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Abstract 

The initial microhydration structures of the protonated pharmaceutical building block oxazole (Ox), H+Ox-

Wn≤4, are determined by infrared photodissociation (IRPD) spectroscopy combined with quantum chemical 

dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ). Protonation of Ox, 

achieved by chemical ionization in an H2-containing plasma, occurs at the most basic N atom. The analysis 

of systematic shifts of the NH and OH stretch vibrations as a function of the cluster size provides a clear 

picture for the preferred cluster growth in H+Ox-Wn. For n=1-3, the IRPD spectra are dominated by a single 

isomer, and microhydration of H+Ox with hydrophilic protic W ligands occurs by attachment of a hydrogen-

bonded (H-bonded) Wn solvent cluster to the acidic NH group via NH…O H-bond. Such H-bonded networks 

are stabilized by strong cooperativity effects. This is in contrast to previously studied hydrophobic ligands, 

which prefer internal ion solvation. The strength of the NH…O ionic H-bond increases with the degree of 

hydration because of the increasing proton affinity (PA) of the Wn cluster. At n=4, proton-transferred 

structures of the type Ox-H+Wn become energetically competitive with H+Ox-Wn structures, because 

differences in solvation energies can compensate for the differences in the PAs, and barrierless proton 

transfer from H+Ox to the Wn solvent subcluster becomes feasible. Indeed, the IRPD spectrum of the n=4 

cluster is more complex suggesting the presence of more than one isomer, although it lacks unequivocal 

evidence for the predicted intracluster proton transfer. 
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1. Introduction 

  

   Hydration of biomolecules is a fundamental chemical process that regulates their stability, flexibility, and 

function. As a result, solvating water layers are nowadays considered as an integral part of such bioactive 

macromolecules.1–10 The absence of water often leads to inactivity of proteins and nucleic acids. In general, 

biological macromolecules bind to the solvating surface water ligands (often called “biological” water) 

through extended hydrogen bonded (H-bonded) networks, which are pivotal to the recognition of various 

drugs and proteins.11–16 Experimentally, a number of prudent techniques, including X-ray diffraction, nuclear 

magnetic resonance, and neutron scattering, have been employed in the condensed phase to understand 

the impact of hydration on the inherent physical and chemical properties of the bioactive species.10 However, 

most of these strategies suffer from macroscopic solvent effects, interactions with other molecules and 

substrates, and thermal and heterogeneous broadening, which prevent the determination of intrinsic 

fundamental biochemical characteristics of such molecules and the structure and dynamics of individual 

water molecules in the first hydration layer.10,17 These problems can be circumvented by interrogating 

individual molecules and clusters in the gas phase.10,17–26 The spectroscopic study of mass-selected clusters 

in combination with high-level quantum chemical calculations provides detailed information about the intrinsic 

molecular properties of the solute molecules and their changes upon sequential addition of individual solvent 

molecules. 

  

   Herein, we address the microhydration of protonated oxazole (H+Ox), which is an important biomolecular 

building block of numerous pharmaceutical and natural products, exhibiting antibiotic, antitumor, 

antituberculosis, antiinflammatory, and HIV-inhibitory properties.27–36 Amino acids with an Ox nucleus are 

extensively used to modify the bioactivity of various macromolecules.27,28,37–43 It is well established that the 

structure and reactivity of such molecules are often regulated by solvation, substitution, and protonation of 

the fundamental building blocks like Ox. For example, protonation of the Ox ring of the acetyl-coenzyme A 

carboxylase (ACCase) inhibitor, Metamifop, influences its binding efficiency with that particular enzyme.44  

  

  The structure and vibrations of neutral Ox in its planar ground electronic state have been explored by 

microwave, infrared (IR), and Raman spectroscopy, as well as quantum chemical calculations.45–53 No 

experimental information is available for any cluster of Ox. Low-level calculations predict for the neutral Ox-

water (Ox-W) dimer hydration at the N center of Ox via a OH…N H-bond, because the two lone pairs of the 

O atom of Ox participate in π conjugation of the aromatic ring and thus are less efficient H-bond acceptors.49 

The Ox+ radical cation has been characterized by photoelectron spectroscopy,54,55 and an accurate adiabatic 

ionization energy and several vibrational frequencies of the planar cation ground state are available from a 

high-resolution mass-analyzed threshold ionization spectrum. Photoelectron imaging of the oxazolide anion 

demonstrates selective deprotonation from the C2 position of the hetrocyclic ring.56 

 

   Information about H+Ox and its clusters is scarce. Computations suggest exclusive N-protonation of the 

aromatic ring,57,58 and the the recommended value for the proton affinity is tabulated as PA=876.4 kJ/mol.59 

Recently, we reported IR spectra of H+Ox-Ln clusters with L=Ar (n≤2) and N2 (n≤4) obtained by IR 

photodissociation (IRPD) of mass-selected clusters generated in a molecular plasma expansion.60 Analysis 

of these spectra by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-
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pVTZ level provided the first spectroscopic proof that protonation of Ox indeed occurs exclusively at the N 

atom. In addition, the results yielded a first impression of the solvation process of H+Ox with aprotic 

hydrophibic ligands, which occurs by the formation of linear and bifurcated NH…L and NH…L2 bonds 

followed by further interior ion solvation.60 Herein, we employ the same combined spectroscopic and 

computational approach to extend these studies on H+Ox-Ln clusters to dipolar ligands, namely L=W=H2O 

and n≤4, to characterize the differences of solvation of H+Ox in a protic hydrophilic environment, which is 

relevant for understanding hydration effects of the protonated Ox building block in pharmaceutical 

applications. 

 

2. Experimental Section 

  

   IRPD spectra of mass-selected H+Ox-Wn≤4 and tagged H+Ox-Wn≤2-N2 clusters are recorded in the XH 

stretch range (X=C, N, O) in a tandem quadrupole mass spectrometer coupled to an electron ionization (EI) 

source and an octupole ion guide.61,62 Briefly, H+Ox-Wn(-N2) clusters are produced in an ion source, which 

combines a pulsed supersonic expansion with electron and chemical ionization close to nozzle orifice. The 

expanding gas mixture is generated by seeding Ox (C3H3NO, Sigma-Aldrich, 98%, heated to 328 K) and H2O 

(at room temperature) in carrier gas composed of N2 and 5% H2 in He in a 2:1 ratio at a backing pressure of 

10 bar. Ox is protonated by exothermic proton transfer from H3
+ and/or H+(H2O)n clusters produced by 

chemical ionization, and clusters of H+Ox are then produced in the high-pressure regime of the supersonic 

expansion by three-body collisions. The desired parent clusters are mass-selected in the first quadrupole 

and irradiated in an adjacent octupole ion guide with a tunable IR laser pulse (νIR, 10 Hz, 2-5 mJ, bandwidth 

~1 cm-1) emitted from an optical parametric oscillator pumped by a Q-switched nanosecond Nd:YAG laser. 

Calibration of νIR to better than 1 cm-1 is achieved by a wavemeter. Resonant vibrational excitation followed 

by intracluster vibrational energy redistribution leads to the evaporation of the most weakly bound neutral 

ligand, according to: 

H+Ox-Wn + νIR → H+Ox-Wn-1 + W  (1) 

H+Ox-Wn-N2 + νIR → H+Ox-Wn + N2  (2) 

Subsequently, the fragment ions are mass-selected by the second quadrupole and monitored with a Daly ion 

detector as a function of νIR to derive the IRPD spectrum of H+Ox-Wn(-N2). All IRPD spectra are linearly 

normalized for variations in the IR laser intensity measured with a pyroelectric detector. The contribution of 

metastable decay is subtracted from laser-induced dissociation by triggering the ion source at twice the laser 

repetition rate. The observed widths of the vibrational bands mainly arise from unresolved rotational 

structure, sequence hot bands involving inter- and intramolecular modes, and contributions from various 

structural isomers. Tagging with N2 produces colder clusters because their maximum internal energy is given 

by the binding energy of the weakliest bonded ligand. As a consequence of the lower effective temperature, 

the spectra of the N2-tagged clusters display higher spectral resolution. 

 

3. Computational Details 

 

   Possible H+Ox-Wn(-N2) isomers are optimized at the B3LYP-D3/aug-cc-pVTZ level of theory to analyze the 

IRPD spectra.63 This dispersion-corrected density functional reliably describes the electrostatic, induction, 

and dispersion forces of the investigated clusters.64–69 Neutral Ox and Ox-W are also computed to derive the 
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impact of protonation on hydration on structure and intermolecular bonding. For energy optimization, the tight 

convergence criterion with ultrafine integration grid is used. In particular, the binding energy computed for the 

W2 dimer (D0=1103 cm-1) is in excellent agreement with the measured value (D0=1105±10 cm-1),70 indicating 

that the H-bond interactions in the hydration networks are modeled accurately by this computational 

approach. Fully relaxed potential energy surface calculations are performed during the search for stationary 

points, and their nature as minima or transition states is verified by harmonic frequency analysis. Harmonic 

intramolecular vibrational frequencies are subjected to a linear scaling factor of 0.9636, derived from a 

comparison of computed CH and OH stretch frequencies of neutral Ox and W, respectively, to their 

measured values.46,71 For convenient comparison to the experiment, harmonic linear IR absorption stick 

spectra are convoluted with a Gaussian line shape (FWHM=10 cm-1). All relative energies (Ee) and 

equilibrium dissociation energies (De) are corrected for harmonic zero-point vibrational energy to derive 

respective E0 and D0 values. Gibbs free energies are evaluated at 298 K (G0). The total intermolecular 

dissociation energies are determined with respect to the molecular H+Ox and W monomer fragments (also 

for the proton-transferred isomers of Ox-H+W4). The D0 values reported for the tagged clusters correspond to 

binding energies of the N2 ligand. Previous experience with the employed computational level demonstrates 

that basis set superposition errors are smaller than 1%,67,68 and thus they are not considered further here. 

The atomic charge distribution and second-order perturbation energies (E(2)) of the donor-acceptor orbital 

interaction involved in the H-bonds are evaluated using the natural bond orbital (NBO) analysis.72,73 Further 

characterization of the H-bonds is achieved in noncovalent interaction (NCI) calculations by computing the 

reduced gradient of the electron density ρ, s(ρ)~│grad(ρ)│/ρ4/3, as a function of ρ oriented by the sign of 

second eigenvalue λ2 of the Hessian, ρ*=ρsign(λ2).74,75 The relative strengths of various H-bonds can be 

estimated by comparing their respective ρ* values.  

 

4. Results & Discussion 

 

   All IRPD spectra of H+Ox-Wn(-N2) recorded between 2650 and 3820 cm-1 are compared in Figure 1. The 

positions and suggested vibrational and isomer assignments are listed in Table 1. The investigated spectral 

range covers the OH, NH, and CH stretch fundamentals (νOH/NH/CH), which are sensitive to both the 

protonation site and the H-bonded hydration network. Significantly, the appearance of the H+Ox-Wn spectra 

changes drastically as a function of cluster size, thus providing detailed information about the evolution of the 

cluster growth. In addition, the IRPD spectra of the colder N2-tagged clusters display much narrower bands, 

which further facilitates the identification of the isomers observed for microhydrated H+Ox. The bands A-C 

occur in the range of the free OH stretch modes of the W ligands (3600-3750 cm-1). Transitions D occur only 

for the n≥2 cluster and vary strongly with the cluster size (3000-3400 cm-1). Both their frequencies and band 

shapes suggest an assignment to bound OH stretch modes of the W ligands. Transition E at 3177±3 cm-1 is 

insensitive to n and has been assigned to CH stretch modes in the IRPD spectra of H+Ox-Ln with L=Ar and 

N2, where this band occurs at a very similar position (3168-3179 cm-1).60 The intense transitions F occur 

below 3000 cm-1, as expected for bound NH stretch modes of cationic NH…O H-bonds. In the following, we 

discuss the evolution of the observed IRPD spectra as a function of cluster size with the aid of the DFT 

calculations and derive more precise vibrational and isomer assignments. 

 

4.1 Ox, H+Ox, and W 



5 
	

 

   The geometric and vibrational properties of neutral Ox and H+Ox calculated at the B3LYP-D3/aug-cc-pVTZ 

level are discussed in detail in our previous report.60 The structure and vibrations computed for Ox agree 

satisfactorily with available experimental data.46,52 The same is true for the corresponding predicted and 

measured properties of bare W (rOH=0.9617 vs. 0.9578 Å, ν1/3=3656/3755 vs. 3657/3756 cm-1).71,76 

Protonation of Ox at the N atom is energetically strongly favored over protonation at the O and C atoms of 

the heterocyclic ring (by more than 120 kJ/mol), and indeed our previous analysis of the IRPD spectra of 

H+Ox-Ln with L=Ar and N2 confirms exclusive N-protonation under the present experimental conditions. In 

addition, the experimental proton affinity recommended for Ox (PA=876.4 kJ/mol)59 is in excellent agreement 

with our value computed for the N-protomer (876.7 kJ/mol).60 Hence, we only consider this protomer further 

in the present study on H+Ox-Wn. From the IRPD spectra of the π-bound H+Ox-Ar/N2 dimers, the free NH 

stretch frequency of bare H+Ox is estimated as νNH=3444±3 cm-1,60 in excellent agreement with the predicted 

value (3446 cm-1). In conclusion, the employed theoretical level describes the relevant properties of the 

considered monomers to high accuracy. 

 
4.2 H+Ox-W and H+Ox-W-N2 

  

   In analogy to the H+Ox-Ar/N2 dimers,60 we consider particularly the H-bound and π-bound H+Ox-W 

structures (Figure 2). Because the intermolecular attraction in H+Ox-W is dominated by electrostatic charge-

dipole forces, all minima on the potential energy surface have the typical cation-dipole configuration with the 

O atom of W pointing toward the positive charge of H+Ox. The global H-bonded H+Ox-W(H) minimum, with a 

nearly linear NH…O ionic H-bond (RNH…O=1.659 Å) and the plane of W perpendicular to the plane of H+Ox, 

is nearly twice more stable than H+Ox-W(π), D0=6094 vs. 3334 cm-1. This ionic H-bond is substantially 

stronger than the OH…N H-bond of the neutral Ox-W dimer (D0=1697 cm-1, ROH…N=1.951 Å), in which W is 

H-bonded as proton donor to the in-plane lone pair of N in Ox (Figure S1 in the supporting information).49,60  

The strong H-bond in H+Ox-W(H) significantly perturbs the NH group, resulting in a massive red shift and 

pronounced enhancement in the IR oscillator strength of the bound NH stretch mode (νNH
b) when compared 

to bare H+Ox (∆rNH=32.7 mÅ, ∆νNH
b=-546 cm-1, ∆INH=1638 km/mol). The substantial PA of W (691 kJ/mol) 

facilitates H-bonding through a significant charge transfer from H+Ox to W (Δq=0.06 e, Figure S2 in the 

supporting information),59 which leads to slight red shifts and concomitant enhancement of IR intensities of 

the ν1/3 modes compared to bare W (∆ν1/3=-16/-29 cm-1, ∆I1/3=51/88 km/mol). The barrier for internal rotation 

of W of Vb=281 cm-1 in H+Ox-W(H) at the planar transition state is substantial (Figure S3 in the supporting 

information). As expected, the π-bound W ligand in H+Ox-W(π) has no significant influence on the NH group, 

and the associated parameters are comparable to those of bare H+Ox (∆rNH=-1.8 mÅ, ∆νNH=19 cm-1, ∆INH=-

19 km/mol). Similar to H+Ox-W(π), the H+Ox-W(C5) structure with a CH…O ionic H-bond is a high-energy 

local minimum (D0=3239 cm-1), because the CH bonds are much less acidic than the NH group (Figure S4 in 

the supporting information). Attempts to optimize other structures with a CH…O H-bond failed (C2 and C4), 

probably because of very low barriers for W migration toward the nearby acidic NH group. Again, for the CH-

bonded isomer, the perturbation of the NH group is minor. 
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   To elucidate the effects of N2 tagging on the H+Ox-W dimer, we merely consider the by far most stable 

H+Ox-W(H) isomer (Figure 2), because it is the only one observed experimentally (vide infra). The N2 ligand 

is either H-bonded to W (D0=937 cm-1) or forms a π-bond with a smaller binding affinity (D0=766 cm-1). 

Although binding of N2 to the CH groups is comparable in strength to π-bonding, this binding motif is not 

observed experimentally in the IRPD spectra of H+Ox-(N2)n.60 The cooperativity arising from the additional H-

bonded N2 ligand in H+Ox-W(H)-N2(H) increases the N-H bond length, leading to further lowering of νNH
b 

compared to H+Ox-W(H), with ∆rNH=6.1 mÅ and νNH
b=2785 vs. 2883 cm-1. In addition, the OH…N2 H-bond 

elongates the O-H donor bond with a concomitant red shift of the coupled ν1/3 modes (∆ν1/3=-66/-22 cm-1). 

On the contrary, the π-bound N2 ligand in H+Ox-W(H)-N2(π) hardly affects the NH and OH groups. The slight 

increase in νNH
b (+26 cm-1) is rationalized by noncooperative effects of interior ion solvation resulting from N2  

attachment at the π-site, which however barely influences the free ν1/3 modes (+1/+1 cm-1). 
  

   The IRPD spectra of H+Ox-W and H+Ox-W-N2 are compared in Figure 3 to the relevant computed spectra. 

The IRPD spectrum of H+Ox-W exhibits an intense broad feature between 2650 and 3220 cm-1 (F1-F3, E) 

along with two relatively weak and narrower transitions at 3720 (A) and 3625 (B) cm-1. Significantly, this 

spectrum lacks any signal of a νNH
f mode of H+Ox near 3450 cm-1. This observation implies that the NH 

group in H+Ox-W is engaged in H-bonding to W, which immediately excludes any π-bonded or CH-bonded 

isomers (Figure 3, Figure S4 in the supporting information), consistent with the thermochemical predictions. 

The two bands B and A are then readily assigned to the free ν1/3 modes of the H+Ox-W(H) global minimum 

computed as 3642/3728 cm-1. The experimental red shifts of Δν1/3=-31/-36 cm-1 are typical for cation-W 

bonding and consistent with the predictions (-16/-29 cm-1). Clearly, the dissociation energy computed for this 

isomer (D0=6094 cm-1) is substantially larger than the absorbed photon energy (νIR), indicating that only 

internally hot clusters with Eint>3500 cm-1 are detected under the employed single-photon absorption 

conditions. This view is consistent with the large widths of the observed bands. The broad feature comprising 

bands F1-F3 and other unresolved peaks in the 2700-3200 cm-1 range are attributed to the νNH
b mode 

(predicted at 2883 cm-1), which interacts with other combination bands and overtones (e.g., the overtone of 

the NH bend (2βNH) predicted at 2932 cm-1) via strong anharmonic coupling. Such a spectral feature is very 

typical for strong cationic NH…O H-bonds with W as proton acceptor, and has been observed for a variety of 

monohydrated aromatic clusters.69,77,78 The transition with highest intensity (F3) probably carries the largest 

NH stretch character. Transition E at 3179 cm-1 is mostly assigned to two close-lying aromatic νCH modes, 

which are detected at ~3175 cm-1 for H+Ox-Ar/N2.60 The relatively weak band X around 3230 cm-1 is 

tentatively assigned to the OH bending overtone of W predicted near 3226 cm-1 from the harmonic analysis 

(using 0.98 as scaling factor).  

  

   The assignment of the H+Ox-W spectrum to the hot population of the single H+Ox-W(H) isomer is 

supported by the IRPD spectrum of cold H+Ox-W-N2 clusters in Figure 3. Tagging with N2 drastically reduces 

the maximum internal energy to below 1000 cm-1 and facilitates single-photon IRPD from the ground 

vibrational state of the clusters. As a result, the widths of the transitions are narrower and the appearance of 

the spectrum in the νNH
b range is cleaner. The OH stretch bands B and A of the tagged cluster at 3610 and 

3711 cm-1 are red shifted from those of the bare dimer (∆ν1/3=-15/-9 cm-1), suggesting that the N2 ligand 

forms a H-bond to the W ligand, H+Ox-W(H)-N2(H), so that we can exclude isomers with CH-bonded or π-
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bonded N2 ligands. The harmonic calculations overestimate these shifts (∆ν1/3=-66/-22 cm-1), partly because 

of the high temperature of the untagged monohydrate. The width of the intense H-bonded transition F is 

remarkably reduced upon cooling with the N2 tag, and the extracted νNH
b fundamental of 2970 cm-1 is to be 

compared to the computed value of 2785 cm-1. This discrepancy may be attributed to the highly anharmonic 

nature of this H-bonded oscillator. Furthermore, the measured intensity ratio of the νCH band (E at 3178 cm-1) 

relative to the νNH
b band in the tagged spectrum agrees well with the predictions, confirming that anharmonic 

couplings and effects of hot bands are drastically reduced for the cold N2-tagged ions. This spectral behavior 

upon tagging is again typical for strong cationic NH…O H-bonds of aromatic cations with W.69,77,78 

 

4.3 H+Ox-W2 and H+Ox-W2-N2 

  

   In the most stable H+Ox-W2(H) structure, a H-bonded W2 dimer forms an NH…O H-bond to H+Ox with a 

total interaction energy of D0=10278 cm-1 (Figure 4). The formation of such a H-bonded network is strongly 

cooperative in nature. For example, D0 of H+Ox-W2 is 43% larger than the sum of the binding energies of W2 

and H+Ox-W (D0=1103+6094=7197 cm-1). Similarly, the intermolecular NH…O and OH…O H-bonds of the 

two units contract drastically (RNH…O=1.555 vs. 1.659 Å, ROH…O=1.712 vs. 1.947 Å). This large cooperatively 

can mostly be traced back to the substantially increased PA of W2 as compared to W (PA=808 vs. 691 

kJ/mol)59,79 and the strong polarization effects induced by the positive charge of the excess proton. As a 

result, the N-H bond gets further elongated upon attachment of the second W (∆rNH=21 mÅ) and the total red 

shift and IR oscillator strength of the νNH
b mode become more pronounced (∆νNH=-892 vs. -563 cm-1, 

INH=2853 vs. 1840 km/mol). The increased distance of the terminal W from the positive charge results in a 

slight blue shift in ν1/3 compared to the dimer (∆ν1/3=+9/+11 cm-1). The new free OH stretch mode (νf) of the 

first W ligand is predicted between the two ν1/3 modes at 3712 cm-1, whereas its H-bonded OH stretch mode 

(νOH
b) is strongly red shifted down to 3267 cm-1, consistent with its longer bond length (∆rOH=23.5 mÅ). This 

red shift is much larger than for bare W2 (νOH
b=3601 cm-1)80–82 because of the strong cooperativity effect on 

the W-W H-bond introduced by the presence of the H+Ox cation. Other isomers of H+Ox-W2 with two 

individual W ligands attached to H+Ox are less favorable, because binding sites other than the NH group 

(e.g., π or CH) are less favorable and interior ion solvation is noncooperative in nature. This is illustrated for 

the example of the H+Ox-W2(I) isomer shown in Figure 4, in which two W ligands are separately H-bonded to 

the NH and C5H groups (D0=8955 cm-1). The noncooperativity in binding energy amounts to 

8955/(3239+6094)=0.96 or 4% for this isomer. Apart from this thermochemical argument, the IRPD spectrum 

of H+Ox-W2 in Figure 1 shows a drastic change in the νNH
b range compared to that of H+Ox-W, indicating that 

the second W ligand is strongly perturbing the NH group, which can only be for the H+Ox-W2(H) structure 

with a H-bonded W2 unit. 

  

   We consider the three main binding motifs for attachment of N2 to H+Ox-W2(H) shown in Figure 4, namely 

H-bonding to a free OH group of the W2 unit and π-bonding to H+Ox. N2-bonding to CH groups is 

energetically less favorable and indeed not observed for H+Ox-(N2)n.60 In the most stable H+Ox-W2(H)-N2(H1) 

isomer (D0=789 cm-1), N2 forms a H-bond to the remaining free OH group of the first W ligand, resulting in  a 

slight elongation of the O-H bond with a concomitant decrease in νf (∆rOH=3 mÅ, ∆νOH=-69 cm-1). In the less 

stable H+Ox-W2(H)-N2(H2) isomer, the N2 ligand binds to the terminal W ligand. It is thus further away from 
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the positive charge leading to a lower binding energy (D0=694 cm-1) and longer OH…N2 bond. As a result, 

the red shifts of ν1/3 from free W are smaller (∆ν1/3=-39/-19 cm-1) than for the analogous H+Ox-W(H)-N2(H) 

structure. In both isomers H+Ox-W2(H)-N2(H1/2), the additional H-bonded N2 ligand slightly strengthens (and 

contracts) the NH…O H-bond between H+Ox and W2, because of the cooperativity of the H-bonded network 

and the higher PA of W2-N2 compared to W2. This in turn is visible in a modest elongation of the N-H bond 

and a small red shift in νNH
b. In contrast, the additional π-bound N2 ligand in H+Ox-W2(H)-N2(π) is mostly 

stabilized by charge-quadrupole and charge-induced dipole interactions, resulting in a D0 value (695 cm-1) 

similar to that of H+Ox-W2(H)-N2(H2). As expected, π-tagging has no significant effect on the IR spectrum of 

H+Ox-W2(H) in the XH stretch range. 

 

   The IRPD spectra recorded for H+Ox-W2 and H+Ox-W2-N2 are compared in Figure 5 to the relevant 

computed spectra. The spectrum of bare H+Ox-W2 is drastically different from that of the n=1 cluster (Figure 

1). For example, it no longer exhibits the broad transitions F1-F3. Instead, we observe a rising signal toward 

the red end of the scan (2650 cm-1), which we tentatively assign to the blue tail of νNH
b, yielding an upper limit 

of the νNH
b fundamental predicted at 2554 cm-1. This drastic spectral change in the νNH

b range confirms that 

the second W ligand binds to the first one. The new feature C at 3705 cm-1 lies between the transitions B 

(3649 cm-1) and A (3745 cm-1) and agrees well with the predicted νf mode (3712 cm-1) of the first W ligand 

next to the positively charged H+Ox. The other two transitions B and A in the free OH stretch range are 

readily assigned to ν1/3 of the terminal W ligand predicted at 3651 and 3739 cm-1, which are indeed blue-

shifted from the corresponding transitions of H+Ox-W, because of the larger separation of the terminal W 

from the center of the positive charge. The other new and rather intense feature D at 3338 cm-1 is safely 

attributed to the H-bonded OH stretch mode of the W2 unit in H+Ox-W2(H) predicted at νOH
b=3267 cm-1. 

Again, the predicted harmonic frequency shift somewhat overestimates the measured shift of the 

fundamental frequency upon H-bonding, due to the strongly anharmonic nature of the proton-donor stretch 

mode. As predicted, the H-bonded OH stretch frequency in H+Ox-W2 is much lower than in isolated W2 (3338 

vs. 3601 cm-1) due to the large cooperativity.80,81 Band E at 3179 cm-1 in the H+Ox-W2 spectrum is unshifted 

from the n=1 spectrum, which confirms its assignment to the aromatic νCH modes. Closer inspection reveals 

some signal between bands E and D above the background (band X, 3247 cm-1), which we tentatively assign 

to the bending overtones of the W ligands, 2βOH, predicted at 3261 and 3209 cm-1. In conclusion, all major 

features of the H+Ox-W2 spectrum can reliably be attributed to the most stable isomer, which features a H-

bonded solvent network. This result is qualitatively different from the H+Ox-Ln structures with L=Ar and N2, in 

which the aprotic ligands bind individually to the central H+Ox cation at various binding sites (interior ion 

solvation).  

  

   Similar to the n=1 case, the IRPD spectrum of tagged H+Ox-W2-N2 in Figure 5 features bands with 

narrower widths due to the reduced internal energy. In general, it confirms the spectral features and 

assignments of the bare cluster. The most striking difference is the relative intensity of band C1 at 3707 cm-1 

assigned to νf of the first W ligand, which is strongly reduced in intensity by N2 tagging compared to bands B 

and A but keeps its position compared to the n=1 spectrum (3705 cm-1). Such an effect is expected for the 

predominant presence of the most stable H+Ox-W2(H)-N2(H1) isomer, in which this free OH group is solvated 

by N2, which shifts this mode to the red. Following this scenario, bands D, C2, and A at 3312, 3667, and 
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3742 cm-1 are assigned to νOH
b, νf, and ν3 modes of H+Ox-W2(H)-N2(H1). Its N2-bonded νf transition overlaps 

with band C2. The remaining weak band C1 must be ascribed to the νf mode of the much less abundant 

local minima, H+Ox-W2(H)-N2(H2) and/or H+Ox-W2(H)-N2(π). Like for the spectrum of the untagged cluster, 

the transitions E and X in the H+Ox-W2-N2 spectrum are attributed to the νCH and 2βOH vibrations. Careful 

analysis of the high-frequency range reveals that band C2 at 3667 cm-1 exhibits a shoulder at 3657 cm-1 (B), 

which is attributed to ν1 of H+Ox-W2(H)-N2(H1/π). 

 

4.4 H+Ox-W3 

 

   We consider the two most stable H+Ox-W3 geometries that are obtained by adding a third W ligand to 

either the first or the second W ligand of H+Ox-W2(H). The branched H+Ox-W3(b) isomer with Cs symmetry is 

calculated to be slightly more stable than the chain-type H+Ox-W3(l) isomer with a linear H-bonded W3 chain 

(D0=13908 vs. 13582 cm-1). The cooperativity is slightly stronger for the branched isomer (67.4 vs. 63.6%) 

because of hydration closer to the positive charge of H+Ox. The additional W in H+Ox-W3(b) further 

strengthens the NH…O H-bond as compared to the n=2 case (∆RNH…O=-101 mÅ), consistent with the larger 

PA of W3 compared to W2 (862 vs. 808 kJ/mol).79,83 As a result, the N-H bond elongates from 1.066 to 1.099 

Å, and the total red shift of νNH
b increases from -892 to -1339 cm-1. The free ν1/3 modes of the terminal W 

ligands are calculated at 3654 and 3744 cm-1, while the H-bonded antisymmetric and symmetric νOH
b 

frequencies of the first W are strongly reduced to 3384 and 3349 cm-1, respectively. 

  

   The linear W3 chain in the H+Ox-W3(l) isomer has a less pronounced effect on the NH group as compared 

to the branched isomer, with a weaker NH…O H-bond (RNH…O=1.507 vs. 1.454 Å) and thus a smaller N-H 

bond elongation and less pronounced total νNH
b red shift (rNH = 1.0799 Å, ∆νNH

b=-1092). Its ν1/3 modes of the 

terminal W are comparable to those of the branched isomer. However, the linear W3 network features 

characteristics free νf modes of the two dangling OH groups calculated at 3717 and 3715 cm-1. The νOH
b 

mode of the first OH…O H-bond closer to the H+Ox positive charge is much further red shifted compared to 

the remaining νb oscillator of the second OH…H H-bond (3046 vs. 3374 cm-1). 

  

   The IRPD spectrum of H+Ox-W3 is compared in Figure 7 to the IR spectra computed for the two considered 

isomers. The IRPD spectrum exhibits four major bands at 3743 (A), 3654 (B), 3348 (D1), and 3178 (E) cm-1. 

Transition D1 has a blue-shaded contour, which is characteristic of a proton-donor stretch band. These four 

bands are readily assigned to the transitions of the most stable H+Ox-W3(b) isomer predicted at 3744 (ν3), 

3654 (ν1), 3384 (antisymmetric νOH
b), 3349 (symmetric νOH

b), and 3160 (most intense νCH), respectively. 

Additionally, the weak feature X at 3242 cm-1 is tentatively assigned to 2βOH of the water ligands. The good 

agreement between experimental and computed IR spectra demonstrates that the branched isomer 

dominates the H+Ox-W3 population, consistent with its higher D0 value. In addition to the major peaks, the 

IRPD spectrum exhibits two weaker and less resolved bands at 3707 (C) and 3050 (D2) cm-1, which indicate 

a very weak population of the less stable H+Ox-W3(l) isomer. The intensity of band C, which is assigned to 

the two overlapping and nearly degenerate νf modes of H+Ox-W3(l) predicted at 3717 and 3715 cm-1, is 

dramatically reduced as compared to H+Ox-W2, confirming the predominant population of the branched 
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isomer. The remaining weak feature D2 is attributed to the νOH
b mode predicted at 3046 cm-1 with high 

intensity (1548 km/mol). 

 

4.5 H+Ox-W4 
  

   The potential energy surface becomes substantially more complex for increasing degree of hydration. 

Thus, the search for low-energy minima of H+Ox-W4 is less complete. To this end, we consider the four low-

energy H+Ox-W4 structures shown in Figure 6. The branched and linear H+Ox-W4(b/l) isomers feature a 

NH…O type H-bond of H+Ox to the H-bonded W4 network and are obtained by simply adding a fourth W 

ligand in the outermost shell of the two corresponding n=3 isomers. As for the n=3 case, the branched 

structure is more stable than the linear structure for n=4, because the W ligands are closer to the excess 

proton (D0=17067 vs. 16425 cm-1). For these structures, the cooperativity in binding energy amounts to 7764 

and 7022 cm-1 (81.5 and 74.7%). In the other two cyclic H+Ox-W4(c1/c2) isomers, the first three W molecules 

form a H-bonded solvent ring involving the NH and adjacent CH groups of H+Ox (C2H or C4H) as proton 

donors in NH…O and CH…O type H-bonds. The remaining fourth W ligand is then H-bonded with one of the 

peripheral W ligands in the second hydration shell. Thus, the cyclic isomers have one more H-bond than the 

branched and linear isomers. As a result of the additional CH…O H-bond, the H+Ox-W4(c1) isomer has the 

highest stability (D0=17169 cm-1) of all isomers considered. H+Ox-W4(c2) has a somewhat lower binding 

energy (D0=16495 cm-1), partly because the C4H group is less acidic than the C2H group,60 leading to a 

slightly weaker and longer CH…O H-bond (RCH…O=2.077 vs 2.062 Å). On the other hand, the strong NH…O 

ionic H-bond in the cyclic isomers is somewhat weaker than in the branched and linear isomers 

(RNH…O=1.539 and 1.542 Å vs. 1.389 and 1.454 Å), because of the additional constraints on the H-bonded 

solvent network imposed by the additional CH…O H-bond. In fact, no cyclic stable structure is found for the 

cluster size n=3. Similarly, no cyclic n=4 structure with all four W ligands participating in the water ring is 

obtained. Except for H+Ox-W4(l), all structures feature a three-coordinated W ligand. However, its nature in 

terms of number of donor and acceptor H-bonds is different for different isomers (double-donor single-

acceptor or single-donor double-acceptor). The νOH
b frequencies of the W4 network within these structures 

span a wide range and depend sensitively on the respective solvation environment. In comparison to the free 

νCH modes of the linear and branched isomers, the IR intensity of the H-bonded νCH
b mode of the cyclic 

structures is significantly enhanced with a concomitant red shift of its frequency (νCH
b=3027 and 3104 cm-1 

for the cyclic isomers, 3155<νCH<3190 cm-1 for the noncyclic structures). 

  

   The proton affinity of Wn clusters increases with cluster size n (PA=691, 808, 862, and 900 kJ/mol for n=1-

4)59,79,83 and exceeds the value for N-protonated H+Ox (PA=876 kJ/mol) for clusters larger than n≥4 by more 

than 20 kJ/mol (or 1700 cm-1). Hence, from these values alone, one may expect intracluster proton transfer 

from H+Ox to Wn in H+Ox-Wn clusters to occur for n>3, leading to the formation of Ox-H+Wn clusters. 

However, in addition to the PA values one must also consider the difference in the intermolecular solvation 

energies, which may partly compensate for the PA difference.84-87 In addition, the Wn structures in H+Ox-Wn 

and the H+Wn structures in Ox-H+Wn differ from those of bare Wn and H+Wn, so that the effective PA values 

are modified accordingly. For this reason, the four H+Ox-W4 isomers shown in Figure 6 are actually quite 

stable non-proton-transferred isomers, although the PA values of bare W4 and Ox alone clearly suggest 

exothermic intracluster proton transfer. The most stable proton-transferred Ox-H+W4(1/2) structures shown in 
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Figure 6 have indeed binding energies (D0=17054 and 16109 cm-1) comparable to those of the H+Ox-W4 

isomers but do not reach the stabilization of the H+Ox-W4(c1) isomer, which remains the global minimum. 

These two Ox-H+W4(1/2) structures differ in the position of the neutral Ox ligand in the hydration shell of 

H+W4. While in Ox-H+W4(1) the Ox ligand is a member of the Eigen-type ion core with direct contact to the 

central H3O+ ion, it binds in Ox-H+W4(2) in the first solvation shell to a distorted H9O4
+ core, thus leading to a 

smaller total binding energy. From the bare consideration of the computed dipole moments of Ox and W 

(1.54 and 1.85 D) and the resulting charge-dipole interaction, one would actually expect Ox-H+W4(2) to be 

more stable than Ox-H+W4(1). Apparently, the larger cooperativity of the H-bonded network in Ox-H+W4(1) 

overrides this difference in electrostatic attraction and brings the Ox ring into the first solvation shell of H3O+. 

As a result, the OH…N ionic H-bond in Ox-H+W4(1) is much stronger than in Ox-H+W4(2), ROH…N=1.438 vs. 

1.621 Å. Interestingly, the Ox-H+W4(1) and H+Ox-W4(b) isomers are structurally very similar except for the 

position of the proton. Both nearly isoenergetic minima (ΔE0=115 cm-1) are separated by only small barriers 

of less than 200 cm-1 for proton transfer along the N…H+…O coordinate, suggesting that the zero-point 

energy level lies above the transition state for this slightly asymmetric double-minimum potential (Figure S5 

in the supporting information), leading to a single species with a largely delocalized shared proton. 

 

   Unlike the smaller H+Ox-Wn≤3 clusters, the IRPD spectrum is more congested for n=4 (Figure 1 and 8). The 

broad feature below 3500 cm-1 shows few unresolved and strongly overlapping bands, which are compatible 

with the simulated spectra of all considered isomers. The transitions E and X at 3180 and 3247 cm-1, 

respectively, are consistent with the band positions of the n≤3 clusters. Consequently, these two features are 

assigned to the νCH and 2βOH vibrations, respectively. However, this spectral range also exhibits contributions 

from the νOH
b modes of both H+Ox-W4 and Ox-H+W4 type structures. The new and relatively weak feature at 

3567 cm-1 (Y) can be explained only by the νOH
b mode of the W ligand involved in the CH…W H-bond of the 

cyclic H+Ox-W4(c2) isomer. Similarly, the weakly resolved transition H (3084 cm-1), which is absent in the 

smaller n=2-3 clusters, is attributed to the H-bonded red-shifted νCH
b modes of the two considered cyclic 

structures. These observations may be taken as experimental evidence for the competitive stability of cyclic 

H+Ox-W4 isomers predicted by the DFT calculations.  Similar to the n=2-3 clusters, the transitions at 3651 

(B), 3715 (C), and 3741 (A) cm-1 are attributed to ν1, νf, and ν3 modes, which are characteristic of all 

calculated structures. Interestingly, the experimental intensity of band C increases compared to n=3. In 

general, it is difficult to exclude any of the calculated structures, and other isomers not considered in the 

calculations may also contribute. Despite the higher PA of W4 in comparison to Ox, no unequivocal signature 

of the intracluster proton transfer is detected. However, proton-transferred structures are energetically 

comparable to the non-proton-transferred structures. Thus, we assume the presence of both types of 

geometries in our the ion source. 

 

4.6 Cluster Growth 

 

   The analysis of the IRPD spectra H+Ox-Wn with the aid of DFT calculations provides a clear picture of the 

cluster growth and the initial microhydration steps of H+Ox. Clearly, the formation of a H-bonded Wn solvent 

network attached to the acidic NH group of N-protonated H+Ox is energetically strongly favoured over interior 

ion solvation because of the large cooperative effects of ionic H-bonding. The most stable computed H+Ox-
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Wn clusters H+Ox-W(H), H+Ox-W2(H), H+Ox-W3(b), and H+Ox-W4(c1) for n=1-4 are consistent with the 

experimental IRPD spectra, and the population of the n=1-3 clusters are strongly dominated by a single 

isomer corresponding to the global minimum. For n=4, several low-energy isomers compet,. In particular, 

cyclic structures with a weak second H-bond contact (CH…O) are observed as new low-energy isomers. 

Because the proton affinity of Wn clusters increases with cluster size (PA=691, 808, 862, 900 kJ/mol for n=1-

4), its NH…O ionic H-bond to the acidic NH group of N-protonated H+Ox becomes stronger and shorter 

(RNH…O=1.659>1.555>1.454>1.389 Å for n=1-4; we consider here the H+Ox-W4(b) isomer, because its H-

bond network is not perturbed by the CH…O H-bond), leading to a pronounced increasing red shift in νNH
b 

(∆νNH
b=-563, -892, -1339, -1671 cm-1 for n=1-4, Figure 9). The red shift is so large that the νNH

b transition is 

here only observed for n=1, because the intensity of the employed IR-OPO laser is too low below 2600 cm-1 

to drive IRPD of the strongly bonded W ligands. The total binding energy increases as D0=6094 < 10278 < 

13908 < 17067 cm-1 for n=1-4, yielding incremental hydration energies of 6094, 4184, 3630, and 3159 cm-1, 

which are all substantially larger than the dissociation energy of the W2 dimer (1108 cm-1), illustrating the 

large polarization effect of the excess H+ on the Wn network. The increasing strength of the ionic NH…O 

bond as a function of hydration is accompanied by increasing charge transfer to the solvent cluster 

(Δq=0.060, 0.091, 0.129, and 0.161 e for n=1-4, Figure S2 in the supporting information). This trend is in line 

with the E(2) energies and ρ* values of the NH…O H-bond derived from NBO and NCI calculations 

(E(2)=106.1, 161.5, 241.7, 318.5 kJ/mol; -ρ*=0.0498, 0.0656, 0.0862, 0.1033 a.u. for n=1-4, Figures S6 and 

S7 in the supporting information). For clusters with n≥4, proton transfer for H+Ox to the Wn cluster becomes 

energetically competitive according to the DFT calculations and the comparison of proton affinity values 

(Figure S8 in the supporting information). Experimentally, the IRPD spectrum of n=4 is not of sufficient 

resolution to decide this aspect. Clearly, although solvation energy is in favour of protonation of Ox, the most 

stable clusters with larger n will ultimately be of the type Ox-H+Wn with a neutral Ox ligand being located on 

the surface, because the excess proton in H+W can be stabilized more efficiently. 

 

   Tagging of the H+Ox-W1-2 clusters with N2 significantly reduces their internal energy, resulting in narrower 

transitions in IRPD spectra with higher resolution. The tagged water complexes prefer N2 attachment through 

H-bond formation adjacent to the positive charge. 

 

4.7 Comparison to Neutral Ox-W 

 

   To evaluate the effects of protonation of Ox on the microhydration structure, it is instructive to compare the 

properties of H+Ox-Wn with those of the neutral Ox-Wn clusters. Unfortunately, no experimental information is 

available for any Ox-Ln cluster and computational studies are limited to the Ox-W dimer.48 In the global 

minimum of Ox-W, W binds to the in-plane lone pair of the basic N atom of Ox via a linear OH…N H-bond 

(D0=1697 cm-1, ROH…N=1.951 Å, Figure S1 in the supporting information), which is indeed much weaker than 

the ionic NH…O H-bond in the N-protonated H+Ox-W(H) dimer (D0=6094 cm-1, RNH…O=1.659 Å), indicating 

the drastic change of protonation on the interaction potential with respect to both the global minimum 

structure (orientation of the W ligand) and the interaction strength. Stable structures with other possible 

binding sites of W to neutral Ox (e.g., π and O) do not converge at the B3LYP-D3/aug-cc-pVTZ level 

employed herein. In particular, the local minimum obtained in Ref. 48 at the MP2 and B3LYP levels using the 
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smaller 6-31+G* basis set (with a C5H…O and OH…O H-bond) can not be reproduced herein at the higher 

computational level with the much larger basis set and proper inclusion of dispersion. Interestingly, the 

lower-level calculations predict for the Ox-W global minimum a much longer H-bond (ROH…N =2.010 Å), along 

with a much higher binding energy (D0~2550 cm-1)48 than our more reliable B3LYP-D3/aug-cc-pVTZ 

approach. 

 
4.8 Comparison to H+Ox-Ln Clusters with Aprotic Ligands 
 

   The microhydration process of H+Ox with protic, hydrophilic, and dipolar W molecules differs qualitatively 

from solvation with aprotic, hydrophobic, and nonpolar (L=Ar) or quadrupolar (L=N2) ligands characterized 

previously by the same experimental and computational approach.60 For the latter solvents, the L…L 

interaction is much weaker than the H+Ox…L interaction (<100 cm-1)62 and no strong H-bonded network can 

be formed. As a result, H+Ox-(Ar/N2)n clusters prefer interior ion solvation, in which individual ligands are 

attached to the H+Ox cation core, first by H-bonding to the NH group, and subsequently by attachment to the 

less stable π and CH binding sites. In contrast, H+Ox-Wn clusters prefer the formation of the H-bonded 

solvent network, because of the strong cooperativity of H-bonding discussed above. Common to all H+Ox-L 

dimers is that the global minimum on the potential is the H-bonded H+Ox-L(H) structure with a linear NH…L 

ionic H-bond of the neutral ligand to the highly acidic proton of the NH group of H+Ox. Again, the interaction 

strength is strongly correlated with the PA of L (PA=369<494<691 kJ/mol for Ar, N2, and W),59 

D0=891<1597<6094 cm-1,60 as illustrated in Figure 9. As a result, the NH…L ionic H-bond to the acidic NH 

group of N-protonated H+Ox becomes stronger and shorter (RNH…L=2.420>2.031>1.659 Å), leading to an 

increasing predicted red shift in νNH
b (∆νNH

b=-70, -157, -546 cm-1), consistent with the observed values (-52, -

126, -611 (considering F3) cm-1). This trend in H-bond strength is also visible in the charge transfer from 

H+Ox to L (Δq=0.017, 0.028, 0.060 e), the E(2) energies (13.7, 42.2, 106.1 kJ/mol) and the ρ* values (-0.013, 

-0.022, -0.0498 a.u.). 

 

5. Conclusions 
 

   In this work, we characterized microhydrated clusters of H+Ox by IR photodissociation spectroscopy of 

size-selected H+Ox-Wn clusters and dispersion-corrected DFT calculations to determine for the first time the 

protonation site and the most stable structure of the solvation network of this prototypical protonated azole 

ring. Tagging of the hydrated cluster up to n=2 with N2 results in internally colder clusters and thus spectra 

with higher resolution. Systematic shifts in the OH, NH, and CH stretch frequencies as a function of the 

cluster size provide a consistent picture of the sequential cluster growth. The salient results may be 

summarized as follows. Protonation of Ox in the H2-containing plasma occurs at the most basic N atom of 

the heterocyclic ring. The spectra of the n=1-3 clusters are dominated by the most stable isomer predicted by 

the DFT calculations. Microhydration of H+Ox occurs by solvating the acidic NH proton of H+Ox with a H-

bonded Wn cluster via a strong ionic NH…O H-bond. The formation of such H-bonded networks is strongly 

cooperative and the strength of the NH…O bond increases with n, because the proton affinity of Wn 

increases with size. At the cluster size n=4, structures with nearly barrierless proton transfer to the solvent, 

Ox-H+W4, are predicted to become energetically competitive with structures of the type H+Ox-W4, because 

the larger solvation energy can compensate for the difference in proton affinity of Ox and W4 (~25 kJ/mol). 
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Indeed, in contrast to the n=1-3 spectra, the n=4 spectrum is significantly more congested indicating the 

presence of more than one isomer, including the likely formation of proton-transferred structures. We expect 

that in the most stable clusters with n≥5 a neutral Ox ring binds at the surface of a H+Wn cluster, and this 

intracluster proton transfer is an important process toward understanding the physiological activity of Ox-

bearing biomolecules in microhydrated environments. Comparison of H+Ox-Wn with the previously studied 

H+Ox-Ln clusters with L=Ar and N2 reveals importan differences in the solvation of H+Ox with hydrophilic and 

hydrophobic ligands. While the dipolar protic W ligands form a H-bonded solvent network attached to the NH 

proton of H+Ox, the aprotic nonpolar and quadrupolar Ar and N2 ligands prefer interior ion solvation by 

attachment of individual ligands around the heterocyclic aromatic cation. In all cases, the global minimum of 

the H+Ox-L dimer features a linear NH…L ionic H-bond, and the strength of this H-bond increases in the 

order Ar<N2<W, in line with the increasing proton affinity of the ligand. This trend is also visible in the red 

shift of the proton donor stretch vibration (νNH
b), as well as the computed binding energies and the NBO and 

NCI analyses. Finally, protonation of Ox has a strong impact on the interaction potential with W, with respect 

to both its structure and binding energy. While Ox-W has a weakly H-bonded structure with W acting as 

proton donor in an OH…N H-bond, H+Ox-W features a strong ionic NH…O H-bond with W being a proton 

acceptor. Such charge-induced structural changes are typical for (mono-)hydrated aromatic 

molecules.10,62,68,85-92 
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Figure Captions 

Figure 1. Comparison of IRPD spectra of H+Ox-Wn (n=1-4) and H+Ox-Wn-N2 (n=1-2) clusters measured 

between 2650 and 3820 cm-1. The positions of the transitions observed are listed in Table 1, along with the 

suggested vibrational and isomer assignments. 

Figure 2. Optimized geometries of W, H+Ox (N-protonated, with atomic numbering), and most stable isomers 

H+Ox-W and H+Ox-W-N2 calculated at the B3LYP-D3/aug-cc-pVTZ level. Binding energies (D0) and bond 

lengths are given in cm-1 and Å, respectively. Numbers in parentheses correspond to relative energies and 

free energies in cm-1 (E0, G0). 

Figure 3. Comparison of measured IRPD spectra of H+Ox-W and H+Ox-W-N2 to linear IR absorption spectra 

computed for the most stable isomers at the B3LYP-D3/aug-cc-pVTZ level. For comparison, the IR spectra 

calculated for bare H+Ox and W are also shown. The IR stick spectra are convoluted with Gaussian line 

profiles with FWHM=10 cm-1. 

Figure 4. Optimized geometries of W2, H+Ox-W2, and most stable isomers of H+Ox-W2-N2 obtained at the 

B3LYP-D3/aug-cc-pVTZ level. Binding energies (D0) and bond lengths are given in cm-1 and Å, respectively. 

Numbers in parentheses correspond to relative energies and free energies in cm-1 (E0, G0). 

Figure 5. Comparison of measured IRPD spectra of H+Ox-W2 and H+Ox-W2-N2 to the linear IR absorption 

spectra computed for the most stable isomers at the B3LYP-D3/aug-cc-pVTZ level. For comparison, the IR 

spectra calculated for bare W2 is also shown. The IR stick spectra are convoluted with Gaussian line profiles 

with FWHM=10 cm-1. 

Figure 6. Optimized geometries of H+Ox-Wn and Ox-H+Wn clusters with n=3 and 4 obtained at the B3LYP-

D3/aug-cc-pVTZ level. Binding energies (D0) and bond lengths are given in cm-1 and Å, respectively. 

Numbers in parentheses correspond to relative energies and free energies in cm-1 (E0, G0).  

Figure 7. Comparison of measured IRPD spectrum of H+Ox-W3 to the linear IR absorption spectra computed 

for the two most stable isomers at the B3LYP-D3/aug-cc-pVTZ level. The IR stick spectra are convoluted 

with Gaussian line profiles with FWHM=10 cm-1.  

Figure 8. Comparison of measured IRPD spectrum of H+Ox-W4 to the linear IR absorption spectra computed 

for the most stable isomers of H+Ox-W4 and Ox-H+W4 at the B3LYP-D3/aug-cc-pVTZ level. The IR stick 

spectra are convoluted with Gaussian line profiles with FWHM=10 cm-1. 

Figure 9. Observed (filled circles) and calculated (open circles, B3LYP-D3/aug-cc-pVTZ) νNH
b frequencies of 

the H-bonded H+Ox-L (L=Ar, N2, W) dimers and H+Ox-Wn clusters as a the function of the PA of the ligands. 

For n=4, we consider both the c1 and b isomers. The c1 isomer is most stable but its NH…O H-bond is 

affected by the formation of the cyclic ring. The NH…O H-bond of the less stable b isomer is not affected. 
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Table 1. Positions and suggested vibrational and isomer assignments of the transitions observed in the 

IRPD spectra of H+Ox-Wn (n=1-4) and H+Ox-Wn-N2 (n=1-2) clusters compared to frequencies of the most 

stable isomers calculated at the B3LYP-D3/aug-cc-pVTZ level. All values are given in cm-1. For comparison, 

spectral data of Wn with n≤2 are provided. 

 exp (cm-1) calc (cm-1) a assignment isomer 

W 3756 b 3757 (63) ν3  

 3657 b 3658 (5) ν1  

W2 3746 c 3749 (84) ν3  

 3735 c 3730 (86) νf  

 3654 c 3653 (10) ν1  

 3601 c 3542 (341) νOH
b  

Ox 3168 d 

3148 d 

3170 (0.4) 

3137 (2) 

3144 (0.9) 

νCH 

νCH 

νCH 

Ox 

H+Ox 3444±3 e 3446 (202) νNH
f H+Ox(N) 

3205±5 e 

3180±10 e 

3170±10 e 

3181 (27) 

3161 (40) 

3149 (69) 

νCH 

νCH 

νCH 

H+Ox-W A 3720 3728 (151) ν3 H+Ox-W(H) 

B 3625 3642 (56) ν1 

X 3230  2βΟΗ 

E 3179 

E 3179 

E 3179 

3184 (16) 

3163 (31) 

3155 (57) 

νCH 

νCH 

νCH 

F1 3095 

F2 2969 

F3 2833 

2883 (1840) νNH
b 

H+Ox-W-N2 A 3711 3706 (195) ν3 H+Ox-W(H)-N2(H) 

B 3610 3576 (383) ν1 

X 3230  2βΟΗ 

E 3178 

E 3178 

E 3178 

3184 (15) 

3164 (30) 

3156 (54) 

νCH 

νCH 

νCH 

F 2970 2785 (2209) νNH
b 

H+Ox-W2 A 3745 3739 (124) ν3 H+Ox-W2(H) 

C 3705 3712 (115) νf 

B 3649 3651 (31) ν1 

D 3338 3267 (1023) νOH
b 

X 3247  2βOH 

E 3179 

E 3179 

E 3179 

3185 (14) 

3164 (27) 

3158 (48) 

νCH 

νCH 

νCH 

 2554 (2853) νNH
b 

H+Ox-W2-N2 A 3742 3741 (121), 3739 (122) ν3 H+Ox-W2(H)-N2(H1), H+Ox-W2(H)-N2(π) 

C1 3707 3712 (116) νf H+Ox-W2(H)-N2(π) 

C2 3667 3643 (422) νf H+Ox-W2(H)-N2(H1) 

B 3657 3653 (42), 3650 (30) ν1 H+Ox-W2(H)-N2(H1), H+Ox-W2(H)-N2(π) 
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a IR intensities (in km/mol) are listed in parentheses. 
b Ref. 71. 
c Ref. 80, 81, 82. 
d Ref. 46. 
e Ref. 60. 
f The intensities of the two nearly degenerate modes are added. 

 

  

D 3312 3301 (984), 3278 (968) νOH
b H+Ox-W2(H)-N2(H1), H+Ox-W2(H)-N2(π) 

X 3253  2βOH H+Ox-W2(H)-N2(H1), H+Ox-W2(H)-N2(π) 

E 3174 

E 3174 

E 3174 

3185 (14), 3186 (13) 

3164 (26), 3165 (25) 

3159 (46), 3161 (47) 

νCH 

νCH 

νCH 

H+Ox-W2(H)-N2(H1), H+Ox-W2(H)-N2(π) 

H+Ox-W3 A 3743 3744 (230),f 3745 (115) ν3 H+Ox-W3(b), H+Ox-W3(l) 

C 3707 

C 3707 

3717 (84) 

3715 (115) 

νf 

νf 

H+Ox-W3(l) 

H+Ox-W3(l) 

B 3654 3654 (47),f 3654 (23) ν1 H+Ox-W3(b), H+Ox-W3(l) 

D1 3348 

D1 3348 

3384 (1362), 3374 (702) 

3349 (521) 

νOH
b

 

νOH
b 

H+Ox-W3(b), H+Ox-W3(l) 

H+Ox-W3(b) 

X 3242  2βOH H+Ox-W3(b), H+Ox-W3(l) 

E 3178 

E 3178 

E 3178 

3185 (12), 3185 (12) 

3164 (22), 3164 (24) 

3160 (40), 3159 (45) 

νCH 

νCH 

νCH 

H+Ox-W3(b), H+Ox-W3(l) 

 

D2 3050 3046 (1548) νOH
b H+Ox-W3(l) 

H+Ox-W4 A 3741 

A 3741 

3749 (113), 3742 (121) 

3745 (112) 

ν3 

ν3 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(b) 

C 3715 

C 3715 

C 3715 

3722 (90), 3726 (121) 

3709 (110) 

3692 (95) 

νf 

νf 

νf 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(c1) 

H+Ox-W4(c1) 

B 3651 

B 3651 

3657 (22), 3653 (29) 

3655 (22) 
ν1 

ν1 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(b) 

Y 3567 3562 (357) νOH
b H+Ox-W4(c2) 

D1 3427 

D1 3427 

3401 (502), 3428 (414) 

3379 (1113) 
νOH

b  

νOH
b 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(b) 

D2/X 3247 

D2 3247 

3161 (1450), 3325 (945) 

3194 (1179) 

νOH
b/2βOH 

νOH
b 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(c1) 

E 3180 

E 3180 

E 3180 

3185 (10), 3186 (16) 

3164 (15), 3164 (21) 

3160 (46) 

νCH 

νCH 

νCH 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(b), H+Ox-W4(c1) 

H+Ox-W4(b) 

H 3084 3027 (364) νCH
b H+Ox-W4(c1) 
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Figure Captions  

	

Figure S1. Optimized structure of the neutral Ox-W dimer and its linear IR absorption spectrum 

calculated at the B3LYP-D3/aug-cc-pVTZ level. Binding energy (D0) and bond lengths are given in 

cm-1 and Å, respectively.	

Figure S2. NBO atomic charge distribution (in e) of selected H+Ox-Wn≤4 structures obtained at the 

B3LYP-D3/aug-cc-pVTZ level. 

Figure S3. Potential energy barrier (Ee) for internal rotation of the W ligand in H+Ox-W(H) calculated 

at the B3LYP-D3/aug-cc-pVTZ level in cm-1. Bond lengths are given in Å. 

Figure S4. Optimized structure and linear IR absorption spectrum of the H+Ox-W(C5) isomer 

calculated at the B3LYP-D3/aug-cc-pVTZ level. Binding energy (D0) and bond lengths are given in 

cm-1 and Å, respectively. Numbers in parentheses correspond to relative energies and free energies 

(E0, G0) with respect to H+Ox-W(H) in cm-1. 

Figure S5. Potential energy barrier (Ee) between H+Ox-W4(b) and Ox-H+W4(1) evaluated at the 

B3LYP-D3/aug-cc-pVTZ level in cm-1. 

Figure S6. Orbital interaction between the σ* orbital of the X-H bond (X=N/O/C) and the lone pair of O 

involved in the XH…O H-bonds of selected H+Ox-Wn≤4 isomers obtained from the NBO analysis at the 

B3LYP-D3/aug-cc-pVTZ level. E(2) values given in kJ/mol.	

Figure S7. Visualization of the NCI analysis of the XH…O (X=N/O/C) H-bonds in selected H+Ox-Wn≤4 

isomers calculated at the B3LYP-D3/aug-cc-pVTZ level. ρ* values for the H-bonds are given in a.u.	

Figure S8. Experimental proton affinities of Wn clusters (n=1-4) and Ox. 
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