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1. Introduction
Surveys indicate that 9%–15% of couples endure a 
prevalence of infertility after 12 months of unprotected 
intercourse, and 56% of them seek medical care to conceive 
(Boivin et al., 2007; Agarwal et al., 2014b). Several studies 
have shown a significant increase in reactive oxygen 
species (ROS) activity in various types of infertility (Aitken 
and Clarkson, 1987; Zini et al., 1993; Kodama et al., 1997; 
Aitken et al., 2009). The spermatozoon is a very sensitive 
cell to ROS-induced oxidative damage. This is partly due 
to the fact that the sperm plasma membrane contains a 
high content of polyunsaturated fatty acid, which confers 
to sperm cells the needed fluidity for membrane fusion 
during fertilization (Makker et al., 2009).

The presence of ROS in the seminal fluid can originate 
from several sources, both endogenous and exogenous. 
In this sense, cellular components (mature and immature 
sperm cells, leukocytes, and urogenital epithelial cells) of 
human semen are considered the major source of ROS, 
especially leukocytes and immature sperm cells (Agarwal 

et al., 2014b). Moreover, sperm cells are characterized 
by remarkable metabolic activity due to their flagellar 
movement, which demands a high level of intracellular ATP 
during the motility phase. Sperm preparation procedures 
in assisted reproduction technology (ART) are potential 
generators of oxidative stress causing DNA damage 
(Balasuriya et al., 2014). The seminal plasma provides 
antioxidant protection to germ cells against excessive ROS 
production. Sperm cells become especially vulnerable to 
the oxidative damage when seminal plasma is removed 
during sperm preparation for ART (Eid Hammadeh et 
al., 2009). Therefore, to avoid such an oxidative threat 
that could cause irreversible fatal injuries, culture media 
have been supplemented with antioxidants (e.g., ascorbic 
acid or α-tocopherol) for mitigating the noxious effects 
of ROS on sperm cells (Keshtgar et al., 2012). Seminal 
plasma removal is not the only origin of ROS, since the 
centrifugation itself has a remarkable influence on the 
generation of endogenous ROS in a g-force and time-
dependent manner and it causes greater detriment to 
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sperm parameters (Shekarriz et al., 1995). In this regard, 
apoptosis has been described to be stimulated by ROS 
in sperm cells (Bejarano et al, 2008). The experimental 
evidence suggests the preincubation of semen samples 
with antioxidants as a protection against centrifugation-
induced ROS production and damage to processed sperm 
cells (Agarwal et al., 2014a).

Melatonin is a powerful antioxidant hormone secreted 
mainly by the pineal gland to regulate the sleep/wake 
cycle. Melatonin, which activates the primary enzymatic 
antioxidant machinery in body tissue (Mayo et al., 2002), 
has also been reported to be present in human semen 
(Awad et al., 2008) Using rats as a model, the oxidative 
stress induced by hyperthyroidism in testes is shown 
to be increased by pinealectomies (Mogulkoc et al., 
2006). Experimental studies demonstrate that sperm 
cells from healthy men incubated with melatonin gain 
motility and viability (du Plessis et al., 2010; Ortiz et al., 
2011), and it causes the ratio of sperm cells with normal 
morphology to increase (Ortiz et al., 2011). Our previous 
findings showed that the daily supplementation of 6 mg 
of melatonin produced some reduction in the oxidative 
damage caused in sperm DNA (Bejarano et al., 2014). 
These findings are also linked to reductions in oxidative 
and/or nitrosative stress due to the antioxidant ability of 
melatonin (du Plessis et al., 2010; Espino et al., 2010). 
Therefore, it is not surprising that melatonin  has been 
proposed for supplementation of semen extenders against 
oxidative stress induced by freezing-thawing processes in 
human sperm cells, increasing their viability and motility 
(Karimfar et al., 2015). A number of studies suggest 
that melatonin reduces the oxidative stress induced by 
manipulation that generates iatrogenic damage (Cruz et 
al., 2014), like staining or flow cytometer sorting (Li et al., 
2012). All these results are consistent with our previous 
findings, which described how the exposure of sperm 
cells to melatonin improves motility, thus increasing 
the ratio of rapid cells (Ortiz et al., 2011). In light of the 
aforementioned literature, this study aims to describe the 
role of the presence of melatonin on manipulation-induced 
damage during the preparation of sperm cells for ART.

2. Materials and methods
2.1. Reagents
Paraformaldehyde (PFA), Triton X-100, and RPMI 1640 
medium were obtained from Sigma (Madrid, Spain). An 
in situ cell death detection kit, POD, was purchased from 
Roche (Madrid, Spain). Melatonin was obtained from 
Fagron Iberica (Barcelona, Spain). All other reagents were 
of analytical grade.
2.2. Subjects
Human semen was obtained from infertile volunteers at 
the Extremadura Centre of Human Assisted Reproduction 

(Badajoz, Spain), as approved by the local committee, 
the institutional review board of the University of 
Extremadura, and the ethics committee of the Mother 
and Child Hospital (Badajoz, Spain), in accordance with 
the Declaration of Helsinki. Semen was obtained from 40 
men (36.4 ± 2.2 years old), from couples suffering from 
primary infertility after at least 1 year of  regular sexual 
intercourse, who were undergoing evaluation at our 
andrology laboratory. Conventional semen evaluation 
was carried out following the criteria of the World Health 
Organization (WHO, 2010), allowing the classification 
of the patients as normozoospermic or oligozoospermic. 
Twenty of them were classified as normozoospermic and 
twenty as oligozoospermic. Their partners had not become 
pregnant after at least 1 year of unprotected intercourse. 
Each subject was ascertained to be in good health by 
means of their medical history and a clinical examination 
including a routine laboratory test and screening. The 
subjects were all nonsmokers, they were not taking any 
medication, and they abstained from alcohol. Written 
consent was obtained from all the participants.
2.3. Sperm preparation
Samples were collected by masturbation after 3–4 days of 
sexual abstinence and were allowed to liquefy for 30 min at 
37 °C. The semen was then divided into two fractions and 
preincubated with and without 1 mM melatonin (namely 
Pr- or Prm samples, respectively) for 30 min at 37 °C, based 
on earlier research (Espino et al., 2010; Ortiz et al., 2011). 
Sperm cells were washed in RPMI medium (250 × g, 10 
min) and, at the same time, both samples (Prm and Pr-) 
were divided into two fractions to perform the swim-up 
procedure in the presence and absence of 1 mM melatonin 
(namely Pr-Sw-, Pr-Swm, Prm Sw-, and PrmSwm samples) as 
shown in Figure 1. After swim-up migration, sperm cells 
were washed in PBS and fixed with 1% PFA for 15 min. 
Then samples were washed in PBS-BSA (0.1% bovine 
serum albumin) and stored in the same medium at 4 °C 
until their evaluation by flow cytometry.	
2.4. Caspase-3 activation
Samples stored in PBS-BSA were washed and resuspended 
in PBS-Triton (0.1%) to be permeabilized. The samples 
were incubated with Alexa Fluor 647 rabbit antiactive 
caspase-3 clone C92-695 (BD Pharmingen, Warsaw, 
Poland (1:250)) for 30 min at RT. The active caspase-3 
was quantified by flow cytometry (Cytomycs FC-500; 
Beckman-Coulter, Hialeah, FL, USA). 
2.5. Sperm acrosome reaction
CD46 is a membrane protein localized in the inner 
acrosomal membrane. When acrosome reaction occurs, 
the fusion between the sperm cell membrane and the 
acrosomal membrane takes place. After acrosome 
reaction, CD46 is exposed and can be labeled by specific 
antibodies, thus being a marker for acrosome reaction. To 
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study the acrosome reaction, stored samples in PBS-BSA 
were washed and then incubated with the monoclonal 
antibody (mAb) FITC (FL1) antihuman CD46 (clone 
MEM-258 Biolegend, London, UK) for 30 min at room 
temperature. The CD46 protein was quantified by flow 
cytometry (Cytomics FC-500).
2.6. Chromatin compaction and fragmentation
The sperm cells were incubated with propidium iodide (PI) 
and then sperm labeling was quantified by flow cytometry 
(Cytomics FC-500). The difference in fluorescence 
intensity of each spermatozoon was due to different DNA 
compaction. The higher the fluorescence intensity, the 
greater the chromatin decompaction (Figure 2). Given 
that apoptotic sperm cells lose their already fragmented 
DNA, sperm cells with fragmented DNA are located below 
cells with compacted DNA in the FL3 histogram profile, as 
shown in Figure 2. 
2.7. Statistical analysis
Data were expressed as means ± SEM of the number of 
determinations. For multiple comparisons, one-way 
analysis of variance followed by Tukey’s test was used. P 
< 0.05 was considered a statistically significant difference.

Figure 1. Design of the treatments during the sperm preparation for assisted reproduction technology (ART). 
The ejaculations were divided into two fractions and preincubated with and without 1 mM melatonin (Pr- or Prm, 
respectively) for 30 min at 37 °C. Both samples (Prm or Pr-) were divided into two subfractions to be swum-up in 
the presence or absence of 1 mM melatonin (Pr-Sw-, Pr-Swm, Prm Sw-, and PrmSwm).

Figure 2. Profile of propidium iodide (PI) fluorescence of 
stained sperm cells versus number of sperm cells. The histogram 
shows sperm labeled with PI and quantified by flow cytometry. 
The difference in fluorescence intensity is due to the DNA 
compaction of each spermatozoon. The higher the fluorescence 
intensity, the greater the chromatin decompaction. Sperm cells 
with fragmented DNA are located below cells with compacted 
DNA.
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3. Results
In both normozoospermic and oligozoospermic samples, 
flow cytometry indicated a decrease in the ratio of active 
caspase-3 labeling after preincubation with melatonin 
(Prm) (Figures 3A and 3B). However, only oligozoospermic 
samples exhibited a significant improvement when the 
swim-up was performed with the presence of melatonin, 
independently of the fact that they were preincubated with 
and without the hormone (Pr-Swm, PrmSwm) (Figures 3A 
and 3B). Hence, melatonin reduced caspase-3 activation in 
unprocessed sperm cells and prevented it from the damage 
induced by manipulation in oligozoospermic sperm cells 
(Figure 3B). Therefore, in light of these results, melatonin 
could be used to protect sperm cells in those cases in which 
the swim-up assortment is not carried out. 

Both in normozoospermic and oligozoospermic, anti-
CD46 labeling revealed an increase in the ratio of adequate 
sperm cells when fresh samples were preincubated with 1 
mM melatonin (Prm) (Figure 4). Moreover, after swim-
up selection both in the presence and absence of 1 mM 
melatonin, the samples that were preincubated with 1 mM 
melatonin (PrmSw-, PrmSwm) underwent a rise in the ratio 
of CD46-labeled sperm cells compared to Pr-Sw- and Prm (P 
< 0.05, Figure 4). Slight increases of CD46 externalization 
were shown when swim-up was performed in the presence 
of melatonin (PrmSw-, PrmSwm) (Figure 4). 

Figure 5A shows that sperm cells from 
normozoospermic samples that were preincubated with 
1 mM melatonin (Prm) did not undergo any changes 
in the ratio of compacted chromatin sperm cells. The 

Figure 3. Quantification of sperm cells containing active 
caspase-3. Caspase-3 activation was estimated as described in 
Section 2. Values are presented as mean ± SEM of 20 separate 
experiments and expressed as fold increase over the non-
pretreatment level (Pr-). *: P < 0.05 compared to Pr- values. &: P < 
0.05 compared to Pr-Sw-. #: P < 0.05 compared to Prm. α: P < 0.05 
compared to PrmSw-.

Figure 4. Quantification of sperm cells containing externalized 
CD46. CD46 externalization was determined as described in 
Section 2. Values are presented as mean ± SEM of 20 separate 
experiments and expressed as fold increase over the non-
pretreatment level (Pr-). *: P < 0.05 compared to Pr- values. &: P < 
0.05 compared to Pr-Sw-. #: P < 0.05 compared to Prm.
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presence of melatonin during the swim-up procedure 
did not induce any improvement in the aforesaid ratio 
in samples from normozoospermic patients (Figure 5A). 
Unlike normozoospermic samples, oligozoospermic 
samples underwent a significant increase (P < 0.05) in 
the compaction ratio when they were preincubated with 1 
mM melatonin and selected by swim-up (PrmSw-, PrmSwm) 
(Figure 5B). This could mean that the pretreatment with 
melatonin enhanced the migration of the healthiest sperm 
cells. On the other hand, no changes could be observed 
in samples in normozoospermic patients, showing high 
levels of compaction before migration and/or incubation. 
As expected, the fresh samples either incubated or not 
with melatonin showed the same compaction ratios. Given 
that the compaction occurs during spermiation and also 
during the epididymal transit, there were no changes in 
the compaction of sperm cells during our preincubation, 

although there was a selection of cells after the swim-up. 
It is worth highlighting that samples without melatonin 
pretreatment did not show any increase in the ratio of cells 
with compacted chromatin, despite the fact that they were 
treated during the swim-up.

In normozoospermic patients the results revealed 
a decrease in the ratio of fragmented DNA when fresh 
samples were preincubated with melatonin (Prm) regarding 
the control values (Figure 6). This decrease was emphasized 
when the swim-up was performed in pretreated cells 
(PrmSw-, PrmSwm), manifesting a significant difference 
just only after swim-up was performed in the presence 
of melatonin (PrmSwm) (Figure 6). The heterogeneity of 
oligozoospermic samples did not allow us to obtain a clear 
tendency of the fragmentation pattern in our study (data 
not shown).

Figure 5. Quantification of sperm cells containing compacted 
DNA. DNA compaction was determined by PI content as 
described in Section 2. Values are presented as mean ± SEM of 
20 separate experiments and expressed as fold increase over the 
non-pretreatment level (Pr-). *: P < 0.05 compared to Pr- values. 
&: P < 0.05 compared to Pr-Sw- and Pr-Swm. 

Figure 6. Quantification of sperm cells with fragmented DNA. 
DNA fragmentation was determined by PI content as described 
in Section 2. Values are presented as mean ± SEM of 20 separate 
experiments and expressed as fold increase over the non-
pretreatment level (Pr-). *: P < 0.05 compared to Pr- values. &: P < 
0.05 compared to Prm. #: P < 0.05 compared to Pr-Sw- and Pr-Swm. 
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4. Discussion
The precise transmission of paternal genetic information 
largely depends on the integrity of DNA in the sperm, 
which is widely recognized as a marker of male infertility. 
High levels of DNA fragmentation in sperm cells are 
closely related to low levels of natural fertility (Agarwal 
and Said, 2003; Giwercman et al, 2010). Despite the fact 
that some studies did not find any relationship between 
DNA fragmentation and clinical outcomes of IVF-
intracytoplasmic sperm injection (IVF-ICSI) (Gandini 
et al., 2004; Esbert et al., 2011), seemingly, excessive 
levels of ROS induce oxidative stress in the intracellular 
environment with dramatic effects on the outcome of 
ART, thereby lowering fertilization, implantation, and 
pregnancy rates (Lozano et al., 2009). The complete 
avoidance of ROS generation during ART is still unknown; 
however, new procedures to attenuate the ROS generated 
by critical steps during sperm preparation are worth 
exploring. A metaanalysis carried out by Collins et al. 
(2008) revealed a significant association between DNA 
fragmentation and poor success of IVF-ICSI. Moreover, 
a positive correlation has been found between levels of 
ROS and DNA fragmentation in sperm of infertile men 
(Moustafa et al., 2004; Fraczek and Kurpisz, 2005). In this 
sense, given the high antioxidant capacity of melatonin, it 
could guarantee a protective environment not only in vitro, 
as we are showing here (Figures 5 and 6), when the semen 
fluid is removed to collect spermatozoa, but also in vivo 
as it generates a milieu of lower levels of ROS (Bejarano et 
al., 2014). Certain levels of melatonin in the spermatozoa 
environment from spermatogenesis to capacitation could 
be an effective strategy to avoid ROS-induced infertility. It 
is worth taking into account that low levels of ROS act as 
second messengers of capacitation. Although, unlike other 
antioxidant compounds, melatonin reduces ROS levels, 
it does not completely remove them (DeLamirande and 
Gagnon,  1984). Nonetheless, the relation between DNA 
fragmentation and infertility is still unclear. 

Regarding the processing of semen samples, a 
significant increase in sperm DNA fragmentation has 
been shown after incubations at 37 °C for 1 h (Balasuriya 
et al., 2014). This fact is important to consider during the 
liquefaction of semen and the short-term storage of semen 
in an IVF-ICSI cycle involving incubation at the aforesaid 
temperature (Balasuriya et al., 2014). Therefore, our present 
findings support supplementation with protective agents 
against unwanted damage, melatonin being an innocuous 
and effective candidate to combat DNA damage induced 
by oxidative stress, both in vivo and in vitro (Espino et al., 
2010; Bejarano et al., 2014). 

Andrology laboratory techniques, such as semen 
cryopreservation or repeated centrifugation cycles, have 
unwanted effects on germ cells (e.g., excessive levels of 

ROS), thus causing oxidative stress in these cells. These 
effects produce irreversible damage to DNA (Kumar 
et al, 2011). Furthermore, during the performance of 
semen preparation techniques, the natural protection 
against oxidative threats is removed. Experimental 
evidence indicated that in vitro storage of sperm cells 
prior to insemination increases the resistance to nuclear 
decondensation in the oocyte. This phenomenon is due to 
an increase in cross-linking within the sperm cells’ histones 
by the formation of disulfide bonds, thereby increasing 
embryonic mortality (Luchetti et al., 2009). These events 
make sense in a context of seminal plasma removal as 
well as an increased oxidative environment that favors 
formation of disulfide bonds. Taken together, these facts 
highlight the importance of minimizing the production of 
exogenous stress during sperm preparation in ART. 

The spermatozoon is a peculiar cell with a large 
number of mitochondria and high metabolism, 
especially during its hyperactivation and capacitation, 
which generates abundant ROS (Lopez et al., 2009). The 
protective role of melatonin on mitochondria regarding 
activation of the intrinsic apoptosis pathway is well 
known (Acuña-Castroviejo et al., 2001; Espino et al., 2010; 
Radogna et al., 2015). Melatonin could lead to both direct 
ROS scavenging at high concentrations (millimolar) or 
increased activity and expression of antioxidant enzymes 
observed at low concentrations (nanomolar) (Martin 
et al., 2006; Reiter et al., 2008; Reiter et al., 2009), thus 
preventing oxidative damage both in vivo and in vitro 
(Espino et al., 2011; Bejarano et al., 2014). Moreover, it 
has been found that urinary 6-sulfatoxymelatonin and 
total antioxidant capacity levels positively correlate with 
a relevant improvement in seminogram values (Ortiz 
et al., 2011).  Considering these aspects, infertile males 
were selected for the present study to evaluate the effect 
of incubation of semen samples with melatonin on sperm 
quality during storage and preparation for their use in 
ART.

Caspase-3 is a cysteine-protease that plays a crucial 
role in the execution phase of apoptosis. This protease is 
activated by both intrinsic and extrinsic pathways, leading 
to cell death. Therefore, active caspase-3 is an excellent 
indicator of cell death. Interestingly enough, the active 
caspase-3 is located exclusively in the midpiece of the sperm 
(Oehninger et al., 2003), where mitochondria are mainly 
located. We previously described that oxidative stress causes 
apoptosis in sperm cells via the mitochondrial pathway 
(Bejarano et al., 2008). Herein, it has been shown that the 
use of melatonin during incubation and sperm preparation 
for ART prevents both the rise in caspase-3 activity and 
the subsequent DNA fragmentation in the sperm samples. 
In both groups, normal and oligozoospermic, melatonin 
preincubation prior to sample processing (storage at 37 °C, 
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30 min) to use in ART was enough to decrease caspase-3 
activity (Figure 3). Particularly, oligozoospermic samples 
displayed a reduction in caspase-3 activation in sperm 
cells after swim-up when cells were pretreated and/or 
migrated with melatonin (Figure 3B). Normozoospermic 
samples did not undergo any significant change in the 
caspase-3 activity when swim-up was performed in the 
presence of 1 mM melatonin (Figure 3A). Although it 
seems controversial, one should keep in mind that the 
good quality of normozoospermic samples could not help 
acknowledge improvements regarding the nontreated 
sample Pr- (Figure 3). This fact indicates that melatonin 
could either prevent activation of caspase-3 or promote 
the migration of those sperm cells that have not suffered 
any activation of caspase-3. Despite the fact that the actual 
mechanism needs to be studied, melatonin undoubtedly 
prevents iatrogenic activation of caspase-3 and the 
consequent DNA fragmentation, in agreement with 
Espino et al. (2010), who reported that melatonin could 
revert the apoptotic events triggered by oxidative stress or 
increased levels of intracellular Ca2+.

In human sperm cells, CD46 expression is strictly 
located in the inner acrosomal membrane (Anderson et al., 
1989) and it is exposed only when the acrosome reaction 
occurs (D’Cruz and Haas, 1992). CD46 plays therefore an 
essential role in the process of fusion between the sperm 
and the oocyte membrane (Taylor et al., 1994). This 
molecule can be identified as a marker of the fertilizing 
capacity of sperm. Based on this, the expression of CD46 
was analyzed in the samples in order to observe the effect 
of melatonin on the sperm preparation procedures. In 
both groups, normal and oligozoospermic, melatonin 
increased the ratio of adequate sperm (Figure 4). It is 
known that the acrosome reaction requires the presence 
of physiological levels of ROS. ROS at physiological levels 
are required to assure fertilization, given that mature 
sperm cells are exceptionally sensitive to oxidative stress 
(Agarwal et al., 2014b). This is consistent with previous 
results that indicated that oxidative stress impairs sperm 
motility and increases the tyrosine nitrosylation and 
S-glutathionylation of key sperm proteins, which might 
be involved in the pathological mechanism leading to the 
deterioration of sperm functions (Morielli and O’Flaherty, 
2015). After subjecting the melatonin-preincubated 
samples (Prm) to swim-up, both migrated (PrmSwm/-) 
normozoospermic and oligozoospermic samples showed 
an increase in the ratio of CD46 with respect to those 
samples without melatonin treatment (Pr-Sw-) (Figure 4). 
This prompted us to hypothesize an association between 
oxidative stress and loss of capacitation during swim-up, 
which could become an obstacle for the acrosome reaction, 
the consequent CD46 exposure, and therefore sperm cells’ 
functionality. In this scenario, melatonin could shield 
oxidative side effects during the ART procedures in vitro.

Chromatin compaction confers DNA with protection 
from oxidative damage. The mammalian sperm nucleus 
acquires high condensation during the late stages of 
spermatogenesis. When sperm DNA contains reduced 
compaction, chromatin is much more sensitive to 
oxidative stress and deletions, frame-shift mutations, DNA 
cross-links, and chromosomal rearrangements (Schulte et 
al., 2010). During the passage of sperm through the male 
genital tract, it undergoes the structural and biochemical 
changes needed to achieve optimal fertilizing capacity 
(Rodriguez et al., 1985). Decreased sperm chromatin 
compaction has been associated with subfertility in several 
species (Hekmatdoost et al., 2009). In normozoospermic 
samples, preincubation with melatonin (Prm) had no effect 
on DNA compaction (Figure 5A). By the same token, 
preincubation with melatonin in oligozoospermic samples 
had no influence on the ratio of sperm DNA compaction 
before swim-up (Figure 5B). On the other hand, in 
normozoospermic samples, the collection of motile sperm 
by swim-up showed an increase in the ratio of sperm cells 
with compacted DNA, independently of the preincubation 
and/or migration with melatonin (Figure 5A). Unlike 
in normozoospermic cases, the effect of melatonin on 
compacted-DNA spermatozoa became more visible in 
the oligozoospermic group (Figure 5). This may be due 
to the high compaction ratio among normozoospermic 
patients, which does not allow additional increases in the 
ratio of sperm cells with compacted DNA. An elevated 
heterogeneity of oligozoospermic patients in sperm DNA 
compaction was found (data not shown). As expected, the 
addition of melatonin to the fresh semen had no effect in the 
ratio of sperm cells with compacted DNA in both normal 
and oligozoospermic patients (Figure 5B). However, a 
significant increase was displayed when samples were 
swum-up, and the ratio of compaction was even higher 
when samples were preincubated with melatonin (Figure 
5B), which, according to previous studies, is a potential 
improvement in fertility (Hekmatdoost et al., 2009). 
Obviously, melatonin cannot improve DNA compaction 
during the short time of sperm preparation for ART; 
however, these results could indicate that melatonin 
enhances the migration of sperm cells with compacted 
DNA (Figure 5B) and even prevents DNA fragmentation 
(Figure 6), as previously shown by Espino et al. (2011) 
when describing the molecular mechanisms involved in 
melatonin protection from oxidative stress. In any case, 
melatonin improves the quality of sperm samples at the 
DNA level for ART.

ART in vitro procedures facilitate ROS and oxidative 
stress development, which would harmfully affect sperm 
quality and accordingly diminish ART success. In order to 
minimize the risk of iatrogenic induction of DNA damage, 
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antioxidant protection of the sperm must be considered. 
For example, it could be useful to supplement either the 
seminal plasma for short-term in vitro storage or culture 
media for swim-up or centrifugation. Based on the findings 
shown, melatonin is promising as an adjunctive therapy in 
the treatment of infertility. Its antioxidant properties and its 
low toxicity make it an ideal tool to protect sperm from the 
oxidative damage caused during the preparation of sperm 
for use in ART. In addition to its antioxidant capability, 
different studies asserted that melatonin promotes in vitro 
sperm motility (du Plessis et al., 2010; Ortiz et al., 2011). 
Nonetheless, further research based on conducting studies 
with larger populations is required to confirm the potential 
and applicability of melatonin in ART. 
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