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ABSTRACT

Background | Recent evidence indicates that the gut microbgoédtered considerably by a variety
of commonly prescribed medications. This study sse the impact of two antidiabetic therapeutics

on the gut microbiota and markers of cardiometaldiBease in metabolically dysfunctional mice.

Materials & Methods | C57BL/6 mice were fed a high-fat diet for 24-weeksle receiving one of
two antidiabetic therapeutics - metformin or DPPPHibitor, PKF-275-055 - for the final 12 weeks.
Mice were assessed for weight gain, glucose ankgsteool metabolism, and adiposity. In addition,
caecal microbiota was analysed by 16S compositeegliencing and plasma metabolome was

analysed by LC-MS/MS.

Results |Both therapeutics had similar metabolic effedit®raating mesenteric adiposity, improving
cholesterol metabolism and insulin sensitivity. Hear, multivariate analyses of microbiota and
metabolomics data revealed clear divergence ahir@peutic groups. While both metformin and
PKF-275-055 mice displayed significantly decredsithicutes/Bacteroidetes ratios, only metformin
harboured metabolic health-associaddétermansiaParabacteroidesndChristensenella
Paradoxically, metformin also reducedliversity, a metric frequently associated withthogtabolic
fitness. PKF-275-055 mice displayed elevated lepElsutyrate-producinRuminococcuand
acetogerDorea, with reduced levels of certain plasma sphingomyghosphatidylcholine and
lysophosphatidylcholine entities. In turn, metfonméduced levels of acylcarnitines, a functional
group associated with systemic metabolic dysfunctionally, several associations were identified

between metabolites and altered taxa.

Conclusions [This study represents the first direct comparisiothe microbiota-modifying effects of
metformin and a DPP-4 inhibitor, and proposes s#\mrtative microbial targets both in terms of

novel therapeutic development and adverse effestntion.



INTRODUCTION

Current projections forecast that insulin resistaaed the associated metabolic sequelae of the
metabolic syndrome are set to become one of thaagieglobal threats to human health [1, 2]. While
primary concern must be placed with upstream stemmi this epidemic, detailed exploration of
current antidiabetic therapies is also of particutgortance. We currently lack clear mechanistic
detail for a number of such therapies, and comgleteprehension may contribute to the
development of novel targets or personalised tleeriags. One factor which has only recently
garnered considerable attention in this regarbdésggut microbiome. The adult human gastrointestinal
tract is host to a staggering diversity of bactduagi and viruses, the genetic material of which
vastly eclipses that of our own genome [3]. Duthts same genetic and metabolic potential, the gut
microbiome has long been suspected as implicitimdn extra-intestinal health, including factors of
metabolic regulation [4]. Relatively large-scalmidal cross-sectional observational studies have
demonstrated a contributory role for the gut miaote in host metabolic health. Indeed, a robust
correlation was previously identified between irag®d microbiota diversity, or gene richness, and
host metabolic fitness [5]. Moreover, the propgneftthe gut microbiota to produce metabolites such
as branched chain amino acids has been implicatig:ipathogenesis of insulin resistance in a large

Danish cohort [6].

In addition to contributing to host health and ds® research indicates that the gut
microbiome often alters or is altered by certaiampacological interventions [7]. A large study
combining clinical datasets from two independengBa and Dutch studies revealed that
medications -such as antibiotics, proton pump i, osmotic laxatives, progesterone,
antidepressants and TNFinhibitors- explained the greatest degree of venesbetween the
microbiota composition of faecal samples [8]. M@ a recent analysis of the >2700 participant
UKTwins Study cohort uncovered microbiome compositassociations for dozens of commonly
prescribed oral and even topical medications f8jekd, certain drugs are now recognised to be
metabolised by gut microbiota members in reactsuth as glucuronidation, reduction, oxidation and

hydrolysis [10]. In addition, bile-modifying micrels, with which the gut is highly populated [11],



can further alter drug kinetics by increasing arrdasing solubility, absorption and excretion [12,
13]. In line with this, the composition of one’stguaicrobiota, which displays degrees of inter-
individual variation, may explain a degree of tlagiance in the personalised response observed with
certain oral pharmaceutical therapies. One such @hich has been shown to exhibit microbiota-
mediated action is metformin. Old knowledge indimgthat certain antibiotics affect metformin
efficacy gave the first clue that the microbiotayrpéay a role in the drugs mechanism. Preclinical
studies identifiedAkkermansia muciniphilas a potential key microbe mediating the mechianist
effects of metformin, since the Verrucomicrobiape was consistently found to be enhanced in the
presence of the drug [14]. This effect has alsmbeproduced and confirmed in randomised,
controlled and cross-sectional clinical trials [IlB: and the corrective effects Akkermansia
muciniphilain models of metabolic dysfunction have previoustgn demonstrated in a preclinical

setting by Everaret al.[18].

Under the current National Institute for Health &@ate Excellence guidelines [19], the
management of type-2 diabetes mellitus (T2DM) foiaan order of attempted dietary-control,
subsequently in combination with biguanide ther@@y metformin), followed by combination with
SGLT2 inhibitor, sulfonylurea, thiazolidinedione dipeptidase peptidyl (DPP)-4 inhibitor. The first
therapeutic assessed in this study, metformimésad the most widely prescribed antidiabetic drugs
globally; while the second therapeutic, PKF-275;05% member of the relatively novel DPP-4
inhibitor class of drugs. Although the effects aétfiormin on the microbiota have been well
characterised, detailed metabolomics has not bgglied to such studies. In addition, the microbiota
modifying effects of DPP-4 inhibitors, and in padiar PKF-275-055, is currently unknown.
Identification and comparison of the distinct migiad signatures associated with both interventions
(metformin and PKF-275-055) may reveal novel tagdet the management of diabetes and systemic
metabolic dysfunction. Herein, we explore and comphe effects of these functionally-distinct
antidiabetic therapies on the microbiota compasitind plasma metabolome of metabolically

dysfunctional mice.



METHODS

Animals, Diet & Therapies

C57BL/6 male mice (3 weeks old; Envigo UK) weredigethis diet-induced obese mouse model.
All mice were acclimatised for 1 week in the hogsiacility prior to trial commencement. Animals
were group-housed (3-4/cage) at room temperat®¥)an a 12-h light—dark cycle (light cycle
07:00-19:00). The study was performed in APC Midvale Ireland, University College Cork and
experimental procedures were carried out as pepriitecols approved by the University College
Cork Ethics Committee, with a license acquired tigiothe Health Products Regulatory Authority.
Mice were randomised into the three groups and taaied on a high-fat diet (Open Source Diets
[D12492 — 60% kcal from fat; Research Diets Inad)libitumfor 24 weeks, while receiving one of
two antidiabetic therapies for the final 12 wedkgor to commencement of interventions, high-fat
fed mice were compared against mice receiving nbcimaw for their glucose handling and insulin
sensitivity, in order to confirm the validity ofdtdiet-induced metabolic dysfunctional model
(Supplementary Figure S1). At this point, highdadt fed mice were randomised into three groups:
high-fat control (HFCn 14), metformin (METn 14) and PKF-275-055 (PKR;14). The
interventions were delivered in the drinking waidth the following doses: metformin 300 mg/kg/d
(Sigma Aldrich Ireland) and PKF-275-055 15 mg/k{vartis Ireland). The dosage for both
therapies were calculated and adjusted each daytfre daily water intake and weekly animal body

weights.

Metabolic Test Battery

Intraperitoneal Glucose Tolerance TestAt week 11 of intervention, mice were fasted fritra start
of light-cycle for 6 hours prior to the Intraperial Glucose Tolerance Test (IPGTT). At baseline,
duplicate blood glucose readings were recorded fitmod collected from the tail vein (Accu-Chek
glucometers and strips; Roche) and 1 g D-glucosefkgpdyweight was delivered by injection into

the intraperitoneum of the mouse. Subsequentlpiucose was recorded again in duplicate at 15,



45, 90 and 120 min following glucose challengeadidition, bloods were drawn at 0 and 15 min for

guantification of plasma insulin (Mouse Insulin BA, Mercodia).

Insulin Tolerance Test At week 11 of intervention, mice were fastedhia same manner for the
insulin tolerance test (ITT) as for the IPGTT. Baling duplicate baseline blood glucose readings,
intraperitoneal injection of 0.75 U insulin/kg bbdyweight was administered. Blood glucose was

then monitored in the same way at 15, 45, 90 af@di# following insulin challenge.

Mixed Meal Gavage.At week 11 of intervention, mice were fasted in $aene manner as the

previously described tests prior to the mixed ngeatage (MMG). Each mouse received a gastric oral
gavage of 200 ul Ensure Plus (Abbott Nutritionldnel) and blood glucose readings were recorded in
duplicate at 0, 2, 4 and 18 h post gavage. Plasmalss were stored and cholesterol levels were late

guantified (EnzyChrom colorimetric assay; Cambrig8gesciences, UK).

Plasma Metabolomics

Plasma was obtained from mice at cull and frozeB@&C prior to shipment under regularly
replenished dry-ice to University of Alberta, Caaa@ihe Biocrates AbsolutelDQ p180 Kit
(BIOCRATES Life Sciences AG, Austria) was utiliseddetect and quantify ~140 metabolites within
each plasma sample. Following initial extractiod derivatization steps, a range of specific amino
acids, biogenic amines, acylcarnitines, lysophosgylaholine, phosphatidylcholines,
sphingomyelins and hexoses present in the sam@esdetected and quantified on an ABI 4000 Q-

Trap mass spectrometer (MDS Sciex) run in conjonatvith a reverse-phase HPLC-column.

Compositional Microbiota Sequencing
Microbial DNA extraction, 16S rRNA amplification and sequencingCaecal contents were
collected from individual mice following 12 weekEdrug intervention. Total metagenomic DNA

was extracted from caecal contents with the QlaRp@erFecal® DNA Kit (Qiagen, Milano, Italy)



where an additional bead beating step was incotgabiato the protocol. Extracted DNA was
quantified using the NanoDropTM 8000 Spectrophotem@ hermo Fisher Scientific). Total
genomic DNA was then subjected to PCR amplificabigniargeting a 464-bp fragment of the 16S
rRNA variable region V3-V4 using the specific baikprimer set 341F (5'-
CCTACGGGNGGCWGCAG -3') and 806R (5'- GACTACNVGGGTWTAATCC -3’) with
overhang lllumina adapters [20, 21]. Unique barsoslere attached to the forward primer for
facilitating the differentiation of samples. Ampits were cleaned with the Agencourt AMPure kit
(Beckman coulter) following the manufacturer’s fnstions, and DNA was quantified using the
Quant-iT PicoGreen dsDNA kit (Invitrogen). Amplicowere mixed and combined in equimolar
ratios, and the quality and purity of the librargsachecked with the High Sensitivity DNA Kit
(Agilent, Palo Alto, CA, USA) by the Bioanalyzer@1 (Agilent). The library was sequenced on an

lllumina MiSeq platform at CIBIO (Center of Integiree Biology) — University of Trento, Italy.

Bioinformatic analysis. Sequences obtained from lllumina sequencing weregsised using
Quantitative Insights Into Microbial Ecology (QIlIMEoftware package version 1.9 [22]. The paired-
end reads were associated to the correspondindessimpugh the unique barcode and joined by
using the fastg-join method [23]. Quality filteriiog lllumina data was performed as part

of split_libraries_fastq.py, using the per-nucldetPhred quality score (q >20), which works on a
per-nucleotide basis, truncating reads at the ipasithere their quality begins to drop [22, 24].
Uclust was then used for clustering the readsn&ftoperational taxonomic units (OTUSs) at 97%
identity [25]. PyNAST was used to align OTUs witmaimum alignment of 150 bp and 80% of
minimum identity, and taxonomy was assigned bygi&ibosomal Database Project (RDP) classifier
2.0.1 [26, 27] QIIME was used to generate alphaf@hPD whole tree, Simpson, Shannon,
observed OTUs) and beta diversities (Bray Curiiadce matrices, and principal coordinate
analysis (PCoA) plots were generated based onefzediversity distance matrices. Finally,

the Galaxy Lab platform for analysing linear disgiriant analysis (LDA) effect size (LEfSe) was

applied to sequencing data in order to identifyatmost associated with each group [28].



Statistical Analysis

All metabolic datasets were analysed by one-walyaiseof variance (ANOVA) in Prism 5
(GraphPad Software Inc.). Metabolomic data wasmgnalised prior to ANOVA, multivariate and
correlation analyses in the MetaboAnalyst metabaeranalysis suite [29]. Sparse partial least
square discriminant analysis (sPLS-DA) was alsfopered on metabolomic data [30]. For
metabolomic data, a false discovery rate (FDR)Igevkess than 0.05 was considered statistically

significant.

RESULTS

Metabolic Parameters

All animals gained significant weight over the stymkriod (Fig. 1Bp < 0.0001). MET mice
presented with significantly lower weights when gamred to both HFC and PKF at several weekly
timepoints throughout the study. However, both M HFC groups had similar weight gain at the
end of the study. Despite this, MET mice were digaitly lighter than PKF mice at week 24<
0.05). In addition, at sacrifice both therapeutioups displayed a reduced quantity of mesenteric

adipose tissue when compared to the HFC (FigpkC0.01).

Complete MMG challenge at week 23 (week 11 of intervention period) demonstrated that
both therapeutics improved mouse cholesterol mésaboas both groups had returned to a
significantly lower level of plasma cholesterol quamed to the HFC group by 18 h (Fig. 1%
0.01). Although neither therapy significantly impeal glucose handling during IPGTT, MET treated
mice demonstrated a reduced level of insulin 15mpost glucose loading (Fig. 1< 0.01). In
addition, during the IPITT, MET treated mice digmd a more rapid and sustained blood glucose
depletion response to insulin challenge when coatpar HFC and PKF, respectively (Fig. bR

0.05).



Plasma Metabolomics

SPLS-DA of plasma metabolomics data displays neatering of MET specimen away from those of
both HFC and PKF groups (Fig. 2A). The componentafmdites of greatest importance in this sPLS-
DA plot are PC ae C34:3, C16:1, C18:1, C14, SM A€, C18:2, phenylalanine, PC aa C40:6,
C16:2, SM OH C14:1, in order of effect (Fig. 2B)itirespect to amine entities, PKF mice displayed
increased levels of phenylalanine and reducedsenfagjlutamate when compared to both other
groups (Fig. 2Cp < 0.05). Both therapeutic groups presented widuced threonine, while solely
MET mice had reduced levels of methionine sulfoXigig. 2C;p < 0.05). With regards
sphingomyelins, MET mice displayed increased leg€SM OH C14:1, SM OH C16:1 and SM
C18:0; while, conversely, PKF mice showed redueedlk of the latter two metabolites (Fig. 3Dx
0.05). Analysis of phosphatidylcholine metaboliesnonstrated a multitude of PKF-mediated
reductions including PC ae C34:3, PC ae C36:5,8C42:3, PC aa C36:0, PC aa C40:1, PC aa
C42:4 and lysoPC a C18:0 (Fig. 3k« 0.05). MET mice were found to have increaseélkof PC

ae C34:3 and decreased PC ae C42:3 (Figp 28).05). Finally, the two therapeutics acted
conversely with regards acylcarnitine entities. RiEe displayed increased levels of
hexadecenoylcarnatine (C16:1), octadecenoylcaméfin8:1) and octadecadienylcarnatine (C18:2;
Fig. 2F;p < 0.05); while MET mice presented with reducectls\of tetradecanoylcarnatine (C14)

and hexadecenoylcarnatine (C16:1; Fig. 2E;0.05).

Microbiota Composition

PCoA of 16S compositional sequencing data demdestdear and consistent clustering of the MET
mice microbiota as distinct from both HFC and PIKkg(3A). The PCoA-related scatterplot
demonstrates the microbial taxa most associatddesith vector (Fig. 3B). The MET microbiota
cluster most neatly associated witlucispirillium, Bacteroides, Parabacteroides, Clidiales,
ChristensenellandAkkermansigFig. 3B). Interestingly, the MET microbiota diagkd reduced
levels of severak-diversity metrics, including Shannon diversity éxgdwhen compared to both HFC

(p < 0.0001) and PKF (Fig. 3@;< 0.001).



In broad terms, LEfSe analysis revealed that th€ H¥crobiota was associated with
Firmicutes, while the MET microbiota was definedBacteroidetesRarabacteroidesnd
AkkermansidFig. 4A/B). In turn, the PKF microbiota appeatedssociate most closely with the
family Ruminococcaceaand a number of low abundance taxa (Fig. 4A). Watrards to phylum
level alterations, PKF mice presented with reduegdls of Firmicutes compared to HFC (46s4
52.4 %;p = 0.05), while MET mice displayed lower levelstloé taxon compared to both other
groups (38.7 %p < 0.01). Conversely, the MET microbiota showedéased levels of Bacteroidetes
compared to HFC (495 40.8 %;p < 0.01), and Verrucomicrobia compared to both RK& HFC
(3.4vs 0.1 and 0.01 %p < 0.001). Both MET§ < 0.001) and PKFx(< 0.05) mice had a reduced
Firmicutes:Bacteroidetes ratio (Fig. 4C). When cameg to HFC, PKF mice displayed increased
levels of the generBacteroideg19.2vs 11.2 %;p < 0.01),Dorea(1.0vs 0.2 %;p < 0.00001; Fig.
4D) andRuminococcu$2.0vs 1.2 %;p < 0.01; Fig. 3D); while displaying reduced levefs
Odoribacter(1.5vs 3.5 %;p < 0.05) and.achnoclostridiun{17.4vs 24.2 %;p < 0.01; Fig. 3D)In
turn, when compared to the HFC, MET mice presewigid significantly increased levels of
Bacteroideq20.6vs 11.2 %;p < 0.001) Akkermansid3.4vs 0.02 %;p < 0.001; Fig. 4E),
Parabacteroide$6.2vs 1.0 %;p < 0.001; Fig. 4F)Christensenell@0.1vs 0.01 %;p < 0.00001; Fig.
4G) andClostridiales other(4.8vs. 1.0 %;p < 0.00001); while displaying decreased levels Bf1&
(0.3vs 0.9 %;p < 0.01),Muribaculum(10.3vs 14.5 %;p < 0.001) Clostridiaceae other (0.1vs 0.6
%; p < 0.0001) Lachnoclostridiun{16.8vs 24.2 %;p < 0.01),Coprococcugl.1vs 3.5 %;p < 0.05),
Dorea(0.04vs 0.2 %;p < 0.00001)Papillibacter (4.6 vs 6.4 %;p < 0.05),0scillospira(8.0vs 12.5
%; p < 0.01),Ruminococcu§0.7vs. 1.4 %;p < 0.0001) Desulfovibrio(0.1vs 1.1 %;p < 0.00001)

andDesulfovibrionaceaé0.0vs. 0.2 %;p < 0.00001; Fig. 3D).

Microbiota-Metabolite Correlation
When conducting correlation analysis between tlyetdoeonomic microbiota alterations observed and
plasma metabolome, a range of positive and negasiseciations witiboreaandChristensenella

relative abundance were identified (Supplementégyreé S2) Dorearelative abundance was



positively correlated with several acylcarnitin€2( C161, C182, C141, C14, C142, C162, C181 and
C141-0OH; g < 0.05) and phenylalanine (g < 0.05)l megatively correlated with a range of
phosphatidylcholines (PC ae C343, PC aa C406, R©2124, PC ae C424, PC aa C361 and PC aa
C362; g < 0.05) and a single sphingomyelin (SM QT q < 0.05). Conversel¢hristensenella
relative abundance was positively correlated witbgphatidylcholines (PC ae C343, PC aa C361 PC
aa C424, PC aa C362, PC ae C342, PC ae C365 aad €821; g < 0.05) and two sphingomyelins
(SM OH C141, SM OH C161,; g < 0.05), as well asthine and alanine (q < 0.05). In turn,
Christensenellaelative abundance was negatively correlated vattesal acylcarnitines (C14, C2,

C161, C182, C141-0OH, C142 and C162; g < 0.05), yhtanine and kynurenine (q < 0.05).

DISCUSSION

The intestinal microbiome has garnered signifieatgntion and scrutiny over the past two decades as
an influencer of host health and disease. Whilagkeowledge the major impact that diet imposes on
our gut microbiome [31], until recently, little csideration had been given to the potential impaat t
the thousands of regularly prescribed oral medaatmay have on this plastic enteric ecosystem.
While metformin has been widely publicised forntgrobiota-modulating andkkermansia

enhancing attributes, the effects of more novedsga of antidiabetic therapeutics have not been
extensively researched. In line with this, we sétto assess the effect of a novel DPP-4 inhilator

the gut microbiota composition of metabolically flysctional mice. In addition, our objectives
extended to directly compare these effects witls¢haf metformin, in order to assess whether such
alterations may be the result of metabolism coiwacor rather if they are therapy specific. Fipall

we examined the downstream effects of both thetagseon several classes of potentially

metabolically important host plasma metabolites.

Metformin remains a first-line therapeutic in tnanagement of T2DM, acting in part
through the suppression of hepatic gluconeogeaesigpromotion of insulin sensitivity [32], while
also contributing to a small degree of weight I[&3. In line with this, MET mice in the present

study displayed increased insulin sensitivity angroved cholesterol handling, with reduced weight



gain and mesenteric adiposity. The vildagliptinlagae PKF is a DPP-4 inhibitor and therefore
confers its beneficial effects by extending thd-hifd of endogenous GLP-1. Consistent with this,
PKF animals demonstrated improved cholesterol naditah, a trend towards improved glucose
handling and reduced mesenteric adipose tissuaeTjtgysiological changes are, for the most part, in
line with the expected outcomes for each metalpaliameter [34-36], suggesting that the

therapeutics functioned reasonably well in thisreimodel of metabolic dysfunction.

Already mentioned, the administration of metfornarboth animal and man has been shown
to alter the composition of the gut microbiota withtency [17], and is rivalled in the consistenty o
these effects only by antibiotic regimes. In therent study and animal model of metabolic
dysfunction, metformin produced many of the sanfiecé$ which have been demonstrated previously,
thereby reiterating this consistency. The primasntified enteric member of the Verrucomicrobia
phylum,Akkermansias a genus which has received a great deal oftattefor its association with
metabolic health [37]. This effect appears to be wumetformin-mediated increases in goblet cells,
which in turn secrete mucin, a key energy sourck@kermansid38]. The Delzenne and Cani group
of the Catholic University of Louvain have madeoaws in elucidating the putative mechanisms
through whichAkkermansianay contribute to host health in rodent models,[88jusing primarily
on the increased levels of inflammation-attenuagingocannabinoids and promotion of the gut
barrier integrity observed in animals exposed &litre microbe [40]. In fact, the same group has
conducted the first ever human clinical trial iniioh Akkermansias an intervention in subjects with
obesity and metabolic dysfunction (ClinicalTrialsvgD: NCT02637115). The results of this small-

scale phase | trial are eagerly awaited.

In addition to the increased relative abundancékéermansiaMET mice displayed
increases in fibre-fermenting genétarabacteroidesa taxon which has been repeatedly associated
with metabolic health [41-43], as well as metforrfierapy, independently of metabolic status [44].
A recent preclinical intervention study in whichesle mice were gavaged wRiarabacteroides

distasonisdemonstrated that the microbe generated sucanatsecondary bile acids in the intestinal



lumen, thereby instigating intestinal gluconeogénasd activating farnesoid X receptor, which in
turn improved insulin sensitivity and produced anler phenotype [45]. Finally, the increase in
Christensenellaelative abundance following metformin interventioay be of particular interest, as
this genera was previously associated with a lddhiB a clinical study examining nearly 1000
individuals from twinsets [46]. In the same stutlhe transfer of the obese phenotype into mice
through microbiota transplantation from an obessodevas attenuated by the addition of a member
of theChristensenellgenus. However, it is important to note that tretformin-mediated
augmentation o€hristensenellén the present study was, albeit interindividualbnsistent, quite

modest and therefore may not be clinically relevant

Curiously, metformin appeared to drastically redimegut microbiota-diversity of obese
mice, an effect which has been reported previomstgdents [47]. This result initially appears
paradoxical in light of current knowledge, as miata diversity and gene richness have been found
to associate tightly with metabolic fitness in humeahorts [5]. Although this is most likely the elit
result of mucin production-mediatédkkermansigopulation inflation, it may be worth considering
whether metformin inhibits the growth of certaincnoibial taxa, thereby facilitating the expansion of
other metabolically beneficial micro-organismsfdnt, the antimicrobial attributes of metformin are
now a topic of discussion having been demonstrageihst several common pathogamsitro [48,

49] and also in a clinical context against tubessid infection [50-52]. In addition, metformin
therapy is often associated with adverse gastistintd tract symptoms, with up to a quarter of
patients experiencing bloating, nausea or diarrffg@la It may be of interest to stratify clinical
patients on metformin monotherapy that are symptisnaad non-symptomatic of gastrointestinal
symptoms and to examine the composition of thergatobiota to assess whether this may be

microbially-mediated.

In this rodent model of metabolic dysfunction, D®Pmhibitor intervention significantly
increased the relative abundance®ofea, RuminococcusndBacteroidesall of which are

characterised as containing SCFA-producing spediéde Doreaspp. have the propensity to



generate acetate [5ARuminococcuspp. are known to produce acetate and butyrateBaaikroides
spp. contribute to the intestinal levels of botktate and propionate [55]. Indeed, the DPP-4 itdnibi
sitagliptin has been shown to enhance the abundariagher SCFA-producing genera, namely
RoseburisandBlautia [56]. If these bacterial abundance increasesaétahugmented SCFA
production, then this would likely have a signifitampact on metabolic function in the host. For
example, acetate is known to participate in chefessynthesis pathways and lipogenesis, while also
modulating appetite [57, 58]. In addition, propitsnhas been demonstrated to impact upon hepatic
gluconeogenesis and cholesterol metabolism [S58hlkyi butyrate acts as an energy source for
colonic enterocytes and, in turn, contributesgattjunction integrity [60]. In line with all thig

recent study examining the effects of vildagligimthe rodent innate immune system and glucose
homeostasis revealed that the caecum of these laréioraained substantially greater levels of
propionate [61], suggesting that the compositioniarobiota effects translate into functional

attributes and may contribute to the therapeutenpkype.

Metabolomics analysis of the mouse plasma reveataded story in which the therapeutics
produced substantially divergent profiles. Althougith antidiabetic groups displayed reduced
threonine levels -a free amino acid which has [senvn to correlate with fasting plasma glucose in
T2DM patients- this was the extent of their ovenhdfh respect to amine entities [62]. Interestingly
glutamate was found to be depleted in the plasnf&f mice and this metabolite was also found to
be associated with degree of insulin resistantearpreviously mentioned T2DM cohort [62]. In
addition, metformin treated mice displayed redunmatcentrations of methionine sulfoxide, a

proposed putative marker of oxidative stress rdlataliseases such as diabetes [63].

Several sphingolipids were also found to be altéo#dwing antidiabetic therapy. While
PKF mice demonstrated decreased levels of cenphiimgomyelin species, MET appeared to have the
counter effect. Intriguingly, while MET mice dispkd increased plasma levels of several
sphingomyelin entities, a previous PICRUSt analfistsPhylogenetic Investigation of Communities

by Reconstruction of Unobserved States - a bioinétic tool which uses phylogenetic data to infer



functional capacity) of the metformin-induced rotemcrobiota displayed an increase in the levels of
microbes associated with sphingolipid metabolisthyways [47]. Abundances of such entities are
often associated with insulin resistance [64] aadehbeen found to antagonise the activity of
adipocyte peroxisome proliferator-activated recegtom obese women [65], thereby promoting the
diabetic phenotype [66]. Indeed, this makes theegmed abundance following metformin therapy a

curious, but interesting result.

Significant attention has recently been given torobial phosphatidylcholine metabolism
due to the downstream cardiovascular effects sffiathway and its key metabolites trimethylamine-
N-oxide. However, the levels of circulating phospdhdtholine entities may also offer insight into
the metabolic state of the subject. While littlegdtion in phosphatidylcholine metabolism was dote
in MET mice, those treated with the DPP-4 inhibdcplayed reduced levels of multiple metabolites
of this class. Importantly, many closely relatedabelites have been proposed as early predictive
biomarkers of T2DM progression in humans [67, @8 to their association with insulin resistance.
Finally, the reduced levels of two acylcarnitineshe MET mice may also be of biological
importance. Increased levels of these entities baea reported in the plasma of individuals with
insulin insensitivity, with the running hypothe#it fatty acid oxidation rate may be reacting more
rapidly than the tricarboxylic acid cycle in obes® metabolically dysfunctional individuals [69,],70

leading to the accumulation of intermediates swchgylcarnitines [71, 72].

As previously eluded to, T2DM and its associateth@didities already represent one of the
largest contributors to morbidity and mortalitytire current global population. Beyond the vastly
augmented risk of heart disease associated witlinn®gsistance and the metabolic syndrome [73],
patients and health services must persist witlltivenstream life-changing sequelae of the disease,
such as distal neuropathies and retinopathies. Mghn mind, it is of paramount importance that
novel efficacious and tolerable therapeutics axeldped to combat this life-threatening disease and
the taxing economic ramifications which it pose® st first gain a complete understanding of the

mechanisms and effects of older and current aiidie formulations in order to develop such novel



therapeutic regimes. In line with this, exploratafrthe intestinal microbiota modifying effects may

be of central importance. Finally, as diabetic ng@maent is often not straightforward, increasing
numbers of patients are receiving multiple or corabon oral therapeutics, such as a combined
sitagliptin-metformin formulation. The interactiedfects of such medications should be considered in

future preclinical and clinical studies, in orderunderstand the ramifications to the gut micrabiot

Herein we have explored for the first time the miota and metabolome effects of a novel
DPP-4 inhibitor, PKF-275-055, and compared theraally against the well-characterized biguanide,
metformin. The data presented indicates that, whé&€ormin had a greater overall effect on the
composition of the intestinal microbiota, the sebtlterations observed in the PKF treated mice may
indeed be of biological significance due to theabetic capabilities of the taxa involved. Future
directions should include the isolation and appidcaof these potentially metabolically important
microbes to models of metabolic disease. In additivze microbiota of clinical patients on metformin
monotherapy should be examined and stratified ey gastrointestinal symptoms in order to explore
any potential role of this microbial ecosystemha variability of this phenotype. Finally, we have
identified specific plasma metabolites which mayobanportance to the therapeutic course of these
antidiabetic compounds, either as markers or deseeslifying compounds, and explored the
associations of these metabolites with altered. taxeonclusion, the intestinal microbiota
composition of metabolically dysfunctional micealgered in a treatment-specific manner, which may

point to a role of the gut microbiota in their manlsms of action.
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FIGURE LEGEND

Figure 1 | Study Design, Body Profiling and Metabat Assessment Following Antidiabetic
Therapy. (A) Mouse trial design and procedures detailed abewith high-fat diet represented by
yellow bar and intervention by broken grey bd@) Delta change in body weights over the pre-
feeding (white background) and intervention (redkeaound) periods for HFC [red; n = 13], PFK
[blue; n = 14] and MET [green; n = 14]. Tall darked boxes represent metabolic test weeks
(GTT/ITT and MMG, respectivelyCY Epididymal EAT), subcutaneousSAT) and mesenteric
adipose tissueMAT), as well as liver tissue weights are depict&j). Post-prandial serum
cholesterol levels during the 18 hours following BME) Serum glucose (lines) and insulin (bars)
levels during GTT.R) Serum glucose levels during ITT. Data was analyseone-way ANOVA with
Bonferroni correction. Significant differences beem groups are represented as follows: HFC-MET
*(p < 0.05), **(p < 0.01), ***(p < 0.001), ****(p < 0.0001); HFC-PFK¥(p < 0.05),*(p < 0.01),

*¥p < 0.001),***F{p < 0.0001); MET-PFK(p < 0.05),*(p < 0.01),"*(p < 0.001),**p < 0.0001).

Plots depict replicates with mean and SEM.

Figure 2 | Plasma Metabolomics Reveals Contrastirgffects of Metformin and DPP-4 Inhibitor
Therapy. (A) Partial least squares discriminant analysis plagplays PFK [blue], MET [green] and
HFC [red] samples.B) Plot loadings graph demonstrating the variablésnaportance to the partial
least squares discriminant analysis and the groith which each variable is positively (green box)
or negatively (red box) related. Quantitative degtalisplayed for the metabolites which were
significantly altered by PFK or MET; these includesino acids and biogenic amine3)(
sphingolipids D), diacyl-phosphatidylcholind®C aa) and acyl-alkyl-phosphatidylcholin®C ae; E)
and acylcarnitinesK). Data was analysed by one-way ANOVA and a fatsmdery rate was
applied. Significant differences between groupsrapgesented as follows: HFC-MET *(q < 0.05),
**(q < 0.01), *¥*(q < 0.001), ****(q < 0.0001); HFC-PFK %(q < 0.05),%¥q < 0.01),**¥q < 0.001),
#%q < 0.0001); MET-PFK/(q < 0.05),"(q < 0.01),"*q < 0.001),*{(q < 0.0001). Plots depict

replicates with mean and SEM.



Figure 3 | Gut Microbiota Composition is Substantifly Altered by Metformin and, to a Lesser
Extent, DPP-4 Inhibitor Therapy. (A) Principle coordinate analysis (PCoA) of compasial
sequencing dataB) Scatterplot associated with PCoA pldE) Shannon diversity index of
microbiota sequencing dateD) Genera relative abundances of each sample disglay horizontal
and divided into PFK [blue], MET [green] and HFCdHd]. Data was analysed by one-way ANOVA
with a Bonferroni correction. Significant differeesbetween groups are represented as follows:

HFC-MET ****(p < 0.0001); MET-PFK™(p < 0.001). Plots depict replicates with mean S&M.

Figure 4 | Both Metformin and DPP-4 Inhibitor Therapy Associate with Unique Taxonomic
Markers and Enhance the Relative Abundances of Patgially Metabolically Important

Microbes. Linear discriminant analysis (LDA) effect size (BEJf A) barchat and B) cladogram
representation of taxa associated with HFC anddiabetic therapies(C) Ratio of relative
abundances of Firmicutes to Bacteroidet&®. Relative abundances of the genus Dorea Relative
abundances of the genus Akkermansta Relative abundances of the genus Parabactero(@s.
Relative abundances of the genus Christensendfié.[Blue], MET [green] and HFC [red].
Significant differences between groups are represkas follows: HFC-MET *(q < 0.05), **(q <
0.01), ***(q < 0.001), ****(q < 0.0001); HFC-PFK¥(q < 0.05),**(q < 0.01),**¥q < 0.001),**q <
0.0001); MET-PFK/(q < 0.05),"(q < 0.01),"(q < 0.001),"*q < 0.0001). Plots depict replicates

with mean and SEM.
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Figure S1. Glucose and Insulin Tolerance Tests for Confirmation of Metabolic Dysfunction in Diet
Induced Obesity Model. At week 12, prior to commencement of antidiabetic interventions, high-fat diet
fed animals (HFC) were assessed against animals receiving only normal chow (NC) for their glucose
handling by intraperitoneal glucose tolerance test [A/B] and by insulin tolerance test [C/D]. In addition,
mouse weight was monitored over the initial 12 weeks to demonstrate and validate the diet-induced
obesity forecasted in the HFC animals [E].
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Figure S2. Correlation Analysis Between Key Taxonomic Alterations and Plasma Metabolomics.
Pearson correlation analysis was carried out between key taxonomic alterations highlighted in Figure 4
and plasma metabolomics data for each animal. The above plots depict the top 25 compounds
correlated with [A] Dorea, [B] Akkermansia, [C] Parabacteroides and [D] Christensenella genera relative
abundances, with the correlation co-efficient displayed on the x-axis. Statistically significant interactions
are annotated with *, which indicates an FDR q value of < 0.05.



