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ABSTRACT 

Infrared thermography (IRT) is an effective non-destructive testing method in the 

field of concrete and asphalt pavement inspection. IRT is used to have an initial 

evaluation of the surface and near surface of pavements in a very time effective manner 

compared to other types of nondestructive testing (NDT) methods. Different aspects of 

IRT and its use to assess surface and subsurface defects in different types of pavements 

are being studied and evaluated in our research group. The effect of the depth of 

delamination inside concrete pavement on an IRT technique is being studied. It is 

suggested by our group that there is a correlation between the surface crack profile on 

asphalt pavements and its temperature, which will help us to evaluate pavement 

performance condition. Finally, a full laboratory study is being conducted to 

experimentally quantify the effects of weather conditions and surface coating on the 

ability of IRT to assess surface cracks on both asphalt and concrete pavements. 
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CHAPTER ONE: INTRODUCTION 

 It is safe to claim that the field of monitoring is going to be essential in the 

upcoming decades in both the United States and other parts of the world. In a report from 

the American Society of Civil Engineers (ASCE), the condition of America’s 

infrastructure is depicted and assigned a low grade which indicates a deteriorating 

infrastructure which needs improvements to ensure a more thriving future. According to 

an ASCE report, the cost of remediation and retrofitting of infrastructure in the United 

States is $1.3 trillion (Hu et al. 2002). In a more specific field of civil engineering, it is 

claimed that each year more than $2 billion is spent by infrastructure management 

agencies in the United States to maintain concrete bridge decks (Kee et al. 2012). 

In order to maximize the working efficiency with limited sources to address such 

huge numbers related to assessment of infrastructure, prioritizing our maintenance 

actions based on the expected current condition of structures becomes even more 

essential. The methods that are used to monitor the structure condition fall under two 

main categories that are destructive and nondestructive tests. As the name suggests, in 

destructive testing at least a section of the structure needs to be destroyed to be able to 

investigate the presence of the anomaly. This obviously is not an option when it comes to 

many types of civil infrastructures. Nondestructive tests however are a reliable substitute 

in many cases of monitoring the infrastructure because they enable us to gather data on 

the field without damaging or destroying the structure. There are many different 

nondestructive testing methods available out there such as IRT, ultrasonic, ground 
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penetration radar and so on. Between these NDTs, IRT is normally chosen as a substitute 

for a fast and easy monitoring and inspection technique. 

This is where methods such as infrared thermography (IRT) can help to assess the 

aging infrastructures so that we can spend money efficiently. IRT is the use of 

temperature data acquired from thermal imagery to study heat distribution in structures or 

regions. It is the process of using a thermal imager to detect infrared radiation (heat) that 

is emitted by an object. IRT is effective, repeatable, convenient to the public, economical 

and the fastest and easiest nondestructive testing (NDT) method in terms of data 

collection. 

Thermography is used effectively in many different fields. In medicine, the ability 

of infrared camera to detect heat patterns and blood flow in body tissues is helpful for 

cancer diagnoses. The idea behind this test is that, as cancer cells multiply, they need 

more oxygen-rich blood to grow. When blood flow to the tumor increases, the 

temperature around it rises. In electronics, a key factor in the design, tests, verification 

and troubleshooting of all electronics, is heat management, since all electronics operate 

with current flowing, which in turn leads to power dissipation. This power dissipation 

manifests itself primarily in the form of heat. In mechanical engineering, the technology 

helps to validate normal operations and, more importantly, locate thermal anomalies 

(abnormal patterns of heat invisible to the eye) which indicate possible faults, defects or 

inefficiencies within a system or machine asset. 

In civil engineering, the fact that there will always be a temperature gradient 

between anomaly and intact area of civil structures, when they are exposed to heat, is the 

basis for the use of thermography in the field of defect assessment. There are many 
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different applications in which IRT can be used to determine the conditions and assess 

the characteristics of structures and infrastructures. One application is the thermal 

mapping of surface defects on an asphalt pavement road by using an assembled infrared 

camera on a car (ASTM, 2014 speed limit for IRT: 16 km/h (10 mph)). Assessing surface 

defects on bridge barriers and soffits is the basis of another application. The same notion 

can be used to asses subsurface defect detection on bridge decks using temperature 

gradients acquired from thermography. IRT can also help us study asphalt mixture 

segregation on a freshly paved HMA and other information that is used to quantify the 

asphalt pavement homogeneity and to develop the quality assurance criteria to be used in 

paving contracts. 

Different aspects of IRT and its use to assess surface and subsurface defects in 

different types of pavements are being studied and evaluated in our research. The model 

of the camera that is used in all experiments is a FLIR T430sc 2.0 infrared thermal 

camera with a resolution of 320 by 240 pixels. 

In our first publication, the effect of the depth of delamination inside concrete 

pavement on infrared thermography technique is studied. The method of thermography 

was active in which a heat source was used to heat up the surface and extract a 

temperature gradient from the surface of the specimen. 

It is suggested in our second publication that there is a correlation between the 

surface crack profile on asphalt pavements and its temperature, which will help us to 

evaluate pavement performance conditions. This was a field test that was conducted on 

the surface of the asphalt pavement. Given the fact that cracking may impair the 

durability of concrete by allowing immigration of external aggressive agents, crack 
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monitoring is always a vital part in building and pavement pathology. In this test we used 

thermography to assess cracks on top of asphalt pavements by using the information that 

we attain from thermography. It should be noted that the use of thermography to assess 

surface cracks is more scarce compared to subsurface defect assessment and the study of 

correlation for pavements is something that has not been done before. 

Finally, in our most recent publication, a full laboratory study is conducted to 

experimentally quantify the effects of weather conditions and surface coating on the 

ability of IRT to assess surface cracks on both asphalt and concrete pavements. This is an 

important study since surrounding environmental conditions have major effects on 

surface and crack temperature. IRT technology can be affected by critical environmental 

conditions such as sunlight, ambient temperature variation, wind speed and humidity. 

Many researches have mentioned the importance of the effect of weather conditions but 

no research is dedicated to experimentally quantifying the effect. Around 90 different 

tests have been conducted from which 1050 unique data points have been extracted. 

Eventually, around 1,260,000 temperature data points have been gathered which gives a 

huge data set and will give us the opportunity to do several statistical analyses. We will 

also be able to compare our results with the results from computer simulation. The test 

setup can also be used for more weather condition related studies in the future. 

In the following, each of our submitted and published papers are included in 

which different aspects of IRT are discussed. This can help to better understand the 

advantages and disadvantages of the use of IRT to monitor and assess the condition of 

civil infrastructures. 
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Abstract 

Infrared Thermography (IRT) is an effective non-destructive testing method in the 

field of concrete pavement inspection. IRT is used in this research in order to have an 

initial evaluation of the surface and near surface of concrete pavement in a time effective 

manner. The method can be widely used for concrete pavement particularly bridge deck 

inspection. In this paper, the effect of the depth of delamination inside concrete pavement 

on infrared thermography technique is studied. To be able to mimic the delamination in 

subsurfaces, two Styrofoam cubes have been inserted in different depths near the surface 

of the concrete cylinder. After heating up the specimen, thermal images were taken from 

the surface using an infrared thermal camera to evaluate the effect of subsurface defects 

on detection sensitivity and accuracy. We also investigated the precision to which the 

shape and the size of the sub-surface anomalies can be perceived using an uncooled 

thermal camera. To achieve this goal, we used image-processing techniques to accurately 

compute the size of delamination to compare it with the actual size. In addition, 

distance/thermal graphing is used to detect the presence of the defect underneath the 
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concrete surface. Furthermore, thermal transfer modelling was adopted in this paper to 

assist the setup of this experiment and the results are compared with laboratory findings. 

 

KEYWORDS: IR thermography, Non-destructive testing, Pavement inspection, 

Image processing 

Introduction 

Infrared thermography (IRT) is a fast and easy to use nondestructive examination 

method that enables us to detect near surface delamination in a wider spectrum and with 

an acceptable accuracy compared to visual testing methods (Titman 2001). IR inspection 

does not need direct contact with the surface of the bridge. IR imaging data can be 

collected using a camera that is installed on top of a vehicle that can travel with a speed 

of 16 km/h (10 mph) (ASTM 2014). These advantages give the inspector the opportunity 

to manage the inspection process on the bridge without interfering with the traffic (Hiasa 

et al. 2016). 

IRT captures the temperature gradient of concrete pavement surfaces. IR cameras 

are going to be able to capture clear temperature gradients on the concrete pavement 

surface at certain time windows during heating or cooling cycles (Watase et al. 2015). 

When exposed to heat, delaminated parts of concrete will interrupt the heat transfer since 

they have a lower thermal conductivity compared to concrete, therefore spots that are 

located on top of the delamination will be shown as hotter than the corresponding spots 

on top of sound parts (Clark et al. 2003). This is actually the case when ambient heat is 

applied on the top surface of the specimen or structure. The heat source can be either 

natural, such as the sun, or artificial, such as high-power ultrasound (Mignogna and 
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Green Jr 1981). We should note that in the case of internal heating or applying heat from 

underneath the specimen, a normal practice in laboratory experiments, the surface that is 

exposed to the delamination will appear cooler than the sound area in a thermal image. 

The reason for that is the same as is mentioned earlier. 

Passive and active thermal imagery are the two types of IR inspection methods 

(Roche et al. 2013). In a passive approach, an inspection is conducted without using 

artificial heating while in an active approach, a specimen is heated up artificially and then 

the temperature gradient is measured during heating or cooling cycles (Richter et al. 

2012). One very popular type of active thermography is Pulsed Thermography (PT). In 

this method, the depth of the delamination can be investigated by recoding the 

temperature decay of the specimen. After deploying heat to the specimen, the surface 

temperature will be recorded using a temporal plotting that gives us the temperature with 

respect to relative time (seconds). There will be a rapid temperature change on the 

surface due to thermal propagation by diffusion and radiation and convection losses. 

Delamination will affect the rate of diffusion, therefore, the delaminated area appears to 

have a different temperature when inspected using live thermal imagery. Deeper defects 

will have a later observation rate compared to the shallower ones. This is because the 

observation time (t) and the depth (z) are correlated (Cielo et al. 1987), i.e. t is in fact the 

square of z and the loss of contrast (c) is proportional to the cube of the depth (Allport et 

al. 1988): 

𝑡𝑡 ≈ 𝑧𝑧2

𝛼𝛼
 & 𝑐𝑐 ≈ 1

𝑧𝑧3
  (2-1) 

where α is thermal diffusivity of material (i.e. 0.53 for concrete). 
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Note that as part of the limitations of this approach, the radius of the smallest 

defect that is detectable by thermal image should be around two times larger than the 

depth in which it is located underneath of the surface of the specimen (Vavilov and 

Taylor. 1982). 

After employing a heat pulse on the specimen, the temperature decay will follow 

the following equation (Maldague. 2001): 

∆𝑇𝑇 ≈ 𝑄𝑄
𝑒𝑒√𝜋𝜋𝜋𝜋

  (2-2) 

where, ΔT is the increase of the temperature on the surface, Q is the quantity of the 

energy absorbed, and t is considered as time. In the denominator, e is the thermal 

effusively which is calculated using the following formula: 𝑒𝑒 = �𝑘𝑘𝑘𝑘𝑘𝑘, Where k is 

thermal conductivity (for concrete it is 1 Wm-1ºC), ρ is mass density (for concrete it is 

2400 kgm-3) and finally C is specific heat (for concrete it is 800 Jkg-1 ºC-1). 

For materials of low diffusivity, a uniform heating inside the oven should be used 

for their preheating process. In such experiments, after the specimen reaches a stable 

temperature that is higher than the ambient temperature, the specimen will be removed 

from the oven and during its cooling cycle, the surface temperature will be recorded 

using an infrared camera. Then the data can be used to verify the previous equation and 

eventually will help us realize the depth of the defects inside the specimen (Wu et al. 

1997). In later experiments, the accuracy and the workability of the aforementioned 

equation for concrete structures will be examined using live thermal imagery. 

Benefits and limitations of IRT 

IRT is a fast and reliable technique. Deployment of the procedure is easy and no 

direct contact is required. Its one-side deployment makes it favorable for bridges in which 
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we generally have access to only one side of the structure. It is considered a safe 

technique since there is no harmful radiation involved. A thermal camera and 

corresponding software will provide us a numerical thermal modeling. 

On the other hand, it is difficult to manage a uniform heating in active IRT. 

Thermal contrast is a decaying process and due to this transitory phase, a fast recording 

IR camera is required. Defects are detectable only if they are located in shallow depths, 

especially inside concrete pavements. Finally, this system only works when there is a 

thermal contrast present (Maldague 2001). In order to overcome these disadvantages, we 

use an image analysis approach to detect the subsurface instead of interpreting the raw IR 

images. 

Utilizing the benefits of IR techniques, we use IR to fast-detect concrete 

pavement subsurface defects. A laboratory-designed experiment was carried out in this 

study. Thermal transfer modeling was used to assist the IR imaging test setup. In our 

experiment, we used active thermography but we did not employ live thermal imagery. 

We used a specific temperature threshold (37 degrees of Celsius) to process our images 

and get the digital indication of the location of the defects. In this temperature, the 

amount of thermal energy that is defused on the surface of the specimen is calculated and 

deducted from the thermal image using the image processing technique. 

Test Setup 

In this research, we used a FLIR thermal camera, model T430sc, to capture image 

data. Object distance is set at 0 to 1 meter and atmospheric temperature is set at 20 

degrees Celsius (close to lab temperature). Relative humidity is considered around 50 

percent and emissivity was set as default that is 0.95. The wavelength range of the 
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camera is between 7 to 14 Microns. Integration time in the camera for our study is 12 

milliseconds. 

In order to use this method on the concrete and asphalt pavements in the field, it is 

ideal to maintain a specific temperature and humidity throughout the entire testing 

procedure, otherwise the changes should be included in the specifications of the camera 

and they should be mentioned in the results. 

This model of camera uses an uncooled micro bolometer also known as a thermal 

detector (Kruse 2001). Thermal sensitivity of the camera is less than 0.045 degrees at 

around 30 degrees of Celsius with the accuracy of ±2 percent. 

This camera also uses a technique called UltraMax, which is a type of super-

resolution that is an image enhancement technology, which captures a series of thermal 

images and combines them into a new image. UltraMax uses the natural movement of the 

hand to capture an image set in which each image is slightly offset from the others. This 

gives us a higher number of data compared to a single image. By using this technique, we 

managed to increase the pixels from 76800 to 307200, which will provide a better quality 

of thermal image. 

We developed a simple procedure to fabricate lab scale concrete specimens. In 

order to mimic the real pavement subsurface defects, multiple delamination was 

introduced in the concrete cylinder. For this test we casted multiple concrete cylinders 

and inserted different shapes of delamination in different depths of the specimen to 

realize which depth is the most ideal and gives the best contrast in thermal images. The 

diameter of each cylinder is 10.16 centimeters (4 inches) and the height is 20.32 
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centimeters (8 inches). Defects are 3 by 3 and 4 by 4 square centimeter Styrofoam 

rectangular cubes and their height varies depending on their depths. 

Our camera did not record a visible temperature change for the defects that were 

buried more than 3 centimeters deep inside the concrete. On the other hand, we were able 

to detect defects with depths in between 1 to 2.5 centimeters. For the defects with depths 

less than 1 centimeter, the images were clear enough for further studying. 

Active heating input was provided from one end surface of the specimen. This 

type of heating is common for thermal inspections of specimens and the heat source can 

be a laser or other types of heat induction devices (Osiander et al. 1998). In order to 

simulate the cooling cycle of the specimen, two different types of heating procedures 

were used to increase the temperature. At first, the specimen was heated up using an oven 

for ten minutes while keeping the bottom side of the concrete inside iced water. Although 

this method induced uniform heat on the surface the contrast in the thermal images was 

not sharp enough for us to be able to use it for further evaluation. This type of heating 

procedure will be useful when live temperature inspection is conducted using thermal 

video. 

In the second approach, a hot air blower was used to heat up the surface for 15 to 

20 minutes. With this method we got a clearer thermal image and the edge of the defects 

were more visible. The highest temperature rose up to 63.7 degrees Celsius. This method 

of heating loosely simulates the type of ambient heating that is exposed to the bridge 

deck. 
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Experimental results 

The visible image of the specimen is shown in Figure 2-1(A). The thermal image 

of the same specimen is on display in figure 2-1(B). Note the temperature difference at 

the bottom of this image, right under the cylinder, is simply the reflection of the heat 

from the surface of the table. There is one 4 by 4-cm3 Styrofoam cube used as a 

delamination that is placed at 2 centimeters deep inside the specimen. The surface is 

heated up to 45 degrees Celsius. The temperature of the surface that is located on top of 

the delamination is visibly higher than the sound area that helps us to estimate where the 

defects are inserted. However, the heat is expanded in a wider area than the actual size of 

the delamination underneath the surface. As already mentioned, the surface on top of the 

delamination has a higher temperature. Since concrete has a low heat conductivity, the 

heat will be trapped in the body of the specimen and there will be a temperature 

difference between the delaminated area in the middle and the edge of the specimen, 

which is more exposed to the surrounding air. A similar method of inspection is used 

inside industrial plants (Harishkumar et al. 2014). Due to this temperature difference, 

heat defuses from the delaminated area towards the boundary that is colder. This is one 

reason why the area with a higher temperature is wider than the area of the delamination 

itself inside the specimen. 
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Figure 2- 1. (A). Visual image of the specimen, (B). Thermal image of specimen with 
defects that are inserted in the depth of 2 centimeters (Heated up using heat blower) 

Using the type of the thermal camera that we have for this experiment, we can 

detect defects clearly under the concrete surface up to a depth of 2 centimeters. 

Nevertheless, as it will be mentioned in more details in the next sections, the shallow 

defects, up to one centimeter, will have the clearest temperature contrast in the IR thermal 

images (Vollmer and Möllmann 2011). 

   

Figure 2- 2. (A). Specimen with defects that are inserted in the depths of 5 and 10 
millimeters (Heated up using an oven), (B). Specimen with defects that are inserted 
in the depth of 5 and 10 millimeters (Heated up using heat blower) – Image is taken 2 
minutes into the cooling cycle, (C). Specimen with defects that are inserted in the 
depth of 5 and 10 millimeters (Heated up using heat blower) – Image is taken 20 
minutes into the cooling cycle 

Figures 2-2(A) and 2-2(B) are of the same specimen, which has two defects (both 

are 3 by 3-cm3 Styrofoam cubes), inserted 5 and 10 millimeters underneath the surface. 

The type of heating procedure is an important factor in terms of having a clearer thermal 

A 

A 

B 

B 

C 
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image. In Figure 2-2(A), the specimen was heated up inside an oven for 30 minutes. 

More than 50 images were taken in a time span of 2 hours and none of them had a clear 

indication of defects that were trapped underneath. The heat diffusion was steady all over 

the surface of the specimen and there was no indication of a noticeable temperature 

difference to the point that it can be used for further studies. 

As for Figure 2-2(B), a heat blower was used for about 20 minutes to heat up the 

surface. The thermal image was taken 3 minutes into the cooling cycle of the specimen. 

The highest temperature was around 63.5 degrees of Celsius. Temperature differences 

between the delaminated area and the sound area is clearly visible in this image. It also 

indicates that the depth has a major effect on the temperature gradient that is visible on 

the surface of delaminated areas of the specimen. The defect that is shallower underneath 

the surface has more effect on the temperature of the surface of the specimen. This 

difference will eventually fade away as the time passes during the cooling cycle and there 

will be less indication of the temperature difference between the two delaminated areas. 

The image in figure 2-2(C) is taken 20 minutes into the cooling cycle and the temperature 

difference is not clear enough therefore we cannot use a longer time span to take our 

images from the surface. 

Interpretation of Temperature Versus Distances’ Graph 

A graph is plotted using the temperatures that are assigned to each pixel on line 1 

(shown in Figure 2-3) that is put in the middle of the surface of the specimen. This line 

intersects the areas with the most temperature gradient inside the IR thermal image. By 

using this line, we can get the temperature of each pixel located on these areas. 
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Figure 2- 3. Line 1 is used to plot a temperature related graph of the surface of the 
specimen 

As is shown inside the graph (Figure 2-4), the location of each defect is visible 

with a very good accuracy. It is also clearly visible that there is a depth difference 

between the two defects by judging the temperature difference on Y-axis. The pattern 

inside this graph shows a clear connection between the depth in which the defect is 

located underneath the surface and the amount of temperature that is reflected from the 

top of the surface. In the graph, we can clearly see that there is 2 degrees Celsius 

temperature gap between defect 1, which has the temperature of about 61.5 degrees 

Celsius, and defect 2, which has the temperature of about 63.5 degrees Celsius. 
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Figure 2- 4. Temperature versus distance graph assigned to line 1 in Figure 3 

In live imagery, a similar graph can be used in order to get the temperature 

gradients during the heating or cooling cycles. The information can later be used to both 

locate the defects and, if possible, calculate the depth of each defect inside the concrete 

pavement. The relation between the depth and the observation time is already mentioned 

in active and passive IRT section. 

Image Processing Data 

As is mentioned in the previous sections, the image for the specimen with two 

defects inserted 5- and 10-millimeter depths underneath the surface is used for image 

processing purposes. For defects that are under 1 centimeter inside the concrete 

pavement, the thermal image presents the clearest data with best contrast that enables us 

to determine the edges of the delaminated area with higher temperatures. To make the 

image clearer we are going to use a different filter that magnifies the contrast between 

different sets of temperatures, to refine the difference between each temperature set. This 
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filter only manipulates the coloring that is assigned to each temperature pixel that results 

in a sharper and clearer temperature contrast inside the image (Figure 2-5). 

 
Figure 2- 5. Thermal image after application of color filter 

The minimum temperature in this image is around 21 degrees Celsius and the 

maximum temperature is around 63.5 degrees Celsius. In the processed image, we used 

255 different thresholds, known as gray thresholds, and each of these thresholds are 

assigned to a specific temperature. A gray threshold of 226 which corresponds to 37 

degrees Celsius (Figure 2-6(A)) is used to get the best contrast between the delaminated 

area and the sound area. By choosing the threshold, we are eliminating all the pixels that 

have a temperature more than a certain degree Celsius (Ibarra-Castanedo et al. 2004). 

This helps us to clarify the area of the delaminated surface for further study inside the 

computer (Russ and Neal, 2016). In Figure 2-6(B), the actual areas of the defects are 

added to the processed image. This can give us a sense of the difference between the 

actual area and the area that the thermal camera can detect. 

As is clearly shown in the processed images, for shallower delamination, the area 

with a higher temperature on the surface will be closer to the actual area of the surface of 

the delamination (Rajic, 2002). It is also worth mentioning that, in the shallower defect, 
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the heated area exceeds the actual area on the left side. This can be due to the heat 

diffusion that is caused by the temperature differences between the boundary of the 

cylinder and the middle part of it where the defects are located. 

  

Figure 2- 6. (A). Processed image using a 37 degrees of Celsius threshold, (B). A 
comparison between the actual size of the delamination and its size in the processed 
image 

The data that we got from the image processing enables us to get more 

information from the raw images using computer coding. Through this information, we 

can extrapolate mathematically accurate data to help us identify the characteristics of the 

delaminated areas. Table 2-1 contains an area comparison between the delaminated areas 

that are shown in the processed thermal image and the actual area of the surface of the 

defects inserted in the concrete specimen. 

Using these data, we came up with a quantitative measuring method that helps us 

calculate the percentage of accuracy (POA) of the processed thermal image. We found 

the percentage of difference between the actual area of the delamination and the area that 

is shown in the processed image. Using POA, we can come up with a system that enables 

us to evaluate the area of an unknown delamination in accordance to its depth underneath 

the surface of the concrete specimen. We should note that the temperature threshold that 

A B 
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we use is the main factor in determining POA, i.e. if we choose a bigger threshold we 

may end up having entirely different POA. In some cases, when the threshold is bigger 

than a certain number, the delaminated area in the processed image will overlap the 

actual size of the delamination. Of course, choosing such a threshold is not going to be 

favorable for our purpose. 

Since we know the actual diameter of the cylinder, in order to calibrate the 

processed image, we drew a line from either ends of the cylinder borders. This line 

occupies 587.82 pixels in the processed image and since we know that the diameter of the 

cylinder is 10.16 centimeters, the number of pixels in each centimeter can be calculated 

which is 58 pixels for each centimeter of the image. Therefore, there are 3364 pixels in 

every square centimeter of the image. Using this number, we came up with Table 2-1 for 

our area comparison.
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Table 2- 1. Area comparison 

 Number of Pixels IR measurement of 
area 

Percentage of 
Accuracy (POA) 

Actual Area of the 
defects inside the 

specimen  

30276 9 cm2 100 % 

Area of processed 
image of the 5 mm-

deep defect 

21286 6.33 cm2 6.33
9

× 100=70.33 % 

Area of processed 
image of the10 mm-

deep defect 

5727 1.7 cm2 1.7
9

× 100=18.88 % 

 

According to the data that is extrapolated from the processed image, the 

delamination that is located at a depth of 5 millimeters inside the concrete pavement has a 

POA of more than 70 percent with respect to the actual size. The POA drastically 

decreases when the delamination is 5 millimeters deeper. This clearly shows that the 

accuracy of the thermal image is strongly related to the depth of the delamination 

underneath the surface. 

Modeling the IR Test 

Heat transfer in solids is simulated inside the computer to further understand the 

IR test setup (Cannas et al., 2012). Concrete is the main material and Styrofoam cubes are 

used as for the defects underneath the surface. A heat source of 300 watts per meter 

cubed is applied on top of the concrete in a uniform pattern and the bottom side was kept 

at 0 degrees Celsius to see the heat diffusion inside the model (Figures 2-7 and 2-8). The 

defects are of the same size as the defects in our experimental model and they are put in 

the same exact depths as well. 
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Figure 2- 7. Defects location in the software model 

As it is shown in Figure 2-8, a guideline is put on top of the model that covers the 

surface on top of the defects and their surrounding sound areas. This line was used to 

extrapolate a temperature-distance graph from the model. This will help us to detect the 

defects underneath the model as we did in the actual experimental test and it helps us to 

learn about the depth difference between the two delaminations by using the data that is 

shown inside the graph. 

 

Figure 2- 8. Line that is used to plot a temperature related graph of the surface of 
specimen 

In the software model, temperature contours show all areas with the same unique 

temperature compared to their surrounding area (Gerlich et al. 2013). As it will be 

explained in more details in the next section, since our heating process in the 
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experimental test was not uniform, the heated areas are different in the software results 

from the actual experimental results especially on the deeper defected area. 

 

Figure 2- 9. Temperature-length graph assigned to the line in Figure 2-8 

This graph from the model (Figure 2-9) follows the same pattern that we got from 

experimental data. From this graph, the same as the experimental graph, we can come up 

with a pattern that gives a relation between the temperature difference and the depth in 

which the defects are located. 

Integration of Simulation and Experimental Result 

Judging the temperature graphs extrapolated from both experimental data and the 

data from the software, we realize that both graphs follow the same pattern. The 

maximum temperature, which is located on top of the shallower delamination, is almost 

the same in both graphs with a magnitude close to 63.5 degrees Celsius in the 

experimental graph and 62.5 degrees Celsius in the simulation graph. On the other hand, 

there is a temperature difference between the simulation and experimental data when it 

comes to the temperature on top of deeper delamination. This can be because in the 

software we applied a totally uniform heat flux to the top surface of the cylinder but, our 
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heating process, which was done using a heat blower, was not performed in a uniform 

manner. 

 

Figure 2- 10. Comparison between the location of defects on both camera and 
software graphs 

In future experiments and to get closer results to what we get from the software 

we can use more uniform ways of inducing heat such as putting the specimen on a hot 

surface for a certain amount of time and then taking thermal images from it. In Figure 2-

10, a distance versus temperature graph for both simulation and experimental data is 

shown for comparison. In this graph, we can clearly see that our simulation and 

experimental data are following the same pattern when it comes to the relationship 

between the depth of defects and the temperature of the surface of the specimen. 

Since we were able to confirm the pattern between the depth of the delamination 

and the temperature on the surface of the model in both the experimental test and the 

software, in future studies we can use this pattern in the software and predict the results 

that we will get from experimental tests. This will help us to optimize our experiments 

inside the software before we start the process inside the lab. 
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Conclusion 

In our research, an experimental test has been conducted on a concrete specimen 

with two defects located at different depths. One defect is located at 5 millimeters and the 

other one is located at around 10 millimeters underneath the surface of the specimen. 

After inducing heat on the surface of the specimen for a certain amount of time, thermal 

images have been taken and then used for further studies. 

A temperature versus distance graph is drawn using the data that we got from 

thermal images. A clear pattern has been found between the temperature gradient and the 

depths of the defects underneath the surface. There is a 2 degrees Celsius temperature 

difference between the surfaces on top of the two defects. As it is shown inside the graph, 

deeper defects trapped less heat on top of it therefore the camera read less temperature 

from the top surface of the deeper defect compared to the shallower defect. 

A simulated model of the same test has been conducted inside the computer and 

the results have been compared with the ones that were extrapolated from the 

experimental test. The comparison showed us a clear link between the experimental and 

software results. We also have witnessed the same pattern in the graph that we got from 

the software. In this graph, the temperature difference between the surfaces on top of 

each defect is around 6 degrees Celsius. That is noticeably more than the temperature 

difference that we got from the experimental data because in our simulation we used a 

uniform heating process on the surface while this was not the case in our experimental 

test. 

The same thermal image then was used for image processing purposes and the 

difference between the areas of the processed image of the defects and the actual size of 
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the defects has been found. The area of the defect that is placed at 5-millimeters depth 

inside of the specimen is about 6.33 cm2 which is 30 percent less than the actual size of 

the specimen which is 9 cm2. The size of the defect that was placed at 10-millimeters 

depth inside of the specimen is around 1.7 cm2 that is around 80 percent less than the 

actual size of the defect. By using these data, we could come up with a system to figure 

out the accuracy of the results in thermal images which we called percentage of accuracy 

(POA). As the depth of which the defect inside the specimen increases, the amount of the 

POA decreases drastically. 

The heat transfer simulation results provide us with a good method to refine our 

experimental settings. With a set of accurate material parameters, we are able to predict 

the experimental tests under a controlled laboratory environment. The proposed IRT 

method has been validated to be a good alternative to inspect concrete pavements. 
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Abstract 

Infrared thermography is an effective nondestructive testing approach to assess 

surface and near surface distresses, such as asphalt pavement surface cracks. However, 

the raw data from thermal cameras is not sufficient for pavement surface distress 

inspection. The objective of this research is to develop an integrated new system that 

combines infrared imaging, high resolution visible light imaging, real-time image 

processing, and data-rich analytics for automated inspection. The developed system 

features collecting frames from both thermal and visual images and then aligns them 

together for further data processing to support pavement preservative maintenance 

decisions. The developed system can correlate the temperature data with the profile of 

cracks including both width and depth. We developed an algorithm that can integrate the 

characteristics captured by both thermal and visual images to provide a quantitative 

identification of the location of surface cracks and their severity. Field testing data has 

been collected and a model-based statistical analysis was conducted to identify a 
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correlation between the temperature gradient and the surface crack profile on asphalt 

pavements. A correlation between the temperature that is collected using infrared 

thermography and the depth of the crack has been established with a fair accuracy using 

regression analysis. This work can provide fast and easy decision support to improve 

pavement preservation practices by identifying the severity of the crack using only 

infrared thermography data that is collected from the surface of the pavement. 

Keywords: Infrared thermography; Asphalt pavements; Surface cracks; ANOVA; 

Regression test 

Introduction 

Non-destructive tests (NDT) such as ground penetration radar (GPR), ultrasonic 

test (UT) and infrared thermography (IRT) have become a common means of assessment 

for defects of roadway pavements and structures. Among these, GPR and UT methods 

are mostly used for detecting subsurface defects inside asphalt domains and investigating 

the thickness of such pavements (Bastard et al. 2007, Szymanik et al. 2016). IRT has 

proven to be more effective for investigating close-to-surface delamination and surface 

cracks (Lu et al. 2017). The accuracy of these tests along with the ease of their use 

eliminates the time and expenses that should be spent when using traditional forms of 

pavement tests such as chain dragging and hammer sounding (Vaghefi et al. 2011). 

In this paper, IRT is used as a NDT tool to augment the reliability of asphalt 

pavement assessment. A correlation between the temperature variance of the crack and its 

profile is studied. This will help to predict the severity of the pavement surface cracking 

and delamination by using the thermal data that are obtained from IRT. IRT monitors 

surface radiations of electromagnetic waves, in the infrared wavelength, related to 
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temperature gradient between the sound and delaminated areas (Watase et al. 2015). 

There are some advantages in favor of using IRT for inspecting roadways and bridges for 

delamination detection compared to other means of NDT. One of the advantages of IRT 

is that it does not need immediate access to the surface of its target. This allows the 

inspectors to be able to apply IRT on the surface of the roadways and bridges with a 

speed of 16 km/h (10 mph), (ASTM 2014), which makes it a favorable NDT method used 

for surface investigations of such structures with less interference with ongoing traffic 

compared to other NDT methods (Hiasa et al. 2016). 

In contrary to all of these benefits regarding IRT, there are some obstacles that 

need careful consideration before implementing IRT in order to avoid effecting the 

results. Results gathered from IRT can be affected by factors related to camera 

specifications and environmental conditions. These factors are mostly related to the speed 

of the data collection, time window of the day in which IRT is applied, weather 

conditions, ambient temperature inconsistencies, angles in which images are taken and 

other variables. Hiasa and his colleagues (Hiasa et al. 2016) have distinctly covered 

different types of IRT approaches in their studies. They stated that these effective factors 

should be kept constant when thermography is applied in order to be able to compare 

measurements which demonstrate the defects on target structures. 

Among the different types of IRT that Hiasa and colleagues (Hiasa et al. 2016) 

have covered in their publications, there are two types of IRT for investigating asphalt 

domains which are called passive and active IRT. In a passive approach on structures 

such as bridge decks, natural sources of heat which are present in the environment 

surrounding the target, such as solar radiation and ambient temperature, are used to heat 
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up the surface of the specimen. These sources are the direct cause for the thermal 

excitation of the domain (Milovanovic and Pecur 2016). In an active approach however, 

heat generators such as hot air blowers, microwaves, electricity or vibrations are used to 

employ heat on the surface or the body of the domain (Kashif Ur-Rehman et al. 2016). In 

this paper passive IRT is used to inspect asphalt pavement surface on the field. 

Pavement Surface Thermal Field 

Both active and passive IRT processes rely on the temperature gradient of the 

surface of the target. This gradient is caused by the back and forth bouncing of the 

sunlight inside the crack, which eventually heats up the walls of the crack and makes the 

temperature elevate, as shown in Figure 3-1 (Sham et al. 2008). 

 

Figure 3- 1. Surface delamination temperature gradient 

These temperature gradients are useful features which have become the basis for 

the IRT approach of nondestructive testing of civil pavements and structures. This 

phenomenon will be used in this paper to classify different types of cracks on top of 
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asphalt pavements and to correlate temperature distribution of the crack to its width and 

depth.
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IRT Mechanisms 

As mentioned earlier, IRT is based on the temperature gradient of the surface of 

the target. This temperature gradient is caused by one of the modes in which heat can be 

transferred throughout the domain, which are heat conduction, heat convection and heat 

radiation. IR thermal cameras, in particular, sense and measure the radiative heat flow 

from the target (Kaplan 2007). The amount for thermal radiation emitted from the surface 

of the target depends on its emissivity. Emissivity is defined as the ratio of the energy 

radiated from a material’s surface to that radiated from a blackbody that is considered as 

a perfect emitter, with emissivity equal to 1 (Minkina and Dudzik 2009). All warm 

objects radiate energy that is in the infrared zone of the electromagnetic spectrum which 

can be measured by infrared thermal cameras and then converted into temperature values 

by using the following governor equation known as the Stephan Boltzmann law (Starnes 

et al. 2003): 

W=ɛσT4 (3-1) 

In this equation, W is radiant flux emitted per unit area (watts/m2), ɛ is emissivity 

value of the domain (unitless), σ is Stephan-Boltzmann constant equal to 5.67×10-8 

(watts/m2/k4) and T is the absolute temperature of the domain in Kelvins. 

As is shown in the Equation 3-1, emissivity is an effective factor in calculating 

emitted radiant flux and it is a number between 0 (perfect reflector) to 1 (perfect emitter). 

For both concrete and asphalt this number is fixed, depending on their specifications, and 

is close to 1. Unless there is moisture on the surface of our targets in the pavement field, 

there will be no shortcoming related to emissivity when it comes to inspecting asphalt 

pavements by using IRT. 
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Thermal cameras will measure W and then by using equation 1, it will calculate 

the temperature and assign it to each pixel of the image. We can identify anomalies using 

IRT by reading the temperature gradient between the sound and delaminated areas using 

the following equation (Hiasa 2016): 

ΔT=Td-Ts (3-2) 

Td is the temperature recorded at the delaminated area, Ts is the temperature 

recorded at the sound area and ΔT is the temperature gradient.  

Another equation called Wien’s displacement law is used to choose the right 

thermal camera for a specific target. As can be seen in the following equation, this law 

relates the surface temperature of the target to the maximum wavelength of the energy 

that is emitted from it (Watase et al. 2015): 

λm=𝑏𝑏
𝑇𝑇
 (3-3) 

λm is the wavelength of maximum radiation (µm), b is Wien’s displacement 

constant equal to 2897 (µm/K) and T is absolute temperature of the target (K). Depending 

on the wavelength of radiation and the maximum and minimum temperatures that are 

going to be felt on the target, an appropriate thermal camera, that captures all the 

invisible wavelengths, can be chosen to read corresponding temperatures (Kaplan 2007). 

IRT Time Window 

A very important aspect of using passive IRT is to choose the best time window 

during the day for collecting thermal data. For surface and subsurface evaluation of 

pavement anomalies there are different recommended time windows according to several 

other sources. Washer et al. (2009) recommended, depending on the depth in which the 

defect is located, 5 to 9 hours after sunrise to conduct IRT. Gucunski et al. (2013), on the 
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other hand, mentioned that a thermal image that was taken 40 minutes after sunrise gave 

clearer results compared to a thermal image that was taken at noon. A third 

recommendation provided by Kee et al. (2012), concluded that delamination that is 

located around or deeper than 6.4 centimeters inside the body of the target will not be 

detected at around 3 hours and 45 minutes after sunrise. Watase et al. (2015) compares 

the time window to the location of delamination on bridges. For example, according to 

this approach, Noon is favorable for the top of the deck and midnight for the soffit of the 

deck. Hiasa (2016) also considers the midnight cooling effect as a preferable time 

window for thermal imagery of bridge decks. In our research, most of the thermal data 

were collected within 2 hours prior to sunset in which the cracked and sound areas of the 

pavements had the highest temperature contrast. During this period, there was no direct 

sun light on top of the surface that was being investigated. Therefore, it can be assumed 

that the collected images were not affected by excessive solar radiation. 

Statistical Approaches 

This research consists of two major aspects, which are the collection of data and 

the study of the significance of those data. Statistical approaches are employed in order to 

compare the data and evaluate a trend line that can relate the crack temperature to its 

profile. 

Analysis of Variance Test 

The temperature data are collected into three groups and each group has similar 

conditions, such as ambient air temperature, weather condition, and other effective 

factors. The analysis of variance (ANOVA) model is used to determine the homogeneity 

of these data sets. The ANOVA model determines whether there is a significant statistical 
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difference between the means of three or more groups of data. It is worthy to mention 

that variance is the square of standard deviation. Even though standard deviation is more 

comprehensible, variance is more widely used in statistical analysis (Parchami et al. 

2017). On the other hand, the null hypothesis is a regularly used term in ANOVA models, 

which is a general statement that there is no relationship between two measured 

phenomena or no possible association among different groups (Everitt 1998). In other 

words, the null hypothesis confirms that the probability of a major difference between the 

means of different groups of data is not significant. 

The significance level, denoted as 𝛼𝛼, is the probability to reject the null 

hypothesis. In this study a significance level of 0.05 is chosen which means there is 5% 

risk that a significant difference exists where it is assumed there is no actual difference 

(Frost 2015). The significance level of 0.05 is widely used in academic research (Guan 

2011). 

An ANOVA test statistic is the variance ratio (V.R.), also known as F-value, with 

appropriate amounts for numerator degrees of freedom (DOF) and denominator DOF. 

Numerator DOF is the degrees of freedom of the model which contains the data groups. 

Denominator DOF is the degrees of freedom of the error at a chosen α. In this case 𝛼𝛼 =

0.05. Note that the DOFs of numerator and denominator and also 𝛼𝛼, will be used to 

calculate the critical amounts for F inside the ANOVA table as shown in Table 3-1. This 

concept will be mentioned with more details inside the results and analysis section. 

The following table, known as an ANOVA table, contains all the equations 

needed to construct V.R. The summation of data points (∑ x), summation of squares 

(∑ x2) and number of data points (n) should be calculated for each individual group 
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before constructing the following table. These values will be used to compute 

components of the ANOVA table. The table contains three sources of variation in the 

data, which includes total, group and error.  

Table 3- 1. ANOVA table of equations 

Source df SS MS F 
Total N-1 [B] - - 
Group k-1 [C] [E] [G] 
Error N-k [D] [F]  

 

In this table, df is the degrees of freedom in each source, SS is the sum of squares due to 

the source, MS is the mean of sum of squares due to the source and F is variance ratio (F-

value). In addition, N is denoted as the total number of measurements, k is the total 

number of groups. Therefore, k-1 is considered as the numerator DOF and N-k is 

considered as the denominator DOF. 

The equations in the table are as follows: [A] is CF =  (∑x)2

N
 where CF is the 

correction factor, [B] is SSTotal = Sx2 – CF and [C] is SSGroup = ∑ (∑ x)2

N
– CF. [D] is SSError 

= SSTotal - SSGroup, [E] is MSGroup = SS Group
df Error

 and [F] is MSError = SS Error
df Error

. The final product 

of the ANOVA table is [G] which is V.R. = MS Group
MS Error

. 

Another entity that is calculated for this ANOVA study is the P-value. P-value is 

the probability of having more extreme value of F-value compared to what is calculated 

in a specific case under the null hypothesis. This entity can help to decide the amount 

used for α in the ANOVA study. 

For calculating the variables of this table including F-value, an ANOVA code is 

employed in statistics software R and R commander (Fox et al. 2009). 
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Regression Test 

A regression test is a statistical model that estimates a potential relationship 

among different variables using statistical processes. Curve or data fitting is the process, 

which builds up a curve, or mathematical function, which fits well with our data in our 

data set (Halli and Rao 1992). The objective of using a regression test in this paper is to 

study the existence of any correlation between the profile of the crack, such as its depth 

and width, with the temperature that is collected from the same data points using a 

thermal camera. By using a MATLAB code for the data fitting process, this correlation 

was studied and a trend line was drawn. 

Experimental Methodology 

In this section different aspects of the experiment are going to be discussed and 

the experimental procedure is going to be laid out. 

Crack Profile Data Collection 

Width and depth, as two of the major components of crack profile, are two of the 

effective factors on the temperature gradient which is present within a pavement 

delaminated surface. Figure 2 illustrates how width and depth of the crack are measured 

in the field. The width is considered as the distance between the two edges of the opening 

mouth of the crack. The depth is the measurement of the distance between the top edges 

of the crack to the lowest section of it. 
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Figure 3- 2. Correlation between depth and width and temperature 

IR Thermal Image Collection 

In order to locate the delaminated areas on top of the asphalt domain by capturing 

the temperature gradient on the surface, the raw collected image data must be processed 

using a processing algorithm which will be discussed in the next section of this paper. 

This processed image consists of a visual image and a thermal image which have been 

aligned on top of each other in the post-processing section of the research. The camera 

setup which can capture both thermal and visual images simultaneously is shown in 

Figure 3-3. 
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Figure 3- 3. Mobile thermography testing setup 

IRT processing algorithm 

In the following, the premise of the processing algorithm will be discussed and 

the employment of the algorithm on each frame that was collected using the camera setup 

will be fully explained. In Figure 3-4, the visual and thermal frames that are collected 

from the surface of the road are shown. These images were taken on a relatively hot day 

from the surface of a sidewalk. 
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Figure 3- 4. Visual versus thermal images 

The minimum temperature in the thermal image (shown in Figure 3-4) is around 

31 degrees Celsius and the maximum temperature is around 35 degrees Celsius. In order 

to be able to apply the processing algorithm, the colored image is converted to a 

grayscale image. The colored image is called RGB image since the majority of the colors 

in the image that are perceivable by humans are constructed from primary spectral 

components of red, green and blue (Kumar and Verma 2010). A simple way to convert 

RGB image to grayscale image is to take the average of the base colors as shown in the 

following equation: 

I = R+G+B
3

 (3-4) 

In this equation, I is the intensity function and R, G and B are the intensities for 

red, green and blue respectively. 

Since humans do not perceive the main colors equally, a simple averaging method 

of the three main colors is not accurate. Therefore, a more precise conversion method will 

weigh colors based on how the human eye perceives them. This method is known as the 

Luminosity Method and is used in this paper as the algorithm for converting RGB image 

to grayscale image. The Luminosity Method is a sophisticated version of the average 
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method which assigns different weights to each color based on humans’ perception of 

that color (Cook 2009). For instance, in this algorithm, since humans are more sensitive 

to green than other colors, more weight is assigned to green. The following equation is 

used to transform the colored image into grayscale image: 

Iy = 0.2989R+0.5870G+0.1140B (3-5) 

The coefficients in this equation are empirically derived from a series of 

trichromatic color matching experiments by previous authors (Wright 1928, Guild 1930, 

Fairman et al. 1997). 

The Luminosity Method is a transition between the raw thermal image (Figure 3-

4) and the processed image (Figure 3-5). During this transition, colored images are 

converted into grayscale images. Later on, a number of thresholds, known as gray 

thresholds, will be assigned to these grayscale images. Each image is constructed of 255 

different thresholds and each of these thresholds are assigned to a specific temperature. In 

this image, Figure 3-4, a gray threshold corresponding to 33 degrees Celsius, is used to 

get the best contrast between the delaminated area and the sound area (Lu et al. 2017). By 

choosing this threshold, all the pixels that have a measured temperature less than the 

indicated corresponding temperature will be eliminated from the image (Ibarra-Castanedo 

2004). Therefore, this can clarify the area of the delaminated surface for further study 

inside the computer (Neal 2016). Figure 3-5 shows the processed image after 

employment of the threshold using our developed code. 
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Figure 3- 5. Processed image 

Test Setup and Data Collection for Passive IRT 

Five locations have been selected for this study in the Boise, Idaho region. One 

location was on a deteriorated roadway, two locations were on the pedestrian sidewalk, 

another location was inside a parking lot and the last location was on a major roadway. 

Most of the images were taken from mid-September to mid-October. The temperature did 

not change drastically during this period with the exception of the last day of data 

collection, in which the temperature dropped significantly. The days in which thermal 

images were collected were mostly sunny and the locations for the most part were under 

direct sunlight throughout the daytime. There was no noticeable wind during the thermal 

image data collection and there was no moisture present on the surface of the road in any 

of the locations. The average recorded relative humidity was between 38 to 49 percent. 

Temperature gradient of different parts of the road is one of the major obstacles 

when it comes to on-site thermal imagery. Different sections of the road are going to have 
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different temperatures assigned to them. In addition, cracks that are under the shadow of 

the trees or buildings will not have the same temperatures compared to the ones that have 

been under direct sunlight throughout the day. Another major factor that can cause 

temperature gradient is the time of the day. Since data has been collected during the 

cooling cycle, cracks tend to lose temperature rapidly. On the other hand, it is not 

practical to gather all the data in one day due to the limited time windows in which the 

thermal imagery is being applied. Since ambient air temperature varies on a daily basis 

depending on the time of the year in which the inspection is taking place, different 

temperatures will be recorded with the thermal camera. 

Many previous authors have come up with different solutions to address these 

phenomena. For instance, Shuhei Hiasa, et al. (2017), who have done a detailed thermal 

investigation of concrete subsurface delamination detection using thermal imagery, 

brought solar radiation into consideration as the main source of heat in their on-site 

model. Even though solar radiation is a major factor in heating up the surface of the 

crack, it does not consider some of the altering factors in temperature gradient that were 

already mentioned. 

In this research, a number of data from roadways have been gathered to address 

different aspects of IRT. In order to construct the crack profile, depth and width of crack 

is measured using a digital caliper (Figure 3-6). 
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Figure 3- 6. Measuring depth and width of crack using digital caliper 

Different means have been used to calculate temperatures in the field. The 

ambient air temperature is collected from the weather information of the nearest weather 

station. A thermocouple is used to calculate the temperature of the bottom of the crack, as 

shown in Figure 3-7. This data is used to calibrate and confirm the temperature data that 

is collected from the thermal camera. 

 
Figure 3- 7. Thermocouple is used for measuring the mean temperatures inside 
cracks 

Thermal images for passive IRT are gathered using the setup that is introduced in 

the previous section of this paper. The height of the cameras is set to be around one meter 
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above the ground. The frames of the thermal video are processed and the data are stored 

for further investigation. 

Results and Analysis 

Statistical analyses are employed on the collected data in order to determine a 

correlation between the different aspects of crack profile and crack temperature. The 

premise of this study is to examine the possibility of comparing the width and the depth 

of the crack to the temperature of its deepest section. If such correlations between depth, 

width and corresponding temperature exist, the data gathered from the thermal images 

can solely be used to predict the depth of the crack without going through the process of 

gathering field measurements. In other words, the severity of the defective areas of the 

road can be predicted by using the recorded thermal images. 

As mentioned in an earlier section, the ANOVA method has been used to study 

the relationship between the means of the temperatures that have been collected during 

different days and under different weather conditions. There are three groups of data 

available that contain temperature data points that were collected under similar 

circumstances during the span of two months. These circumstances include, but are not 

limited to, similar ambient air temperatures and weather conditions. The following box 

plot shows the result of the ANOVA study for these three groups. 



48 
 

 

 
Figure 3- 8. Boxplot of temperature data points which are separated into three 
groups with similar ambient air temperatures and weather conditions 

As is shown in Figure 3-8, the lowest temperature that is recorded on the field 

belongs to the second group, which is close to 17 degrees Celsius, and the highest 

temperature belongs to the third group, which is close to 22 degrees Celsius. On the other 

hand, the means of the temperatures belonging to each group set are located between 19.5 

to 20.5 degrees Celsius. 

Tables 3-2 through 3-4 show the final results of the ANOVA study. Each entity in 

these tables has been introduced in the statistical approaches section, please refer to Table 

3-1. In Table 3-4, F is the variance ratio which will be used to conclude whether the null 

hypothesis is rejected in this ANOVA study. 

Table 3- 2. Preliminary results based on three groups of temperature data points 

Σx 589.2 591 604.5 
(Σx)^2 347156.64 349281 365420.3 

(Σx)^2/n 11571.888 11642.7 12180.68 
Σx2 11579.36 11664.42 12198.03 
n 30 30 30 
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Table 3- 3. Total number of measurements, total number of groups and 
correction factor 

N 90 
k 3 

CF 35390.601 
 

Table 3- 4. ANOVA table 

Source df SS MS 
Total 89 51.209 NA* 
Group 2 4.662 2.331 
Error 87 46.547 0.535023 

NA: Not applicable  
 

It is calculated from Table 3-3 that the F value for the three groups of data points 

is equal to 4.356822. This number shows an exact match to what is calculated using the 

exiting ANOVA model in R software which is 4.357. Furthermore, the calculated P-value 

from Table 3-3 is 0.0157. Since the amount of P-value is more than 0.01, an 𝛼𝛼 equal to 

0.05 is going to be used to study the null hypothesis. In addition, it is calculated that the 

numerator DOF of the F value is 2 and denominator DOF of the F value is 87 as shown in 

the table. From the F distribution table with 𝛼𝛼 = 0.05, it is found that F2,87=3.1. Since the 

calculated F value is higher than this amount, the null hypothesis is rejected. This 

indicates that there is distinguishable difference between the means of data sets. In other 

words, the difference in the means of the three groups is statistically significant. 

Therefore, it is proven that ambient temperature gradient and weather conditions of 

different days of the data collection period are effective on the temperature of the cracks. 

In the following, regression method is used to illustrate the effect of this 

difference between the means of the data sets on a comparison study that is conducted 

between the temperature of the crack and its depth. In Figure 3-9, a graph of crack depths 

versus corresponding temperatures of the crack are plotted and a trend line is measured 
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using a regression test. As is shown in this graph, the minimum temperature that is 

recorded from the field is 18.4 degrees Celsius and the maximum temperature is 21.7 

degrees Celsius. The depth of cracks vary from 1.1 millimeters up to 47.4 millimeters and 

the majority of the depth measurements are between 1 to 10 millimeters. The adjusted R2 

for this line, which is a representation of the coefficient of determination, is close to 35%. 

This indicates that the trend line that is correlating the depths and temperatures of the 

cracks has a relatively low accuracy. 

 

Figure 3- 9. Relationship between depth and the highest temperature that is 
recorded from the crack 

In order to minimize the effect of surrounding factors, such as ambient air 

temperature, and to improve the prediction capacity of the crack parameters by using the 

temperature data, the authors present a unique approach. The term point-wise 
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normalization method is used for this approach. By using this method, the temperature 

data is normalized pixel by pixel using another factor, which is calculated from the 

information of the thermal image, to construct a unitless entity. This factor can also be 

calculated from the field measurements. In point-wise normalization method a virtual 

rectangular box is considered around each pixel located on the cracked area shown in the 

thermal image from Figure 3-10. The temperature data of the sound area are collected 

from each corner point of this box. The averages of the collected temperatures on each of 

these boxes are calculated and used to normalize the temperature of the crack at that 

point. The box contains points on its corners which in most of the cases are located on 

sound parts around the crack. As shown in Figure 3-10, the sizes of the boxes are 

identical and the deepest part of the crack is located in the middle of each box. The 

calculated average temperature of this box is called the average ambient surface 

temperature and is used to normalize the temperature data of the cracked area using the 

following equation: 

Point-wise normalized temperature = 
Individual crack temperature 

Average of ambient surface temperature
 

(3-6) 

 
Figure 3- 10. Calculation of the average ambient surface temperature 
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The point-wise normalized temperature was first compared with the measured 

width of each data point on cracks as shown in Figure 3-11. The correlation between the 

two entities is illustrated in this figure. The minimum point-wise normalized temperature 

is calculated to be 1 and the maximum point-wise normalized temperature is calculated to 

be 1.14. The minimum point-wise normalized temperature will never become less than 1 

as it is clearly shown in the graph. This is because the temperature of the crack is equal or 

higher than the temperature of the surrounding sound area during the cooling cycle. The 

width of cracks varies from 0.85 millimeters up to 24 millimeters. A correlation can be 

observed between widths and point-wise normalized temperatures but the adjusted 

coefficient of determination (R2) for this trend line, which is equivalent to its accuracy, is 

around 50 percent. This means that the data points are relatively scattered in this 

correlation study. 
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Figure 3- 11. Relationship between width and point-wise normalized temperature 
based on average ambient surface temperature 

In another attempt, the depth as the second measured parameter of the crack 

profile was compared with the point-wise normalized temperature, which is plotted in a 

graph, and a trend line is calculated to represent the data set (Figure 3-12). 

Higher and lower band lines indicate the data range in which the depth 

measurements are located in. Each individual point-wise temperature can be related to a 

specific range of depth measurements. For instance, 1.04 represents a range of measured 

depths between 1 to 6 millimeters while 1.12 represents a range of measure depths 

between 25 to 40 millimeters. This clearly shows that as the point-wise normalized 

temperature rises the length of the measured depth also increases. 
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The corresponding equation for this trend line is Y=2193X2-4375X+2182 and the 

adjusted coefficient of determination (R2) for this trend line is 70.06%. In this equation Y 

represents the depth and X represents the point-wise normalized temperature of each data 

point on the crack. This trend line is a more accurate representation of the data and shows 

that as the temperature of the crack, with respect to the ambient surface temperature, 

increases then the depth of the crack also increases. After plotting the trend line, it is 

possible to calculate the original temperature by multiplying the point-wise normalized 

temperature with the mean ambient surface temperature. Therefore, it is reliable to 

connect each measured temperature of the crack to its corresponding depth data. 

 

Figure 3- 12. Relationship between depth and normalized temperature based on 
average ambient surface temperature
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Conclusion 

In this study, a correlation between the temperature gradient related to the surface 

crack of asphalt pavement and its profile has been studied. 

1. A portable real-time IRT system is developed. In this developed system, 

thermal and visual videos of the pavement surface are combined and then segmented into 

image frames. Each frame is processed by precisely aligning thermal and visible light 

images for surface crack detection based on temperature gradient, which shows on the 

deteriorated asphalt pavement surface. 

2. Two sets of pavement data (surface temperature and crack profile) were 

collected on-site from the field. The first data set was the temperature map collected 

using the proposed IRT inspection system. The second data set was the measured depth 

and width of the crack at identified data points using a digital caliper. 

3. A series of statistical studies have been conducted on the collected data to 

see the correlation between each aspect of crack with the temperature gradient. The 

ANOVA model is a feasible tool to determine whether there is a significant statistical 

difference between the means of three or more data sets. In this case, the calculated 

variance ratio was around 4.357, which rejected null hypothesis. This indicates that 

distinguishable difference is present between the means of the different temperature data 

set groups. Therefore, to mitigate the effect of this difference, a unique approach, named 

point-wise temperature normalization, is developed by the authors. Temperatures were 

normalized based on the mean temperature of the sound area around each data point. A 

unitless representation of temperature was calculated and compared with depth and width 

measurements. 
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By achieving a 70 % reliability, a correlation between point-wise normalized 

temperature and crack depth was established using regression method. This method can 

be used to determine the severity of the surface deterioration based on thermal imaging 

data collected from the surface of the asphalt pavements. It has been validated that the 

developed IRT inspection system can be used to investigate the severity of pavement by 

correlating the temperature gradient to the severity of the deterioration. This developed 

system can provide decision support to improve pavement preservation practices. 
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Abstract 

There is a growing interest in using non-destructive testing methods to inspect 

bridges, road pavements and other civil structures. Infrared thermography is considered 

one of the most effective NDT methods for surface and close-to-surface defect 

assessment on concrete pavements and structures. Thermography is used to correlate the 

temperature gradient that is present on the delaminated concrete surface to the defect 

profile. At the same time, the method is more affected by ambient air conditions 

compared to other methods of non-destructive testing. In this paper, a new testing system 

is presented to study and evaluate environmental effects of thermography and 

temperature reading of thermal cameras. The effects of wind speed and level of humidity 

on the performance of the camera are also studied in depth. It can be concluded from the 

findings of this paper that both humidity and wind can have major effects on 

thermography and its use for detecting surface distress. It is also found that the effect of 

wind is significantly greater than humidity on thermography for different crack profiles. 
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Introduction 

Non-destructive tests (NDT) in general and infrared thermography (IRT) are 

becoming the common means of inspecting civil infrastructures such as concrete and 

asphalt pavements especially in the field of research (Bastard et al. 2007, Szymanik et al. 

2016, Lu et al. 2017). IRT is a method of NDT, which is dedicated to acquiring and 

processing thermal information based on the measurements made by non-contact devices 

(Maldague 2001). Descent accuracy, ease of use and time efficiency of IRT have made 

this method a favorable type of NDT that is dominantly used in pavement assessment 

studies (Vaghefi et al. 2011). Infrared thermal cameras record a series of live thermal 

images from the surface of the pavement, which allows a quick mapping of the structure 

by evaluating the surface temperature at each time step (Clark et l. 2003, Sakagami and 

Kubo 2002, Wiggenhauser 2002). 

There are two types of thermography methods called passive and active IRT (Wiecek 

2005). In passive IRT, the radiation that is collected from the surface of the specimen is 

measured without the need of applied extra heat from a heat source. In this type, the 

major heat source is normally the sun. In active IRT, an artificial heat source is involved 

in heating up the specimen for collecting the temperature gradient using a thermal camera 

(Ibarra-Casranedo et al. 2007, Hung et al. 2009). In this paper, active IRT is employed 

inside laboratory tests. 

In both cases, surface temperature gradient is considered to be the major concept 

of an IRT approach for assessment of road pavement surface defects and delamination. 

As shown in Figure 4-1, the surface temperature gradient is caused by a variety of 

factors. One is the back and forth bouncing of the sunlight inside of the surface crack, 
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which heats up the walls of the crack and elevates the inner crack temperature (Sham et 

al. 2008). The other is the difference between the specific heat capacities of dry soil (fine 

sand) at the bottom of the crack and concrete, 800 𝐽𝐽
𝑘𝑘𝑘𝑘˚𝐶𝐶

 and 900 𝐽𝐽
𝑘𝑘𝑘𝑘˚𝐶𝐶

 respectively 

(Engineering ToolBox 2003). This shows that concrete has a higher specific heat capacity 

compared to dry soil, which means the temperature of the fine soil rises up faster than 

concrete when they are exposed to heat. 

 
Figure 4- 1. Surface crack temperature gradient 

IRT Concepts and Physics 

IRT is based on processing infrared radiation, which is a form of electromagnetic 

radiation that is not visible to human eyes. The processed radiations that are emitted from 

any object with a temperature above absolute zero are then converted into electronic 

signals (Zissis and Wolfe 1978) and subsequently into temperature readings (Vollmer and 

Mollmann 2011). 

The emitted electromagnetic radiation is a function of the surface temperature of the 

specimen. This indicates that a higher temperature will cause a greater intensity of the 
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emission from the surface. The wavelength of the emitted electromagnetic radiation is 

reversely dependent on the temperature. Therefore, for higher temperature, the 

wavelength is going to be shorter based on the Wien’s law equation (Usamentiaga et al. 

2014): 

λpeak=
0.0029
𝑇𝑇

  (4-1) 

The temperature gradient that is illustrated in thermography is used as the means 

for detection and assessment of a variety of different types of defects in pavements and 

civil infrastructures. 

Every object that has a temperature above absolute zero, i.e. zero Kelvin, emits 

radiation in the infrared range, which is between 1 µm to 1000 µm in the electromagnetic 

spectrum (Washer et al. 2009). The following equation quantifies the energy of emitted 

radiation in every grey body radiator based on the Stefan-Boltzmann equation: 

W=ɛσT4 (4-2) 

In which W is the energy of emitted radiation at all wavelengths, ɛ is emissivity of the 

surface of the specimen, σ is the Stefan-Boltzmann constant equal to 5.67 ×10-8 W/(m2 . 

K4) and T is Temperature (K). 

Temperature is the most frequently measured quantity in the industrial process by 

using an infrared thermal camera (Michalski et al. 2001). An infrared image is a product 

of the quantification of the energy that is radiated from the surface of a specimen in 

separate sample points of the surface that is under inspection by the thermal camera. The 

infrared radiation energy that is emitted from the surface of the specimen will then 

convert to temperature values using an infrared thermal camera. 
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As mentioned before, each pixel of an IR thermal image represents the temperature 

identity of that specific location on the surface of the specimen. However, this 

temperature value is not a direct result of converting emitted energy to temperature 

reading. The major emission entities that are received by the thermal camera are Target 

emissions (EObject), Surrounding emissions reflected from the surface of the object 

(EReflected) and atmosphere emissions (EAtmosphere). Therefore, the total radiation is 

calculated using the following equation: 

WTotal = EObject + EReflected + EAtmosphere (4-3) 

By substituting Equation 4-2 into Equation 4-3, we can compensate for the total 

radiation that is received by the camera and write the following equations (FLIR A320 

2008): 

WTotal = ɛ.σ.τ.(TObject)4 + (1-ɛ).σ.τ.(TReflected)4 + σ.(1-τ).(TAtmosphere)4 (4-4) 

 

TObject = �𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−(1−ɛ).𝜎𝜎.𝜏𝜏.�𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�
4
−𝜎𝜎.(1−𝜏𝜏).(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑒𝑒𝑒𝑒𝑒𝑒)4

ɛ.𝜎𝜎.𝜏𝜏

4
 

(4-5) 

In which τ represents the transmittance of atmosphere. Figure 4-2 is a summary of 

all types of radiations that the camera is receiving during a heat recording process (Tran 

et al. 2017). 
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Figure 4- 2. The temperature reading process of thermal camera in experimental 
tests 

Environmental Factors 

Multiple environmental factors can affect heat transfer in concrete structures, such 

as wind, solar radiation effect and humidity (Manning and Holt 1983). Also other minor 

effects such as shades and surface roughness can alter the thermography results for 

inspecting surfaces and subsurface defects. 

It is found that the change in ambient air temperature is the main effective 

parameter that can alter the thermography result and thermal camera readings. This 

change is the cause of temperature gradient in the concrete structure and this temperature 

gradient is then measured using the thermal camera. This is the main reason why the 

thermography is widely performed during the heating and cooling cycle of the concrete 

surface in the morning and later at night respectively. Since the ambient temperature is to 

some extent constant for a long period in the middle of the day, the concrete body and 
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surface is closer to temperature equilibrium with the environment surrounding it than 

during the heating and cooling periods of the day. 

The rate of heat transfer is also affected by the wind. If the surface of the concrete 

slab has a higher temperature than the surrounding air, then the wind will increase the 

rate of convective heat transfer between the concrete and the ambient air. Therefore, the 

wind will decrease the temperature of the surface of the concrete and reduce the effect of 

radiant heating due to the cooling of the surface (Figure 4-3(A)). This phenomenon can 

have a reverse effect if the surface of the concrete is cooler than the ambient air, 

presumably in a shaded area such as the soffit of the bridge or underneath a tree. This 

means that the wind will expedite the heating up of the surface of the concrete by 

expediting the convective heat transfer from the hotter air to the cooler surface of the 

concrete slab (Figure 4-3(B)).
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Figure 4- 3. The effect of wind on convective heat transfer on the surface of the 
concrete A) Under direct sun exposure B) Under indirect sun exposure (Shadow) 

Relative humidity also has direct effect on convective heat transfer. Higher 

humidity will raise the amount for convective heat transfer coefficient and subsequently 

the rate of heat transfer increases (Zhang et al. 2007). Therefore, humid air will transfer 

more heat towards concrete than dry air. This effect along with other conditions are 

examined and the results are discussed in the results section of this paper. 

According to the authors’ previous field studies, it is found that thermography can 

be used to correlate the severity of the deterioration on the surface of the pavements to its 

measured temperature. However, the temperature readings of the thermal camera can 

partially be effected by weather conditions at the time of data collection (Milovanovic 

and Nanjad 2016). Therefore, in this paper a new testing system is introduced and an 

exhaustive testing procedure is conducted which will include many different types of 

(A) 

(B) 
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weather conditions which can affect the thermography. The effect of the weather 

conditions on thermography was observed and quantified during the cooling stage while 

the real time temperatures were being measured using the thermal camera. 

Methodology 

The temperature of most materials rises due to a variety of effects including 

radiation absorption. All objects with temperatures greater than absolute zero are emitters 

of infrared (IR) energy (Clark et al. 2003). This energy can be measured using infrared 

thermal cameras. However, the surrounding weather condition can have a great effect on 

the measurement of this energy. Current thermography related research publications and 

studies have asserted these effects (Milovanovic and Nanjad 2016, ASTM D4788-88 

2001, Rumbayan and Washer 2014). However, not many researchers have tried to 

quantify them. In addition, it has not been the subject of many researches to study the 

limitation of the utilization of IRT imaging tools for NDT due to alterations of the results 

caused by different weather conditions. These phenomena are the basis of a series of tests 

that were conducted to study the effect of different weather conditions and crack profiles 

on the workability of the thermal camera and its ability to record the emitted IR energy. 

A 6 by 6 by 12-inch concrete slab was casted and broke in half using a hydraulic 

pump. There is no reinforcement included in the slab. The strength of the concrete is 

measured to be around 4500 psi. This type of concrete is the main ingredient of bridge 

slabs and pedestrian pavements. The two pieces were then put next to each other and the 

space between them was filled with sand. This was to imitate the shape of crack on the 

surface of the specimen. This system helps us to be able to control the depth and width of 
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the crack with a very good precision. Figure 4-4 illustrates the measurement of width and 

depths and temperature of the crack on the surface of the concrete slab.  

 
Figure 4- 4. Width, depth, and highest temperature measurements in surface 
cracks 

The term crack ratio is used to determine the ratio between the width and depth of 

each crack using the following equation: 

Crack ratio = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

 (4-6) 

The crack ratio of 7 is used to replicate the crack profile in the field. This ratio is 

close to the average of the ratios of depths versus widths for nearly a hundred crack data 

points that have been collected from the field in the authors’ previous research studies. In 

this study, concrete surfaces that contain cracks with a crack ratio of 7 or higher are 

considered as damaged surfaces. Subsequently, the depth can be calculated by knowing 

the crack ratio and width. 

There are two main widths used in different test setups that are equal to 0.5 cm and 1 

cm as shown in Figure 4-5(A). The depths are then calculated using the crack ratio and 

are shown in Figure 4-5(B). Other variations of the depths have also been used to 



70 
 

 

compare the results and study the effect of different crack profiles on the thermal 

characteristics of the crack. 

  

Figure 4- 5. Laboratory crack sample: A: Crack width, B: Crack depth 

A 500 Watt halogen lamp is used as the heating source. Halogen lamps have the 

advantage of temporal stability compared to other kinds of lamps, which makes the use of 

this type of lamp more favorable for the active IRT tests (Maxim Integrated 2007). 

The heating cycle’s duration is 30 minutes for all tests. Shorter periods of heating 

were used but the recorded temperature data during the cooling cycle were not significant 

and the results were disregarded. The 30-minute heating cycle induces an excessive 

amount of heat on the sample. The temperature data recorded in the first 25 minutes of 

cooling cycle is disregarded. The remaining data until the end of the cooling cycle are 

considered to be more representative of what we can expect to be measured as 

temperature of the surface in the field. 

The experimental system that is introduced in this paper is shown in Figure 4-6. 

This setup contains six main parts, including a 121 cm × 33 cm × 51 cm tank to control 

the level humidity, a concrete slab as the test specimen with an adjustable crack in the 

middle, a halogen lamp as the heating source, a humidity meter, ambient air temperature 

A B 
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reader and an infrared thermal camera. The tank is used to prevent heat from transferring 

to the ambient air surrounding the testing system, especially in humid heating tests. 

Humidifier and fan are also added to the system, in separate tests, in order to adjust the 

humidity level of the system and the wind speed respectfully. 

 
Figure 4- 6. Controlled laboratory testing system 

This testing system is developed to replicate a variety of weather conditions that 

can affect the temperature reading of the thermal camera. The first type of lab-simulated 

weather condition is called “Controlled heating”. In this type, the relative humidity inside 

the testing system is the same as the surrounding air, at the beginning of the test. There is 

also no significant airflow on top of the cracked surface of the concrete slab. The second 

type of lab-simulated weather condition is called “Heating with airflow” (or windy 

condition). In this type, an airflow equal to 3.5 meters per second is introduced to the 

system over the cracked area of the concrete surface by using a fan. The relative humidity 

is also the same as the laboratory environment. The third type of lab-simulated weather 

condition is called “Humid heating” and includes a relative humidity equal to 80 to 85 
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percent before the tests starts. This amount of humidity will remain in the system very 

soon after the heating cycle is over. In the following the terms humidity and relative 

humidity will be used interchangeably. 

The tank is used as both a means of controlling the humidity level and a wind 

tunnel for the fan. The dimensions of the tank will be used for computer modeling in 

future studies. 

There are different types of infrared thermal cameras used to investigate 

anomalies in different substances. The two most common ones are uncooled micro 

bolometer detectors and cooled detectors, which are mostly, used in high sensitivity 

cameras (Rogalski 2012). A very detailed review on how these types of cameras differ in 

employment and structure and their historical evolution can be found in previously 

published literatures (Zheng and Tidrow 2009, Meola and Toscano 2012). In this test an 

infrared thermal camera with an uncooled micro bolometer (also known as a thermal 

detector) was employed. This camera is used to record the temperature gradient of the 

surface of the specimen and the crack. The model of the thermal camera is FLIR T430sc 

with a thermal sensitivity of 0.045 ˚C at 30 ˚C (Lu et al. 2017). The frame rate of this 

camera, i.e. the number of frames that is recorded in each second, is 60 Hz. 

In most of the tests, the wind speed is chosen to be 3.54 m/s, with the distance of 

12 inches (30.5 cm) between the fan and the cracked area on the surface of the concrete 

slab (Figure 4-7(A)). The humidifier is used to elevate the humidity level of the tank. The 

average speed of humidity addition to the air is 30% per hour when the tank is fully 

sealed using plastic wraps (Figure 4-7(B)). 
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Figure 4- 7. Distance between the test facilities and crack: A: Distance between 
Thermal camera and crack= 70 cm, B: Distance between halogen lamp and crack= 
10 cm, C: Distance between fan and crack= 30. 5 cm, D: Distance between humidifier 
and crack= 55 cm 

There are overall 4 different sets of test setups (Table 4-1). In each set, one 

specific crack profile is tested under different weather conditions. A halogen lamp was 

used for 30 minutes to heat up the sample. In the second phase of the test, the lamp was 

taken away from the system and the temperature of the crack was measured for every 

minute for 2 hours using a thermal camera. In the case of humid heating, a humidifier 

was used for 1 hour before the heating process was started. During the humid heating test 

all parts of the tank were completely sealed using plastic wraps to maintain humidity. 

Table 4- 1. Experimental tests performed inside the laboratory 
Type of Test 

 
 

Crack Profile 
    (cm) 

Controlled 
Heating 

Humid 
Heating 

(50 – 
55%) 

Humid 
Heating 

(70 – 
75%) 

Humid 
Heating 

(80 – 
85%) 

Humid 
Heating 
(~100%) 

Air 
Flow 
(3.4 
m/s) 

Air Flow 
(4.23 
m/s) 

Air Flow 
(4.9 m/s) 

W=0.5 – D=1.5 Case #1 -- -- Case #2 -- Case #3 -- -- 

W=1 – D=3.2 Case #4 -- -- Case #5 -- Case #6 -- -- 

W=1 – D=5.2 Case #7 -- -- Case #8 -- Case #9 Case #10 Case #11 

W=0.5 –D=3.7 
(2-h heating) 

-- Case 
#12 

Case 
#13 

Case 
#14 

-- -- -- -- 

A B 
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To imitate foggy weather, which represents the extreme amount of humidity, almost 

100%, a different setup was utilized. In this test setup, two humidifiers were used which 

were constantly adding humidity to the air inside the tank throughout the whole 

procedure. The initial humidity before starting the heating process was 99%. Although 

the humidity decreased after 2 hours of heating, it was increased back to 99% after 20 

minutes into the cooling process. Figures 4-8(A) and 4-8(B) show the special setup for 

the foggy weather. 

  

Figure 4- 8. (A & B) Foggy weather test setup (Humidity=~100%) 

Result 

As mentioned in previous sections, infrared cameras measure the infrared 

radiation that is emitted from the body. The amount of the emitted infrared radiation is 

proportionally affected by the fourth power of absolute temperature of the surface 

(Equation 4-2). There is always a temperature gradient between the crack and its 

surrounding intact area, i.e. the area without any visible cracks. This temperature gradient 

is what makes IRT relevant to concrete surface inspection. 

Given the fact that the temperature gradient exists throughout the cooling process, 

it is possible to identify the cracked areas of the surface of the concrete structures using 
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this method. This is an efficient tool to be able to automate the inspection process of 

bridges and pavements as well as concrete buildings and structures. 

Figure 4-9 shows that the temperature gradient between the top and bottom side 

of the crack during the heating and the cooling cycles of the test in thermal images. The 

same pattern can be seen in these images with the top edge having a higher temperature 

during the heating cycle and vice versa during the cooling cycle. 

 

Figure 4- 9. Temperature gradient captured by the infrared thermal camera during 
the heating and cooling cycles (Crack sizes: Width=1cm Depth=3.2cm) - Highest 
surface temperature is calculated in each image 

As noted before in the methodology section, the graphs will show the cooling 

cycle of the test process. For current testing setup, the first 25 minutes of the temperature 

data should be disregarded since they are not representative of what is expected to be 

measured when passive heating is being applied on the surface of the concrete. 

Comparison of the temperature decay at the crack bottom surface versus crack top 

edge for controlled heating, heating with airflow (wind) and humid heating (Cases 

#1 through #9) 
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Top edge point is chosen from an area on the sound part of the surface of the 

concrete that is located very close to the crack. The bottom of the crack is considered the 

lowest point inside of the crack, which its temperature is measurable, by the thermal 

camera. 

Figure 4-10 shows the quantification of the temperature decay on the edge and at 

the bottom of the crack under three different weather conditions. The rate of temperature 

decay helps to quantify significance of the effect of a type of weather condition on the 

temperature reading of the camera throughout the testing process. This crack is 1 cm 

wide and 5.2 cm deep. As shown in these graphs, the temperature gradient exists 

throughout the cooling process of the concrete slab in three different tests conducted in 

laboratory experiments. Temperature of the top edge of the crack is higher compared to 

the temperature at the bottom of the crack. The reason for this phenomenon is that the top 

surface of the crack, which is located on the concrete section, is closer to the heating 

source, than the bottom of the crack, which is mostly dry fine sand. However, during the 

cooling process, the surface dissipates more heat than the bottom of the crack because it 

is more exposed to air than the bottom side. Figure 4-10(A), is the temperature decay 

pattern in controlled heating. Figure 4-10(B) and Figure 4-10(C) represent the same 

pattern for heating with airflow and humid heating respectively. In all cases, the top edge 

of the crack dissipates heat faster than the bottom side. 

This difference in temperatures, however, will reduce relatively quickly during 

the heating cycle. As can be seen in Figure 4-10(A) the temperature of the edge surface is 

44˚C while the temperature of the bottom of the crack is 45.5˚C. The 1.5˚C temperature 
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gradient stays the same for most of the cooling cycle until it gradually reduces to 1˚C at 

the end of the two-hour reading.  

The same tests have been carried out on cracks with varying profiles and under 

different weather conditions (Figures 4-10(B) and 4-10(C)). The same trend was 

observed for cracks with varying crack ratios. However, the temperature gradient is more 

severe in heating with airflow inside the system and is about 3˚C at a point in the middle 

of cooling cycle. Eventually, the temperature gradient resumes to 1˚C for all three types 

of weather conditions at the end of cooling cycle.  

 

Figure 4- 10. Temperature decay versus time for top edge and bottom of crack in 3 
different test sets, A) Controlled heating, B) heating with airflow and C) moist heating 

B A 

C 
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Comparison of the Effect of Different Humidity Levels on Temperature Decay of 

the Crack in Humid Heating (Cases #10, #11, #12, #13 And #14) 

It is found that the ambient air temperature dissipates faster when the humidity is 

higher in the air. For instance, when the humidity is 70 percent (Figure 4-11(B)), 

temperature decay has a steeper slope compared to humidity of 55 percent in the second 

test (Figure 4-11(A)). Therefore, the temperature after 1 hour of cooling is around 1°C 

higher for the test that has a lower humidity in the air. 

It should be noted that for this set of tests, the heating cycle duration is 2 hours. 

That is to have a higher temperature gradient and a better visualization of the temperature 

comparison. 

 

Figure 4- 11. Relation between humidity and ambient air temperature decay: 
A: For 55% humidity, B: For 70% humidity 

Figure 4-12 shows the rate of humidity change inside the system for different 

humidity tests. 

A B 
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Figure 4- 12. The change in humidity levels versus time 

Prior the start of the heating process, humidity was raised up to 80%. However, as 

shown in Figure 4-13, the humidity decreases during the two hours of the heating 

process. In this graph, the rate of change for humidity during the cooling process is 

plotted for four different tests with different amount of humidity percentages. The 

humidity level never went below the target amount and it did not increase more than 5 

percent above it. This helped to keep the humidity consistent throughout the testing 

period. However, the humidity in the foggy weather test reaches the highest amount, 

which is plus 99%, after 75 minutes into the cooling process. 
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Figure 4- 13. Time versus temperature decay graph for different humidity levels 

As shown in Figure 4-13, when humidity is introduced into the system and 

regardless of the level of this humidity, the temperature of the crack is going to dissipate 

with a higher rate compared to the system with regular humidity content, i.e. 20%. 

Therefore, throughout the cooling process of the test, the temperature at the bottom of the 

crack in humid air is always lower to controlled test with regular humidity. 

The same concept holds when the air has extremely high humidity equal to 99% 

that occurs in foggy weather conditions, but the rate is completely different. In the 99% 

humidity test, the temperature is lower throughout the cooling process compared to 55%, 

70% and 85% humidity. 100 minutes into the cooling cycle, temperatures of the crack are 

41˚C for 55% humidity, 40.5 ˚C for 85% humidity, 38.8 ˚C for 99% humidity and finally 

36.4 ˚C for 20% humidity. This clearly shows that by adding humidity into the system the 

temperature rises for at least 2 ˚C up to around 5 ˚C depending on the level of humidity. 

However, at the same time, it can also be observed that by adding more humidity to the 

ambient air, this shift in crack temperature reduces to a lower amount. 
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The comparison of the effect of different weather conditions and various crack 

depths on temperature decay of the crack and the temperature readings of thermal 

camera (Cases #1 through #9) 

Humidity and wind are the two major ambient air conditions, which have huge 

effects on the temperature of the crack and functionality of the camera. Figure 4-14 

shows temperature readings during the cooling cycle under each weather condition. 

 

Figure 4- 14. The effect of different weather conditions on temperature reading of 
the thermal camera for a crack with 1 cm width and 5.2 cm depth 

As mentioned in the methodology section, in the current testing method, humidity 

in the air is replicated using a humidifier. The humidity was maintained between 80 to 85 

percent for the humid test. In addition, to replicate the wind, a fan was used. The wind 

velocity on top of the crack was measured to be 3.54 m/s for this test. As expected, the 

temperature of the crack decays faster when there is airflow present inside the system. 

The reason is that the wind contributes to the convection process on top of the crack by 

expediting the movement of the local air around the surface of the concrete. Additionally, 

the humid air will preserve the heat inside the crack. Therefore, the decay of the 
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temperature level inside the crack is going to be faster when humidity was introduced 

into the system (Figure 4-15). 

As mentioned earlier, this phenomenon happens due to the higher heat capacity of 

water compared to dry air. Therefore, in humid systems, which has a humidity around 

80%, the temperature of the crack is lower than the normal system, which has a humidity 

level equal to 20%. 

In order to calculate the magnitude of the effect of each weather condition on the 

temperature readings of the camera, the percentage of difference (POD) between each 

test condition is measured using the following formula: 

|𝑇𝑇1 − 𝑇𝑇2|
(𝑇𝑇1 + 𝑇𝑇2)

2

× 100 
(4-7) 

In which, T1 is the temperature in one test setup and T2 is the temperature in another test 

setup. 

Humidity has the lowest effect on the temperature of the crack throughout the cooling 

process with an average percentage of the difference equal to 5.8 percent when it is 

compared to controlled heating test results. On the other hand, the average PODs for 

windy weather compared to controlled heating is 11.3 percent. This indicates that wind 

has a much higher effect, around 2 times, on the temperature of the crack than the 

humidity. 

The same sets of tests have been conducted on cracks with the same width but varying 

depth (Figure 4-15(A) and 4-15(B)). This was done to study the potential change in the 

amount of effect that each weather condition will have on shallower cracks. 
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Figure 4- 15. Comparison of the effect of different weather conditions on 
temperature reading of the thermal camera for cracks with varying crack profiles: 
A: For width=1 cm and depth=3.2 cm, B: For width=0.5 cm and depth=1.5 cm 

The change between different crack depths is quantified using the POD concept 

(Figure 4-16). As is shown in this bar graph, the increase in depth causes a decrease in 

the average of the PODs. Therefore, the temperature reading of the camera for deeper 

cracks is more prone to changes due to the weather condition compared to shallower 

cracks. 

 
Figure 4- 16. Comparison of the percentage of difference for varying depths when 
exposed to different weather conditions 

 

A B 
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Comparison of the effect of different air velocities on temperature decay of the 

crack (Cases #15, #16 and #17) 

Three different wind velocities were introduced into the system in the following 

test setup. The velocity in each section of this test was measured on top of the cracked 

area of the concrete sample. The measured velocities are equal to 5.01, 4.23 and 3.54 

meters per second. In this test, the possible effect of wind velocity on temperature reading 

of the thermal camera is measured. 

 

Figure 4-17. Temperature decay in different wind (air) speeds 

As can be seen in Figure 4-17, the temperature gradient between different wind 

velocities is close, especially at the end of cooling cycle. The average percentage 

difference throughout the cooling process between the highest and lowest velocities is 

less than 5%. This number reaches to as low as 2% near the end of the cooling process. 

This indicates that at the end of the cooling process, the temperature of the crack is 

anticipated to be close to an average amount of 26.5 degrees Celsius, regardless of the 

wind velocity that is introduced into the system in each test. 
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Conclusion 

The effects of ambient air conditions on the reading of infrared thermal cameras 

have been one of the major concerns of the researchers in the thermography field. 

Although these effects have been mentioned in previous research attempts, the 

significance of the effect of ambient air conditions on the detection of defects in concrete 

structures has not been quantified and studied in detail. 

This paper covers a systemic study, including the physics and concepts related to 

active IRT for concrete and the effect of the ambient air condition on surface defect 

assessment. A weather controlled testing system is developed inside the laboratory in 

order to imitate different weather conditions that can happen in the field and surrounding 

concrete structures. More than 17000 test data points in over 35 different test setups have 

been collected in a time span of two months. All the tests have been performed inside a 

laboratory and a halogen lamp was used as the heating source. The goal for this study 

was to address the direct and indirect effects of ambient air and weather conditions, 

including humidity, wind, and ambient air temperature on the performance and reliability 

of the IRT for surface crack assessment. The large amount of test results that are 

collected in this study are being used to improve the accuracy of the use of IRT for 

assessing the surface defects in concrete structures. In addition, the effect of different 

crack profiles on the performance of IRT was also studied. 

According to the finding of this research, wind has a bigger influence than 

humidity level on the temperature of the crack and the readings of the camera. According 

to the test results, when the air flows on top of the surface crack with a speed of 3.2 m/s, 

the temperature of the crack drops up to 3.5˚C compared to the temperature of the crack 
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in controlled heating. This is while in humid heating, where humidity level equals 80%, 

the temperature rises with the amount of around 1.7 ˚C. In other words, the temperature 

shift in cracks that are exposed to a windy weather is almost 2 times more intense than in 

humid weather. Although both wind and humidity can affect the temperature of the crack, 

the different wind speeds and humidity levels have roughly the same amount of effect on 

the temperature. 
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CHAPTER FIVE: CONCLUSION 

Developing an efficient approach to assess the distresses such as cracks and air 

voids on top or near the surface of concrete and asphalt roadways is a great challenge for 

engineers. Infrared thermal imaging inspection, a branch of non-destructive testing 

(NDT), is a promising method that can help us towards achieving this goal. Infrared 

thermography (IRT) can be used for the inspection of surface and subsurface defects on 

or inside concrete and asphalt pavements. What is puzzling though is the fact that the raw 

thermal images by themselves cannot be a reliable substitute for this testing technique. 

Therefore, processed thermal images can help us to better understand and investigate the 

acquired data from thermal cameras. 

IRT is relatively easy to employ and it is a reliable NDT technique. By using IR 

cameras, we can capture temperature gradients on the surface of asphalt and concrete 

pavements at certain time windows during both heating and cooling cycles. IRT’s one-

side deployment makes it favorable for bridge and pavement assessment since in these 

types of structures only one side of the structure is accessible. On the other hand, there is 

a limited access to uniform heating in active IRT. This shortcoming makes it hard to 

employ image processing on thermal images that are lacking clear contrast. Subsurface 

defects, like delamination, are detectable only if they are close to the surface of concrete 

and asphalt pavements. The method works best when there is a thermal contrast present 

on the surface of the target. 
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For subsurface inspection, we were able to study the ability of thermography to 

locate defects underneath the surface of concrete specimens. Studying the effect of 

delamination depth on the temperature gradient will assist the better understanding of the 

effectiveness of thermography in monitoring applications. By using processed thermal 

images, we were able to detect the presence of air voids underneath concrete structures. 

We investigated the effect of the depth of these subsurface defects based on the processed 

images. It was found that the depth in which the defect is located has a major effect on 

how well it can be recognized by the thermal camera. The best results were acquired from 

defects that were imbedded close to the surface, up to 5 mm with an accuracy of more 

than 70%. A computer simulation of the test showed the same trend as seen inside the 

laboratory. 

For surface inspection, a relation between crack temperature and its profile is 

studied. Based on the point-wise normalized temperatures, the areas inside the cracks 

always have higher temperatures than their surrounding areas. In this work, we proposed 

a crack detection approach for inspecting pavements in a more efficient and accurate 

manner. A new approach based on normalization of the temperatures shows that deeper 

cracks have higher temperature in the temperature profile that is captured by using a 

thermal camera. Correlation between temperature and depth of crack was higher 

(R2=70%) compared to the temperature and width of crack (R2=50%.). The temperature 

data represented in the graphs are normalized based on the localized average surface 

temperatures. 

To address and assess the side effects of weather conditions on thermography, a 

full experimental study of different weather conditions have been done inside the 
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laboratory. Temperature reading during the cooling cycle shows the effect of relative 

humidity (= 80%) and wind (=3.5 m/s or 7.8 mph) on the temperature reading of the 

camera. Heating under normal conditions (humidity = 16% and no wind) is taken as 

control. It is found that cracks heat up less and lose heat faster in humid conditions. It is 

also found that the effect of wind is significantly greater than humidity on the readings of 

the surface temperature gradient for different crack profiles (with POD of 11.3% versus 

5.8%, respectively). In addition, it is found that deep cracks are more prone to the effects 

of humidity than shallow cracks. 

Studying different aspects of IRT may help in development of a system to 

automate the inspection of surface and subsurface defects in pavements by using thermal 

imagery. Studying the effects of weather condition on the readings of the thermal camera 

can also assist us to be able to use the technology for field inspection in a wider time 

window. 
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