charged particles as they cross matter without changing their energy and 

velocity. Such scattering events are called"elastic". Most high-energy physicists are 

familiar with this process since it is often the limiting factor in the spatial resolution 

of charged-particle detectors. A summary of this process can be found in the Review 

ofParticle Physicsfrom the Particle Data Group(Yau 2006) [10]. The most relevant 

features of MCS are also described in Williams' paper [53]. 

When a proton traverses the object, many individual elastic interactions with the 

nuclei of the object material take place. The outcome of each individual nuclear 

interaction is a sample from a complicated statistical distribution ofscattering angles 

governed bythelaws ofquantum mechanics. However,after undergoing many ofthese 

interactions, the combined result of the angular and spatial deviation from the initial 

trajectory is a probability density distribution that is approximately Gaussian or 
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normal. Therefore,a Gaussian approximation ofthe lateral and angular displacement 

at any given depth will be assumed in what follows. In this approximation, the we 

only need to know the variances and covariances of the scattering variables at any 

penetration depth in order to fully describe the distribution 

3.3 Derivation ofthe Matrix Form ofthe Most Likely Path 

A closed analytical form of the 2D-projected MLP for protons traversing a homo 

geneous medium when their entry and exit positions and angles are known can be 

found in the work of Schneider et al [43] and Williams [53]. Here, we will derive 

a closed analytical form of the MLP using a compact matrix notation, which is ad 

vantageous considering the lengthy equations of the previous works. The scattering 

ofa proton in the object can be described by the lateral displacement and the angle 

relative to the initial position and displacement at the entry into the object, i.e., by 

the two-dimensional vector function 

e(u) 
y(u) = (3.1) 

t{u)
\ 

where: t{u) is the lateral displacement and 9(u) the angle relative to the initial 

position and direction ofthe proton at depth u. At the boundaries u=0and u=U2 

of the object, y{u) approaches the values 

(^yiO) = I (3.2) 
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and 

y{u2)=2/2 = (3.3) 
\t{u2)y t2 

Note that t(u)and 9(u)are statistical variables, which acquire increasing spread with 

increasing depth. Also, these variables are not independent from each other, and 

therefore have a covariance that is different from zero. The amount of lateral and 

angular spread,ti and 9-i, accumulated at an intermediate depth ui in the object and 

the covariance of these quantities can be described by the first variance-covariance 

matrix 

( 
'0-L 'tiBi 

El = (3.4) 

'h 

Explicit expressions for the matrix elements will be derived later. In the Gaussian 

approximation ofsmall-angle Coulomb scattering [3],the probability densityfunction 

of y at depth ui, 

9{ui) 
2/1 (3.5) 

vv 

is given by the bivariate Gaussian probabihty density function [10] 

fi{yi) = kie =kie (3.6) 

where ki is a constant needed for normalization. Since this probability density is 

based on the knowledge of the proton prior to entering the object, we may call it 

"prior probability density". 

Next we are interested in the conditional probability density function of 2/2 at the 

exit depth U2 given 2/1 atintermediate depth ui. Startingfrom the intermediate depth 
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Fig. 3.2: Mathematical Relationship between Proton Scattering Matrix Penetration Depth 

Ml, the proton will be further scattered between the depth mi and the exit depth M2, 

which can be described by the second variance-covariance matrix 

/ 
^02 ^t292 

So = (3.7) 

The probability density function,illustrated in figure[3.2 of y2 is best described by 

changing the local coordinate system to the location and orientation of the proton 

path at depth mi. This requires the following coordinate transformation: 

/ '\ 
Mo ^ COS9i sin9i Mo — Ml 

(3.8) 

V ^2 / ^ — sin01 COS01 I 12 —ti 

from which we get 

Mj = COS0i(m2 — Ml)+sin0i(t2 — ti) (3.9) 

4 = — sin0i(M2 — Ml)+COS0i(t2 — ti) (3.10) 

In addition,the exit angle needs to be expressed relative to the angle 0i at depth mi, 
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thus 

^2 = ̂ 2 (3.11) 

The conditional probability density function of of 

/
9{u2) 

2/2 = (3.12) 
\t{u^ 

is given by the bivariate Gaussian probability density function 

f2i(y'2\yi) = /C2e '2/2 = ^2 (3.13) 

The MLP and most likely angle are defined by the vector function 

(9mlp{fJ')
ymlpi^J ~ I (3.14) 

\^mlpiu^J 

which maximizes the conditional probability density fi2{yi\y'2) of yi given y2 at 

any intermediate depth ui between 0 and U2. This may be called the "posterior 

probability" because it uses information of the proton after exiting the object. An 

expression for the posterior probability can be found by using Bayes' theorem for 

continuous probability density functions [52], 

fi2{yi\y2) = ki2fi{yi)f2i{y'2\yi) (3.15) 

(3.16) 

where ki2 is another normalization constant and ktot is the product of normalization 

constants used in the different probability density functions. 

Recall that 

= ̂ 2/i(«)^S]"V(«)+ ^2/2^^2 ^2/2 > 0 
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To maximize fi2{yi\y2)j we need to make as small as possible. Therefore: 

dx^ 
^0 (3.17)

de 
0=('ralp 

dx^ 
=0" (3.18)

dt 
t=^—t-mlp 

Thesolution Omip,tmip, which satisfies thissystem oft#o equations are the most likely 

angle and MLP. The latter is what we need in particular for pCT reconstruction. 

Using vector notation and introducing the gradient vector we can also write: 

de \ 10 
Vx = x'= (3.19) 

ydtJ 

In the following I will show two ways how to find the solution ofthis vector equation. 

3.3.1 Small-Angle Approximation to Find the MLP Solution 

When 0 is smaller than a few degrees, which is the case for most MGS scattering 

events, then sin0«0 and cosd^1. Further, because t is usually much smaller than 

ui and U2terms involving tO can be ignored but terms involving Ui9 and U26 can not. 

This leads to the simplified equation 

U2 = U2 — Ui (3.20) 

^2 = ""^1(^2 ~:T^i)+(^2~^i) (3.21) 

We may then use the following simphfied notation 

y'2 = 2/2-Ryi (3.22) 

where 

1 U2— U\ 
R (3.23)

\o 1 
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With this notation, we can rewrite as 

-yiR^)^2^iy2-Ryi) (3.24) 

= \{yl^^^yi+ylT.^'y2-2ylR''T.^'Ryi+ylR''T.^^Ryr) (3.25) 

Carrying out the derivation with respect to 1/1 results in 

Vx^ = S^^yi+i?^S2^%i- (3.26) 

Thus,the MLP equation becomes 

0 = (Sj"^+ ^i?)ymip-.^^^2V2 (3.27) 

which has the solution 

Umip = (S^^+i?^S2^i?)"^i?^S2^^2 (3.28) 

3.3.2 Exact Solution ofthe MLPProblem 

Using Numeric Analysis techniques and Math skills we can derive the exact solution 

to the MLP. 

The following variables have known values for each proton: 

•entry and exit energy Eq arid E2] 

•entry and exit lateral displacement to and ̂ 2; 

•entry and exit depth mq and U2; 

•entry and exit angle in the u-t plane 00 and j92; 

•entry and exit vertical displacement uq and U2; 
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and 

dQoi
Rbi ~ (3.35)

"Se^ 

— sin cos01 
(3.36) 

— cos01 —sin01 

3.3.3 Mathematical Relationship between Proton Scattering Matrix Elements and 

Penetration Depth 

As we have seen above, the path of an individual proton through the object and 

projected into the u-t plane can be described by the two parameters 0 and t as a 

function of the depth of penetration u. The lateral and angular displacements are 

statistically correlated^ and, therefore, have non-zero covariance. In the Gaussian 

approximation of small-angle MCS [10], the joint probability density function of the 

vector 

01 (3.37) 
t\ 

at depth ui is given by the bivaxiate Gaussian: 

/i(0i) = (3.38) 

where Si^ is the inverse variance-covariance matrix of the 0i and ti: 

'01 a:tiOi 
El = (3.39) 

'tiOi ^ii 
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Similarly, the joint probability density function ofthe vector 

1/2 = ;j (3-40) 
at depth U2 given the vector yi at depth Wi is given by the bivariate Gaussian: 

f2i(.y2\yi) = (3.41) 

where E,^ is the inverse variance-covariance matrix of the 60 and t'2: 

_2(rr^ 
^t262 

So, = (3.42) 
_2 ^2 

^^*202 ^t2 

Since we are dealing with relatively thick objects in pCT,one needs to take energy 

loss of the proton inside the object into account. Then,the individual variance and 

covariance elements of the matrices Si and S2 can be expressed by the foilowing 

integrals [53]: 

(ui —uY du 
'Jo /3\u)p^{u)Xo 

2 / X r^2 n I du , , 

0 / . _9 ui — u du , \ 

2 / \ r\2 (^1 ~ w)^ du (3.46) 

(3.48) 

where the terms fd'^(u),fP{u)are the squared velocity relative to thespeed oflight and 

momentum ofthe proton at depth u,respectively, and ©0= 13.6 MeV/c is a physical 

constant. The quantity Xq is the radiation length, which is a physical constant for 
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a given material. Throughout this thesis, we will assume that the scattering object 

consists of water,for which Xq — 36.08 cm. 

The integrals in ***** the last six equations ***** have to be calculated numer 

ically. The product 0^{u)p'^{u) for protons is related to the proton energy by the 

relativistic formula: 

= (3.49) 

where Ep=938.295 MeV s the proton rest energy. 

The change ofenergy with penetration depth is governed by the energy loss ofthe 

proton, which,in case of water,is described by the differential Bethe Bloch equation: 

(If:-^{u)=F{I,E{v)) (3.50) 

where I is the mean excitation proton of water (Iwater = 75 eV) and the function 

F(I,E) is defined as before. Starting with an initial energy Eq, the proton has 

acquired reduced energy E{ui)at depth ui, which is described by the solution ofthe 

integral form of Bethe-Bloch equation; 

rEo 

F(I,E{u)y 

Three ways to solve this equation for E{ui) were investigated in this thesis: 

•solving the integral equation munerically. 

• use ofthe NIST PSTAR Database program to find the energy corresponding to 

a penetration depth u; 

• use of a Monte Carlo simulation program such as GEANT4 to and find the 

parameters of a polynomial relationship between energy and penetration depth. 
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Fig. 3.3: Scattering Matrix Elements of T,it^ as a Function of Depth 

Numerical Solution 

One possibility to solve the integral equation for obtaining the energy-depth relation 

ship is using the minerr function ofthe Mathcad software(Mathsoft,Inc., Cambridge, 

MA). This was initially used to calculate the matrix elements of the two scattering 

matrices The results for the elements of the matrix Si are shown graphically in 

fig 3.3, 3.4, and 3.5and are also tabulated in 0.1 cm intervals in lables 3.2-3.3.4 ofthe 

Appendix. 

Later in this research,I haveimplemented myownfunction to calculate the residual 

energy as a function of depth u. For now,I am using the Interval Bisection method 

(see Matlab code below, [20]), since it has good time performance over the other 

methods. Future work should also test Newton's and other methods. 
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National Institute ofStandards and Technology Database Solution 

NIST, or National Institute of Standards and Technology, has a database called 

pSTAR,which is the other possibility to obtain residual energy asfunction ofdepth is 

to utilize the data tabulated in the NIST PSTAR database [26]. I used this to verify 

the results of my ntunerical solution for the intial energy of 200 MeV, because the 

NIST database is based on a more complicated and therefore more accurate model 

than the Bethe Bloch equation. The NIST database lists the projected range of pro 

tons, i.e., the average value of the depth to which protons of a certain energy will 

penetrate in a material of choice, including water. The data for water for proton 

energies between 1 MeV and 200 MeV are shown in the first two columns of the 

following table. 

Kinetic Projected Kinetic Projected 

Energy Range Depth Energy Range Depth 

MeV cm cm MeV cm cm 

65 3.57 22.36 95 7.04 18.9 

70 4.08 21.86 100 7.71 18.22 

75 4.61 21.32 125 11.44 14.49 

80 5.18 20.75 150 15.76 10.17 

85 5.77 20.16 175 20.6 5.33 

90 6.39 19.54 200 25.93 0 

From these data, I derived the relationship between residual proton energy and 

penetration depth starting from an initial energy of 200 MeV as follows. The initial 

proton energy of 200 MeV corresponds to a projected range of 25.93 cm in water as 
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Kinetic Projected Kinetic Projected 

Energy Range Depth Energy Range Depth 

MeV cm cm MeV cm em 

1 0 25.93 8 0.08 25.85 

1.25 0 25.93 8.5 0.09 25.84 

1.5 0 25.93 9 0.1 25.83 

1.75 0.01 25.92 9.5 0.11 25.82 

2 0.01 25.92 10 0.12 25.81 

2.25 0.01 25.92 12.5 0.18 25.75 

2.5 0.01 25.92 15 0.25 25.68 

2.75 0.01 25.92 17.5 0.33 25.6 

3 0.01 25.92 20 0.43 25.5 

3.5 0.02 25.91 25 0.64 25.29 

4 0.02 25.91 27.5 0.76 25.17 

4.5 0.03 25.9 30 0.88 25.05 

5 0.04 25.89 35 1.17 24.76 

5.5 0.04 25.89 40 1.49 24.44 

6 0.05 25.88 45 1.84 24.09 

6.5 0.06 25.87 50 2.22 23.71 

7 0.07 25.86 55 2.64 23.29 

7.5 0.07 25.86 60 3.09 22.84 

Tab. 3.1: Relationship between Initial Proton Energy and Projected Range in Water. 
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Fig. 3.6: Energy-depth Relationship for Protons in Water. 

seen at the bottom of the table; at the next lower tabulated energy of 175 MeV,the 

range is reduced to 20.60 cm. From the range difference of5.33cm between 200 MeV 

protons and 175 MeV protons, one can conclude, in turn, that a proton of 200 MeV 

initial energy after penetrating depth of5.33cm in water has a residual energy of 175 

MeV.The penetration depth derived from the difference between the projected rauge 

at the initial energy (here 200 MeV) and that at lower energies is included in the 

third column of Tables 3.1 and 3.3.3. Thus the third column of the table gives depth 

and the first column gives energy corresponding to that depth. Figure 3.6 shows the 

relationship between residual energy and penetration depth as derived from numerical 

solution using Mathcad's minerr function and from the NIST database values. The 

good agreement between both data sets confirms the numerical values. 

The figure 3.6 illustrates energy-depth relationship for 200 MeV Protons in water. 

The points are derived From the NIST data in tables 3.1 and 3.3.3 and the line is 
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derived by solving equation with Mathcad's minerr function. 

3.3.4 GEANT4Solution 

Geant4 which is a toolkitfor the simulation ofthe passage ofparticlesthrough matter. 

Its areas of application include high energy, nuclear and accelerator physics, as well 

as studies in medical and space science. The two main reference papers for Geant4 

are published in Nuclear Instruments and Methods in Physics Research A 506(2003) 

250-303, and IEEE Transactions on Nuclear Science 53 No.l(2006) 270-278 [53]. 

In order to facilitate the integration for the scattering matrix elements, [53] and 

[49] used a five-degree polynomial, where the polynomial coeffi 

cients tti were obtained by least-squares fitting the values obtained for a GEANT4 

Monte Carlo simulation for 200-MeV protons traversing a uniform water phantom 

of 20 cm diameter. Thereby, these investigators avoided numerical integration alto 

gether. For depths larger than 20 cm,the values for have to be extrapolated 

from this polynomial. The derived polynomial coefficients were ao — 7.507 x 10"^ , 

ai =3.320 x lO-^ 02=-4.171 x 10"'^, 03=4.488 x 10"^ =-3.739 x 10-^ and 

ag = 1.455 X 10"^, where the units are c^/MeV divided by powers ofcm according to 

the power of u. Figure 3.7 compares the relationship between l//3^p^ and the pene 

tration depth for the present calculation and those in [53]. The two results agree well 

up to a depth of 20 cm,when they start diverging. This difference can be explained 

by the fact that the polynomial fit was only for data up to a depth of 20 cm. 
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Depth sH^ 

cm mm^ 

0 0 

0.1 1.28E-06 

0.2 1.03E-05 

0.3 3.47E-05 

0.4 8.23E-05 

0.5 0.000161 

0.6 0.000278 

0.7 0.000443 

0.8 0.000661 

0.9 0.000943 

1 0.001295 

1.1 0.001725 

1.2 0.002242 

1.3 0.002853 

1.4 0.003568 

1.5 0.004392 

1.6 0.005337 

1.7 0.006408 

1.8 0.007615 

1.9 0.008965 

deg^ 

0 

0.012641 

0.025334 

0.03808 

0.05088 

0.06376 

0.076667 

0.089629 

0.102646 

0.11572 

0.128848 

0.142033 

0.155273 

0.168576 

0.181932 

0.195348 

0.208819 

0.222358 

0.235952 

0.249605 

sHiQi 

mmdeg 

0 

0.00011 

0.000442 

0.000995 

0.001771 

0.002771 

0.003997 

0.005448 

0.007126 

0.009031 

0.011166 

0.013529 

0.016124 

0.01895 

0.022009 

0.025301 

0.028828 

0.03259 

0.03659 

0.040828 

Tab. 3.2: Sigmas Verses Depth 
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Depth sH^ 

cm raw? 

2 0.010468 

2.1 0.012131 

2.2 0.013962 

2.3 0.015972 

2.4 0.018166 

2.5 0.020555 

2.6 0.023147 

2.7 0.02595 

2.8 0.028974 

2.9 0.032225 

3 0.035714 

3.1 0.03945 

3.2 0.043439 

3.3 0.047694 

3.4 0.05222 

3.5 0.057028 

3.6 0.062126 

3.7 0.067524 

3.8 0.073231 

3.9 0.079253 

deg'^ 

0.263321 

0.277098 

0.290936 

0.304838 

0.318755 

0.33283 

0.346923 

0.361079 

0.375304 

0.389593 

0.403944 

0.418367 

0.432842 

0.447414 

0.462041 

0.476727 

0.491503 

0.506355 

0.521249 

0.536231 

sHiqi 

mmdeg 

0.045303 

0.050019 

0.054977 

0.060175 

0.065617 

0.071304 

0.077235 

0.083414 

0.089841 

0.096515 

0.103438 

0.110616 

0.118042 

0.125725 

0.133662 

0.141856 

0.150243 

0.159012 

0.167977 

0.177204 
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Depth s'^t^ 

cm mm^ 

4 0.085605 

4.1 0.092291 

4.2 0.099322 

4.3 0.106708 

4.4 0.114459 

4.5 0.122579 

4.6 0.131086 

4.7 0.139971 

4.8 0.149279 

4.9 0.158989 

5 0.169119 

5.1 0.179678 

5.2 0.190676 

5.3 0.202109 

5.4 0.214034 

5.5 0.226413 

5.6 0.23927 

5.7 0.252615 

5.8 0.266594 

5.9 0.280814 

deg^ 

0.551285 

0.566414 

0.581613 

0.596891 

0.612246 

0.627677 

0.643179 

0.658766 

0.674379 

0.690168 

0.70599 

0.721892 

0.737878 

0.753946 

0.770097 

0.786334 

0.802655 

0.81906 

0.835791 

0.852271 

mmdeg 

0.186698 

0.196451 

0.206468 

0.216754 

0.227306 

0.238115 

0.249216 

0.260574 

0.272211 

0.284119 

0.296303 

0.308763 

0.321344 

0.334462 

0.347819 

0.361403 

0.375271 

0.389422 

0.40386 

0.418589 
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Depth sH^ 

cm mm^ 

6 0.295684 

6.1 0.311087 

6.2 0.32703 

6.3 0.34352 

6.4 0.360513 

6.5 0.378331 

6.6 0.396397 

6.7 0.41519 

6.8 0.434579 

6.9 0.454596 

7 0.475255 

7.1 0.496459 

7.2 0.518206 

7.3 0.54098 

7.4 0.564253 

7.5 0.58811 

7.6 0.612712 

7.7 0.638005 

7.8 0.664013 

7.9 0.69071 

deg^ 

0.868806 

0.885565 

0.902415 

0.919356 

0.936359 

0.953593 

0.970558 

0.988054 

1.005279 

1.022981 

1.040548 

1.0583 

1.076111 

1.094043 

1.112007 

1.130157 

1.148381 

1.16649 

1.185155 

1.203719 

sHiQi 

mmdeg 

0.433604 

0.448916 

0.46452 

0.480416 

0.496595 

0.513101 

0.529898 

0.546985 

0.564344 

0.582085 

0.600137 

0.618385 

0.637058 

0.655971 

0.675299 

0.6948 

0.714678 

0.73488 

0.755394 

0.776209 
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Depth sH^ 

cm 

8 0.71822 

8.1 0.746417 

8.2 0.775406 

8.3 0.805058 

8.4 0.835639 

8.5 0.866956 

8.6 0.898977 

8.7 0.93197 

8.8 0.965719 

8.9 1.000379 

9 1.034917 

9.1 1.072087 

9.2 1.109202 

9.3 1.147254 

9.4 1.186304 

9.5 1.226028 

9.6 1.266881 

9.7 1.308545 

9.8 1.35176 

9.9 1.394878 

deg'^ 

1.222357 

1.241131 

1.260036 

1.279001 

1.298116 

1.317353 

1.336751 

1.356156 

1.375746 

1.395436 

1.415294 

1.435236 

1.455323 

1.475546 

1.495886 

1.516361 

1.536934 

1.557504 

1.578597 

1.599621 

sHiQi 

mmdeg 

0.797422 

0.818914 

0.840689 

0.862832 

0.885394 

0.908214 

0.931288 

0.954876 

0.978718 

1.002919 

1.027437 

1.052301 

1.077507 

1.103097 

1.129031 

1.155314 

1.18197 

1.208892 

1.236314 

1.264077 
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Depth sH^ 

cm 

10 1.439536 

10.1 1.485143 

10.2 1.531799 

10.3 1.579358 

10.4 1.628 

10.5 1.677614 

10.6 1.72854 

10.7 1.780219 

10.8 1.833099 

10.9 1.88686 

11 1.942161 

11.1 1.998362 

11.2 2.055712 

11.3 2.11421 

11.4 2.174035 

11.5 2.234682 

11.6 2.297506 

11.7 2.359925 

11.8 2.423783 

11.9 2.489766 

s'^q^ 

deg"^ 

1.62078 

1.642081 

1.663459 

1.685122 

1.706971 

1.728747 

1.750796 

1.772991 

1.795423 

1.817938 

1.840607 

1.863423 

1.886447 

1.909602 

1.932937 

1.956448 

1.98206 

2.003984 

2.028159 

2.052242 

sHiQi 

mmdeg 

1.292177 

1.320659 

1.349576 

1.378711 

1.408319 

1.438306 

1.468768 

1.499417 

1.530561 

1.56209 

1.594019 

1.626457 

1.659069 

1.69219 

1.725715 

1.759719 

1.794621 

1.828784 

1.864264 

1.899575 
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Depth sH^ 

cm mw? 

12 2.557117 

12.1 2.625194 

12.2 2.694683 

12.3 2.76564 

12.4 2.837444 

12.5 2.910995 

12.6 2.985707 

12.7 3.061885 

12.8 3.139203 

12.9 3.217986 

13 3.298459 

13.1 3.380564 

13.2 3.463293 

13.3 3.547816 

13.4 3.634136 

13.5 3.721638 

13.6 3.809812 

13.7 3.900891 

13.8 3.993531 

13.9 4.086931 

deg^ 

2.076646 

2.101242 

2.126032 

2.150375 

2.176174 

2.201539 

2.227165 

2.2529 

2.278837 

2.304152 

2.331578 

2.3587 

2.384998 

2.411825 

2.439184 

2.467044 

2.494073 

2.522811 

2.550933 

2.579542 

sHiqi 

mmdeg 

1.935897 

1.972627 

2.00896 

2.046281 

2.083759 

2.122406 

2.160745 

2.199542 

2.239463 

2.279005 

2.319998 

2.361136 

2.402327 

2.445261 

2.48651 

2.529393 

2.572116 

2.616363 

2.663424 

2.705456 
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Depth s'^t^ 

cm mrri^ 

14 4.182014 

14.1 4.278484 

14.2 4.376949 

14.3 4.4762 

14.4 4.579149 

14.5 4.682111 

14.6 4.788226 

14.7 4.893922 

14.8 5.002484 

14.9 5.112661 

15 5.224732 

15.1 5.338265 

15.2 5.453902 

15.3 5.571283 

15.4 5.69036 

15.5 5.811322 

15.6 5.934047 

15.7 6.059063 

15.8 6.185633 

15.9 6.314041 

deg^ 

2.608282 

2.637323 

2.666611 

2.696262 

2.725992 

2.756287 

2.786541 

2.815181 

2.848283 

2.879215 

2.910976 

2.942794 

2.97508 

3.007537 

3.040188 

3.073528 

3.107149 

3.141083 

3.17497 

3.209827 

sHiqi 

mmdeg 

2.750705 

2.79658 

2.842764 

2.889574 

2.936908 

2.984558 

3.033539 

3.081858 

3.13132 

3.181356 

3.232538 

3.282919 

3.334671 

3.387823 

3.439661 

3.49308 

3.546721 

3.601491 

3.656683 

3.712223 
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Depth sH^ 

cm mm? 

16 6.444814 

16.1 6.577284 

16.2 6.711924 

16.3 6.84846 

16.4 6.987082 

16.5 7.127758 

16.6 7.269588 

16.7 7.415441 

16.8 7.56404 

16.9 7.708393 

17 7.862757 

17.1 8.01647 

17.2 8.172165 

17.3 8.328794 

17.4 8.490444 

17.5 8.654897 

17.6 8.817969 

17.7 8.986203 

17.8 9.153198 

17.9 9.32664 

deg"^ 

3.24473 

3.280002 

3.319998 

3.352289 

3.388197 

3.425224 

3.462337 

3.500367 

3.537464 

3.57755 

3.616373 

3.654884 

3.695681 

3.736403 

3.777592 

3.818988 

3.86126 

3.904005 

3.946948 

3.990446 

mmdeg 

3.770548 

3.825567 

3.882706 

3.938815 

4.000248 

4.058986 

4.119244 

4.180422 

4.241884 

4.304191 

4.366794 

4.43031 

4.494706 

4.559321 

4.624824 

4.691157 

4.758148 

4.82695 

4.894542 

4.963648 
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Depth sH^ 

cm mrn? 

18 9.500945 

18.1 9.67926 

18.2 9.857957 

18.3 10.04048 

18.4 10.22422 

18.5 10.41048 

18.6 10.59601 

18.7 10.79322 

18.8 10.9865 

18.9 11.18603 

19 11.38584 

19.1 11.58895 

19.2 11.79507 

19.3 12.00391 

19.4 12.21513 

19.5 12.43049 

19.6 12.64653 

19.7 12.86773 

19.8 13.09046 

19.9 13.317 

deg^ 

4.03498 

4.080137 

4.125707 

4.171975 

4.219528 

4.265722 

4.313981 

4.363355 

4.412959 

4.463292 

4.51438 

4.56619 

4.619031 

4.67262 

4.72684 

4.781982 

4.838593 

4.895688 

4.954129 

5.013147 

s^tiqi 

mmdeg 

5.033681 

5.104356 

5.175818 

5.248617 

5.321795 

5.395191 

5.470855 

5.546332 

5.623007 

5.700584 

5.779123 

5.858003 

5.938164 

6.019165 

6.101032 

6.184111 

6.268461 

6.353101 

6.439677 

6.527303 
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Depth sH^ 

cm mrn?' 

20 13.54627 

20.1 13.77746 

20.2 14.01464 

20.3 14.24694 

20.4 14.49515 

20.5 14.74057 

20.6 14.9873 

20.7 15.24026 

20.8 15.4939 

20.9 15.75407 

21 16.01614 

21.1 16.28433 

21.2 16.55071 

21.3 16.82337 

21.4 17.09905 

21.5 17.37894 

21.6 17.66343 

21.7 17.95417 

21.8 18.24132 

21.9 18.53333 

deg^ 

5.073395 

5.135851 

5.197655 

5.262294 

5.326137 

5.393588 

5.458995 

5.529707 

5.598903 

5.668858 

5.74103 

5.818029 

5.895899 

5.973428 

6.053269 

6.135502 

6.220639 

6.305674 

6.392631 

6.483033 

sHiqi 

mmdeg 

6.614662 

6.70267 

6.79375 

6.884907 

6.976739 

7.070963 

7.165559 

7.261757 

7.359513 

7.456739 

7.557176 

7.658071 

7.759371 

7.863933 

7.967996 

8.074264 

8.182023 

8.295543 

8.401447 

8.51333 
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Depth 

cm mrn?' 

22 18.83731 

22.1 19.1513 

22.2 19.45268 

22.3 19.75654 

22.4 20.07419 

22.5 20.3939 

22.6 20.71788 

22.7 21.048 

22.8 21.38037 

22.9 21.71723 

23 22.05992 

23.1 22.40826 

23.2 22.76102 

23.3 23.11371 

23.4 23.47424 

23.5 23.8432 

23.6 24.21907 

23.7 24.59234 

23.8 24.97309 

23.9 25.33077 

deg^ 

6.574559 

6.671115 

6.769341 

6.87042 

6.972037 

7.080605 

7.190889 

7.309589 

7.41792 

7.542977 

7.669872 

7.800529 

7.937617 

8.07578 

8.223391 

8.377318 

8.535913 

8.700757 

8.877659 

9.067096 

s^hqi 

mmdeg 

8.628469 

8.744384 

8.861356 

8.975476 

9.104156 

9.21893 

9.348356 

9.477093 

9.603357 

9.733464 

9.861692 

10.00174 

10.14393 

10.28107 

10.42099 

10.56621 

10.714 

10.86385 

11.02178 

11.17668 
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Depth sH^ 

cm mm^ 

24 25.75127 

24.1 26.14975 

24.2 26.56196 

24.3 26.96409 

24.4 27.38303 

24.5 27.80323 

24.6 28.23052 

24.7 28.66821 

24.8 29.10374 

24.9 29.55757 

25 30.0012 

25.1 30.4813 

25.2 30.94884 

25.3 31.42808 

25.4 31.91643 

25.5 32.41103 

25.6 32.91706 

25.7 33.44924 

25.8 33.95201 

25.9 34.50148 

deg^ 

9.255748 

9.460161 

9.675525 

9.905364 

10.15001 

10.41203 

10.69017 

10.99825 

11.32817 

11.69821 

12.09181 

12.53968 

13.04281 

13.62588 

14.299 

15.12239 

16.12973 

17.52398 

19.451 

24.22958 

sHiQi 

mmdeg 

11.33259 

11.49843 

11.6639 

11.8347 

12.01593 

12.17715 

12.37328 

12.56305 

12.75761 

12.96016 

13.15106 

13.38146 

13.60422 

13.83626 

14.08046 

14.33837 

14.6079 

14.89933 

15.21766 

15.59279 



� 

 

5-0 

G(E(u)) 

c J 1.5-10 

MeV - 1-10 

100 
2 I 

5-10 -

U 

cm 

Fig. 3.7: Depth Dependence of the Product for a Polynomial Approximation and the Present Cal 

culation 

69 



4. RECONSTRUCTION 

4.1 Introduction and Background 

The pCT reconstruction problem differs in some respectsfrom that ofxCT,PET and 

SPECT,and requires new approaches,although some ofthe underlying principles are 

the same [29]. In xCT,data collection is usually considered as the Radon transform 

ofthe object source function. In this case, the object data represent the attenuation 

coefficient map and the projection data thelog values ofthe detected x-ray count[40]. 

The main goal of pCT for therapy application is the determination of the volume 

electron density, pe, by measming the energy loss of protons after traversing the 

object, lonization and atomic excitation are the main processes for energy loss of 

protons as we have seen in the "Energy Loss Chapter" of this thesis. 

In his paper [40] Dr. Schulte explain that in pCT, multiply scattered protons 

traversing the object travel along acurved zigzag path,which may deviate significantly 

firom a straight line and is not confined to a 2D plane. Furthermore, protons usually 

do not get absorbed but traverse the object completely, thus, the proton counting 

rate used in x-ray CT, PET, and SPECT has to be replaced by the energy loss 

measurement for proton traveling along tracks : that lead to the same image pixel. 

Given the known proton entrance energy and the measured exit energy, the energy 

integral can be computed,resulting in the projection data. The image reconstruction 
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problem for pCT is then to obtain the best estimate for the relative electron density 

map from the measured proton data. 

Using the Beth-Block Equation and the difference between the entry and exit 

energy for every proton, in the "Energy Loss chapter" we can get the projected 

traversity ofa proton. Onthe other hand,and by using thesame Beth-Block Equation 

and the entry and Exit Energy, and by knowing the entry and exit angle and 02, 

we can calculate our sigmas Ei and E2 and then the MLP as that was covered in the 

"Most Likely Path Chapter". Now it is the time to introduce my third step of my 

research mission, which is reconstruct the image using the Path for each proton. 

4.2 Steps Toward Solving the Reconstruction Problem 

The following steps must be executed in order for us to reconstruct an image from 

a collected data. Some of the equations will be precalculated, while others will be 

calculated for each proton. 

1. Calculate the line integral of relative electron density (must be calculated for 

each proton) 

2. Pre-calculate sigma(s)for the object,(sigma will be precalculated one time only, 

and stored in a data file, and loaded in before calculating the object's data.) 

3. Calculate the object boundary, using each proton in each data file. 

4. Calculate the MLP for each proton at each angle <p of the rotation 

5. Consider the rotational angle 0, and transfer the rotated coordinate into the 

original coordinate (f) 

71 



6. Map the MLP into the path matrix map 

7. Victorize the path map(for each proton) 

8. Insert the path map vector into the sparse matrix 

The solution for the first,second,and third step has been explained in the previous 

chapters of this thesis document. Let me explain the work done in each of the step 

remaining. 

4.3 Identifying the Shape ofThe Object 

Non in the previous research done any job related to identifying the shape of the 

object. Tianfang Li [49] assumes that the shape of the object is known in advance. 

In his experiment to calculate and reconstruct an image, he assumes that the outer 

shape and the coordinates of that shape is known too. 

In my research I didn't assume that I know anything about the object or its coor 

dinates in the experiment space. I just knew that currently I have a two dimensional 

(2D)square of 30cm by 30cm) and the object that we would like to reconstruct relay 

somewhere in this space. 

The technique, which I came up with,to get the object's boundary is very simple. 

My technique depends on the energy loss for the protons, which travels through 

the space. Most likely that the outer protons in the top and the bottom of each 

measurement,therefore they will not hit the object; therefore,these protons will loss 

a very small amount of energy. This small amount of energy lost indecate that they 

most likely will travel in a straight line without hitting the object. 
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Fig. 4.1: Object Boundary Image Resulted from Proton Energy Loss 

A proof for this fact will by analyzed by just looking at the entry energy and exit 

energy, the entry height and the exit height for each one of those protons. I stated 

a tolerance, if the proton loss more than ̂ MeV (five) it means that this proton hit 

an object,so at the height of that proton there is an object. So by moving from the 

edges toward the center, I can calculate the last two point from the top and bottom 

where there is no object. I will mark those two points as they belong to the edge of 

that object. 

Since I have 180 trajectories. I can get 360 points around the object, which will 

lead me to know the edges of that object. Look at figure 4.1 to see the result. 
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4.4 Calculating the MLPfor Each Proton at Each Angle: 

Since we know the object outer shape, I can calculate the MLP for that object by 

using the entry and exit height of that proton. 

From the entry point at the level zero,I draw a straight line to the point where it 

will hit the surface of the object. On the other hand I will draw a straight line from 

the point, of which the proton will leave the object surface, to the to the exit point 

where it hit the sensors. Taking in consideration the entry and exit angle. Currently 

we assume that the entry angle is zero, and the exit angle is given in the data set. 

4.5 Map the Most Likely Path(MLP)into the Path Matrix 

The idea behind mapping the MLP is to isolate the most likely path for one proton 

and map that path on a pixelated map where if the proton visit the pixel then we get 

one (1), while it will mark the pixel with zero(0)otherwise, since we know the hight 

(t) at every depth(u)we will know the pixels, which the proton has visited at every 

depth. 

4.6 Consider the Rotational Angle, And Transfer Back to The Original Coordinate 

For the first read ofthe protons where0=0 we don't have to rotate. The MLP that 

we got from the equation will be the MLP for that read, but how about the other 

group of protons where (j) will equal an incremental number of 2. 

Therefore before we apply our MLP to our reconstruction matrix, we must rotate 

our coordinates back to the original coordinates. 
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Fig. 4.2: A Pixelated Most Likely Path 

Thanks to rotational matrix which will rotate our map to the original coordinates. 

As we will adopt the same when moving to three diminutions 3D objects. 

4.7 Convert the Mapped MLP Matrix into a String ofZeros and Ones. 

After having a map ofzeros and ones for each protons, we will each map into a string 

vector of zeros and ones. Also then we will insert the resulted string vector into a 

bigger matrix which will hold all our MLPs. 

I also have implemented an algorithm to covert the canvas into a vector. I have 

tested the algorithm against number of MLP and it worked. 
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Fig. 4.3: A Victorized Most Likely Path with the Solving Algorithm 

4.8 Image Reconstruction Matrix and Function 

4.8.1 The Need for Sparse Matrix 

As I mentioned before, I am dealing with a huge number of proton data sets; on 

which,I am applying many complex integrations. 

Currently, I have one hundred and eighty (180) data files (for each angle), each 

includes seventeen registration for each on ofthe forty five thousand (45000) proton. 

Each proton will be mapped to three hundred by three hundred (300 x 300) matrix, 

which will be converted to a victor ofzeros and ones ofsize ninety thousands(90000). 

Each on of those bits need eight bytes. Taking in consideration each proton, and 

ignoring the number of protons that register error information, we must have 180 x 

45000X90000X8which would equalto 58320000000006ytes ~ 5.3Terabyte ofRandom 

access memory needed to hold this matrix. 

Until now in the end of 2007, we don't have a machine which will hold that much 

ofRAM to be allocated by this matrix, not to mention the RAM needed for the the 

operating system OS,other applications, this current application which will calculate 

the reconstruction and other matrixes needed for this application. 

All of the above created the need to use sparse matrix, which reduces the size of 
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the protons' matrix from 5.3 TB to 10.x GB,which couldn't fit in the RAM of my 

current laptop or my desktop, but it will fit in a cluster or future laptop. 

For this experiment I only used a sampled data set of the current data set. 

4.8.2 The Need for Algebraic Reconstruction Technique 

Algebraic Reconstruction Technique (ART) is a well known technique or method 

in solving sparse systems of linear equations. Thanks to Kaczmarz, this method is 

inherently sequential according to its mathematical definition since, at each step,the 

current iteration is projected toward one ofthe hyperplanes defined by the equations. 

ART has many advantageinthe world ofsolving sparsesystemsoflinear equations. 

The main advantages ofART are its robustness,its cychc convergence on inconsistent 

systems, and its relatively good initial convergence [15]. 

An entirely different approach for tomographic imaging consists of assuming that 

the cross section consists of an array of unknowns, and then setting up algebraic 

equations for the unknowns in terms of the measured projection data. Although 

conceptually this approach is much simpler than the transform-based methods dis 

cussed in previous sections, for medical apphcations it lacks the accuracy and the 

speed of implementation [4]. However, there are situations where it is not possible 

to measure a large number of projections, or the projections are not uniformly dis 

tributed over 180 or 360) both these conditions being necessary requirements for the 

transform based techniques to produce results with the accuracy desired in medical 

imaging [4].Problems of this type are sometimes more amenable to solution by alge 

braic techniques. Algebraic techniques are also useful when the energy propagation 
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paths between the source and receiver positions are subject to ray bending on account 

of refraction, or when the energy propagation undergoes attenuation along ray paths 

as in emission CT,which we have talked about in the first chapter of this thesis. 

ART is widely used as an interactive solution to the problem ofimage reconstruc 

tion from projections in computerized tomography(CT),since it produces successful 

results when implemented with a small relaxation parameter produces. 

In many ART implementations the path visit to cell Cik,from the MLP,are simply 

replaced by Is and Os, depending upon whether the center of the image cell is 

within the row. This makes the implementation easier because such a decision 

can easily be made at computer run time. In this case the denominator in 4.1 The 

correction to the cell from the equation will be determined in 4.3 for all the 

cells whose centers are within the row: 

pi pi pl—L 

A r _ Pi-1i /.ON 

Efc=i^ik 

^ (4.3) 
ART reconstructions usually suffer from salt and pepper noise [4], which is caused 

by the inconsistencies introduced in the set of equations by the approximations com 

monly used for the proton position at each depth u. 
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Fig. 4.4: Simulated Object with Density Represented by High(Four), Medium(Two),and Low(Zero) 

4.8.3 Use the Numerical Algebraic Reconstruction Technique A=bx to Solve for 

the Reconstruction 

For this thesis I only used numerical ART that is build in MatLab application. Due 

to the lake of memory,I am only using a small portion of my data set.I have tried my 

algorithms on this small data set and apply the resulted data to the MatLab build-in 

least square technique. 

Illustrated in figure[4.4],My small data set consist of a simulated object with low 

density where it shows zeros Os, and high density where it shows fours (4s), and 

medium density where it shows twos. 

After calculating the MLP for number of proton travels through the object I got 

the matrix illustrated in figure[4.5]. 
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Fig. 4.5; Sample of Protons' Vectorized Most Likely Path Constructed on a Matrix 
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Fig. 4.6: Reconstructed Image of Sample Data Collection 

This will result the final picture of the reconstructed sample of figure[4.4]. The 

picture in figure[4.6]. 

4.8.4 Results 

Although I couldn't my target object from the given data set due to lake of memory, 

but I am very confident that each step in my reconstruction technique was carefully 

planned, strongly implemented, and successfully tested, and match the expected re 

sult when compared to the NIST database result. 

Fortunately, the home made functions, which I implemented through out the last 

two and a half year working on this research, has the support of my thesis committee 

members. With better performance, tt produced same result, and sometime better, 

which was produced by other build-in functions; but with better performance. 
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4.9 Summaxy ofFuture Work 

TKe performancethatIgainedfrom building myhome-made Gaussian Quadfunction, 

supported by the correctness ofsuccessful implementation of my HS algorithm, gave 

hopeforImage Reconstruction using Proton Computed Tomography. However,better 

hardware must be used to implement this algorithm to handle Memory leak, which 

will be huge when upgrading to 3-D computed tomography. 

Since each proton is a separate entities; we can apply our calculations on each 
i 

proton individually. Currently, I am only using my victim laptop, after burning 

two computers,to do all my calculation on all the protons. Future continuing of the 

project is to use parallel programming applied on distributed system. 

Graphic User Interface will be great futme improvement to the usabihty of such 

algorithm. Currently, I am feeding my data using the MatLab Environment. A 

future GUI interface, implemented in C-|—I- for example, will be great advantage to 

this apphcation. 

Although not reached, but good continuing in this research is to implement differ 

ent ART algorithm for image reconstruction and compare their performance. 

4.10 Conclusion 

I am honored to work on such a research, among few other challengers who didn't 

hesitate to take this challenge. It was big research to accomplish. I started with zero 

experience about biology, proton, X-RAY,pCT, MatLAB,LaTeX, thesis templates 

... etc, but looking at myself now,I gained a lot of experience from this thesis, and I 

didn't, as I will never, gave up. 
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This project will be a good help for brain and body imaging. Especially in the 

field of tumors imaging. A lot has been done, and a lot more are waiting 

Any challengers... 

JT 

Seattle, WA 

NOV29*'',200704:59:49AM 
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1.1 Introduction 

Looking around, we will analyze that everything can be digitalized into a matrix. 

Spreadsheet in Excel file, table or any other respectable data file that contain set of 

numbers related to each other. Matrices Make presentation of numbers clearer and 

make calculations easier to program. 

Kay [31] define matrix as a rectangular a,rray of elements, the elements can be 

symbolic expressions or nmnbers. For example Matrbc[A] is denoted by: 

ail Oi2 «i3 ^In 

®21 <^22 <^23 0'2n 

[A]= (1.4) 

^ml ^m2 ^mS ^m4 

We define a row i as it has n elements, which are [aiiai3ai3.....ain] and we define 

a2j 

a columnj as it has m elements, which are: 

a.•mj 

The size of a matrix is the result of multiplying the number of rows m by the 

number of column n; it is donated by(m x n). 

Element of matrix is donated by Uij. The following is an matrix example: 
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30 24 55 11 27 45 

21 10 9 8 11 2 

[^]= (1.5) 
3 15 16 32 20 24 

6 17 3 5 8 13 

The above matrix [A] has a size of 4a:6=24. The elementa46 has a value of 13. 

Note that for regular matrix we always write the name of a matrix in capital 

letters. 

The proper study of matrix computation begins with the study of the matrix-

matrix multiplication problem [13]. Although this problem is very simple mathe 

matically, it is very rich from the computational point of view. 

Matrix computation are build upon hierarchy of linear algebraic operations. Dot 

products involve the scalar operation of addition and multiplication. Matrix vector 

multiphcation is mad up of dot products. Matrix-matrix multiplication amounts to 

a collection of matrix vector products [13]. All of these operation and more can be 

described in algorithmic from or in the language of linear algebra. If it was to me, 

I will ask Education Department to teach Matrix computation with the very First 

Mathematics Classes. 

1.2 DeGnition ofMatrix 

There is obvious importance in adopting a methodical arrangement ofequations and 

all such polynomial expressions, involving several variables x,y,z [51]. Also, because 

ofthe convenient fact that many ofthe properties ofasquare ofoblong formation can 

be illustrated by arranging for or six things two by two in a square, or two by three 
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in a oblong, we can continue to extract useful general notations from our equations 

above (1.6). The set of coefficients; 

ai&iCi 

a2b2C2 of(1.6), arranged in their relative positions, is an example ofa matrix oforder 

two and three. In definition a matrix of orders m and n simply means a set of mn 

numbers arranged in rectangular array with m rows and n columns [51]. 

1.3 Special Types ofMatrix 

Vector: a vector is a matrix that include only one row or one column. This results 

two types of vector matrices, row matrices and vector matrices. 

Row Vector Row vector is a matrix that has one row. As standard we always 

choose vector nameto becapitalletters. Example ofarow matrix \B\=[1123581321]. 

We describe matrix [B]as a row vector of dimension 8. 

Column Vector Column Vector is a matrix that include only one column. As 

a standard we also choose vector name to be capital letters. Example of a vector 

matrix 

8 

13 

21 

[C]= 
34 

55 

89 

We describe matrix [C] as a column vector with6 rows. 

Square Matrix We call a matrix a Square matrix if the number ofthe rows(m) 
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is equalto the number ofcolumns(n)ofthe matrix(m=n). where the entries an,032, 

... , ann are the diagonal elements of a square matrix. 

Diagonal Matrix We call matrix a Diagonal Matrix if all non-diagonal elements 

equal to zero.On the other hand, only the diagonal entries of the square matrix can 

be non-zero,(ajj=0,i^j) 
/ \ 
3 0 0 

Example: [^]= 0 3.5 0 Zero Matrix Zero Matrix is a matrix, of which 

0 0 6 

all its entries are equal to zero, (uy =0for all i and j) 

0 0 0^ 
Example[A] 0 0 0 

0 00 

/ \ 
0 0 0 0 

[B]= 0 0 0 0 

0 0 0 0 

( \ 
0 0 0 0 

0 0 0 0 

[C^]= 
0 0 0 0 

0 0 0 0 
7 

[D]=(^ 0 0 0 0j 
A,B,C,and D are all zero matrixes. 

Note: if any matrix is multiplied bythe Zero Matrix the answer is the Zero Matrix. 

Matrix of Ones Matrix of Ones is a matrix, of which aU its entries are equal to 

ope.(uy — 1 for all i and j) 
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^ 1 1^ 
Example: [A]= 1 1 1 

1 1 1 

( \ 
1 1 1 1 

[B]= 1 1 1 1 

1 1 1 1 
/ 

/ N 
I 1 1 1 

I I 1 1 

[C] 
1 1 1 1 

1 1 1 1 
V / 

p]=11 1 1 1 
A,B,C,and D are all zero matrixes. 

Note: if any matrix is multiplied by the Ones Matrix the answer is that same 

matrix. 

Diagonally Dominant Matrix This only apphed for matrix of nxn squar 

matrixes, and it has to meet the following condition: 

kii > for all i=l,2,3 ...n and 

[aiil > —[aijl for at least one i, 

that is, for each row, the absolute entry value of the diagonal element is greater 

than or equal > to the sum of the absolute values of the rest of the elements of 

that row, and that the inequality is strictly greater than for at least one row. Such 

matrix are very important in ensuring convergence in iterative schemes of solving 

simultaneous linear equations, and liner problems. 
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Magic Square Matrix Magic Matrix is a square matrix where the sum of the 

row elements equal to the sum of the column elements. 

Some special magic square matrix have the sum of element is a row equal to the 

sum ofthe element of colmnn equal to the sum ofthe diagonals elements. 

Example 
/ \ 
8 1 6 

3 5 7 

4 9 2 

Another example o a square matrix: 
/ \ 

16 3 2 13 

5 10 11 8 

[B]= 
9 6 7 12 

4 15 14 1 

1.4 Notation 

The frmdamental importance of determinants as working tools in mathematics has 

come to be so widely recognized that it may be assumed that the reader has some 

practical knowledge of them, and in particular that he has realized their value in 

providing a simple general rule for the solution oflinear equations. Certain introduc 

tory results may therefore be given without undue emphasis on intermediate steps, 

which can easily be supphed [51]. Let us learn about notations and go through some 

definitions. Suppose there are two homogeneous hnear equations in three variables 
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x,y,z, 

a\X hiy-\-Ciz = 0 (1-6) 

a2X+&2?/+C2^ = 0 (1.7) 

Then in general they have a solution 

X y 
(1.8) 

biC2-hci Cia2 — C2ai ai&2 — dih 

We call those "denominators", which are called determinants of the second order 

[51], can be written shortly in various ways, all ofthem have great value. 

• I&1C2I, |cia2|, 10162!, 

•(be)12,(ca)12,(ab)12, 

•(be),(ca),(ab). 

the last of these ways makes use of the obvious fact that if two letters be are 

written down side by side, one if first and the other is second,read from left to right. 

We agree to drop the suffixes in the last item, whenever they are 1,2, for exactly the 

reason that we drop the index 1 in writing when p= 1. In fact we define (6c)y 

to mean biCi — bjCj and merely suppress the suffixes ij on the case when i = 1 and 

j= 2. A Fourth and more familiar notation for the determinant 61C2 — bjCi is the 

well-known square array, introduced by Cayley in 1841 [51] long after determinants 

were first invented. It is: 

bi ci 

62 C2 

which has the advantage of showing such coefficients of the original equations, as 

appear in the first determinant, exactly in their same relative positions. 
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2.5 Introduction 

In numerical analysis, numerical integration constitutes a broad family of algorithms 

for calculating the numerical value ofa definite integral, and by extension,the term is 

also sometimes used to describe the numerical solution of differential equations [6]. 

Theterm quadrature is more or less asynonym for numerical integration, especially 

as applied to one-dimensional integrals. Two- and higher-dimensional integration is 

sometimes described as cubature, although the meaning of quadrature is understood 

for higher dimensional integration as well [6]. 

The most basic problem to be solved using numerical integration is to compute 

the approximate solution of a definite integral; 

J^f{x)dx 

2.6 Why Numeric Integration? Why not? 

Several facts and reasons affect scientist to use numeric integrations. For example, 

the integrand function f, from the previous equation, may be known only at certain 

points, such as obtained by sampling. Many computer applications and computer 

embedded systems often use numerical integration for such a reason. 

The absente of finding an antiderivative is also another reason of using Numeric 

Integration. A formula for the integrand may be known, but it may be difficult or 

impossible to find an antiderivative. example exp(t~^). 

It may be possible to find an antiderivative symbolically, but it may be easier to 

compute a numerical approximation than to compute the antiderivative. That may 

be the case if the antiderivative is given as an infinite series or product, or if its 
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evaluation requires a special function which is not available. 

Quadratrure is a numerical method used to find the area under the graph ofafimc-

tion, that is, to compute a definite integral. In MatLab,there is a build in numerical 

integration functions that helps do the numerical integration. Those functions are 

called Quadrature Functions. Quad and Quadl are MatLab Build-in functions. 

2.7 MatLab Build-in Quadrature Functions 

2.7.1 Quad 

quad q = quad(fun,a,b) tries to approximate the integral of function fun from a to 

b to within an error of le-6 using recursive adaptive Simpson quadrature, fun is a 

function handle. See Function Handlesin the MATLABProgramming documentation 

for more information. The function y = fun(x) should accept a vector argument x 

and return a vector result y, the integrand evaluated at each element of x. 

2.7.2 Quad! 

Numerically evaluate integral, adaptive Lobatto quadrature q=quadl(fun,a,b) ap 

proximates the integral of function fun from a to b, to within an error of 10-6 using 

recursive adaptive Lobatto quadrature, fun is a function handle, (write this myself) 

2.7.3 Gaussian Quadrature 

The numerical integration methods described so far are based on a rather simple 

choice of evaluation points for the function f(x). They are particularly suited for 

regularly tabulated data,such as one might measme in a laboratory, or obtain from 
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computer software designed to produce tables. If one has the freedom to choose the 

points at which to evaluate f(x), a careful choice can lead to much more accuracy in 

evaluating the integral in question. 
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"From automated teller machines and atomic clocks to mammograms and 

semiconductors, innumerable products and services rely in some way on technology, 

measurement, and standards provided by the National Institute ofStandards and 

Technology"[48, "from the NIST official website. 

The National Institute of Standards and Technology NIST,Founded in 1901,is a 

non-regulatory federal agency within the U.S. Department of Commerce. NIST's 

mission is to promote U^S. innovation and industrial competitiveness by advancing 

measurement science, standards, and technology in ways that enhance economic se 

curity and improve our quality of life [48]. 

NIST ccarries out its mission in four cooperative programs, which are The NIST 

Laboratories,The Bladrige National Quality Program,The Hollings Man 

ufacturing Extension Partnership, and most important The Technology In 

novation Program which is planned to provide cost-shared awards to industry, 

universities and consortia for research on potentially revolutionary technologies that 

adress critical nationaland societal needs. Morecommoninformation aboutthe NIST 

org can be found on its website http://www.nist.gov. 

3.8 Advance Technology Program(ATP) 

Managed by NIST between 1990and 2007,the Advanced Technology Program(ATP) 

bridges the gap between the research lab and the market place.,simulating prosperity 

through innovation [26]. 
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3.9 pSTAR Database 

The PSTAR database is a program which will calculate stopping power and range 

tables for protons in various materials. 

With that program a user an select a material and enter the desired input energies, 

or select default.The energies' unit will be in MeV and must be within the range^of 

0.001 MeV to 10000 MeV. 

^ For our experiment, our input energy 250 MeV or 200 MeV,and or exit Energy will be less that 250 or 200 MeV 

since the proton has to travel through an object and it must loose at least a fraction of an energy 
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