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Abstract: Matching pairs of tumor and non-tumor kidney tissue samples of four patients were
investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared
spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber probes.
In order to increase the data information content, the measurements on tissue samples in both
methods were performed in the same 31 preselected positions. Multivariate data analysis revealed
a synergic effect of combining the two methods for the diagnostics of kidney tumor compared to
individual techniques.
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1. Introduction

Optical spectroscopic analysis is rapidly disseminated in the clinical domain. As a new diagnostic
modality, it offers unique opportunities for a label-free investigation of tissue samples at the molecular
level that helps to identify various diseases. The possibility of non-invasive analysis of the tissue
cellular structure capable of detecting diagnostically relevant abnormalities turns spectroscopy-based
methods into a novel approach to clinical diagnostics. The so-called “spectral histopathology” has
developed over the last few years as an ancillary tool for classical histopathology using surgical
biopsy samples for the tissue examination [1,2]. The routine procedures of clinical histopathology are
complicated and time-consuming. Besides, this diagnostic method strongly relies on the analyst’s
professional qualification, and is hence prone to a human error. These facts demonstrate the need for a
rapid and more objective alternative to classical histopathology.

According to the mortality statistics reported by the American Cancer Society in 2016, kidney
cancer is one of the 10 most common cancer types [3] and clear cell renal cell carcinoma (cCRCC) is
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the main modification of kidney cancer. Renal cell carcinomas comprise approximately 3% of adult
malignancies worldwide and 90%–95% of neoplasms arising from the kidney. The only known curative
treatment of this cancer type is a surgical resection [4,5]. Spectral histopathology is often considered as
a potential approach to revealing tumor cells in the tissue during a surgical operation.

Fluorescence spectroscopy is one of the most established optical diagnostic methods that is
successfully used for cancer imaging, e.g., for the delineation of a margin between normal and
cancerous tissue [6,7]. Extremely high sensitivity to specific molecules including some known cancer
biomarkers [8] called fluorophores is the main analytical advantage of the fluorimetric analysis.
Less sensitive, but highly selective mid infrared (MIR) spectroscopy is capable of recognizing various
organic molecules based on the fundamental vibration frequencies of their functional groups and the
quantification of the respective mixture constituents [9]. This chemically informative spectroscopic
technique is increasingly used for the investigation of various biological materials [10]. Recent studies
demonstrated the significant diagnostic potential of MIR spectroscopy for various types of human
cancer [11–14].

Both fluorescence and MIR spectroscopic measurements of tissue can be performed through
fiber-based probes. The main advantages of using fiber spectroscopic methods are their being
non-destructive and non-invasive, as well as avoiding the use of extrinsic contrast-enhancing agents.
Application of the optical fiber approaches for the determination of the tissues affected by a tumor has
been demonstrated ex vivo for the brain [15], colon [16,17], and skin [18]. Recently, it has been shown
that a combination of spectroscopic methods can increase the effectiveness of cancer detection [15,19].
The majority of reported multi-modal spectroscopic systems are presented by a combination of
fluorescence and diffuse reflectance spectroscopy methods [20–22].

The present study is a part of a larger research project, the main purpose of which is the
development of new optical techniques for tumor margin identification that could be subsequently
transformed into a clinical method and tool. The authors’ recent work from this series [23,24] was aimed
at the development and testing of a near infrared (NIR) sensor for the diagnostics of kidney tumors
based on four light-emitting diodes (LEDs). In the present study, we report a synergic effect of using
MIR and fluorescence spectroscopy simultaneously, in distinguishing healthy and malignant tissue
samples of the human kidney obtained from an operative cancer treatment. Diagnostic capabilities
of fluorescence and MIR spectroscopy have been investigated using matching pairs of normal and
malignant biopsy samples of a few patients with kidney cancer. Special attention was paid to a joint
analysis of spectra taken at the same sample positions in order to prove a hypothetical advantage of
their possible integration within the same analytical instrument.

2. Materials and Methods

2.1. Sample Preparation

Eight unstained cryo biopsies after nephrectomy (matched pairs of tumor and non-tumor tissue
of the same kidney) were obtained from Department of Urolgy at Charité Universitätsmedizin Berlin
(Germany). The institutional ethics committee approved the sampling and further investigation of
renal tissues (ethical approval number EA1/134/12). The samples typical thicknesses were from
5 to 10 mm, in accordance with the common histopathological practice, since larger specimens
could not be shock-frozen as required for the clinical investigation. All tumor samples were of
the predominant cCRCC subtype. According to the Fuhrman nuclear grading system (FNG) [25], all
tumor samples were classified as low-grade G1 (round well-differentiated nuclei) or intermediate
grade G2 (larger nuclei with slightly irregular contours and nucleoli). Tumors were staged according
to the Union for International Cancer Control Tumor-Node-Metastasis (UICC-TNM) criteria [26].
The biopsies represented four male patients: M149 (56 years old/tumor grade G1/staging pT1b),
M151 (69/G2/pT3a), M160 (47/G2/pT2b), and M144 (62/G2/pT3a). The staging describes sizes of
the tumor and its infiltration into the surrounding organs. Within staging classes, tumor extension
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increases from pT1 to pT3. Prior to measurements, tissue samples were thawed for 5 min at room
temperature. A typical view of the patient biopsies is presented in Figure 1. Some further details on
sample preparation can be found in previous publications by the authors [23,24,27].Sensors 2017, 17, 2548  3 of 12 
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Figure 1. Renal biopsy of patient 160: healthy (left) and tumor (right) tissue.

2.2. Spectroscopic Measurements

MIR measurements were performed using a Matrix MF (Bruker Optik GmbH, Ettlingen, Germany)
spectrometer equipped with a mercury-cadmium-telluride (MCT) detector cooled by liquid nitrogen.
Spectra were acquired in contact with the tissue using a polycrystalline infrared (PIR) fiber-based
attenuated total reflection (ATR) probe with a silica crystal on top (art photonics GmbH, Berlin,
Germany) optimized for the fingerprint region. Sterile 0.9% sodium chloride aqueous solution
was used as a background (to obtain the reference spectrum). MIR spectra were obtained at the
resolution of 8 cm−1 at 64 scans. Typical spectrum acquisition time at these settings was about 46 s.
Some further details on MIR spectroscopic investigation of kidney samples have been published
before [27]. Experimental setups are presented in Figure 2.

Fluorescence by cancer and normal tissues was excited at 473 nm using a 25-mW laser (art
photonics GmbH, Berlin, Germany) through a needle-shaped probe by art photonics containing an
aluminum-coated 400 µm core detection fiber surrounded by 13 silica illumination fibers having a
diameter of 100 µm. To protect the measurement against ambient light, the probe tip was surrounded
by a black plastic shield, which also provided a fixed distance to the sample of about 2 mm.
The measurement was performed through a thin (0.5 mm) quartz glass covering the sample to avoid
its direct contact with the probe (Figure 2). An FSD-9 mini-spectrometer (art photonics GmbH, Berlin,
Germany) was used to collect fluorescence spectra in the 200–1080 nm range with optical resolution of
a few nm (spectral points were sampled at 0.26 nm). A refocusator by art photonics with a FEL0500
long pass optical glass filter (Thorlabs Inc., Newton, NJ, USA) with a cut-off wavelength of 500 nm
was used to suppress the signal of back-scattered illumination light in the fluorescence spectrum
(element 3 in Figure 2). Spectrum acquisition times were adjusted for each new measurement position
in order to keep the maximum spectrum intensity within the optimality region of the spectrometer
above 30000 counts (more than 50% of the upper intensity limit). The interval of acquisition times was
125–2000 ms and the measurement was predominantly longer for tumor biopsies in comparison to the
normal tissue. Higher integration times were avoided, even if the maximum spectrum intensity was
lower than optimal. All repeated measurements at the same position were performed with the same
acquisition time.

Three replicated measurements in each pre-selected position were made by either spectroscopic
method. The repeated measurements were performed after the re-focusing of the probe on a sample
using a moving probe grip.
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Figure 2. Experimental setups for fluorescence (left) and mid infrared (MIR) (right) spectral
measurements: 1—fluorescence probe; 2—laser light source; 3—cut-off fluorescence filter;
4—fluorescence spectrometer; 5—attenuated total reflection MIR probe; 6—MIR spectrometer;
7—samples; 8—computer.

2.3. Data Analysis

Multivariate data analysis including principle component analysis (PCA) [28] and partial
least-squares discriminant analysis (PLS-DA) [29] was performed using TPT-cloud (www.tptcloud.
com), a web-based chemometrics software by Global Modelling (Aalen, Germany) and Samara
State Technical University (SSTU, Samara, Russia), and Interval Selection Toolbox (SSTU) for
MatlabTM (MathWorks, Natick, MA, USA). Model validation was performed by means of segmented
cross-validation using the data in unique measurement positions as segments.

Second derivative algorithm by Savitzky-Golay [30] was used with the following options adjusted
in preliminary data analysis: second-order of polynomial and smoothing window width of 25 points.
Prior to the concatenation, appropriately reduced and preprocessed MIR and fluorescence spectra
were normalized. Two normalization methods were alternatively used: standard normal variate (SNV)
algorithm transforming individual spectra to the unit vector length or weighting of the variable vectors
by their inverse standard deviation. The latter method in combination with subsequent mean centering
is usually referred to as autoscaling (AS).

In PLS-DA modeling, cancer was conventionally considered as “positive” and health as “negative”
test results, numerically coded as 1 and 0, respectively. The numbers of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN) in the prediction as well as percent
accuracy %Ac = (TP + TN)/(TP + FP + TN + FN), sensitivity %Sn = TP/(TP + FN), and specificity
%Sp = TN/(FP + TN) values were used to measure discrimination quality [31].

www.tptcloud.com
www.tptcloud.com
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Segmented cross-validation (CV) and random-subset validation (RSV) were used to estimate
the number of latent variables (LVs) in the PCA and PLS-DA models and to characterize the model
performances in prediction. The CV segments were formed by repeated measurements in different
sample positions. In the RSV method, a random subset of 14 spectra was excluded at the modeling stage
to be used for an independent prediction. The subset size of about 15% of the whole data was chosen
as a compromise between representativeness of the residual training data and soundness of the test-set
prediction statistics. To compensate for the random factor in the modeling statistics, the procedure
was repeated 1000 times and cumulative numbers of TP, FP, TN, and FN were used to calculate the
%Sn, %Sp, and %Ac values. A large number of iterations of the subset selection-modeling-validation
cycle was necessary to assure the statistics convergence to constant values independent of a particular
subset. The optimal number of LVs in the PLS-DA models was determined from the CV data.

3. Results and Discussion

Selection of appropriate spectroscopic techniques and their combinations followed by the
development of analytical methods and instruments consists of multiple measurement steps involving
clinical samples. Considering the specific nature of the samples, their limited availability, and the
ethic aspects of their use, intermediate studies (e.g., method comparison) necessary to make informed
development decisions should be based on a possibly small set of patients. Obtaining necessary
samples is additionally complicated by the requirement that pairs of cancer and healthy tissue biopsies
should belong to the same kidney after nephrectomy, i.e., full excision of the organ. This operation
takes only about 30% of cancer surgical treatment cases at Charité [32]. At partial excisions, the healthy
tissue should be possibly preserved, and hence, noncancer samples are typically absent. In order to
enhance the data information content, spectral measurements of eight available biopsy samples were
performed in 31 preselected sample positions (from three to five positions on each individual biopsy)
coded using a coordinate grid, as shown in Figure 1. The experiment was designed to include the
main practically relevant variabilities, as required for the data realism and consistency. Therefore, the
resulting spectra comprised both intra- and inter-sample variability and was well-suited for a joint
analysis of MIR and fluorescence data.

The resulting individual datasets included 92 spectra and 82 (MIR) or 736 (fluorescence) variables.
The raw spectral data are presented in Figure 3a,b.

MIR spectra were obtained in the full range of 3000–700 cm−1 (Figure 3b). It can be noticed that
probably the most significant spectral difference of the cancer tissue is related to the presence of a
larger peak with an average intensity maximum at 1083 cm−1 (Figure 3b,d) caused by symmetric
stretching vibrations of the ionized PO−

2 group [33]. Phosphate PO−
2 groups with stretching vibration

in these regions mainly originate from the phosphodiester groups of cellular nucleic acids, membrane
phospholipids, and partially from protein (amide III). Higher intensity of this band assumes an
increased concentration of the nucleic acids in the tumor tissue due to a higher proliferation rate of
the tumor cells [34]. A weak spectral difference associated with the phosphate was found at around
1240 cm−1 (Figure 3b) and assigned to the asymmetric stretching vibrations of PO−

2 [34,35]. Also,
an increased level of glycogen manifested in a stronger absorption at 1026–1030 cm−1 (the average
maximum at 1029 cm−1) was observed for the malignant tissue due to an activation of the glycolysis.
These significant changes in the carbohydrate metabolism are characteristic of the renal cell carcinoma
tissues. Another carbohydrate-related absorption band at 1155 cm−1, which is stronger in malignant
kidney, was assigned to the C–O and C–OH stretching vibrations [34]. An increase of absorption
around 1155 cm−1 observed for the malignant tissue originated from the C–OH stretching mode by
amino acid (threonine, tyrosine, and serine) residues in the cell proteins. In general, the metabolism
alteration of carbohydrates and lipids definitely belongs to the malignant modification process of
cCRCC. The group of peaks between 3000 and 2800 cm−1 associated with the vibrations of aliphatic
residuals did not reveal any noticeable correlation with the diagnosis. Therefore, only the region of
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1220–1010 cm−1 containing the most relevant signals (Figure 3d) was taken for the PLS-DA modeling.
Similarly, fluorescence spectra were reduced to the signal region of 490–680 nm.
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Figure 3. Spectral data: (a) raw fluorescence spectra; (b) raw mid infrared (MIR) spectra;
(c) fluorescence spectra in the region of 490–680 nm; (d) MIR spectra in the region of 1220–1010 cm−1;
and (e) concatenated dataset of preprocessed fluorescence (left side) and MIR (right side) spectra.
The following preprocessing was applied before data concatenation: standard normal variate (SNV)
for fluorescence data and Savitzky-Golay second derivative followed by SNV for MIR spectra. Red
and blue colors correspond to tumor and normal tissue samples, respectively. The curves and the
surrounding colored regions in (a–d) represent the mean spectra and the standard deviation intervals
of the respective data.

Regarding the fluorescence signals of renal biopsies, the most important fluorophores contributing
to the peaks at 520 nm, 560 nm, and 630 nm are supposed to be flavin adenine dinucleotide (FAD),
collagen, and porphyrins, respectively. Several studies have reported the interstitial expression of
collagen types I and III in renal cell carcinoma [36]. Differences in fluorescence signals between tumor
and normal samples may come from the changing ratio of their composition, but can also be attributed
to the appearance of at least one additional fluorophore [37].

As it follows from the assignment of spectral features, the methods of fluorescence and MIR
spectroscopy are capable of delivering complementary chemical information, and are therefore suitable
for a joint analysis.

Preliminary PCA of the raw spectral data has shown a much better tumor/normal class separation
in the case of combined dataset, as observed in the scores plots in Figure 4a,c,e.

The following approach to the data preprocessing was used to rank the discrimination abilities
of individual spectroscopic techniques and their combinations. Individual techniques were tested
with different preprocessing methods prefacing PLS-DA modeling: no preprocessing or SNV for
fluorescence data and no preprocessing, SNV, second derivative (2D), or 2D + SNV (2D followed by
SNV) for MIR data. In the case of spectra concatenation, both data parts should be normalized in order
to standardize their scales, and thus, to minimize the model bias. Therefore, in the case of combined
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data, the “no preprocessing” method was not considered at all. Both data parts in this case were
SNV-corrected or autoscaled (Section 2.3). The best method was chosen based on the accuracy (%Ac)
statistics of calibration and validation. The results presented in Table 1 enable a comparison of the
diagnostic efficiency of two separate spectroscopic techniques as well as their combination after the
individually adjusted data preprocessing method chosen from the list of the most efficient algorithms.
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Figure 4. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA)
models (segmented cross-validation results): (a,c,e) score plots of PCA models and (b,d,f) frequency
histograms of PLS-DA-predicted values for: (a,b) fluorescence spectra corrected by standard normal
variate (SNV), (c,d) SNV-corrected second derivative MIR spectra, and (e,f) concatenated dataset. In
(a,c,e): red and blue colors designate tumor and normal tissue samples, respectively; labels designate
measurement positions on the sample; percent variances explained by the corresponding principal
components are shown in brackets on the axis labels. In (b,d,f): blue, cyan, red, and magenta
colors designate true negatives (TN), false negatives (FN), true positives (TP), and false positives
(FP), respectively.

Calibration, CV, and RSV statistics show similar numbers and the method ranking stays mainly
the same. This similarity is an indicator of the absence of model overfitting, at least for the present
dataset. Overfitting is a common analytical risk to be considered, especially when the data volume
is limited. Although the present dataset seems adequate for the method comparison, the practical
diagnostic models should be built on a much larger number of patients to cover all possible variabilities.
The modeling statistics in that case can be less optimistic. It is also remarkable that both individual and
combined discrimination models required only two LVs. The model simplicity that stays unchanged
in spite of the growing number of variables and hence data complexity is another sign of the method
robustness. The statistics in Table 1 show that CV with the segments formed by measurement positions
was the most conservative and hence the most straightforward validation strategy. Every iteration
of the segmented CV simultaneously excludes similar spectra of the same sample positions. RSV is
another good option for relatively small datasets that combines the features of both independent
validation and CV.
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Fluorescence data by itself show generally lower discrimination capabilities than MIR
spectroscopy. The respective CV accuracies were 61% against 92% for the best preprocessing techniques
(bold font in Table 1). SNV correction of the fluorescence spectra results in some improvement of the
respective model performance. In contrast, raw spectra produce the worst discrimination statistics of
the MIR spectroscopic model. The best preprocessing for the individual MIR method was found to be
2D + SNV, which resulted in a noticeably better prediction than SNV or second derivative methods
alone (Table 1). Misclassified measurements in the MIR-based model are predominantly presented by
false negatives, i.e., non-recognized tumor (Figure 4d), which is an undesired trend.

Table 1. Comparison of spectroscopic methods for kidney cancer diagnostics; two latent variables (LVs)
were used in all models.

Method Preprocessing TP FP TN FN %Ac %Sn %Sp

Calibration 1

Fluorescence
none 37 20 21 14 63 73 51

SNV 2 32 12 29 19 66 63 71

MIR

none 38 1 40 13 85 75 98
SNV 42 2 39 9 88 82 95
2D 3 45 4 37 6 89 88 90

2D + SNV 49 0 41 2 98 96 100

Fluorescence | MIR

AS 4 | AS 39 13 28 12 73 76 68
AS | 2D + AS 44 8 33 7 84 86 80
SNV | SNV 48 0 41 3 97 94 100

SNV | 2D + SNV 51 0 41 0 100 100 100

Cross-validation 5

Fluorescence
none 32 22 19 19 55 63 46
SNV 27 12 29 24 61 53 71

MIR

none 38 3 38 13 83 75 93
SNV 42 4 37 9 86 82 90
2D 45 5 36 6 88 88 88

2D + SNV 45 1 40 6 92 88 98

Fluorescence | MIR

AS | AS 35 15 26 16 66 69 63
AS | 2D + AS 37 9 32 14 75 73 78
SNV | SNV 47 0 41 4 96 92 100

SNV | 2D + SNV 49 0 41 2 98 96 100

Random-subset validation 6

Fluorescence
none 61 70 50
SNV 65 61 70

MIR

none 84 75 95
SNV 88 83 94
2D 89 87 91

2D + SNV 95 92 99

Fluorescence | MIR

AS | AS 71 75 66
AS | 2D + AS 81 83 80
SNV | SNV 96 94 100

SNV | 2D + SNV 99 98 100
1 Prediction and training on the full dataset; 2 Standard normal variate; 3 Savitzky-Golay second derivative;
4 Autoscaling; 5 Segmented CV with 31 segments formed by the measurement positions; 6 Subset (15%) of the full
data at 1000 iterations.

Concatenation of the fluorescence spectra with second derivative MIR spectra followed by SNV
normalization of both data parts leads to a remarkable improvement. CV of the optimal PLS-DA model
built on the combined spectral data (Table 1 and Figure 4f) resulted in only two misclassifications of
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92 measurements, which corresponds to a 98% accuracy. Other preprocessing techniques and their
combinations were also checked, but the model performance was significantly lower (Table 1).

The role of an appropriate preprocessing for the whole success of analysis is high.
Second derivative preprocessing was necessary to compensate for unavoidable baseline variations
observed in MIR spectra (Figure 3b). As the fluorescence spectra were acquired with different
acquisition times, their SNV normalization was necessary to remove the absolute intensity effect
and to emphasize the differences in the spectral shape. For the data weighting that accompanies
their concatenation, SNV correction worked out to be a much better normalization algorithm
than autoscaling.

Increasing use of multi-spectral techniques is a distinct trend in modern qualitative and
quantitative analysis [38]. However, the simple addition of any spectroscopic method does not
generally result in synergy. For instance, a combination of MIR [39] or NIR [40] with Raman
spectroscopy did not bring any accuracy gain of the target component determination. At the same time,
the latter combination was profitable for another analyte [40]. An evident gain of merging two optical
techniques observed in the present study allows for a reasonable suggestion about the difference of
respective cancer biomarkers predominantly revealing themselves in MIR and fluorescence spectra,
which also follows from the above given spectral interpretation. Also considering the size of effect,
it can hardly be explained by simple mutual compensation of the measurement errors due to the
combination of techniques.

Due to its small penetration depth (0.5–2 µm) at the MIR wavelengths, ATR spectroscopy is a
superficial measurement technique that mainly works at the cellular level. In contrast, fluorescence
signals can be collected from a depth of up to a few millimeters, as corresponds to the higher penetration
ability of the visible laser light. The depth can also be affected by the scatter, depending, in its turn,
on tissue morphology. Working depth is therefore an additional factor making the information
delivered by both methods complementary.

Joint analysis of MIR and fluorescence spectra of the same objects is new; neither medical nor
industrial applications of this combination are heard of. This lack of research is accounted for by
experimental differences making compatible measurements of the same solid sample by both methods
problematic. In the present study, the compatibility was possible due to the application of a PIR-based
ATR probe, thus enabling spectroscopic MIR and fluorescence measurements at the same sample point.

The experimental data discussed in this section can be accessed using the links provided in
Appendix A.

4. Conclusions and Outlook

The observed synergic gain of combining fiber-based ATR MIR and fluorescence spectroscopy
of kidney cancer provides a motivation for the further development and improvement of this joint
method for in vitro diagnostics. For clinical usage, both techniques should be seamlessly integrated
within the same analytical method and probe. The main requirement and, at the same time, the main
challenge of the probe unification is to provide a simultaneous measurement of exactly the same point
at the sample surface.

Significant effort should be aimed at the accumulation of statistically representative data to
provide the robustness of the multivariate discriminating model, i.e., its resistance to all possible
variations of the sample tissue. The method extension to different organs and cancer types is another
important direction of its development.

A separate challenge to be addressed in our subsequent studies is the fair method comparison.
The need for a formalized approach to the comparison of spectroscopic and modeling techniques
follows from an extremely wide variability of the tissue samples on the one hand, and from the
diversity of statistical criteria on the other. The sum of ranking differences (SRD) method [41,42]
provides a necessary platform for an unbiased method discrimination and validation [43] based
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on a representative clinical data including multiple datasets with numerous patients and different
measurements sites.
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Appendix A. Source Data

Fluorescence spectra: https://tptcloud.com/data/view/4904
MIR spectra: https://tptcloud.com/data/view/4905
Concatenated spectra after optimal preprocessing (Table 1): https://tptcloud.com/data/view/4902
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